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Summary 
Soil is the outmost layer of earth that supports plant growth and many living 
creatures depending on it. Likewise, the soil is a natural body comprising of 
solids (minerals and organic matter), liquid, and gases that occurs on the land 
surface. Therefore, the soil is an essential resource that supports life on earth. 
It provides the only adequate environment for forest growth and crop 
production, securing human food supplies. Also, the soil is the medium that 
filters and stores the water and is a reservoir of carbon. Soil is the linkage 
between the atmosphere, hydrosphere, lithosphere and biosphere. However, 
the soil is subject to degradation as a result of natural and human factors. 
Indeed, extreme weather conditions such as prolonged droughts or extreme 
rainfall are often decisive for this phenomenon’s stimulation. Moreover, the 
internal soil physical and chemical deterioration, steep slopes and the absence 
of vegetation cover affect soil degradation. Likewise, human intervention (e.g. 
deforestation, intensive cropping, overgrazing, forest fire, land-use change) 
can lead to soil degradation. We are constantly confronted with soil 
degradation, which involves the decline of the soil’s physical, chemical and 
biological state. Furthermore, soil degradation weakens  an ecosystem’s 
capacity to function appropriately, affects the climate by changing the water 
and energy balances, and disrupts the carbon, nitrogen or sulphur cycles. 
Consequently, soil degradation may lead to increased runoff and soil erosion, 
pollution of natural waters, and greenhouse gases emission into the 
atmosphere. 
Soil stability is defined as the aggregates’ ability to maintain their bonds under 
stresses that might trigger their disintegration. Not only the soil properties 
such as soil particle distribution, mineralogy, organic matter content, cation-
exchange capacity, but also climate and land management practices affect soil 
stability. While we may understand the factors dominating soil stability, the 
spatial and temporal variations of these factors controlling the soil stability 
dynamics are still missing. Indeed, the soil stability changes through space and 
time are complicated because of the soil–climate–management practices 
interactions.  
Since soil is not static, its moisture, temperature, amount of organic matter, 
cation exchange capacity (CEC), soluble salts and pH may fluctuate with 
seasons’ change. The interactions between the soil minerals and organic 
compounds create mineral–organic associations, acting as binding and 
cementing agents in the soil. The inorganic constituents play a critical role in 
determining soil stability than the organic ones. However, there is limited 
knowledge of the soil mineralogical behaviour at varying temperatures and soil 
moisture contents occurring in a short period at the microscale. Therefore, it 
is necessary to capture the behaviour of soil properties for which the proximal 
imaging spectroscopy is an alternative since it can assess the spectral soil 
constituents responsible for soil stability. This technique allows acquiring 
quantitative soil data at the fine spatial, spectral and temporal resolutions. 
Moreover, it is rapid and measures several soil properties with one scan. The 
proximal sensing approach is also cost-effective and environmental friendly 
compared to conventional soil laboratory analyses.   
Soil is a complicated matrix with high spatial and temporal variability. Soil 
stability is a result of complex interactions of the soil properties, climatic 



  
 

 

conditions and land management practices. Although these relations are 
recognised, it is not fully understood which soil properties or stresses are 
responsible for the soil stability alterations over a short period. Indeed, it is 
not easy to assess stability because the soil properties that control it change 
over space and time. It becomes complicated when the climate and 
management practices that affect the soil stability at the catchment scale are 
considered. However, this research is limited to investigating the soil organic-
mineral interactions at a micro-plot scale under laboratory conditions using 
imagine spectroscopy. The soil stability is affected by the capability of the 
aggregates to maintain their bonds under stress. Soil aggregation is a process 
by which aggregates of different sizes are joined and held together by different 
organic and inorganic materials. However, as a result of different stresses, the 
soil aggregates break down into finer particles. These micro-aggregates (20 - 
250 μm) affect the process of infiltration, crust development, surface runoff 
and interrill erosion. Therefore, it is essential to monitor and quantify the soil 
aggregates dynamics under the natural condition at the micro-plot scale.  
The Visible Near-Infrared (VNIR) imaging spectroscopy can assess the spectral 
soil constituents responsible for the organo-mineral interactions. These 
interaction mechanisms occurring naturally in the soil depend not only on the 
soil mineralogy and their reactive surface area, soil type and soil texture but 
also on the various moisture conditions (dry, field capacity and saturation 
(waterlogging)). However, there is limited knowledge of the soil mineralogical 
behaviour at different moisture contents occurring in a short period. Similarly, 
freeze-thaw cycles during winter months in the higher latitudes or the high 
mountain regions might encourage migration and alter the chemical 
constituents in the soil matrix exposed to different moisture conditions. As a 
result, the soil mineralogical changes occurring due to the freeze-thaw process 
triggering the soil mineral precipitation, dissolution and release might affect 
the soil aggregation. These alterations could be detected using the VNIR 
imaging spectroscopy approach. Therefore, the main research’s objective is to 
investigate the seasonal effect on soil surface stability using proximal remote 
sensing. 
The effect of soil surface mineralogy alterations due to moisture variations is 
one of this study’s objectives. Soil samples were collected in the Netherlands, 
from (i) Limburg, where loess is the primary soil type and (ii) in Deventer, 
where sand is predominant. However, the Silty Loam soils are used to 
investigate the soil surface mineralogy alterations. The Silty Loam soils support 
a considerable variability of plant life because, in the silt particles, the organic 
matter content and soluble nutrients occur. Nevertheless, these soils are also 
susceptible to various environmental stresses. Therefore, the Silty Loam soil 
samples varying in organic matter content (0%, 4.6% and 12.3%) and 
moisture conditions (dry, field capacity and saturation) are used. These soil 
samples are photographed using an imaging spectrometer camera for eight 
weeks under laboratory conditions at a micro-plot scale at 72 hours basis. 
The Spectral Information Divergence (SID) was applied to detect and quantify 
(in percentage) the soil image area occupied by Mg-clinochlore, goethite, 
quartz coated 50% by goethite, hematite dimorphous with maghemite. The 
SID, an image classifier, is a probabilistic approach that uses the divergence 
measure to compare each pixel spectra with the reference spectra. If this 
divergence, which is related to a threshold, is small, then the pixel spectra are 
close to reference spectra. The results showed that the percentage of these 
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minerals changed over time, depending on soil type and soil treatment. For  
the soils with organic matter, the mineralogical alterations were evident at field 
capacity state; for the soil without organic matter, these changes were 
noticeable at waterlogging-field capacity treatment. Using imaging 
spectroscopy data, the results showed that the Silty Loam soil mineralogy 
changes over time due to moisture variations.  
Likewise, the effect of freeze-thaw cycles on the soil surface mineralogy at 
different moisture content was studied. The hypothesis is that the freeze-thaw 
process triggers soil mineral precipitation, dissolution and release. Silty Loam 
soil samples varying in the organic matter content (0%, 4.6% and 12.3%) and 
moisture conditions (field capacity and saturation) are used. The soil samples 
exposed to freeze-thaw cycles are photographed using an imaging 
spectrometer camera for eight weeks in laboratory conditions at a micro-plot 
scale at 72 hours basis.  
Using the SID approach, the soil image area occupied by Mg-clinochlore, 
goethite, quartz coated 50% by goethite, hematite dimorphous with 
maghemite was detected and quantified (percentage). The results showed that 
these minerals behaved differently under freeze-thaw cycles, depending on the 
soil type and soil condition. While the Mg-clinochlore, goethite and Qz-Gt 
behaviour depended on the presence of organic matter, the Hm-Mh did not 
show such a dependence. The results suggest that the amount and the type of 
organic matter are vital in soil experiencing the freeze-thaw cycles. When the 
soil is exposed to the freeze-thaw cycles, the moisture conditions (field 
capacity or saturation) have a significant impact on mineral behaviour 
regardless of the soil type. The use of imaging spectroscopy data on the Silty 
Loam soil exhibited that the surface mineralogy changes over time due to 
freeze-thaw cycles, depending on the soil type and the moisture conditions.  
It is vital to monitor the interaction between the soil surface and the 
surrounding environment at a high temporal resolution to understand these 
changes. Also, considering that data acquisition remains expensive and image 
analysis is often complicated and time-consuming, the possibility to monitor 
soil aggregate breakdown straightforwardly and cost-effectively was 
investigated. A digital camera mounted in a fixed setup enabled photographing 
the same location over time, acquiring time-series data. Next, the digital 
camera’s capability to monitor soil aggregate breakdown was analysed in soils 
of different texture classes (Silty Loam, Loam and Sandy Loam) under natural 
conditions on a micro-plot scale daily. Three techniques that vary in image 
processing complexity and user interaction were tested to monitor aggregate 
breakdown. Considering that the soil surface roughness causes shadow cast, 
the blue/red band ratio is utilized to observe the soil aggregate changes. 
Dealing with images with high spatial resolution, image texture entropy that 
reflects soil aggregate breakdown is used. Also, the Huang thresholding 
technique, which allows estimation of the image area occupied by soil 
aggregates, is performed. The results show that all three techniques indicate 
soil aggregate breakdown over time. The shadow ratio shows a gradual change 
over time, with no details related to weather conditions. Both the entropy and 
the Huang thresholding technique show variations of soil aggregate breakdown 
responding to weather conditions. Using data obtained with a regular camera, 
the results show that freeze-thaw cycles cause soil aggregate breakdown.   
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Samenvatting 
 
Bodem is de buitenste laag van de aarde die de groei van planten ondersteunt 
en waarvan veel levende wezens afhankelijk zijn. Evenzo is de bodem een 
natuurlijk lichaam dat bestaat uit vaste stoffen (mineralen en organische stof), 
vloeistof en gassen die op het landoppervlak voorkomen. Daarom is de bodem 
een essentiële hulpbron die het leven op aarde ondersteunt. Het biedt de enige 
geschikte omgeving voor bosgroei en productie van gewassen, waardoor de 
menselijke voedselvoorziening veiliggesteld wordt. Ook is de grond het 
medium dat het water filtert en opslaat en is het een reservoir van koolstof. 
Bodem is de verbinding tussen de atmosfeer, de hydrosfeer, de lithosfeer en 
de biosfeer. De bodem is echter onderhevig aan degradatie als gevolg van 
natuurlijke en menselijke factoren. Extreme weersomstandigheden zoals 
langdurige droogte of extreme regenval zijn vaak bepalend voor de stimulering 
van dit fenomeen. Bovendien hebben ook de interne fysische en chemische 
achteruitgang van de bodem, steile hellingen en de afwezigheid van 
vegetatiedekking invloed op de bodemdegradatie. Evenzo kan menselijk 
ingrijpen (bijv. Ontbossing, intensieve teelt, overbegrazing, bosbrand, 
verandering in landgebruik) leiden tot aantasting van de bodem. We worden 
constant geconfronteerd met het probleem van bodemdegradatie, waarbij de 
fysische, chemische en biologische toestand van de bodem achteruitgaat. 
Bovendien verzwakt de bodemdegradatie het vermogen van een ecosysteem 
om goed te functioneren, beïnvloedt het klimaat door de water- en 
energiebalansen te veranderen en verstoort het de koolstof-, stikstof- of 
zwavelcycli. Bodemdegradatie kan dan ook leiden tot meer afvoer en 
bodemerosie, vervuiling van natuurlijk water en uitstoot van broeikasgassen 
in de atmosfeer. 
 
Bodemstabiliteit wordt gedefinieerd als het vermogen van de aggregaten om 
hun banden te behouden onder spanningen die hun desintegratie zouden 
kunnen veroorzaken. Niet alleen de bodemeigenschappen zoals de verdeling 
van bodemdeeltjes, mineralogie, gehalte aan organische stof, kationen 
uitwisselingscapaciteit, maar ook klimaat- en landbeheerpraktijken 
beïnvloeden de bodemstabiliteit. Hoewel we misschien enig begrip hebben van 
de factoren die de bodemstabiliteit domineren, ontbreken de ruimtelijke en 
temporele variaties van deze factoren die de dynamiek van de bodemstabiliteit 
bepalen. De veranderingen in bodemstabiliteit door ruimte en tijd zijn 
gecompliceerd vanwege de wisselwerking tussen bodem en klimaatbeheer.  
 
Aangezien de grond niet statisch is, kunnen het vocht, de temperatuur, de 
hoeveelheid organisch materiaal, de kationen uitwisselingscapaciteit (CEC), 
oplosbare zouten en pH fluctueren met de seizoenswisseling. De interacties 
tussen de bodemmineralen en organische verbindingen creëren mineraal-
organische associaties, die fungeren als bind- en cementeermiddelen in de 
bodem. De anorganische bestanddelen spelen een cruciale rol bij het bepalen 



  
 

 

van de bodemstabiliteit en de organische structuren. Er is echter beperkte 
kennis van het mineralogisch gedrag van de bodem bij variërende 
temperaturen en bodemvochtgehaltes die in korte tijd op microschaal 
optreden. Daarom is het noodzakelijk om het gedrag van bodemeigenschappen 
vast te leggen waarvoor de proximale beeldspectroscopie een alternatief is, 
aangezien het in staat is om de spectrale bodembestanddelen te beoordelen 
die verantwoordelijk zijn voor de bodemstabiliteit. Deze techniek maakt het 
mogelijk om kwantitatieve bodemgegevens te verkrijgen met de fijne 
ruimtelijke, spectrale en temporele resoluties. Bovendien is het snel en meet 
het verschillende bodemeigenschappen met één scan. De benadering van 
proximale detectie is ook kosteneffectief en milieuvriendelijk in vergelijking 
met conventionele laboratoriumonderzoeken. 
 
Bodem is een gecompliceerde matrix met een grote ruimtelijke en temporele 
variabiliteit. De bodemstabiliteit is het resultaat van complexe interacties van 
de bodemeigenschappen, klimatologische omstandigheden en 
landbeheerpraktijken. Hoewel deze relaties worden erkend, is het niet 
helemaal duidelijk welke van de bodemeigenschappen of spanningen 
verantwoordelijk zijn voor de veranderingen in de bodemstabiliteit in een korte 
periode. Het is inderdaad niet eenvoudig om de stabiliteit te beoordelen, omdat 
de bodemeigenschappen die deze regelen in de tijd en in de ruimte veranderen. 
Het wordt gecompliceerd wanneer rekening wordt gehouden met klimaat- en 
beheerpraktijken die de bodemstabiliteit op het stroomgebied beïnvloeden. Dit 
onderzoek beperkt zich echter tot het onderzoek van de organische-minerale 
interacties in de bodem op micro-plotschaal onder 
laboratoriumomstandigheden met behulp van beeldvormende spectroscopie. 
De stabiliteit van de bodem wordt beïnvloed door het vermogen van de 
aggregaten om hun banden onder spanning te houden. Bodemaggregatie is 
een proces waarbij aggregaten van verschillende groottes worden 
samengevoegd en bij elkaar gehouden door verschillende organische en 
anorganische materialen. Door verschillende spanningen breken de 
bodemaggregaten echter af tot fijnere deeltjes. Deze micro-aggregaten (20 - 
250 μm) beïnvloeden het proces van infiltratie, ontwikkeling van korst, 
afvloeiing van het oppervlak en erosie van de boorrand. Daarom is het 
essentieel om de dynamiek van de bodemaggregaten onder de natuurlijke 
omstandigheden op micro-plotschaal te volgen en te kwantificeren. 
 
De Visible Near-Infrared (VNIR) beeldvormende spectroscopie is in staat de 
spectrale bodembestanddelen te beoordelen die verantwoordelijk zijn voor de 
organo-minerale interacties. Deze interactiemechanismen die van nature in de 
bodem voorkomen, zijn niet alleen afhankelijk van de bodemmineralogie en 
hun reactief oppervlak, bodemtype en bodemtextuur, maar ook van de 
verschillende vochtcondities (droog, veldcapaciteit en verzadiging 
(wateroverlast). Er is echter beperkte kennis van het mineralogisch gedrag van 
de bodem bij verschillende vochtgehaltes die zich in korte tijd voordoen. 
Evenzo kunnen cycli van bevriezen en ontdooien tijdens de wintermaanden op 
de hogere breedtegraden of in de hoge berggebieden de migratie en 
verandering van de chemische bestanddelen in de bodemmatrix die aan 
verschillende vochtomstandigheden wordt blootgesteld, aanmoedigen. 
Dientengevolge kunnen de mineralogische veranderingen in de bodem die 
optreden als gevolg van het bevriezen-ontdooien proces dat de neerslag, het 
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oplossen en het vrijkomen van de bodemmineralen triggert, de 
bodemaggregatie beïnvloeden. Deze veranderingen konden worden 
gedetecteerd met behulp van de VNIR-beeldvormingsspectroscopie-
benadering. Daarom is het belangrijkste doel van dit onderzoek om het 
seizoensgebonden effect op de stabiliteit van het bodemoppervlak te 
onderzoeken met behulp van proximale teledetectie. 
 
Het effect van mineralogieveranderingen van het bodemoppervlak als gevolg 
van vochtvariaties is het hoofddoel van deze studie. Bodemmonsters zijn 
verzameld in Nederland, uit (i) Limburg, waar löss de belangrijkste grondsoort 
is en (ii) in Deventer waar zand overheerst. De Silty Loam-bodems worden 
echter gebruikt om de mineralogieveranderingen van het bodemoppervlak te 
onderzoeken. De Silty Loam-bodems ondersteunen een aanzienlijke 
variabiliteit van het plantenleven omdat in de slibdeeltjes het organische 
stofgehalte en oplosbare voedingsstoffen voorkomen. Deze bodems zijn echter 
ook vatbaar voor verschillende omgevingsstress. Daarom worden de Silty 
Loam-bodemmonsters gebruikt die variëren in gehalte aan organische stof 
(0%, 4,6% en 12,3%) en vochtomstandigheden (droog, veldcapaciteit en 
verzadiging). Deze grondmonsters worden gedurende acht weken 
gefotografeerd met behulp van een beeldvormende spectrometercamera onder 
laboratoriumomstandigheden op een micro-plotschaal na 72 uur. 
 
De Spectral Information Divergence (SID) werd toegepast om het gebied van 
het bodembeeld dat wordt ingenomen door Mg-clinochlore, goethiet, kwarts 
dat voor 50% is bekleed met goethiet, hematiet dimorf met maghemiet te 
detecteren en te kwantificeren. De SID, een beeldclassificator, is een 
probabilistische benadering die de divergentiemaat gebruikt om pixelspectra 
te vergelijken met de referentiespectra. Als deze divergentie, die gerelateerd 
is aan een drempel, klein is, liggen de pixelspectra dicht bij de 
referentiespectra. Uit de resultaten bleek dat het percentage van deze 
mineralen in de loop van de tijd veranderde, afhankelijk van grondsoort en 
grondbehandeling. Voor de bodems met organisch materiaal waren de 
mineralogische veranderingen duidelijk bij veldcapaciteit, voor de bodem 
zonder organisch materiaal waren deze veranderingen merkbaar bij 
wateroverlast-veldcapaciteitsbehandeling. Met behulp van beeldvormende 
spectroscopiegegevens toonden de resultaten aan dat de Silty Loam 
bodemmineralogie in de tijd verandert als gevolg van vochtvariaties. 
 
Evenzo werd het effect van vries-dooi-cycli op de mineralogie van het 
bodemoppervlak bij verschillende vochtgehaltes bestudeerd. De hypothese is 
dat het bevriezen-ontdooien proces minerale neerslag, oplossen en vrijkomen 
van de bodem veroorzaakt. Om deze hypothese te testen, variëren de Silty 
Loam-bodemmonsters die variëren in het gehalte aan organische stof (0%, 
4,6% en 12,3%) en vochtomstandigheden (veldcapaciteit en verzadiging) 
worden gebruikt. De grondmonsters die worden blootgesteld aan cycli van 
bevriezen en ontdooien worden gedurende acht weken gefotografeerd met 
behulp van een beeldvormende spectrometercamera onder 
laboratoriumomstandigheden op een micro-plotschaal op 72 uur basis. 
 
Met behulp van de SID-benadering werd het bodembeeldgebied bezet door 
Mg-clinochlore, goethiet, kwarts bedekt met 50% goethiet, hematiet dimorf 



  
 

 

met maghemiet gedetecteerd en gekwantificeerd (percentage). De resultaten 
toonden aan dat deze mineralen zich anders gedroegen tijdens vries-dooi-cycli, 
afhankelijk van het bodemtype en de bodemgesteldheid. Hoewel het gedrag 
van Mg-clinochlore, goethiet en Qz-Gt afhankelijk was van de aanwezigheid 
van organisch materiaal, vertoonde de Hm-Mh niet zo'n afhankelijkheid. De 
resultaten suggereren dat niet alleen de hoeveelheid, maar ook het soort 
organische stof van vitaal belang is in de bodem die de vries-dooi-cycli 
doormaakt. Ook wanneer de grond wordt blootgesteld aan de cycli van 
bevriezen en ontdooien, hebben de vochtomstandigheden (veldcapaciteit of 
verzadiging) een aanzienlijke invloed op het mineraalgedrag, ongeacht het 
bodemtype. Het gebruik van afbeeldingsspectroscopiegegevens op de Silty 
Loam-bodem toonde aan dat de mineralogie van het oppervlak in de loop van 
de tijd verandert als gevolg van cycli van bevriezen en ontdooien, afhankelijk 
van het bodemtype en de vochtomstandigheden. 
 
Het is van vitaal belang om de interactie tussen het bodemoppervlak en de 
omgeving met een hoge temporele resolutie te volgen om deze veranderingen 
te begrijpen. Aangezien data-acquisitie duur blijft en beeldanalyse vaak 
gecompliceerd en tijdrovend is, werd ook de mogelijkheid onderzocht om de 
afbraak van bodemaggregaten eenvoudig en kosteneffectief te volgen. Om dit 
doel te bereiken, werd een digitale camera in een vaste opstelling gebruikt om 
dezelfde locatie in de loop van de tijd te fotograferen en tijdreeksen te 
verzamelen. Vervolgens werd het vermogen van de digitale camera om de 
afbraak van bodemaggregaten te volgen, geanalyseerd in bodems van 
verschillende textuurklassen (Silty Loam, Loam en Sandy Loam) onder 
natuurlijke omstandigheden op een micro-plotschaal. Drie technieken die 
variëren in complexiteit van beeldverwerking en gebruikersinteractie werden 
getest op het vermogen om de totale afbraak te volgen. Aangezien de ruwheid 
van het grondoppervlak schaduw werpt, wordt de blauw / rode bandverhouding 
gebruikt om de veranderingen in het bodemaggregaat waar te nemen. Omgaan 
met afbeeldingen met een hoge ruimtelijke resolutie, wordt beeldtextuur-
entropie gebruikt die het proces van afbraak van bodemaggregaat 
weerspiegelt. Ook wordt de drempeltechniek Huang uitgevoerd, waarmee het 
beeldgebied dat wordt ingenomen door grondaggregaten kan worden geschat. 
De resultaten laten zien dat alle drie de technieken de afbraak van 
bodemaggregaat in de tijd aangeven. De schaduwverhouding vertoont een 
geleidelijke verandering in de tijd, zonder details over de 
weersomstandigheden. Zowel de entropie als de Huang drempeltechniek 
vertonen variaties in de afbraak van bodemaggregaat als reactie op 
weersomstandigheden. Met behulp van gegevens die zijn verkregen met een 
gewone camera, laten de resultaten zien dat vries-dooi-cycli de oorzaak zijn 
van afbraak van bodemaggregaat. 
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1.1  Soil, its uses and degradation processes 

Soil is the outmost layer of earth that supports plant growth and many living 
creatures depending on it. According to the United States Department of 
Agriculture (USDA, 1999), the soil is a natural body comprised of solids 
(minerals and organic matter), liquid, and gases that occurs on the land 
surface, and is characterized by the ability to support rooted plants in a natural 
environment. Five major factors control soil formation, parent material, 
climate, organisms, relief and time. In mountainous areas, when the rock falls 
due to gravity, it can break down physically into smaller fragments. Other 
processes that contribute to physical weathering are freeze-thaw cycles, 
exfoliation, abrasion and plant growth. Plant roots may enter the cracks and 
help in physical weathering. Similarly, water may percolate into the cracks and 
during freezing the water expands, making the cracks wider and further 
disintegrate. Likewise, the exfoliation causes the rock to expand because of 
the changes in the temperature. Also, the expansion of the roots into the rock 
lead to the rock break down. Abrasion affects the rock surface in various ways 
by gravity, moving water and strong wind. Likewise, chemical weathering 
occurs when acidic rainwater or organic matter combined with suitable 
temperatures react with the rock minerals to form clay minerals and soluble 
salts. This chemical weathering is known as hydrolysis. Other significant 
chemical weathering are oxidation, carbonation, cation exchange and 
chelation. During oxidation, the rock breaks down by oxygen and water. Iron 
is the most typically oxidized mineral. Moreover, carbonation occurs when the 
limestone is weathered by rainwater containing dissolved carbon dioxide. In 
addition, the living organisms break down the rock as well. These weathering 
processes occur over a long time. However, the disintegrated rock is not soil 
until the soil comes into a dynamic equilibrium with its environment.  

Soil is an essential resource that supports life on earth. It provides a suitable 
environment for forest growth and crop production, securing human food 
supplies. Also, the soil is the medium that filters and stores the water and is a 
reservoir of carbon (Montanarella et al., 2016). Soil is the linkage between the 
atmosphere, hydrosphere, lithosphere and biosphere providing ecosystem 
services such as (i) production of food and biomass, (ii) storage, filtering and 
transformation of compounds, (iii) habitats for living organisms, (iv) carbon 
pool, (v) source geological and raw materials, (vi) the cultural environment 
and archaeological heritage (Adhikari and Hartemink, 2016).  

Soil degradation is the result of natural and human factors. Indeed, extreme 
weather conditions such as prolonged droughts or excessive rain intensity are 
often decisive for this phenomenon’s stimulation. Moreover, the internal soil 
physical and chemical deterioration, steep slopes and vegetation cover  
absence affect soil degradation. Likewise, human intervention (e.g. 
deforestation, overcropping, overgrazing, forest fire, land-use change) has led 
to soil degradation. We are constantly confronted with soil degradation, which 
involves the decline of the soil’s physical, chemical and biological state. There 
are various soil degradation processes such as the loss of topsoil due to water 
or wind, the soil fertility depletion due to leaching, salinity due to poor drainage 
or high salt content of the irrigation water, acidity due to over-application of 
acidifying fertilizer, pollution due to excessive use of pesticides or manuring, 
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compaction due to the use of heavy machinery, sealing and crusting due to 
insufficient protection to the impact of the raindrop, waterlogging due to the 
human intervention on the drainage system (Oldeman et al., 1991). 
Consequently, soil degradation weakens an ecosystem’s capacity to function 
appropriately, affects the climate by changing the water and energy balances, 
and disrupts the carbon, nitrogen or sulphur cycles (Lal, 2018). As a result, 
soil degradation may lead to excessive runoff and soil erosion, pollution of 
natural waters and greenhouse gases emission into the atmosphere.  

Intergovernmental Technical Panel on Soil pointed out that 30% of the soils 
worldwide were degraded by compaction in 2015 (ITPS, 2015). Indeed, soil 
erosion and degradation processes are widespread but more severe in 
developing countries, depending on agricultural practices. According to the FAO 
report, the annual soil loss from arable lands is 75 billion tonnes globally (GSP, 
2017). The soil loss is evident in arid and semi-arid lands, which occupy one-
third of the continental surface of the Earth and in the tropics and sub-tropics 
area. Moreover, Borrelli et al., (2017) estimated the soil loss due to inter-rill 
and rill erosion of about 17 billion tonnes yr-1 on a global scale. In Europe, a 
third of productive soil is threatened by increasing population density and 
consequently by the intensification of agriculture (Oldeman et al., 1991). 
According to the European Commission, in the EU Member States context, over 
10 t ha-1 yr-1  are estimated to be at risk of severe erosion (European 
Commission, 2018).  

1.1.1 Soil erosion, erodibility and soil stability 
 
Soil erosion by water is primarily related to particle detachment and transport 
by rainfall and runoff (Fernández-Raga et al., 2017). Due to climate change, 
the amount and the frequency of high-intensity rainfall are expected to 
increase (Eekhout and de Vente, 2019; Ozturk et al., 2015). These rainfall 
variations, together with the changes in temperature, solar radiation, 
evapotranspiration rates, the ratio of rain to snow, will substantially impacts 
soil erosion rates (Praskievicz, 2016). The ability of rainfall to cause erosion is 
related to rainfall erosivity. When raindrops cause soil detachment, interrill 
erosion occurs. The soil loss during interrill erosion is related to soil erodibility. 
Soil erodibility is regarded as the soil susceptibility to particle detachment and 
transport by erosion agents. Variations in the soil erodibility are controlled by 
soil particle distribution, organic matter and moisture content, cation-exchange 
capacity and porosity at the microscale. However, there is limited knowledge 
of the soil mineralogical behaviour at varying temperatures and moisture 
contents occurring in a short period at the microscale. These soil properties 
determine the partition of water between the soil surface and subsurface. As a 
result, they control water’s movement influencing runoff production (Koiter et 
al., 2017). This study is only focused on soil erodibility and its effects on soil 
stability. 
Vegetation protects the soil against surface erosion in various ways. The 
interception by the plant breaks the erosive power of the rain. It also decreases 
the volume of water, reaching the soil surface. Likewise, the surface vegetation 
and the litter protect the surface from degradation and slow down the overland 
flow (Bagagiolo et al., 2018). Other factors affecting soil water erosion are the 
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slope steepness and its length. The increased slope steepness increases the 
velocity and surface runoff volume (Bracken et al., 2015). Consequently, the 
loose soil particles move downslope. When the runoff reaches a flat valley, the 
flow velocity decreases. Therefore, the particles deposit to the soil surface.  
Human activities have accelerated soil erosion through intensive overcropping, 
overgrazing and deforestation, among others (Rather et al., 2017; Wairiul, 
2017). Constant cultivation of the land does not allow the soil to produce 
humus, which is needed for soil fertility. Overgrazing damage the vegetation 
on the soil surface. Therefore, the soil becomes exposed and prone to water 
erosion. Likewise, deforestation accelerates soil erosion (Bladon et al., 2019). 
Also, without the roots of the trees, the soil loses its structure.  
In an agricultural area, soil erosion is affected by cultivation practices. Soil is 
less exposed to water erosion during the cropping season due to the crop 
canopy. However, fields may also be bare depending on the crop growing 
cycles. During the crop-free period, tillage is used for various of reasons such 
as seedbed preparation, incorporation of fertilizers and crop residues. Tillage 
increases infiltration when it loosens the surface crust or disrupts dense soil 
layers. Nevertheless, tillage practices can also make the soil vulnerable to 
water erosion (Adimassu et al., 2019; Cerdà and Rodrigo-Comino, 2020).  
Soil erosion by water has significant on-side as well as off-side effects. The 
main on-side effects of water erosion are the loss of soil structure (compaction 
and crusting) and the soil loss fertility by removing the fertile part of the topsoil 
reducing productivity. Likewise, the soil washed away by runoff creates off-
side effects such as the mudflow, blockage of the drainage channel, causing 
floods. The soil sediments can reduce the capacity of reservoirs affecting 
irrigated agriculture and hydro-electricity generation. 
Soil erosion models have been developed to estimate soil loss. The most 
distinguished division between the soil erosion models is empirical and 
physically based. The empirical model’s output is only a lumped annual soil 
loss estimation (Alewell et al., 2019). On the contrary, the physically-based 
models consider both the spatial and temporal variability of the erosion 
processes (Cai et al., 2019; Fernández and Vega, 2018). One of the crucial 
inputs to erosion models is the soil properties (soil particle distribution, 
porosity, water retention capacity and surface roughness) and their spatial and 
temporal variations. Remote Sensing (RS) can play a significant role in 
acquiring relevant data such as Digital Elevation Models (DEM) or land use in 
order to improve their performance (Borrelli et al., 2018; Shrestha et al., 2014; 
Teng et al., 2016). 

 
Soil stability is defined as the aggregates’ ability to maintain their bonds under 
stresses that might trigger their disintegration (Cerda, 2000). There is still 
limited knowledge of the soil mineralogical behaviour at varying temperatures 
and moisture contents occurring in a short period at the microscale. The soil 
properties such as soil particle distribution, mineralogy, organic matter 
content, cation-exchange capacity, and climate and land management 
practices affect soil stability as it is shown in Figure 1-1.   
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Figure 1-1. Soil properties, together with climate and the land management 
practices, affect soil stability.   
 
The chemical bonding between particles might be occurred by iron oxide 
cement, silica, alumina, carbonates and organic compounds and water content. 
Soil organic matter, which is responsible for many soil properties such as 
fertility, water retention and soil structure stability, is a crucial factor causing 
cohesion. Likewise, clay content in the soil particle distribution influences soil 
stability (Buchmann and Schaumann, 2018; Xue et al., 2019). The amount and 
degree of dispersion and the clay mineralogy and its orientation should be 
considered.   
Soil stability is at equilibrium when the soil moisture is at the water holding 
capacity, and the external factors (climate and management practices) are 
insignificant. However, repeated drying and wetting cycles can cause changes 
in soil chemical composition due to the migration of soil chemical elements 
(Bravo-Garza et al., 2009; Pires et al., 2011), affecting the soil stability. In 
general, the more moisture, the more intense the weathering and leaching 
processes such as the transport of soluble salts, Fe and Al oxides, clay minerals 
and carbonates. Denef et al., (2002) suggested that drying could contribute to 
the interaction between organic molecules and mineral surfaces, increasing 
cohesion upon drying after studying the effects of wetting and drying on 
aggregate formation in soils dominated by 2:1 clay minerals. 
Soil surface crusting occurs due to changes in aggregate stability. Rainfall, as 
a driving force, could destroy the soil aggregates via two processes: (i) the 
direct impact of the raindrops may mechanically disintegrate the aggregates 
leading to the rearrangement of the soil aggregates (ii) physical-chemical 
dispersion of the clays, which then move into the soil with infiltrating water 
(Agassi et al., 1981). When the aggregates are reorganised with limited 
particle displacement, the structural crust is formed. After the rainstorm, the 
sedimentary crusts results mainly from the clay particle displacement (Cerdan 
et al., 2002). Both mechanisms help create a thin crust layer with a light colour, 
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high bulk density and low porosity. Soil surface crusting reduces the soil’s 
infiltration capacity and consequently enhances the surface runoff (Kuhn, 
2007). Crusting also alters the soil characteristics such as the shear strength 
and soil roughness, influencing the sediment detachment and transport 
processes.  
While we may understand of the factors dominating soil stability, the spatial 
and temporal variations of these factors controlling the soil stability dynamics 
are still missing. Indeed, the soil stability changes through space and time are 
complicated because of the soil–climate–management practices interactions.  
 
1.1.2 Factors influencing soil stability 

 

Physical factors  
 
Aggregate stability is one of the most important indicators to determine the 
soil’s physical behaviour (Deviren Saygın et al., 2012). Soil aggregation is the 
process by which aggregates of different sizes are joined and held together by 
the bonding of clay particle, polyvalent metal (Fe, Al, Ca) and organic matter 
(Churchman, 2018; Totsche et al., 2018). However, there is limited knowledge 
of the soil mineralogical behaviour at varying temperatures and moisture 
contents occurring in a short period at the microscale. 
Due to the environmental stresses, the soil aggregates break down into finer 
particles. These micro-aggregates (20- 250 μm diameter) affect infiltration, 
crust development, runoff and interrill erosion. Aggregates can be classified 
into different sizes ranging from micrometre to centimetre scale (Almajmaie et 
al., 2017; Asano and Wagai, 2014). The mechanisms that break down the soil 
aggregates are (i) slaking, i.e. breakdown caused by the compression of 
entrapped air during wetting, (ii) breakdown by differential swelling, (iii) 
breakdown by raindrop impact, (iv) physic-chemical dispersion due to osmotic 
stress (Le Bissonnais, 1996). Of course, all these processes contribute to the 
loss of soil structure.  
Aggregate stability indices such as the mean weight diameter (MWD), 
geometric mean diameter (GMD), percentage of aggregates with a diameter > 
2 mm (AGRI) and the stable aggregates index (SAI) are used to evaluate the 
state of soil aggregation (Wendling et al., 2005). Since these indices do not 
represent the changes of organo-mineral interactions at the micro-aggregate 
scale, the specific surface area (SSA) is used to describe these interactions 
(Kaiser and Guggenberger, 2003; Kögel‐Knabner et al., 2008). Moreover, 
Rabot et al., (2018) pointed out that the soil processes depend on pores’ 
morphological structure and solid, which cannot be addressed based on the 
mechanical stability of aggregates.  
The methods used to measure the soil aggregate stability differ on the sample 
pretreatment aiming to homogenise the water content, the amount of energy 
applied for the dispersion, the type of sieving and its duration and different 
scales at which the stability can be determined (Almajmaie et al., 2017; Peng 
et al., 2015). Therefore, no standard method exists for the determination of 
soil aggregate stability. However, based on Le Bissonnais, (1996), an 
international standard (ISO 10930, 2012) is developed to access soil aggregate 
stability subject to water.  
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An alternative solution to estimate the soil aggregate stability is by using 
predictive models. Indeed, the pedotransfer functions (PTFs) have been used 
to predict the soil properties such as hydraulic conductivity of soil, fertility 
status, iron content and cation exchange capacity (Annabi et al., 2017; Stoppe 
and Horn, 2018). Using linear regression and advanced machine learning 
techniques, the PTFs are applied to estimate the soil aggregate stability (Rivera 
and Bonilla, 2020). Since the PTFs require the use of at least one of the 
techniques such as diffuse infrared spectroscopy, X-ray fluorescence, 
inductively coupled plasma optical emissions spectroscopy, laser granulometry 
or soil mechanical resistance (Annabi et al., 2017; Erktan et al., 2016), there 
is no a universal model for predicting aggregate stability for a wide range of 
soil types and local conditions.  
  
Chemical components 
 
Soil aggregate stability is affected by internal factors such as organic matter, 
Fe and Al oxides, clay mineralogy, contents of CaCO3 and gypsum, the ionic 
strength and ion concentration (Stoppe and Horn, 2018). Of course, the 
external factors play an essential role in the soil aggregate stability too. It is 
demonstrated that soil organic matter is stabilized due to organo-mineral 
interactions (Angst et al., 2017). While the soil organic matter is the binding 
agent of the soil macro-aggregates, the mineralogy, cations and cementing 
agents (amorphous iron oxides) are related to the micro-aggregate stability 
(Bottinelli et al., 2017). Oxides promote aggregation and improve aggregate 
stability through (i) organic materials absorb on oxide surfaces and co-
precipitation, (ii) electrostatic binding between the positively charged oxides 
and negatively charged clay minerals, (iii) coating of oxides on the surface of 
minerals forming bridges between primary and secondary particles (Chen and 
Sparks, 2015). Depending on the environmental conditions, especially the pH, 
the oxide minerals carry different charges. Soil oxides have a high point of zero 
charges enabling the sorption of negatively charged organic matter and 
reaction with clay minerals under field conditions (Kaiser and Guggenberger, 
2007).  
Likewise, the clay particles act as binding agents forming organo-mineral 
interactions influencing the soil aggregation process (Buchmann and 
Schaumann, 2018; Regelink et al., 2015). One of the mechanisms contributing 
to soil structural stability is the cation bridging between the negatively charged 
clay surface and organic components via the polyvalent cations (Buchmann 
and Schaumann, 2017). Moreover, positively charged organic materials 
interact directly with the negatively charged clay surfaces.   
The mechanisms controlling microaggregates’ formation and stability are 
complicated because of different minerals and organic materials interactions 
(Totsche et al., 2018). Microaggregates’ stability depends on environmental 
conditions, such as moisture, pH, redox-potential and ionic strength. 
Therefore, chemical interactions like the electrostatic attraction or van der 
Waals forces are crucial for forming microaggregates (Lehtinen et al., 2014). 
Since these bindings depend on the mineral types and their surface area, the 
oxides contribute significantly to this process (Sollins et al., 2009). Likewise, 
the coating of clay particles around organic matter leads to the formation of 
stable micro-aggregates (Torres-Sallan et al., 2017). Regelink et al., (2015) 
found that Fe-hydroxides have a more robust ability to sorb the organic matter 
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than the clay. However, studies on the micro-aggregate stability and the 
controlling factors such as varying temperatures and moisture contents 
occurring in a short period are still not fully understood.  
 

1.2  Proximal sensing to measure soil properties 
Environmental concerns must be identified, estimated and monitored 
efficiently. It is well known that ground-based methods are time-consuming 
and expensive. Likewise, achieving standardization is challenging, due to the 
different techniques used. Moreover, updating the environmental conditions 
with conventional methods over large areas is difficult. Remote Sensing (RS) 
is a fast, nondestructive, reproducible, cost-effective, and environmental-
friendly approach. Within a different spatial, temporal and spectral resolution, 
the RS provides continuous data. These data are suitable for the assessment 
and monitoring of environmental conditions, including soils.  
Many studies have shown that soil retrieving information work well when using 
proximal sensing, but their accuracy drops when RS techniques are being used 
(Mulder et al., 2011). Proximal sensing measurements are discrete in space. 
While proximal sensing can be used as a primary data source, RS is used as 
secondary data to predict the soil properties. In this way, the high spectral 
resolution of the proximal sensed data can be combined with the RS data’s 
spatial coverage. This study focuses on soil erodibility and monitoring soil 
stability’s governing processes by proximal remote sensing techniques.  
 
 
1.2.1 The optical digital image camera  

The development of Charge-Coupled Device (CCD) and Complementary Metal 
Oxide Semiconductor (CMOS) digital cameras with high spatial resolution have 
made it possible to relate the colour to soil properties such as soil texture 
Aitkenhead et al., (2018), organic carbon Wu et al., (2017), iron oxide content 
Levin et al., (2005).  
Digital cameras provide images on the visible portion of the spectrum. The red, 
green and blue (RGB) bands can be converted to colour indices or other colour 
space to determine various soil properties. Therefore, Gholizadeh et al., (2020) 
photographed the soil samples vertically using a 12-megapixel Nikon D3300 
digital camera at a distance of 46 cm. They aimed to measure the soil organic 
carbon (SOC) with tristimulus colour values and indices derived from the digital 
camera’s images. This study emphasized that the CIELab colour space was a 
better predictor of the SOC than RGB bands.   
Xu et al., (2019) acquired soil images with a Nikon D90 camera placed at a 1 
m distance from the target to estimate the soil salinity content (SSC) and soil 
surface roughness (SSR). Next, using the red, green, blue and grey colour, the 
percentage of digital number (DN) occurring in each of these colour 
components were calculated. Since the SSC and SSR influence the DN value, 
their percentage (SSC and SSR) for each colour component can be estimated. 
Moreover, correlating the DN with SSC and SSR percentages using the partial 
least squares regression, a coefficient of determination 0.90 and 0.71 and a 
ratio of performance to the deviation of 3.11 and 1.87 were derived, 
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respectively. This study showed that the digital image camera could estimate 
the soil salinity and surface roughness.  
Viscarra Rossel et al., (2008) used a Kodak DC290 digital camera mounted on 
a tripod at 0.5 m to the Petri dish to acquire the soil images in the visible range 
(RGB bands). In this study, the transformation of the RGB colour space to other 
ones and a redness index were used to develop pedotransfer functions to 
predict the soil organic carbon and iron. They concluded that using a digital 
camera and an appropriate colour space model, accurate predictions of the soil 
iron and organic carbon can be obtained. 
Digital image cameras are easy to operate, and the data obtain are used 
without complex processing. Therefore, they can be used to provide a fast and 
low-cost estimation of the soil properties. However, the digital cameras are 
limited to the visible portion of the spectrum, not allowing the soil properties’s 
determination outside this region. Moreover, due to a coarse spectral 
resolution, the overlapping of different soil attributes might occur. 
Furthermore, the spatial image acquisition with these digital cameras should 
be increased.    
 
1.2.2 Imaging spectroscopy approach 

 
Generally, the soil reflectance across the entire spectrum decreases when the 
soil moisture increases. The same phenomenon is observed with organic 
matter content. As organic matter content increases, the soil spectral response 
decreases over the entire spectrum. Variations in the soil reflectance occur 
when there is a change in the light distribution. Soil roughness also affects the 
soil’s optical properties because the light is held in the rough surfaces of coarse 
soil aggregates. Moreover, the soil aggregate size and shape also influence the 
reflectance properties. If the soil aggregate size expands in diameter, then a 
decrease in reflection will occur due to shadow effect. 
On the other hand, a smooth surface (spherical soil aggregates) will yield 
higher reflectance values. Furthermore, the decreased pore size causes lower 
moisture content resulting in a higher albedo. Additionally, the effect of clay is 
different depending on its mineralogy and interaction with other minerals.  
Indeed, these variations affect the soil spectral response.   
Soil properties such as texture, organic matter, iron content, moisture content 
and mineralogical composition can be determined spectrally under laboratory 
or field condition with imaging spectroscopy. Table 1-1 summarizes the 
absorption positions for different soil properties in the visible, near-infrared 
and short-wave infrared (VNIR-SWIR) portion of the electromagnetic spectrum 
(Stenberg, 2010). 
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Table 1-1. Position of the absorption features for different soil properties in 
VNIR-SWIR (Stenberg, 2010). 
Wavelength  (nm) 
 

Material 
 

1660, 1728, 1754, 2056, 2264, 
2306, 2347 
930, 420, 480, 660, 1700 
620, 880, 510 
2200 
2290 
2230 
2268 
1395, 1415, 2778, 2165, 2207 
1400, 1900, 2200 
1400, 1900, 2200, 2340, 2445 
2335, 2160, 1990, 1870, 2500 
970,1200, 1400, 1780 

Organic matter 
Fe (goethite FeOOH) 
Hematite (Fe2O3) 
Al-OH(kaolinite, montmorillonite, and 
Illite) 
Fe-OH 
Mg-OH(illites and montmorillonites) 
Gibbsite (AlOH)3 
Kaolin 
Smectite 
Illite 
Carbonates 
Water 

 
Imaging spectroscopy provides detailed information on the soil surface 
properties thanks to high spectral resolution. Indeed, to obtain quantitative 
soil information, high spectral resolution data are required (Viscarra-Rossel et 
al., 2006).  
Reflectance changes are related to physical characteristics (e.g. particle size 
or high soil moisture content), whereas the absorption features depend on the 
examined matter’s chemical composition (e.g. OH in clay lattice). Therefore, it 
can be used as an indicator of changes occurring during soil crust formation. 
Based on this assumption de Jong, (1992) showed that the albedo of crusted 
soil changes. It was indicated that crusted surfaces had a higher reflectance 
than non-crusted ones using a portable field spectrometer (Ben-Dor et al., 
2003). The high albedo is caused by a decrease in pore size, a fine texture, a 
smooth surface with fewer shadow effects in the crusted surface (Eshel et al., 
2004). Due to the aggregate destruction and crusting process, an increased 
absorption feature around 2200 nm (clay particle) was observed (Goldshleger 
et al., 2004).  
Since soil is a complex matrix, one component’s spectral features can be 
hidden or slightly shifted by another component (Ben-Dor et al., 2002). 
Laboratory soil spectroscopy, together with the regression prediction models, 
has been widely used to assess soil properties. Some of the soil properties 
predicted from the reflectance data are organic carbon, iron oxides, clay 
minerals and carbonates (Viscarra Rossel et al., 2016).  
Several studies have revealed the efficacy of imaging spectroscopy to predict 
soil organic carbon (SOC) (Forkuor et al., 2017). SOC has diagnostic absorption 
features in VNIR and SWIR used to estimate its concentration in the soil. 
Recently, Guo et al., (2019) showed that using spectral information (400–2350 
nm) and partial least square regression model (PLSR), the SOC stock could be 
predicted efficiently. 
The absorption features in the visible and near-infrared (400–1000 nm) region 
of the spectrum are representative of the iron oxides, such as hematite and 
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goethite. The detection of these oxides in the VIS-NIR is possible even when 
they occur in small amounts in soil (Rossel et al., 2009). 
In the SWIR region of the spectrum, the spectral features of the carbonates 
occur. To predict the carbonates, Khayamim et al., (2015) used two 
approaches: PLSR and continuum removal (CR). They demonstrated that the 
carbonates were better predicted with the PLSR model than the CR one. 
However, Gomez et al., (2008) pointed out that the prediction of calcium 
carbonate with the PLSR was a little more accurate than the CR. These results 
could be related to the type of carbonate mineral occurring in the soil having 
different band positions. 
 
1.2.3 Soil pore space and imaging technique 

 
Soil compaction is caused by natural and human activity. Due to raindrop 
impact, natural compaction occurs as a soil crust.  However, the primary factor 
of soil compaction is the use of heavy machinery in the agricultural field. 
Compaction reduces the soil capacity to hold water because of increased soil 
bulk density and reduced porosity.  As a result, the soil infiltration and drainage 
capacity decrease, resulting in runoff and erosion rates increase. Therefore, 
compaction may cause not only the loss of fertile topsoil in the hill slopes, but 
it may also cause flooding in the lowlands due to increased runoff. Although 
the conventional soil survey methods provide information on the soil structure 
volumetric deformation, there is no information about the porous system’s 
morphology and geometric properties (Poehlitz et al., 2019; Rabot et al., 
2018). 
The aggregate stability indices provide limited information for the inner 
architecture of the soil aggregates. Therefore, the formation and stabilization 
of micro-aggregates require an understanding of the primary soil particles’s 
pore arrangement. 
X-ray computed tomography (X-ray CT), a non-destructive imaging technique, 
is used to evaluate the soil pore space (Schlüter and Vogel, 2016). Computed 
tomography enables 3D quantitative image analysis of the internal soil 
structure, detecting pore geometries’ spatial distribution (Jarvis et al., 2017). 
Moreover, micro CT provides detailed images depending on the spatial 
resolution, the soil porosity, pore-volume, pore connectivity, pore tortuosity, 
number of soil pores, pore sphericity and pore micromorphology can be 
estimated (Borges et al., 2018).  
One limitation of the X-ray CT is the trade-off between image resolution and 
sample size (Rabot et al., 2018). While the information on mesopores (< 10 
μm or < 50 μm) requires a small soil core (Schlüter and Vogel, 2016), large 
macropores samples (20 cm and image resolution of 100 μm) are necessary 
to represent the preferential flow (Paradelo et al., 2016). Another disadvantage 
of X-ray tomography is the effort to collect undisturbed samples at various soil 
depths. Also, analyzing large image datasets is time-consuming. Moreover, the 
segmentation step is sensitive to subjective errors (Schlüter et al., 2014).  
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1.3  Problem formulation 
 
Soil is a complex mixture of organic and inorganic constituents. Since the soil 
is not static, its moisture, temperature, amount of organic matter, cation 
exchange capacity (CEC), soluble salts and pH may fluctuate with the seasons. 
The interactions between the soil minerals and organic compounds create 
mineral–organic associations, acting as binding and cementing agents in the 
soil. The inorganic constituents play a critical role in determining soil stability 
than the organic ones (Barto et al., 2010). However, there is limited knowledge 
of the soil mineralogical behaviour at varying temperatures and moisture 
contents occurring in a short period at the microscale. Therefore, it is necessary 
to capture the behaviour of soil properties for which the proximal imaging 
spectroscopy could be an alternative since it can assess the spectral soil 
constituents responsible for soil stability.   
Soil is a complicated matrix with high spatial and temporal variability. Soil 
stability is a result of complex interactions of the soil properties, climate and 
land management. Although these relations are recognised, it is not fully 
understood which soil properties or stresses are responsible for the soil stability 
alterations over a short period. Indeed, it is not easy to assess stability because 
the soil properties that control it change over space and time. It becomes 
complicated when the climate and management practices that affect the soil 
stability at the catchment scale are considered. The soil stability is affected by 
the capability of the aggregates to maintain their bonds under stress. Soil 
aggregation is a process by which aggregates of different sizes are joined and 
held together by different organic and inorganic materials. However, as a result 
of different stresses, the soil aggregates break down into finer particles. These 
micro-aggregates (20 - 250 μm) affect the process of infiltration, crust 
development, runoff and interrill erosion. Therefore, it is essential to monitor 
and quantify the soil aggregates dynamics under natural condition.  
The VNIR imaging spectroscopy can assess the spectral soil constituents 
responsible for the organo-mineral interactions. These interaction mechanisms 
occurring naturally in the soil depend not only on the soil mineralogy and their 
reactive surface area, soil type and soil texture but also on the moisture 
condition (drying, field capacity and waterlogging). However, there is limited 
knowledge of the soil mineralogical behaviour at different moisture content 
occurring in a short period. Moreover, freeze-thaw cycles might encourage 
migration and alteration of the chemical constituents in the soil matrix exposed 
to different moisture conditions. Therefore, the soil mineralogical changes 
occurring due to the freeze-thaw process triggering the soil mineral 
precipitation, dissolution and release might affect the soil stability.  

 Research objectives and questions  
 
The research’s main objective is to investigate the seasonal effect on the soil 
surface stability using proximal remote sensing. This leads to the following sub-
objectives and the related research questions: 
Study of the effect of soil surface mineralogy alterations due to moisture 
variations.  
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- Does the soil surface mineralogy change over time due to changes in soil 
moisture conditions? 
- How do the minerals behave in the soil matrix with various organic matter 
contents at different moisture contents?     
 
Study of the effect of freeze-thaw cycles on the soil surface mineralogy at 
different moisture content.  
 
- What is the impact of the freeze-thaw process on soil mineralogy?  
- How much does the percentage of the soil surface mineralogy change over 
time due to the freeze-thaw cycles? 
 
Exploring the possibility to monitor the soil aggregates breakdown. 
 
- Can the monitoring of soil aggregate breakdown identify periods of low soil 
stability?  
- Which image analysis technique, e.g. pixel-based or object-based, is better 
in indicating the soil aggregate breakdown?  
 
 

1.4  Structure of the thesis 
 
This thesis consists of six chapters. Chapter one and chapter six are the 
introduction and synthesis, respectively. Chapter two presents the data used 
in this research. The remaining chapters address specific components fulfilling 
the research objectives, the methods used for that, and discussions of results 
obtained. Below the overall content per chapter is presented: 
Chapter 1 gives an overview of the soil’s importance as a natural resource, 
and it points out the problem of soil loss due to various stresses. Moreover, 
this chapter focuses on the physical and chemical factors affecting soil stability 
and how it is estimated. Furthermore, an outline of the proximal remote 
sensing approach dealing with various soil properties is also presented.  
Chapter 2 describes of the field data collection, data preparation, and analysis 
in the laboratory. 
Chapter 3 investigates the soil surface mineralogical alterations due to the 
moisture variations using the VNIR imaging spectroscopy approach under 
laboratory conditions. The silty loam soils varying in the organic matter content 
placed at the drying-field capacity, field capacity and waterlogging-field 
capacity treatments were scanned on a 72 h basis with an imaging 
spectroscopy camera for eight weeks. This experiment showed these minerals 
behaved differently, depending on the soil type and soil treatment. Using 
imaging spectroscopy data on the silty loam soil, we showed that the surface 
mineralogy changes over time due to varying moisture conditions. 
Chapter 4 examines the effect of freeze-thaw cycles on the soil surface 
mineralogy at different moisture content using the VNIR imaging spectroscopy 
technique under laboratory conditions. Three silty loam soils varying in the 
organic matter content (no, low, and high) placed at field capacity and 
waterlogging treatments were exposed to freeze-thaw cycles. The soil samples 
were scanned with the imaging spectroscopy camera on a 72 h basis for eight 
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weeks. This experiment showed that the surface mineralogy changes over time 
due to freeze-thaw cycles, depending on the soil type and the moisture 
conditions.  
Chapter 5 deals with monitoring the soil aggregates breakdown under natural 
conditions using a regular RGB camera. Five different soil varying in texture 
classes (silty loam, sandy loam and loam) and organic matter content 
(agricultural soil and forest soil) were exposed to outside weather 
circumstances during the winter season, with exposure to rainfall and freezing-
thawing. Images and weather data were collected daily for three months. Due 
to the kinetic energy of rainfall and freezing-thawing, the aggregates break 
down, and the surface smooths out. Using different indices derived from the 
images data, a decrease in aggregate size and loss of aggregates was visible 
in the image series. 
Chapter 6 is focused on synthesis. The main findings of this thesis are 
highlighted. Moreover, upscaling the proximal sensing results to field condition 
or catchment scale are discussed. Furthermore, since this work is based on soil 
surface observations, the influence of land cover and climate change is 
considered. Finally, the recommendations for future research are given.  
The core chapters of this thesis are based on peer-reviewed journal and 
proceeding papers. Since the experiments are performed on the same soil 
samples, there are some repetitions regarding soil samples’ characteristics.  
Moreover, each of the scientific chapters is standalone, and there is no need 
to consult the other chapters for understanding. 
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2 Soil sampling, data preparation and lab 
analysis methods 
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2.1 Field data collection  
 
To achieve research objectives and find answers to the research questions 
described in chapter 1, soil samples were collected in the Netherlands for the 
application of proximal remote sensing techniques at laboratory conditions 
(Figure. 2-1). Samples were collected from 2 locations: (i) Limburg, where 
loess is the primary soil type and (ii) in Deventer, where sand is predominant. 
During the Pleistocene, the marine sediments adapted a continental character 
due to the regression (Vos and Knol, 2015). The Rhine, Meuse and Scheldt 
river systems left thick layers of coarse sediments (sand and gravel) while 
extending westwards (Ebbing et al., 2003). Simultaneously, the eolian 
sediments were deposited in the southern parts of the Netherlands (Veer, 
2006). Moreover, the wind-blown deposits formed the loess in the southeast 
of Limburg and the sand in the south and east of the Netherlands during the 
last glacial period. Nevertheless, the soil formation started after the glacial 
period when the temperature rose and the vegetation was present. The division 
of the soil types in the Netherlands consists of marine clay, peatland, sandy 
area and the loess district.  
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Figure 2-1. The soil samples collected in south Limburg and Overijssel 
provinces in the Netherlands. Silty Loam and Loam soil samples (Soil 1-Soil 4) 
were collected in the loess area, and the Sandy Loam sample (Soil 5) was 
collected in the sandy area in the east. The location of the soil samples is shown 
with a black dot. (schematic of the Netherlands maps are modified after 
(https://gadm.org/) 
        
2.1.1 Data collected in Limburg 
 
Loess soils are prone to slaking and very susceptible to water erosion due to 
their weak structure and low organic matter content. The intensive agriculture 
in the loess area has increased the magnitude and the frequency of soil erosion. 
The need to upscale the agricultural fields lead to a decrease in the grassland 
area. Moreover, due to agricultural practices, soil compaction takes place.  
Consequently, a decrease in water storage capacity and an increase in surface 
runoff occurs (Winteraeken and Spaan, 2010). Likewise, the use of artificial 
fertilizers affects the organic matter negatively, contributing to the degradation 
of soil structure. Furthermore, considering the climate change with wetter 
winter and summer with dry periods and intensive rain showers, soil erosion in 
the future might be even more problematic in the loess area (Ward et al., 
2008). 
Southern Limburg has a mild topography with elevation from 40 m to 320 m 
above sea level. The hills are covered with a loess (aeolian silt) layer. In their 
silt fraction, these loess soils contain more than 70% quartz, and they are rich 
in lime. Moreover, the loess soil profile consists of a till layer with low organic 
matter content and a subsurface horizon with a weak platy structure (Sevink 
and Verstraten, 1979). South Limburg has a temperate oceanic climate with 
an average annual precipitation of 750 mm. Although the rainfall is recorded 
in all seasons, the high-intensity rainfall occurs during April-October. The land 
use in the south of Limburg is mostly agriculture with arable crops such as 
cereals, silage-maize, potatoes and sugar beets.  
 
2.1.2 Data collected in Deventer 
 
Besides the four soil samples collected in the southern Limburg, one sample 
was taken from the sandy area in Deventer, the east of the Netherlands. The 
characteristic of the sandy area is sandy plateaus crossed by sand and peat 
stream valleys. This overlap is a result of the peat excavation over the last 
centuries, which lead to flat areas with sandy soil (Ritzema and Stuyt, 2015). 
Therefore, the land use is diverse from peri-urban, rural with small agriculture, 
forest to areas with cultural value. In the east of the Netherlands, the sandy 
area is characterized by high infiltration and seepage. Usually, agriculture relies 
on rain. However, when a shortage of rain occurs, groundwater irrigation is 
applied.  
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 2.2 Data preparation 
 
Field soil samples were transferred on the plastic sheets for air-drying while 
taking care of the soil labelling to avoid identification errors. Likewise, the soil 
samples were placed away from direct sunlight. Soil samples air-dried at room 
temperature conditions for four weeks.   
To monitor aggregate breakdown under natural conditions, five plastic trays of 
60 X 40 X 5.5 cm3 were filled manually with soil using a small shovel. Because 
of this procedure, soil aggregates of various sizes were randomly distributed. 
Holes in one side of the tray at the bottom were drilled to enable drainage. 
Also, pantyhose filters were used to avoid soil leaking out.  
To investigate the soil mineralogical changes at different soil moisture 
conditions (drying-field capacity, field capacity, and waterlogging-field capacity 
treatments), twenty-seven plastic trays of 15 X 9 X 1 cm3 were filled manually 
with soil using a small shovel. As a result, the soil aggregates of various sizes 
occurred in the tray. The air-dried soils were weighted using a balance. The 
deionized water was added carefully at the trays’ edge to place them at the 
field capacity. Moreover, holes at the bottom of the tray to enable drainage 
were drilled. Likewise, the pantyhose filters were used to avoid the soil leaking 
out. Another set of soil samples were placed at the waterlogging by saturating 
them with deionized water. Moreover, to eliminate any external influence on 
the soil samples, the trays were covered with a plastic lid.   
Another experiment was performed to investigate the effect of freeze-thaw 
cycles on the soil surface mineralogy at the different moisture content (field 
capacity and waterlogging). Therefore, the soil sample preparation was the 
same as the previous experiment. Here, twelve plastic trays (15 x 9 x 1 cm3) 
filled with soil were used. While six trays were placed at the field capacity, the 
other six were put in waterlogging conditions. Afterwards, all the soil samples 
were placed in the freezer for three days. Next, they were left thawing for the 
coming three days.  
Soil spectral measurements in the laboratory involve air-dried, grinding, and 
sieved samples and they, are point measurements. However, in our study, the 
spectral measurements are conducted in soils without any preparation 
mentioned above.  
 

2.3 Laboratory analysis of soil samples 

2.3.1 Soil particle size and organic matter determination 
 
The soil particle size determination was carried out on fine earth (< 2 mm) 
according to the ISRIC protocol (van Reeuwijk, 2002). First, the organic matter 
was oxidized with H2O2. Next, the sand was separated from the clay and silt 
with a 50 µm sieve. The clay and silt fractions were determined with the pipette 
method based on sampling a 1-litre suspension with a 20 ml pipette. The 
obtained clay, silt and sand fraction are calculated on a dry-ash-free basis.  
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The organic matter was determined by heating the sample at 600 0C for more 
than 12 h and calculating the weight loss on the dry soil.  

2.3.2 Soil aggregate stability tests 
 
The soil aggregate stability was determined according to the normalized 
international method ISO 10932 (Le Bissonnais, 1996). This method uses 
disruptive tests corresponding to various wetting conditions and energies. 
While the fast wetting (FW) test is related to slaking, the mechanical 
breakdown (MB) by shaking after pre-wetting represents the process of 
raindrop impact on soil. The results of these tests are expressed as the mean 
weight diameter (MWD). Based on the MWD value, the soil aggregate stability 
classes, very unstable (VUS)(< 0.4 mm), unstable (US) (0.4 – 0.8 mm), 
medium (M) (0.8 –1.3 mm), stable (S) (1.3 – 2 mm) and very stable (VS) (> 
2 mm) were derived. Table 2-1 summarizes the soil characteristics used in this 
work. The agricultural crop cultivated on all the fields was maize. However, at 
the time of soil sampling, this crop was already harvested. 
 
Table 2-1. Characteristics of soil samples 
 
Soil ID Location (WGS 84) Soil Particle Size 

(%) 
Texture 
Class 

OM 
(%) 

Aggregate 
Stability 
FW      MB     Lat Long Clay Silt Sand 

Soil 1 50.7758° 5.8824° 16 71 13 Silty Loam 4.6 VUS     US 
Soil 2 50.7687° 5.9201° 23 52 25 Silty Loam 12.3 US       M  
Soil 3 50.7727° 5.9213° 22 54 24 Silty Loam 12.5 US       M 
Soil 4 50.8694° 5.7884° 17 44 39 Loam 5.6 US       US 
Soil 5 52.2810° 6.1813° 14 11 75 Sandy Loam 5.3 US       US 
 
 

2.3.3 X-ray diffraction analysis 
 
The X-ray diffraction analysis was carried out using the clay fraction derived 
from the pipette method. X-ray analysis identified a range of minerals such as 
goethite, hematite, maghemite, Mg-clinochlore, ferroan clinochlore, kaolinite 
and muscovite. These minerals are typical of Luvisols developed on a loess 
deposit (Veer, 2006). The parent material of these loess soils consists of silty 
eolian sediments, which determine their mineralogical composition. Exposure 
of these sediments to the physical and chemical weathering formed secondary 
minerals such as goethite, hematite, or hematite polymorph with maghemite 
(Stiboka, 1965). Likewise, quartz and chlorites occur in the fine silt fraction of 
these loamy sediments (Breeuwsma, 1987).  
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2.3.4 Soil spectra measurement with Analytical Spectral Device (ASD) 
 
The Analytical Spectral Device (ASD Boulder, USA) spectroradiometer 
acquiring data in the 350 nm to 2500 nm spectral range with a spectral interval 
of 1.4 nm in VNIR (350–1000 nm) was used to measure the spectra of the soil 
samples. These measurements were performed under controlled dark 
conditions, using a 512-channel silicon photodiode array. After the white 
reference optimization, an average spectrum of the soil samples was obtained. 
 
2.3.5 Inductivity Coupled Plasma-Optical Emission Spectrometry 
Instruments (ICP-OES) measurements 
 
The Inductivity Coupled Plasma-Optical Emission Spectrometry Instruments 
(ICP-OES) technique measures the concentration of chemical elements in a 
solution applying a linear approach (element concentration vs light intensity) 
(PerkinElmer, 2018). The excess water was collected to investigate the soil 
samples’ losses of soluble elements placed at different moisture conditions (see 
chapter 3). Using the ICP-OES technique, the Mg, Al, Ca, K, and Na 
concentration was determined for each soil sample. 
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Abstract: Soil minerals determine essential soil properties such as cation 
exchange capacity, texture, structure, and their capacity to form bonds with 
organic matter. Any alteration of these organo-mineral interactions to climate 
change needs to be identified. Visible Near-Infrared imaging spectroscopy is 
capable of assessing spectral soil constituents that are responsible for organo-
mineral interactions. In this study, it is hypothesized that alterations of soil 
mineralogy occur due to moisture variations. For eight weeks, under laboratory 
conditions, imaging spectroscopy data were collected on a 72 hours basis for 
three Silty Loam soils varying in organic matter (without, low and high) placed 
at drying-field capacity, field capacity and waterlogging-field capacity 
treatments. Using Spectral Information Divergence image classifier, the image 
area occupied by Mg-clinochlore, goethite, quartz coated 50% by goethite, 
hematite dimorphous with maghemite was detected and quantified 
(percentage). The results showed that these minerals behaved differently, 
depending on the soil type and soil treatment. While for the soils with organic 
matter, the mineralogical alterations were evident at field capacity state, for 
the one with no organic matter, these changes were insignificant. Using 
imaging spectroscopy data, it is shown that the Silty Loam soil mineralogy 
changes over time due to moisture conditions.  
 

3.1 Introduction 
Soil minerals vary extensively in their composition, crystallinity and charge 
characteristics. Therefore, they determine essential soil properties such as 
cation exchange capacity (CEC), texture, structure, and their capacity to form 
bonds with organic matter (OM). The mobilization and precipitation of cations 
such as Si4+, Fe3+, Al3+, Mg2+ and Ca2+ can promote the disaggregation and 
breakdown of soil aggregates as well as the formation of new ones. Soils 
containing polyvalent cations such as Ca2+, Al3+ and Fe3+ are resistant to 
slaking (Chan and Heenan, 1999; Breuer and Schwertmann, 1999). Indeed, 
the interactions between the mineral particles and OM in soil depend on the 
concentration of these cations (Kaiser et al., 2012). Iron hydroxides such as 
goethite, hematite, or maghemite can interact with both clay minerals and 
organic compounds to form clay–mineral–organic associations, acting as 
binding and cementing agents in soil (Kogel-Knabner et al., 2008; Martins et 
al., 2013). Moreover, the amorphous iron oxides, are more effective than 
crystalline Fe oxides in stabilizing soil, due to their large and reactive surface 
area (Duiker et al., 2003).  
The other divalent cation, Mg2+, has an excellent hydration radius, which 
enables the soil to absorb more water (Zhang and Norton, 2002). As a result, 
the van der Waals forces that hold the soil particles together weaken, affecting 
the soil structure. Recently, in their review, Totsche et al., (2018) pointed out 
that few studies have considered the effect of the mineral composition on the 
formation and turnover of micro-aggregates. Using a linear regression model 
for analyzing biotic and abiotic contributions to soil stability, Barto et al., 
(2010) found that the abiotic factors played a more critical role in determining 
soil stability than did biotic factors. Moreover, recent studies have shown that 
iron hydroxides and clay particles are the dominant mechanisms for soil 
formation at the microscale (< 250 µm) (Falsone et al., 2016; Regelink et al., 
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2015). The interactions of organo-mineral hydroxide, organo-phyllosilicate clay 
mineral and phyllosilicate-hydroxide mineral occurring in soil vary with mineral 
structure, soil solution ionic strength, and pH (Qafoku, 2015). Any alteration 
of these organo-mineral interactions to climate change needs to be identified 
(Kleber et al., 2015). 
Imaging spectroscopy operating in visible, near-infrared and shortwave 
infrared (VNIR-SWIR) regions of the electromagnetic spectrum can assess 
several soil properties such as OM, iron, clay, calcium carbonate (Gomez et al., 
2015; Richter et al., 2009; Xie et al., 2012). To quantify the mineralogical 
abundances of complex soil mixtures at wavelength region, 2100-2400 nm, 
Mulder et al., (2013) combined absorption features parametrized by 
exponential Gaussian optimization with the regression tree approach. They 
have shown that SWIR spectra (2100–2400 nm) may be used for quantifying 
the mineral abundance of complex soil mixtures. Another study used proximal 
remote sensing in the VNIR-SWIR and mid-infrared (MIR) region to estimate 
weathering indices (Mohanty et al., 2016). These indices express the molar 
ratios of immobile to mobile mineral oxides present in the soil. Using partial 
least squared regression (PLSR) approach for spectral calibration and 
prediction, they reported that the best weathering index predictions were 
derived when VNIR-SWIR and MIR were combined, and significant spectral 
features selected for analysis. Also, knowing that many spectrally active soil 
constituents are responsible for soil aggregation, Sarathjith et al., (2014) 
combined the PLSR approach with Diffuse Reflectance Spectroscopy to 
estimate soil aggregate characteristics such as the Geometric Mean Diameter 
which is a quantitative descriptor of soil structure. Their results showed that 
the geometric mean diameter and the median aggregate size parameters 
provided good predictions with the ratio of performance deviation (RPD) values 
ranging from 1,99 to 2,28.  
VNIR imaging spectroscopy is capable of assessing spectral soil constituents, 
that are responsible for organo-mineral interactions. These interaction 
mechanisms occurring naturally in soil depend not only on soil mineralogy and 
their reactive surface area, soil type and soil texture but also on climate 
change. However, there is limited knowledge of soil mineralogical behaviour at 
different moisture content occurring in a short period. Therefore, in this study, 
is hypothesized that alterations of soil mineralogy occur due to moisture 
variations. To test this hypothesis, Silty Loam soil samples varying in organic 
matter (no, low and high), under drying-field capacity, field capacity and 
waterlogging state were scanned in laboratory conditions at a micro-plot scale 
at 72 hours basis using an imaging spectrometer camera for eight weeks.   

3.2 Materials and Methods 

3.2.1 Experimental setup 
 
Silty Loam soils with various OM contents and added hematite were exposed 
to different soil moisture conditions to study their mineralogical changes over 
time. A laboratory experiment consisting of an imaging spectrometer camera, 
a light source and a sliding table integrated into a fixed setup was designed. 
Also, on the sliding table, a tray filled with soil was placed. Two soil samples, 
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Silty Loam with low and high OM content (Soil 2 and Soil 3), were collected 
from topsoil (20 cm) of two different agricultural fields in Limburg, the 
Netherlands. The agricultural crop cultivated in both fields was maize. 
However, at the time of soil sampling, this crop was already harvested. These 
soil samples were collected at the end of September 2014. The Silty Loam soils 
were chosen because they have low aggregate stability (Ymeti et al., 2017). 
The other soil sample was obtained by destroying the OM of Soil 2 by heating 
it at 550 0C for at least 12 h. The new soil sample without OM was mixed 
manually with hematite 0.5% concentration obtaining Soil 1. Besides the loss 
of OM at 550 0C, clay mineral kaolinite decomposes above this temperature 
leading to amorphous alumino-silicate material (Zavala et al., 2010). Likewise, 
soil mineral goethite transforms to hematite or maghemite at the temperature 
ranging from 250 0C to 420 0C (Hanesch et al., 2006; Liu et al., 2013). 
However, these mineralogical alterations of Soil 1 were out the scope of this 
study. Each of these soil samples was triplicated. Table 3-1 summarized the 
soil characteristics used in this study.  
 
Table 3-1. The soils used in this study. Soils 2-3 (low and high OM) were 
collected from Limburg province in the Netherlands. Soil 1 (no OM and added 
hematite) was obtained from Soil 2.  
Soil ID   Soil particle size (%)    Texture class        OM(%)         Fe2O3(%) 
             Clay  Silt  Sand                  
Soil 1     16     71    131               Silty Loam           0                    0.5 
Soil 2     16     71    13                Silty Loam            4.62                Na4 
Soil 3     23     52    25                Silty Loam          12.33                Na 

1The determination of soil particle size was only performed before the soil 
sample was placed at 550 0C. 
2The OM was determined by heating the sample at 550 0C for more than 12 h 
and calculating the weight loss on the dry soil. 
3The high OM content in Soil 3 is probably coming from sewage sludge manure 
mixed with plant residues application by the farmer some days before soil 
sample was taken. 
4Not applicable 
 
Soil samples were air-dried at room conditions for four weeks. Since the goal 
was to investigate soil mineralogical weathering at different soil moisture 
conditions, twenty-seven plastic trays of 15 x 9 x 1 cm3 were filled manually 
with soil using a small shovel. Because of this procedure, soil aggregates of 
various sizes were randomly placed. In this study, three soil treatments; 
drying-field capacity (D-FC), field capacity (FC) and waterlogging-field capacity 
(W-FC), were considered as separate setups. Therefore, each soil treatment 
had its own set of soil samples triplicated (Soil 1 - Soil 3). Deionized water was 
added carefully at the edge of the trays to place the air-dried soil samples at 
field capacity and waterlogging conditions. The amount of water required for 
this procedure was different, depending on the soil type.  
At D-FC soil treatment, nine soil samples experienced repeated cycles of drying 
and field capacity. First, the soil samples were placed in an oven at 40 0C for 
72 h. Next, they were taken out to set them at FC using 200 ml and 240 ml of 
deionized water for Soil 1-2 and Soil 3, respectively. Afterwards, the soil 
samples were lifted to allow the excess water to leak out. In this way, the soil 
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samples at FC were obtained. After staying at field capacity for 72 h, the soil 
samples were placed again in the oven at 40 0C. This exchange between drying 
and field capacity state was repeated until the end of the experiment.  
Twenty ml of deionized water was added to keep nine soil samples at FC. Later, 
the soil samples were carefully lifted to enable the leaking of excess water. 
They were considered at FC when the leaking process had stopped. This 
procedure was repeated every 72 hours for the entire period that the 
experiment ran. 
At W-FC treatment, nine soil samples went to repeated cycles of waterlogging 
and field capacity state. First, the soil samples were placed at waterlogging by 
saturating them with 370 ml, 310 ml and 410 ml of deionized water for Soil 1, 
Soil 2 and Soil 3, respectively. They stayed in this condition for 72 h. After 72 
hours, the soil samples were carefully lifted to allow the water to leak out until 
FC was reached. Then, the soil samples remained at FC for 72 h. Next, they 
were placed again at the waterlogging state. This cycle was repeated for the 
entire period that the experiment ran.  
Drainage was enabled by 5 mm diameters holes drilled at the bottom of the 
tray. Likewise, pantyhose filters were used to avoid soil leaking out. The excess 
water was collected to determine the loss of soluble cations of each soil sample 
(see section 3.2.5). 
Moreover, to eliminate any external influence on soil samples, they were 
covered with a plastic lid. At D-FC and FC treatments, the soil samples were 
scanned every 72 h. While for FC treatment, the soil samples were always 
scanned at field capacity, at D-FC soil samples were scanned either at drying 
or field capacity state. At W-FC treatment, the soil samples were scanned at 
field capacity every 144 hours. The images at waterlogging conditions were 
discarded for further analysis because the water causes dispersion, making the 
data not comparable to others with no standing water. Twenty-seven soil 
samples filled with soil with different OM content and the one with added 
hematite were scanned by the VNIR imaging spectrometer camera, as shown 
in Figure 3-1. We collected images for eight weeks. The decision of eight weeks 
experiment was related to the laboratory facilities.    
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Figure 3-1. The experimental laboratory setup for image data collection. On 
the tripod in the centre is the VNIR imaging spectrometer camera placed at an 
angle of 900. Next to the sensor is a sliding table where the soil tray is placed 
for scanning. On the right and the left side of the sliding table, an external light 
source is integrated to illuminate the tray during image acquisition.  
 

3.2.2 Image Acquisition  
 
A Specim imaging spectrometer camera was used to investigate mineralogical 
changes on the soil surface under controlled laboratory conditions. This camera 
works as a push broom scanner and provides contiguous spectral information 
for each pixel (Specim). Table 3-2 summarizes the Specim camera 
characteristics.  
 
Table 3-2. Specim imaging spectrometer camera characteristics of the Visible 
Near-Infrared sensor. 
Characteristics                               Specification 

Spectral range                                391 - 1008 nm 
Spectral resolution FWHM                 0.75 – 0.82 nm 
Spatial pixels                                  1024 
Spectral bands                                784 
Detector CMOS (Complementary metal-oxide- 

semiconductor sensors) 
Radiometric resolution                     12 bit 
Frame rate                                     10 fps 
Spectral binning                              1.2 
Output data format                          Binary BIL data with separate ASCII               

format header, Envi compatible 
Instrument calibration Sectral calibration. Normalization 

using internal referencing 
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The images were selected, avoiding the shadow and the edge, as shown in 
Figure 3-2. The image of 204 x 177 pixels of VNIR corresponds to an 84 x 73 
mm2 area with a spatial resolution of 2.4 mm/pixels. 
  

 
Figure 3-2. Example of an image selected for analysis. In order to avoid 
shadow, the VNIR image was selected from the upper (a) part of the tray. The 
image subset of 84 x 73 mm2 with a pixel size of 2.4 mm/pixels (b) was 
obtained.   
 
3.2.3 Image processing 
 
Although spectroscopy data provide useful information for the identification of 
various materials with similar spectral properties, they suffer from highly 
correlated and noisy spectral bands (Nguyen and Lee, 2006; Mariotto et al., 
2013). Therefore, it is necessary to perform image processing before further 
data analysis. The noisy bands ranging from 391 nm to 420 nm and 951 nm 
to 1008 nm of the VNIR sensor were discarded due to a low signal to noise 
ratio (Butz et al., 2015). Although the images were spectrally resized, their 
dimensionality was high (676 bands). The processing of the enormous amount 
of the hyperspectral data might be problematic, leading to high computational 
cost. To decrease the amount of redundant and correlated spectral bands 
without losing useful information, spectral binning by averaging every four 
adjacent bands, i.e., binning was set to four was used (see section 3.2.4). As 
a result, the spectral dimensionality reduced from 676 to 169 (bands).  
Various soil properties affect soil’s spectral reflectance, such as soil particle 
distribution, OM, soil moisture, iron oxide, soil minerals and soil roughness.  
Therefore, Gaussian stretching, which is similar to histogram equalization, was 
performed. The idea was to achieve a stretched brightness value distribution, 
which resembles a normal distribution where tails were clipped to ±2 standard 
deviations. Image-processing tools based on multivariate techniques, such as 
principal component analysis (PCA), are often applied to reduce the noise. PCA 
involves a linear decomposition of the original dataset into a new coordinate 
system based on eigenvectors and principal components (PC) (Richards, 
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1993). There can be as many PCs as the number of spectral bands in the 
original image. However, the first two PCs contain the highest spectral and 
spatial data variability (Jelenek et al., 2016). The rest of the PCs obtain mostly 
noise (useless information). Implementing forward PC rotation, the first two 
PCs that contained 99 % of data variability were selected (ENVI, 2015). 
However, the PC images do not allow identification and quantification of soil 
mineralogical changes. Therefore, the transformation of the PC images back 
into their original data space was completed. Figure 3-3 shows the flowchart 
of the image processing.  

 
 
Figure 3-3. Flowchart of the image processing steps followed for each soil 
image before Spectral Information Divergence image classification was 
performed.  
 

3.2.4 Spectral Information Divergence approach (SID) 
 
The key to imaging spectroscopy classification is the assessment of the spectral 
similarity of various objects. An image pixel is usually a mixture of different 
materials with various abundance fractions. Therefore, the high spectral 
resolution of the sensor (hundreds of spectral bands) does allow resolving 
these mixtures better than low spectral resolution. Consequently, the spectral 
information provided by this pixel is essential for material discrimination, 
detection, identification and classification (Xu et al., 2015; Zhao et al., 2017). 
The goal was identifying and quantifying the soil mineralogy under D-FC, FC 
and W-FC treatments. Therefore, the Spectral Information Divergence (SID) 
spectral similarity approach was used. SID stochastic classifier provides more 
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accurate results compared to empirical methods (Qin et al., 2009; van der 
Meer, 2006). SID uses a divergence measure to match pixels spectra to 
reference spectra. The more pixels are similar, the smaller the divergence. 
Pixels are not classified when the divergence measure is greater than the 
specified maximum divergence threshold. SID measures the spectral variability 
of a single mixed pixel where each pixel is considered as a random variable 
and uses its spectral histogram to define a probability distribution (Chang, 
2000). Considering two spectral vectors, spectral reference r = (r1, r2… rN) and 
an unknown spectral image u = (u1, u2…uN) the SID is calculated based on 
relative entropy.  
 
Thus, SID (r, u) = D (r ǁ u)+D (u ǁ r)                                                    (3-1) 
 
where  D (r ǁ u) =−∑ 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 �𝑝𝑝𝑝𝑝

𝑞𝑞𝑝𝑝
�𝑁𝑁

𝑝𝑝=1 ,  D(u ǁ r) = -∑ 𝑞𝑞𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 �𝑞𝑞𝑝𝑝
𝑝𝑝𝑝𝑝
�𝑁𝑁

𝑝𝑝=1                      (3-2) 
  
and pi = ri/ ∑ 𝑟𝑟𝑝𝑝𝑁𝑁

𝑝𝑝=1 ,  qi= ui / ∑ 𝑢𝑢𝑝𝑝𝑁𝑁
𝑝𝑝=1                                                         (3-3)  

 
N is the number of bands; the symbol ǁ represents both the relative entropy of 
u with respect to r and the relative entropy of r with respect to u.  
 
The spectral reference for the SID classifier was selected from the USGS digital 
spectral library (USGS, 2017) based on X-ray diffraction analysis of the soil 
samples, more precisely on the clay fraction of these soils. The clay fraction 
was determined with the pipette method. X-ray analysis identified a range of 
minerals such as goethite, hematite, maghemite, Mg-clinochlore, ferroan 
clinochlore, kaolinite and muscovite. Likewise, the Analytical Spectral Device 
(ASD Boulder, USA) spectroradiometer acquiring data in the 350 nm to 2500 
nm spectral range with a spectral interval of 1.4 nm in VNIR (350-1000 282 
nm) was used for spectral measurements of Soil 2. These measurements were 
performed under a controlled dark condition, using a 512-channel silicon 
photodiode array. After the white reference optimization, an average spectrum 
of Soil 2 was obtained. Besides the input spectral information, the SID 
approach requires a maximum divergence threshold. The image of Soil 1 
acquired at the beginning of the experiment was used to determine this 
threshold (see Table 3-1). This soil image was chosen because its area covered 
by hematite was known. By trial and error, the maximum divergence threshold 
value of 0.15 identified the hematite over the image, as shown in Figure 3-4. 
It was assumed that this threshold (0.15) could identify the other minerals 
existing in any soil image. Therefore, the SID classification was performed on 
all the soil samples using this threshold. Together with the threshold trials, 
various spectral binning for spectral resampling were used when performing 
the SID classification.  
Since each SID class had isolated unclassified pixels, a majority post-
classification image analysis using a window 3 x 3 pixels was carried out. Next, 
the percentage of each mineral in each image was calculated based on the 
pixel count in the image. Here, the number of 36108 pixels corresponded to 
100 % of the image in VNIR. Therefore, based on the number of pixels that 
each mineral occupied in the image, its percentage could be determined. It is 
essential to point out that the percentage of these minerals was derived from 
surface measurements, and the soil depth was not considered.  
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Both ASD and USGS spectral information were used independently as input to 
the SID classifier to detect the hematite in Soil 1 (Figure 3-4). The percentage 
of hematite over the soil image was 36% and 37% for ASD and USGS spectral 
data, respectively. Since this difference was 1%, the USGS spectral library data 
could be used instead of measured data to monitor soil mineralogical changes 
in VNIR.  
      

 
 
Figure 3-4. The original image (b) of Soil 1 at the beginning of the experiment 
is in the middle. Using Spectral Information Divergence (SID) classifier with a 
threshold value of 0.15, hematite (cherry colour) occurrence over the image 
was defined. The image classification results, on the left (a) and the right side 
(c), were obtained using ASD and USGS spectral data, respectively. The black 
arrows indicate the hematite in the original image and its classification results 
for both ASD and USGS spectral data used.  

3.2.5 Inductivity Coupled Plasma-Optical Emission Spectrometry 
Instruments (ICP-OES) measurements 
 
ICP-OES technique measures the concentration of chemical elements in a 
solution applying a linear approach (element concentration vs light intensity) 
(PerkinElmer, 2018). The excess water was collected of each soil sample in 
tubes of 15 ml to investigate the losses of soluble elements. Likewise, the 
samples were acidified with nitric acid to keep the elements in the solution. 
While the samples were measured every week in D-FC and W-FC treatments, 
these measurements performed every three days in FC treatment. Using the 
ICP-OES technique, the concentration of Mg, Al, Ca, K, and Na was 
determined.   
 

3.3   Results 
 
Applying the USGS spectral library, the minerals identified in the VNIR using 
the SID classifier belong to the phyllosilicate group more specifically to chlorite, 
iron oxide and hydroxide. Mg-clinochlore, goethite with average grain size 125 
µm, quartz coated 50% by goethite (Qz-Gt) and averaged hematite 
dimorphous with maghemite (Hm-Mh) with varies grain size interval (150-250, 
60-104, 30-45, 10-20 µm) were used to investigate mineral variation over 
time. Furthermore, the ferroan clinochlore observed at the dry condition was 



                                                                                                         Chapter 3 

39 

not considered for further analyses. The image processing and analyses were 
carried out for each soil sample determining the percentage of minerals. Next, 
we summarized the mineral percentages by averaging triplicates of each soil 
type (Soil 1- Soil 3) placed in each soil treatment (D-FC, FC and W-FC). Figure 
3-5 shows the results at D-FC soil treatment at the start (week0), middle 
(week4), and the end of the experiment (week8) in the dry condition. One of 
the soil properties that affect soil's spectral reflectance is indeed the OM. 
However, it is essential to specify the species of OM occurring in the soil 
because their composition determines the spectral region that they are active. 
The OM of Soil 3 comes from sewage sludge manure. The main components in 
sewage sludge are lignin and cellulose, which have absorption features in the 
SWIR. Therefore, in VNIR, the sewage sludge manure does not affect the 
spectral reflectance of the minerals. All the soils showed changes in their 
minerals distribution over time. 

 
 
Figure 3-5. Example of SID classification results at D-FC treatment at the start 
(week0), middle (week4) and the end of the experiment (week8) in dry 
condition (Soil 1- Soil 3). The colours represent the minerals identified in VNIR. 
All the soils show changes in their mineral distribution over time. The original 
images at the start of the experiment, together with the scale bar, are also 
shown. 



Monitoring soil surface mineralogy at different moisture conditions using Visible Near-
Infrared spectroscopy data 

 

3.3.1 Drying-field capacity treatment (D-FC) 
 
Mg-clinochlore could be considered stable over time regardless of the soil 
conditions (wet or dry) or the presence of OM (Figure 3-6a). However, in wet 
conditions, the percentage of Mg-clinochlore of Soil 2 and Soil 3 was 
significantly higher compared to Soil 1.   
Goethite 125 µm was not detected for Soil 3 (high OM) at D-FC soil treatment 
(Figure 3-6b). In wet conditions, the percentage of goethite of Soil 1 was 
significantly higher compared to Soil 2. Although the percentage of goethite 
fluctuated with a small magnitude over time, it tended to increase and decrease 
for Soil 1 and Soil 2, respectively, at the end of the experiment.  
Qz-Gt of Soil 1 was observed only in the wet condition after the first week, and 
its percentage increased in the second half of the experiment (Figure 3-6c). 
Likewise, at the wet state, the Qz-Gt of Soil 2 and Soil 3 increased with two 
percent at the end compared to the start of the experiment.  
The Hm-Mh was stable at the wet condition for all the soils. While at dry 
condition, the Hm-Mh of Soil 1 increased significantly after week six, this 
mineral fluctuated over time for Soil 2 and Soil 3 (Figure 3-6d). The magnitude 
of these fluctuations was higher for Soil 2 compared to Soil 3.  

     
 

     
Figure 3-6. The average percentage of Mg-clinochlore (a), goethite 125 μm 
(b), quartz coated 50% by goethite (c) and hematite dimorphous with 
maghemite (d) changes for all the soils at the D-FC treatment. The circle, 
square and plus symbols represent Soil 1, Soil 2, and Soil 3, respectively. The 
vertical axis characterizes the percentage of each mineral occurring in an 
image. The scale of the Y axis varies from 0% to 100%. In the horizontal axis, 
wk1,...,wk8 stands for week 1,...,week 8, when the soil sample was at the dry 
conditions. Since the soil samples were at the field capacity every three days, 
wk1fc,..., wk8fc (week 1fc,...,week 8fc) was used to represent it. 
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3.3.2 Field capacity treatment (FC) 
 
Mg-clinochlore of Soil 1 increased until week four, and after week six, it settled 
for the rest of the experiment (Figure 3-7a). On the other hand, the Mg-
clinochlore of Soil 2 and Soil 3 decreased continuously after week two until the 
end of the experiment.  
The goethite of Soil 1 decreased for the first half of the experiment. Although 
this mineral fluctuated in the second half, its percentage was lower compared 
to the start of the experiment. The goethite of Soil 2 and Soil 3 increased in 
the second half of the experiment. However, the goethite of Soil 3 settled in 
the last two weeks of the experiment (Figure 3-7b).  
The Qz-Gt of Soil 1 was stable for the entire time that the experiment ran. For 
Soil 2 and Soil 3, this mineral increased after week three (Figure 3-7c). While 
the Qz-Gt of Soil 2 stabilized after week six, this mineral settled in the last 
week of the experiment for Soil 3.    
The first FC treatment led to the Hm-Mh decrease for all the soils (Figure 3-
7d). However, this decrease in Hm-Mh percentage was higher for Soil 2 
compared to Soil 1 and Soil 3. After the first week, the Hm-Mh of Soil 3 and 
Soil 1 (except some variations) were stable for the rest of the experiment. 
Although the Hm-Mh of Soil 2 fluctuated over time, its percentage was similar 
in the first week and the end of the experiment.  
 

     
 

    
 
Figure 3-7. The average percentage of Mg-clinochlore (a), goethite 125 μm 
(b), quartz coated 50% by goethite (c) and hematite dimorphous with 
maghemite (d) changes for all the soils at the FC treatment. The circle, square 
and plus symbols represent Soil 1, Soil 2 and Soil 3, respectively. The vertical 
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axis characterizes the percentage of each mineral occurring in an image. The 
scale of the Y-axis varies from 0% to 100%. In the horizontal axis, wk1,..., 
wk8 stands for week 1, ..., week 8. Since the experiment was performed every 
three days, wk1fc,..., wk8fc (week 1fc, ..., week 8fc) was also used to 
represent the results. Here, the soil samples were at the field capacity all the 
time. 
 
3.3.3 Waterlogging-field capacity treatment (W-FC) 
 
Mg-clinochlore increased for all the soils after the first W-FC treatment (Figure 
3-8a). Moreover, the Mg-clinochlore of Soil 1 increased until week three. After 
that, this mineral stabilized for Soil 1 for the rest of the experiment. On the 
other hand, Mg-clinochlore of Soil 2 and Soil 3 decreased continuously after 
week five until the end of the experiment. However, this decrease was more 
noticeable for Soil 2 compared to Soil 3.  
The goethite125 µm of Soil 1 increased continuously until the end of the 
experiment. After the decrease of the first week, the goethite of Soil 2 stayed 
stable for the rest of the experiment. This stability was also observed for the 
goethite of Soil 3 (Figure 3-8b).  
The Qz-Gt of Soil 1 decreased continuously for the entire period that the 
experiment ran. Although with the small magnitude, the Qz-Gt of Soil 2 tended 
to increase over time. Differently,  the Qz-Gt of Soil 3 stayed more or less 
stable for the entire period of the experiment (Figure 3-8c).    
Figure 3-8d shows that the Hm-Mh dropped considerably after the first 
waterlogging treatment for all the soils. However, this decrease of Hm-Mh was 
more notable for Soil 1 compared to Soil 2 and Soil 3. Later, the Hm-Mh 
remained stable for the rest of the experiment for all the soils.  
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Figure 3-8. The average percentage of Mg-clinochlore (a), goethite 125 µm 
(b), quartz coated 50% by goethite (c) and hematite dimorphous with 
maghemite (d) changes for all the soils at the W-FC treatment. The circle, 
square and plus symbols represent Soil 1, Soil 2, and Soil 3, respectively. The 
vertical axis characterizes the percentage of each mineral occurring in an 
image. The scale of the Y-axis varies from 0% to 100%. In the horizontal axis, 
wk1fc, ..., wk8fc stands for week 1fc, ..., week 8fc when the soil samples were 
at the field capacity conditions. There was no data available at the waterlogging 
conditions. 
 
 
Figure 3-9 summarized the percentage of the minerals at the start and the end 
of the experiment when the soil samples were at field capacity. An exception 
was Hm-Mh at D-FC treatment, where the soil samples were at the dry 
condition.  
At D-FC treatment, Mg-clinochlore and Qz-Gt decreased and increased for all 
the soils at the end of the experiment, respectively. An increase of goethite 
and Hm-Mh of Soil 1 occurred at the end of the experiment. On contrarily, 
these minerals (goethite and Hm-Mh) decreased for Soil 2 and Soil 3 at the 
end of the experiment at D-FC treatment, as is shown in Figure 3-9a.  
At FC treatment, Mg-clinochlore increased and decreased for Soil 1 and Soil 2, 
Soil 3 at the end of the experiment, respectively. Oppositely, the goethite 
decreased and increased for Soil 1 and Soil 2, Soil 3 at the end of the 
experiment, respectively. An increase of Qz-Gt for all the soils occurred at the 
end of the experiment. The Hm-Mh increased, decreased and stayed stable for 
Soil 1, Soil 2 and Soil 3 at the end of the experiment (Figure 3-9b).  
At W-FC treatment, Mg-clinochlore and goethite declined at the end of the 
experiment for Soil 2 and Soil 3 (Figure 3-9c). On the contrary, these minerals 
(Mg-clinochlore and goethite) increased for Soil 1 at the end of the experiment. 
The other mineral, Qz-Gt, decreased for Soil 1 and Soil 3 and increased for Soil 
2 at the end of the experiment. Hm-Mh of Soil 1 and Soil 3 stayed stable, 
whereas it increased for Soil 2 at the end of the experiment. 
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Figure 3-9. The percentage of the minerals when the Soil samples were at the 
field capacity. An exception was the Hm-Mh at the D-FC treatment, where the 
Soil samples were at the dry conditions. The vertical axis characterizes the 
percentage of each mineral occurring in an image. The horizontal axis 
represents the Mg-clinochlore, goethite 125µm, quartz coated 50% with 
goethite (Qz-Gt) and hematite dimorphous with maghemite (Hm-Mh) of Soil 
1–Soil 3 (S1–S3) in the drying-field capacity (a), field capacity (b) and 
waterlogging- field capacity (c) treatments at the start and end of the 
experiment. The error bars represent the standard deviation of the minerals in 
triplicated Soil samples. Since the SID approach disregards the self-shadow 
areas created by various Soil aggregate sizes, these aggregate variations 
influenced the standard deviation. 
 

3.3.4  ICP- OES results 
 
CEC refers to the ability of negatively charged soil particles to attract and retain 
cations such as Ca2+, Mg2+, K+, Na+, Al3+ by electrostatic forces.  
At D-FC treatment, the loss of Ca, Mg, K, Na, Al of Soil 1 increased at week 
two (Figure 3-10a). After that, it decreased continuously over time. However, 
this decrease was higher for Ca, followed by K, Mg, Na and Al. Regardless of 
the amount of OM, the concentration of cations of Soil 2 and Soil 3 was low 
and stayed stable over time.  Magnesium was not detected for Soil 2 and Soil 
3 in D-FC treatment.     
At FC treatment, the concentration of all the elements fluctuated over time for 
Soil 1. However, the loss of K, Na and Al decreased; it increased for Mg and 
did not change for Ca at the end compared to the start of the experiment. 
Except for Mg, which was not detected, the concentration of other elements of 
Soil 2 and Soil 3 fluctuated with a small magnitude over time (Figure 3-10b).  
Figure 3-10c shows that the loss of Ca, Mg, K and Na of Soil 1 decreased over 
time at W-FC treatment. While this decrease was fast until week three, it 
slowed down for the rest of the experiment. The other element, Al, decreased 
at week two to stay stable until week six to drop again until the end of the 
investigation. The concentration of Ca, Mg, K and Na of Soil 2 and Soil 3 did 
not change over time at W-FC treatment. 
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Figure 3-10. The concentration of cations determined using the Inductivity 
Coupled Plasma-Optical Emission Spectrometry Instruments (ICP-OES) 
technique at the drying- field capacity (a), field capacity (b), and waterlogging- 
field capacity (c) treatments for Soil 1–Soil 3. While the results were every 
week for the D-FC and the W-FC treatments, the results were at three days 
basis for the  FC treatment.   
 

3.4 Discussion 

3.4.1 Drying-field capacity treatment (D-FC) 
 
Repeated drying and field capacity cycles can cause changes in soil chemical 
composition due to the migration of soil chemical elements such as Ca, Fe, Mg, 
Al, K, Na or Si (Bravo-Garza et al., 2009; Pires et al., 2011). Moreover, the 
ICP-OES results indicated that the loss of soluble elements was noticeable for 
Soil 1. On the contrary, the presence of OM (Soil 2 and Soil 3) diminishes the 
loss of cations from the soil matrix. The image analysis showed that Mg-
clinochlore of Soil 1 stayed stable over time regardless of the soil conditions 
(dry or field capacity). The Mg-clinochlore of Soil 2 and 3 fluctuated with a 
small magnitude, considering this mineral relatively stable. This stability of Mg-
clinochlore at D-FC treatment could be related to the increase of the cohesion 
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between organic molecules and mineral surfaces in dry conditions (Denef et 
al., 2002).  
The goethite is active at the wet condition, whereas the hematite prevails in 
the dry soil condition. Indeed, the SID classifier detected the goethite only at 
field capacity condition. This mineral was stable over time. Goethite adheres 
to quartz surfaces by covalent Fe-Si-O bonds (Scheidegger et al., 1993)  
occurring as quartz coated 50% by goethite in this experiment. The presence 
of OM makes goethite negatively charged, allowing it to precipitate over time. 
Moreover, the fulvic and humic acids increase the weathering of quartz, 
especially when the soil is at neutral pH (Welch and Ullman, 1993; Wogelius 
and Walther, 1991). However, the results showed that Qz-Gt stayed stable 
over time for soils with OM. These results could be explained with the presence 
of Al and Fe oxides stabilizing the soil upon drying, as well as the short period 
(eight weeks) that the experiment ran. Due to the absence of OM, the goethite 
is positively charged. Therefore, it could be immobilized due to attractive 
electrostatic interactions with the negatively charged soil matrix minerals, such 
as quartz (Bosch et al., 2010). However, the results showed an increase in the 
Qz-Gt of Soil 1 in the second half of the experiment. These results might be 
related to changes in the Soil 1 mineralogy, such as recrystallization of Fe and 
Al oxyhydroxides, when exposed to high-temperature (Arcenegui et al., 2008; 
Guerrero et al., 2001). 
Like the other minerals, the Hm-Mh of soils with OM was relatively stable for 
the duration of our experiment. Indeed, the Fe oxides have a large specific 
surface area playing a significant role in forming organo-mineral associations 
within soils (Cismasu et al., 2016; Regelink et al., 2013). Also, Regelink et al., 
(2015) showed that the interactions between amorphous iron oxides and OM 
were significant to soil stability. The Hm-Mm of Soil 1 increased at the end of 
the experiment. This increase could be related to both the hematite and 
maghemite. The added hematite in Soil 1 did not have enough time to integrate 
into the soil matrix leading to leaching and attachment of the small grain size 
to bigger ones. Moreover, the maghemite is poorly crystallized, leading to its 
mobility and precipitation in porous media (Taylor and Schwertmann, 1974; 
Tratnyek and Johnson, 2006). 
 
 

 3.4.2 Field capacity treatment (FC) 
 
Soil moisture controls mainly the chemical weathering and mineral 
transformations (Egli et al., 2014). When the soil was at field capacity 
conditions, the Mg-clinochlore of Soil 2 and 3 (low and high OM) decreased 
over time. Indeed, the instability of the chlorite minerals in the soil is known 
(Righi et al., 1993). This instability could be related to the large molecule of 
magnesium, which does not stick tightly to soil particles. As a result, it could 
easily leach from the soil at neutral pH (McCauley et al., 2017). Moreover, 
generally, OM can stabilize the soil by increasing the inter-particle cohesion 
within soil aggregates (Zaher et al., 2005). However, manure (present in soils) 
does not increase soil cohesion (Paré et al., 1999). Therefore, the leakage of 
Mg and its weak inter-particle cohesion leads to a decrease of Mg-clinochlore.  
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Both the goethite and Qz-Gt of Soil 2 and 3 increased at the end of the 
experiment. The soil at wet conditions is not fully oxic, which may lead to 
reducing conditions. Under such conditions, the accumulation of crystalline Fe 
hydroxide phases such as goethite might occur (Hansel et al., 2003; Pedersen 
et al., 2005).  
The associations of goethite with OM is weak because the coverage of goethite 
by OM prevents the action of attractive forces, and therefore, increasing the 
electrostatic repulsive forces between colloids (Dultz et al., 2018). The 
precipitation of goethite and the weathering of quartz simulated by fulvic and 
humic acids could lead to the accumulation of Qz-Gt over time. 
Regardless of soil type, the Hm-Mh was relatively stable over time. Both 
crystalline or amorphous Fe species (hematite or maghemite) might interact 
with soil inorganic and organic components due to van der Waals attraction 
(Colombo and Torrent, 1991). These results could be related to the hematite 
suppression at the field capacity conditions.  
Mg-clinochlore, goethite and Qz-Gt of Soil 1 were stable. One explanation is 
that Soil 1 went through the high temperature, declining the exchangeable 
cations, and making this soil in an unchanging condition (Sunil and Deepa, 
2016). 
In the soil environment, where oxygen is sufficient, the attachment of aerobic 
microorganisms on the mineral surface is a known process (Jones and Bennett, 
2014). As a result, the attached microorganisms dissolve the minerals based 
on their nutritional needs causing mineral dissolution and element mobilization 
such as Fe, Mg, Al and Si (Ahmed and Holmstrom, 2015). Therefore, the 
changes in the percentage of minerals in the FC state could be related to the 
mineral weathering by the microorganisms. 
 
 

3.4.3 Waterlogging-field capacity treatment (W-FC) 
 
The experiment showed that the first waterlogging-field capacity treatment 
had a significant effect on soil mineralogy, regardless of soil type. However, 
for the rest of the experiment, the minerals were stable, especially for the soils 
with OM.  
Mg-clinochlore was stable over time. The minerals dissolved in waterlogged 
soils, and consequently, elements such as Mg can be released into the solution 
at low redox potential (waterlogging state) (Lesovaya et al., 2012; Raous et 
al., 2010). The ISP-OES results also showed the loss of Ca, Mg, K and Na of 
Soil 1.  However, the image analysis suggested that Mg-clinochlore of Soil 1 
stayed stable. These results indicate the importance of considering the changes 
in the minerals together with other soil components and not per se because 
they depend on the interactions with the other soil components.  
OM interactions with the soil minerals by cationic bridges are considered weak. 
Moreover, the OM adsorbed on mineral surfaces does not cover the whole 
particle surface, but it forms patches (Remusat et al., 2012; Rumpel et al., 
2015). Even the newly adsorbed OM binds to existing patches and not to free 
mineral surfaces (Vogel et al., 2014). Therefore, the Mg and OM might not be 
capable of creating new bridges under W-FC treatment, causing the stability of 
Mg-clinochlore for  Soil 2 and Soil 3. 
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Although the goethite can precipitate from solution at normal environmental 
pH, the presence of Al prevents this process (Bazilevskaya et al., 2012). 
Likewise, it was proved by Thompson et al., (2006) that nanocrystalline 
goethite transformed into microcrystalline hematite and goethite as a result of 
soil redox fluctuations. Soil anaerobic conditions could cause the dissolution of 
maghemite (Grimley and Arruda, 2007; Thompson et al., 2011). Also, Al 
destroys vacancy ordering in maghemite (Wolska and Schwertmann, 1989). 
However, in the waterlogging condition, the nanoparticles could remain in the 
suspension, or they might aggregate and precipitate from the solution. During 
aggregation, dissolved ions stay within aggregates due to the inter-particle 
pore space leading to aggregate settling. Moreover, at neutral pH, the unstable 
particles dissolve and re-precipitate on the surface of other growing particles 
(Tamrat et al., 2018). Therefore, the stability of goethite, Qz-Gt and Hm-Mh 
could be related to the re-precipitation process. Moreover, in oxic conditions, 
the Fe precipitates as goethite and hematite from silicate minerals. Because of 
the Si and Al or OM,  the Fe3+ and Fe2+ oxyhydroxides have a low, reducing 
ability over time (Hansel et al., 2011; Pasakarnis et al., 2015).  
The increase of goethite and the decrease Qz-Gt of Soil 1 could be related to 
added hematite manually. The high clay content increases soil cohesion and 
decreases permeability for the dissolved and colloidal compounds making the 
leaching process less pronounced. Therefore, high clay content has a positive 
influence on soil stability. Soil 3 with 23% kaolinite showed fewer variations 
over time than Soil 2, which had 16% kaolinite at W-FC treatment. Of course, 
clay content and clay mineralogy have a significant effect on soil organo-
minerals interactions. Therefore, in soils dominated by 1:1 clay, the 
aggregation occurs due to the binding capacity of the minerals themselves. 
Instead, clay forms bridges with polyvalent metal and OM in soils with a 2:1 
layer structure (Six et al., 2000). The effect of kaolinite was not investigated 
because this clay mineral is detected in the SWIR region of the electromagnetic 
spectrum.  
The SID classifier is a probabilistic approach that uses the divergence measure 
to compare each pixel spectra with the reference spectra. If this divergence, 
which is related to a threshold, is small, then the pixel spectra are close to 
reference spectra. Hence, the pixels that have the divergence greater than the 
specified threshold are not classified. The threshold value used in this study 
was 0,15, but it could vary for different mineral types. A threshold that 
discriminates well for one mineral might be either too sensitive or not sensitive 
enough for another mineral due to the similar/dissimilar nature of their 
probability distributions. Besides unclassified pixels, misclassification due to a 
false positive or false negative errors could occur as well. Therefore, the 
threshold used in the SID classifier should be specific for each mineral. At the 
start of the experiment, in D-FC treatment, the percentage of unclassified 
pixels was 14%, 13% and 14% for Soil 1, Soil 2 and Soil 3, respectively. When 
the soil was in wet condition, the percentage of unclassified pixels was 29%, 
25% and 24% for Soil 1, Soil 2 and Soil 3, respectively.  
One explanation might be related to minerals behaviour such as the ferroan 
clinochlore, which was observed only in dry conditions (data not shown). 
Likewise, hematite prevails in the dry condition, and the goethite overcomes 
in the wet soil condition. Furthermore, soil aggregates lead to self-shadowing 
of the soil surface resulting in a low reflectance value. The SID classifier 
characterizes each mineral type by using its corresponding spectral signature, 
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neglecting the spectral information associated with the shadow. Since the 
shadow area depends on the soil aggregates size and their occurrence in the 
image, the percentage of unclassified pixels varies for each soil sample. 
However, Chang, (2000) pointed out that the SID classier is insensitive to 
illumination effects and brightness shifts. Although the dimensionality of the 
images was reduced based on added hematite (section 3.2.4), a large number 
of available spectral bands (169) and the small training samples (8) could have 
affected the classification accuracy referred to as the Hughes phenomenon 
(Hughes, 1968).  
One of the main drawbacks of the RS classification approach is the validation 
of the results with ground truth data. Unfortunately, the ground truth 
information is not available all of the time. In this study, the spectral data from 
the ASD device together with USGS spectral library data were used to define 
and quantify the percentage of added hematite manually distribution over the 
soil image. Since the difference between the ASD and USGS was 1%, the USGS 
spectral library data could be used instead of measured data. The occurrence 
of other minerals in the soil was unknown; therefore, it was assumed that the 
USGS spectral library could be used to capture the distribution of these  
minerals occurring in the soil.     
Soil organo-mineral associations occur over a range of bonding mechanisms 
such as cation and anion exchange, water and cation bridging, ligand, 
hydrogen and van der Waals and hydrophobic interaction (Qafoku, 2015). 
While some of these organo-mineral bonds are assumed to be susceptible to 
disruption, others are considered stable, therefore, affecting soil stability in 
different ways. Hence, it is crucial to know their behaviour at the high spatial 
and temporal resolution as well at the vertical soil horizons. RS can play a 
significant role in acquiring relevant data. However, at this stage, it is difficult 
to capture in detail the soil organic-mineral interactions, which occur at the 
nanoscale, to field-scale observations. Likewise, the soil organo-mineral bonds 
at the subsurface level with RS needs attention. At this point, potential users 
can be the scientific community dealing with soil stability and environmental 
concern. 
 

3.5 Conclusions 
 
In this study, the SID image classifier derived from the VNIR spectroscopy data 
was used to monitor the soil mineralogical alterations under laboratory 
conditions. Three Silty Loam soils varying in OM content (no, low and high) 
were chosen. Trays with aggregates were exposed to D-FC, FC and W-FC 
treatments. These treatments were performed because there is limited 
knowledge of soil mineralogical behaviour at different moisture conditions 
occurring in a short period. The ICP-OES measurements were carried out to 
quantify the losses of soluble elements by percolation for each soil sample.  
The assumption was that using the VNIR spectroscopy data changes in soil 
mineralogy due to moisture variation could be detected and quantified over 
time. Using the SID approach, the image area occupied by Mg-clinochlore, 
goethite, quartz coated 50% by goethite, hematite dimorphous with 
maghemite was determined. The results showed that these minerals behaved 
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differently, depending on the soil type and soil treatment. While for the soils 
with OM, the mineralogical alterations were evident at field capacity state, for 
the one with no OM, these changes were insignificant. However, regardless of 
the soil type, these minerals were stable at D-FC and W-FC treatments. Using 
imaging spectroscopy data, it is shown that the Silty Loam soil mineralogy 
changes over time, depending on soil type and moisture conditions. Changes 
in mineral composition might cause changes in the soil aggregate stability. 
Therefore, it will be interesting to investigate the effect of these mineralogical 
changes on soil aggregate stability. 
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Abstract 
Alterations in soil stability are related to the organic and inorganic binding 
agents. However, the mechanisms triggering the soil stability alteration under 
freeze-thaw are not fully understood. The freeze-thaw process damages the 
soil particle binding by reducing the content of mineral components in the soil. 
Therefore, understanding the soil mineralogical behaviour to freeze-thaw 
cycles over a short period is essential. The soil mineralogical changes occurring 
due to the freeze-thaw process can be detected using the Visible Near-Infrared 
imaging spectroscopy. It is hypothesized that the freeze-thaw process affects 
the soil surface mineralogy when the soil is exposed to different moisture 
conditions. For eight weeks, under laboratory conditions, imaging spectroscopy 
data were collected on a 72 h basis for three Silty Loam soils varying in the 
organic matter (no, low and high) and moisture conditions (field capacity and 
waterlogging) exposed to freeze-thaw cycles.  Using the Spectral Information 
Divergence image classifier, the image area occupied by the Mg-clinochlore, 
goethite, quartz coated 50% by goethite, hematite dimorphous with 
maghemite was detected and quantified (percentage). The results showed that 
these minerals behaved differently under freeze-thaw cycles, depending on the 
soil type and soil condition. While the Mg-clinochlore, goethite and quartz 
coated 50% by goethite behaviour depended on the presence of organic 
matter, the hematite dimorphous with maghemite showed not such a 
dependence. Likewise, the type of organic matter is vital in soil experiencing 
freeze-thaw cycles. Moreover, the field capacity and waterlogging conditions 
significantly impact mineral behaviour under freeze-thaw cycles regardless of 
the soil type. Using imaging spectroscopy data on the Silty Loam soil, it is 
showed that the surface mineralogy changes over time due to freeze-thaw 
cycles, depending on the soil type and the moisture conditions. 
 

 4.1 Introduction 
 
The freeze-thaw process damages soil particle binding by reducing mineral 
components’ content in the soil (Dagesse, 2013; Jabro et al., 2014). The effect 
of freeze-thaw cycles on the soil stability depends on many factors such as the 
soil texture, organic matter (OM) content, clay minerals, initial aggregate size, 
water content at the freezing time, number of freeze-thaw cycles and freezing 
temperature (Bajracharya et al., 1998; Li and Fan, 2014; Oztas and 
Fayetorbay, 2003). 
The ice formation rejects the organic and inorganic solutes from ice crystals, 
causing these solutes’ concentration in the freezing front (Kuo et al., 2011; 
Takenaka et al., 1996). The movement of dissolved salts and elements towards 
the freezing front occur due to hydrostatic gradient (Shafique et al., 2016). 
Due to solutes concentration during freezing, the precipitation of secondary 
minerals in the soil might occur (Blackwell et al., 2010). Therefore, the soil 
water content and the freezing temperature control the rate at which the soils’ 
physical and chemical properties change (Torrance et al., 2008; Wang and Wu, 
2013). The prolonged temperatures below 0 0C under saturation conditions 
lead to a decrease in cation exchange capacity (CEC) following an increase of 
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the cations leaching in the soil (Li et al., 2016). As a result, the cations 
adsorbed on soil lowered as the number of freeze-thaw cycles increased 
because the divalent cations binding weakened (Dang et al., 2012). Likewise, 
it has been shown that due to the freeze-thaw cycles, the soil OM content and 
pH value are lower compared to the unfrozen soil (Herndon et al., 2015; Lee 
et al., 2012; Pokrovsky et al., 2018). Consequently, the increased number of 
freeze-thaw cycles accelerates the decrease in these soil properties. The low 
soil pH increases H+ ion, which competes with polyvalent minerals for the 
binding side, decreasing the soil surface negative charges (Kim, 2014).  
Moreover, the increase of H+ stimulates the redox reactions reducing the free 
iron oxide content in a soil environment.  This reduction of free iron oxide has 
a negative impact on the adsorption of cations in soils. Likewise, the 
degradation of the OM and the release of dissolved organic acids, as a result 
of freeze-thaw cycles, decrease the soils’ adsorption capacity (Freppaz et al., 
2007). The decrease of the dissolved Fe, Al, Si, Mg, Ca due to freeze-thaw 
cycles suggest precipitation of Fe, Al hydroxide, and amorphous alumino-
silicates (Emerson et al., 2015; Kim and Choi, 2018; Mohanty et al., 2014). 
However, Song et al., (2017) pointed out that due to the ice crystals, the soil 
aggregates break, increasing their specific surface area and adsorption 
capacity.  
Soil texture plays a significant role in the freeze-thaw process since in soils 
with high clay content, the freezing is faster than the thawing process. On the 
other hand, in soils with high sand content, there is no distinction in time 
between freezing and thawing (Stahli and Stadler, 1997). Moreover, the soils 
with high silt content are more susceptible to freezing because the silty soils 
stimulate the ice lenses’ formation. 
Both active and passive microwave sensors can provide information on the 
freeze-thaw state on the soil surface. Due to the freeze-thaw process, the soil 
surface dielectric alterations can be detected using passive microwave sensors. 
Long wavelengths such as L-band are widely used for soil freeze-thaw 
monitoring because of their high sensitivity to liquid water change and 
penetration depth into the soil (Rautiainen et al., 2016; Rowlandson et al., 
2018; Roy et al., 2015). Since the passive microwave sensors capture the 
changes in soil water state and the thermal infrared sensors retrieve the land 
surface temperature, the fusion of these data is used to identify the freeze-
thaw on the ground (Kou et al., 2017; Zhao et al., 2017).  
The X-ray tomography (XRT) technique has been used to investigate the effect 
of freeze-thaw on soil structural changes (Starkloff et al., 2017; Torrance et 
al., 2008). Naegeli et al., (2015) used imaging spectroscopy data to distinguish 
different materials present on a glacier surface. Using the Spectral Angular 
Mapper (SAM) algorithm, their results showed that both in-situ and airborne 
imaging spectrometer data allow identifying the distribution, composition and 
impact of light-absorbing impurities on glacier surfaces. Another study 
classified snow and bare ice classes from Hyperion data using the Support 
Vector Machines (SVM) algorithm providing user’s accuracies of 90 and 70%, 
respectively (Di Mauro et al., 2017). 
Due to the freeze-thaw, the soil coarse and fine particles’ fragmentation and 
aggregation occur, respectively. Therefore, the freeze-thaw process alters the 
initial soil structure (Zhang et al., 2016). Many studies have reported that the 
freeze-thaw cycles break down the aggregates leading to decreased aggregate 
stability (Li et al., 2019; Song et al., 2017). Alterations in soil stability are 
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related to the organic and inorganic binding agents. Indeed, it was found that 
freeze-thaw cycles cause soil organic carbon loss affecting soil stability (Tang 
et al., 2016). However, Li et al., (2019) pointed out that the mechanisms 
triggering the soil stability alteration under freeze-thaw are not fully 
understood. Soil is composed of the variability of minerals having their 
behaviour under freeze-thaw cycles. Therefore, understanding the soil 
mineralogical reactions to freeze-thaw cycles over a short period is essential.  
Using the Visible Near-Infrared (VNIR) imaging spectroscopy approach, the soil 
mineralogical changes occurring due to the freeze-thaw process can be 
detected. Repeated freeze-thaw cycles might encourage migration and alter 
the soil matrix’s chemical constituents exposed to different moisture 
conditions. Therefore, this study aimed to investigate the effect of freeze-thaw 
cycles on the soil surface mineralogy at different moisture content. What is the 
impact of the freeze-thaw process on soil mineralogy when the soil is at the 
field capacity and waterlogging conditions? Moreover, how much does the 
percentage of the soil surface mineralogy changes over time due to the freeze-
thaw cycles? It is hypothesized that the freeze-thaw process triggers soil 
mineral precipitation, dissolution and release. Silty Loam soil samples varying 
in the organic matter (no, low and high) and moisture conditions (field capacity 
and waterlogging) exposed to freeze-thaw cycles were scanned in laboratory 
conditions at a micro-plot scale at 72 hours basis using an imaging 
spectrometer camera for eight weeks.  
 

4.2 Materials and methods 

4.2.1 Experimental setup 
 
A laboratory experiment consisting of an imaging spectrometer camera, a light 
source and a sliding table integrated into a fixed setup was designed to 
investigate the effect of freeze-thaw cycles on the soil surface mineralogy at 
various OM and moisture content. Also, on the sliding table, a tray filled with 
soil was placed. Silty Loam soils dominated by silt particles are one of the 
subdivisions of the loam soils. The Silty Loam soils support a considerable 
variability of plant life because the OM content and soluble nutrients occur in 
the silt particles. However, these soils are also susceptible to various 
environmental stresses. Therefore, these soil types need special attention. Two 
soil samples, Silty Loam with a low and high amount of OM content (Soil 2 and 
Soil 3), were collected from topsoil (20 cm) of agricultural fields in Limburg, 
the Netherlands. The agricultural crop cultivated in both fields was maize. 
However, at the time of soil sampling, this crop was already harvested. These 
soil samples were collected at the end of September 2014.  
The Silty Loam soils were chosen because it was found that freeze-thaw cycles 
cause the soil aggregate breakdown (Ymeti et al., 2017). The other soil sample 
was obtained by destroying the OM of Soil 2 by heating it at 550 0C for at least 
12 h. The new soil sample with no OM was identified as Soil 1. Besides the loss 
of OM at 550 0C, the clay mineral kaolinite decomposes above this temperature 
leading to the amorphous alumino-silicate material (Zavala et al., 2010). 
Likewise, the soil mineral goethite transforms to hematite or maghemite at a 



 
Chapter 4 

61 

temperature ranging from 250 0C to 420 0C (Hanesch et al., 2006; Liu et al., 
2013). However, these mineralogical alterations of Soil 1 were out of the scope 
of this study. Each of these soil samples was duplicated. Table 4-1 summarized 
the soil characteristics used in this study. 
 
Table 4-1. The soils used in this study. Soils 2-3 (low and high organic matter 
(OM)) were collected from Limburg province in The Netherlands. Soil 1 (no OM) 
was obtained from Soil 2. 
Soil ID       Soil particle size (%) 

     Clay    Silt      Sand 
 Texture class                   OM (%) 

Soil 1 
Soil 2  
Soil 3 

       16       71         131 
       16       71         13 
       23       52         25 

   Silty Loam 
   Silty Loam 
   Silty Loam 

          02 
         4.6 
        12.33 

1The determination of the soil particle size was only performed before the soil 
sample was placed at 550 0C. 2The OM was determined by heating the sample 
at 550 0C for more than 12 h and calculating the weight loss on the dry soil. 
3The high OM content in Soil 3 is probably coming from sewage sludge manure 
mixed with plant residues application by the farmer some days before soil 
sample was taken.  
 
During the freezing process, the ice formation leads to solute accumulation at 
the freezing front. As a result, the supersaturated solution promotes the 
precipitation of secondary minerals in the soil. The soil at the waterlogging 
state generates ice with strong expanding forces. These forces are expected to 
break inter-particle bonds in the soil. However, in the soil at field capacity, the 
ice crystals grow in the soil pores (Ferrick and Gatto, 2005). It is expected that 
the freeze-thaw process triggers more mineral precipitation and release in soils 
at the waterlogging compared to field capacity condition. Therefore, in this 
study, two separate experimental setups were carried out. In the first 
experiment, the soil samples kept at the field capacity (FC) were exposed to 
the freeze-thaw cycles. The second experiment had the soil samples at the 
waterlogging (WL) condition placed at the freeze-thaw cycles.  
Each experimental setup had its own set of soil samples duplicated (Soil 1–Soil 
3). Twelve plastic trays of 15 x 9 x 1 cm3 were filled manually with soil using 
a small shovel. As a result, the soil aggregates of various sizes occurred in the 
tray. The air-dried soils were weighted using a balance. Deionized water at the 
edge of the trays was added to place them at the field capacity. The amount 
of water required for this procedure was different, depending on the soil type.   
Two hundred ml and 300 ml of deionized water were added to set the Soil 1 
and Soil 2-3 to the FC conditions, respectively. Afterwards, the six soil samples 
were lifted to allow the excess water to leak out. They were considered at the 
FC when the leaking process had stopped. Next, the soil samples were placed 
in the freezer at –20 0C for 72 h. Then, they were taken out and left thawing 
for the next 72 h at room temperature (+20 0C). After 72 h at room 
temperature, the FC soil samples were placed again in the freezer at -20 0C for 
the next 72 h. This exchange between the freeze and thaw conditions was 
repeated until the end of the experiment.  
The other six soil samples were placed at the waterlogging conditions by 
saturating them with 410 ml and 560 ml deionized water for Soil 1 and Soil 2-
3, respectively. Next, they were carefully placed in the freezer (-20 0C) for 72 
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h. Later, the soil samples were left thawing at room temperature (+20 0C) for 
the next 72 h. Afterwards, they were placed again in the freezer for 72 h 
making sure that they were in the waterlogging conditions. This procedure was 
repeated for eight weeks that the experiment ran.  
Drainage was enabled by 5 mm diameters holes drilled at the bottom of the 
tray to place the soil samples at the FC state. Likewise, the pantyhose filters 
were used to avoid the soil leaking out. Moreover, to eliminate any external 
influence on the soil samples, they were covered with a plastic lid. 
Furthermore, the freezer’s space limitation forced us to place the soil samples 
on top of each other. 
Twelve soil samples with various OM content (no, low and high) at the FC and 
WL treatments were scanned by the VNIR imaging spectrometer camera every 
72 h, as shown in Figure 4-1. Images were collected for eight weeks. The 
decision of eight weeks experiment was related to the laboratory facilities.  
  

  
 
Figure 4-1. Schematic design of the experimental laboratory setup for image 
data collection. On the tripod in the centre is the VNIR imaging spectrometer 
camera placed at an angle of 900. Next to the sensor is a sliding table where 
the soil tray is placed for scanning. On the right and the left side of the sliding 
table, an external light source is integrated to illuminate the tray during image 
acquisition.  
 

4.2.2 Image acquisition  
 
A Specim imaging spectrometer camera was used to investigate mineralogical 
changes on the soil surface due to freeze-thaw cycles under controlled 
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laboratory conditions. This camera works as a push broom scanner and  
provides contiguous spectral information for each pixel (see 
https://www.specim.fi/ for detailed information).  
The camera was placed at an angle of 900, making a perpendicular capture of 
the tray at a  distance of approximately 60 cm between the soil tray and the 
sensor. Also, the tray was illuminated by a lighting source, integrated into the 
Specim setup system. All the other light sources were switched off to minimize 
any influence of the external light. The Specim spectrometer camera operating 
in VNIR acquires data in the 391 nm to 1000 nm spectral range providing 784 
spectral bands with a spectral resolution ranging from 0.75 nm to 0.82 nm and 
the spatial pixels of 1024. The raw data were converted to absolute reflectance 
using the reflectance factors of the manufacturer’s calibration panel. 
The images were selected, avoiding the shadow and the edge, as shown in 
Figure 4-2. The image of  200 x 200 pixels of VNIR corresponds to a 72 x 72 
mm2 area with a spatial resolution of 2.8 mm/pixels.  
 

 
Figure 4-2. Example of an image selected for analysis. In order to avoid 
shadow, the VNIR image was selected from the upper (a) part of the tray. The 
image subset of 72 x 72 mm2 with a pixel size of 2.8 mm/pixels (b) was 
obtained.     
 

4.2.3 Image processing 
 
Although the spectroscopy data provide useful information for identifing 
various materials with similar spectral properties, they suffer from highly 
correlated and noisy spectral bands (Nguyen and Lee, 2006; Van der Meer and 
Jia, 2012; Mariotto et al., 2013). Therefore it was considered necessary to 
perform image processing before further data analysis. The noisy bands 
ranging from 391 nm to 420 nm and 951 nm to 1008 nm of the VNIR sensor 
were discarded due to a low signal to noise ratio (Butz et al., 2015). Although 
the images were spectrally resized, their dimensionality was high (676 bands). 
The processing of the enormous amount of hyperspectral data might be 
problematic, leading to high computational cost. The spectral binning was used 
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by averaging every four adjacent bands, i.e., binning was set to four to 
decrease redundant and correlated spectral bands (Ymeti et al., 2019). As a 
result, the spectral dimensionality reduced from 676 to 169 (bands). 
Gaussian stretch was performed to normalize the images. The idea was to 
achieve a stretched brightness value distribution which resembles a normal 
distribution where tails were clipped to ±2 standard deviations. The image 
normalization allows the investigation of soil mineralogical changes over time. 
The image-processing tools based on multivariate techniques, such as the 
principal component analysis (PCA), are applied for extracting useful 
information. The PCA involves a linear decomposition of the original dataset 
into a new coordinate system based on the eigenvectors and principal 
components (PC) (Richards, 1993). There can be as many PCs as the number 
of spectral bands in the original image. However, the first two PCs contain the 
highest spectral and spatial data variability (Jelenek et al., 2016). 
The rest of the PCs obtain mostly noise (useless information). Implementing 
the forward PC rotation, the first two PCs that contained 99% of the data 
variability were selected (ENVI, 2015). However, the PC images do not allow 
identification and quantification of the soil mineralogical changes. Therefore, 
the transformation of the PC images back into their original data space was 
completed.  
 

4.2.4 Spectral information divergence approach (SID) 
 
The key to imaging spectroscopy classification is the assessment of the spectral 
similarity of various objects. An image pixel is usually a mixture of different 
materials with various abundance fractions. Therefore, the sensor’s high 
spectral resolution (hundreds of spectral bands) does allow resolving these 
mixtures better than the low spectral resolution. Consequently, this pixel’s 
spectral information is essential for material discrimination, detection, 
identification, and classification (Xu et al., 2015; Zhao et al., 2017). The goal 
was to identify and quantify the soil surface mineralogy alterations due to 
freeze-thaw cycles at the field capacity and waterlogging conditions. Therefore, 
the Spectral Information Divergence (SID) spectral similarity approach was 
used. The SID stochastic classifier provides more accurate results than 
empirical methods (Qin et al., 2009; van der Meer, 2006). The SID uses a 
divergence measure to match pixels spectra to reference spectra. The more 
pixels are similar, the smaller the divergence. Pixels are not classified when 
the divergence measure is greater than the specified maximum divergence 
threshold. The SID measures a single mixed pixel’s spectral variability where 
each pixel is considered a random variable and uses its spectral histogram to 
define a probability distribution (Chang, 2000). Considering two spectral 
vectors, spectral reference r = (r1, r2…rN) and an unknown spectral image u 
= (u1, u2…uN) the SID is calculated based on relative entropy.  
 
Thus, SID(r,u)= D (r ǁ u) + D (u ǁ r)                                                    (4-1) 
where D(rǁu)=−∑  𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 �𝑝𝑝𝑝𝑝

𝑞𝑞𝑝𝑝
�𝑁𝑁

𝑝𝑝=1 , D(uǁ r) = -∑ 𝑞𝑞𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝(𝑞𝑞𝑝𝑝/𝑝𝑝𝑝𝑝)𝑁𝑁
𝑝𝑝=1                        (4-2) 

  
and  pi=ri /∑ 𝑟𝑟𝑝𝑝𝑁𝑁

𝑝𝑝=1 , qi= ui / ∑ 𝑢𝑢𝑝𝑝𝑁𝑁
𝑝𝑝=1                                                          (4-3)  
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N is the number of bands, the symbol ǁ represents both the relative entropy of 
u with respect to r and the relative entropy of r with respect to u. 
 
The SID spectral information was obtained from the United States Geological 
Survey (USGS) spectral library (USGS, 2017). This spectral information 
corresponds to minerals identified by X-ray diffraction analysis on the clay 
fraction. The clay fraction in the soil sample was determined in the laboratory 
using the pipette method. The X-ray analysis identified a range of minerals 
such as goethite, hematite, maghemite, Mg-clinochlore, ferroan clinochlore, 
kaolinite, and muscovite. These minerals are typical of Luvisols developed on 
a loess deposit (Veer, 2006). However, in the VNIR, the Mg-clinochlore, 
goethite 125 µm grain size, quartz coated 50% by goethite (Qz-Gt), and 
hematite dimorphous with maghemite (Hm-Mh) were identified. The Hm-Mh 
occurred in various grain size intervals (150–250, 60–104, 30–45, 10–20 µm).  
Besides the spectral information, the SID approach requires a maximum 
divergence threshold. An image with known hematite distribution was used to 
determine this threshold. By testing various threshold and spectral binning, a 
threshold value of 0.15 and a spectral binning of four identified the hematite 
distribution over the image (Ymeti et al., 2019). It is assumed that these 
parameters (threshold and spectral binning) could identify the minerals 
existing in any soil image, so the SID classification was performed for all the 
soil samples using these parameters.  
Since each of the SID class had isolated unclassified pixels, a majority post-
classification image analysis using a window 3 x 3 pixels was carried out. The 
SID classifier matches pixels to the reference spectra using the divergence 
threshold. Therefore, the pixel could either have a specific mineral or is 
unclassified. The percentage of each mineral in each image was calculated 
based on the pixel count in the image. Here, the number of 40000 pixels 
corresponded to 100% of the image in VNIR. Therefore, based on the number 
of pixels that each mineral occupied in the image, its percentage could be 
determined. Although the Hm-Mh percentage was calculated for each grain size 
interval, its average was used in the results section. Moreover, we summarized 
the mineral percentages by averaging each soil type’s duplicates (Soil 1–Soil 
3) placed in each soil at the FC and WL conditions. It is essential to point out 
that the percentage of these minerals was derived from surface 
measurements, and the soil depth was not considered.  
 

4.3 Results 
Applying the USGS spectral library, the minerals identified in the VNIR using 
the SID classifier belong to the phyllosilicate group, more specifically to 
chlorite, iron oxide and hydroxide. Figure 4-3 shows the results of the FC soil 
treatment at the start (week0), middle (week4) and the end of the experiment 
(week8) in the thawing condition. All the soils showed changes in their minerals 
distribution over time.  
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Figure 4-3. Example of the SID classification results at the FC treatment at the 
start (week0), middle (week4) and the end of the experiment (week8) in the 
thawing condition (Soil 1- Soil 3). The colours represent the minerals identified 
in the VNIR. All the soils show changes in their mineral distribution over time. 
The original images, at the start of the experiment together with the scale bar, 
are also shown.  

4.3.1 Field capacity condition (FC) 
 
The result of treatment freezing and thawing after field capacity is shown in 
Figure 4-4. The result shows that Mg-clinochlore seems to be stable over time 
in the thawing conditions regardless of OM’s presence (Figure 4-4b). However, 
in the freezing conditions, the percentage of Mg-clinochlore fluctuated over 
time for all the soils (Soil 1, Soil 2 and Soil 3) (Figure 4-4a).  
The goethite 125 μm was not detected for Soil 3 (high OM) in the thawing 
conditions (Figure 4-4d). Moreover, in this condition, the percentage of 
goethite of Soil 1 and Soil 2, which was 2 %, remained stable over time. 
Oppositely, in the freezing condition, the goethite fluctuated in time for all the 
soils. However, it stayed unchanged and decreased for Soil 1 and Soil 2-3, 
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respectively, in the end, compared to the start of the experiment (Figure 4-
4c).  
The Qz-Gt was stable in the thawing condition for Soil 2 and 3. However, the 
percentage of Qz-Gt of Soil 1 decreased at the end of the experiment (Figure 
4-4f). The Qz-Gt increased in the first half of the experiment in the freezing 
conditions for all the soils. In the second half of the experiment, this mineral 
seems to stabilize. The stability of the Qz-Gt of Soil 1 was noticeable compared 
to Soil 2 and Soil 3 (Figure 4-4e).  
The behaviour of Hm-Mh for all the soils was similar regardless of the freezing 
or thawing conditions. For Soil 1 and Soil 2, the Hm-Mh fluctuations were more 
significant in the freezing compared to thawing conditions. The Hm-Mh of Soil 
3 was stable in the thawing conditions. This stability was also observed after 
week three in the freezing conditions (Figure 4-4g, h).   
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Figure 4-4. Average Mg-clinochlore, goethite 125 μm, quartz coated 50% by 
goethite and hematite dimorphous with maghemite changes for all the soils at 
the FC condition. The circle, square and plus symbols represent Soil 1, Soil 2 
and Soil 3, respectively. The vertical axis characterizes the percentage of each 
mineral occurring in an image. The scale of the Y-axis varies from 0% to 100%. 
In the horizontal axis, w1,..., w8 stands for week 1, ..., week 8, when the soil 
sample was at the freezing and thawing condition. Each mineral percentage is 
represented in two separate graphs (freezing and thawing) for easy 
visualization. However, the soil samples were at freezing for three days and 
the next three days at the thawing conditions making up one week.  
 

4.3.2 Waterlogging condition (WL) 
 
The results of the treatment of freezing and thawing after waterlogging are 
shown in Figure 4-5. The Mg-clinochlore of Soil 1 decreased until week three, 
and it stabilized for the rest of the experiment regardless of the soil conditions 
(freeze or thaw). However, this decrease is more noticeable in the thawing 
compared to freezing conditions. The Mg-clinochlore of Soil 2 fluctuated over 
time. However, these fluctuations were more evident in the freezing compared 
to the thawing condition. The Mg-clinochlore of Soil 3 decreased continuously 
and fluctuated in the thawing and freezing conditions, respectively (Figure 4-
5a, b).  
The goethite 125 μm of Soil 1 fluctuated in the first half of the experiment, and 
it stabilized afterwards in freezing condition (Figure 4-5c). The goethite of Soil 
2 had the same behaviour during freezing and thawing. In the second half of 
the experiment, it stabilized. The goethite of Soil 3 was relatively stable during 
freezing and decreased at the thawing conditions (Figure 4-5c, d).  
Figure 4-5e, f show that the Qz-Gt of Soil 1 increased and stabilized in the first 
half and second half of the experiment, respectively, regardless of the soil 
conditions (freeze or thaw). However, the percentage of Qz-Gt was higher in 
the freezing compared to the thawing condition. The Qz-Gt of Soil 2 decreased 
in the freezing conditions. This mineral stayed stable in the thawing conditions. 
The Qz-Gt of Soil 3 fluctuated with a small magnitude in the freezing 
conditions. However, in the thawing condition, this mineral tended to decrease 
at the end of the experiment. Hm-Mh’s percentage fluctuated in time for all the 
soils in the freezing condition (Figure 4-5g). The Hm-Mh of Soil 1 and Soil 2 
increased and decreased at the end of the experiment in the thawing condition, 
respectively. The percentage of Hm-Mh of Soil 3 decreased and increased 
during the first half of the experiment in the thawing conditions. Later, it 
stabilized for the rest of the experiment (Figure 4-5h).  
 



 
Chapter 4 

69 

 
 
Figure 4-5. Average Mg-clinochlore, goethite 125 μm, quartz coated 50% by 
goethite and hematite dimorphous with maghemite changes for all the soils at 
the WL condition. The circle, square and plus symbols represent Soil 1, Soil 2 
and Soil 3, respectively. The vertical axis characterizes the percentage of each 
mineral occurring in an image. The scale of the Y-axis varies from 0% to 100%. 
In the horizontal axis, w1,..., w8 stands for week 1, ..., week 8, when the soil 
sample was at the freezing and thawing condition. Each mineral percentage is 
represented in two separate graphs (freezing and thawing) for easy 
visualization. However, the soil samples were at freezing for three days and 
the next three days at the thawing conditions making up one week. 
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Figure 4-6 summarized minerals’ percentage at the start and the end of the 
experiment when the soils were frozen. At the FC condition, the Mg-clinochlore 
increased 1.5%, 5.2% and 2.9% for Soil 1, Soil 2 and Soil 3 at the end of the 
experiment, respectively. Soil 2’ goethite decreased by 7.9 % at the end of the 
experiment. However, this mineral might be considered stable for Soil 1 and 
Soil 3. Qz-Gt percentage decreased for Soil 1 and increased for Soil 2-3 with a 
small magnitude at the end of the experiment. The Hm-Mh percentage 
decreased at the end of the experiment for all the soils (Figure 4-6a). At the 
WL condition, the Mg-clinochlore decreased and increased for Soil 1 and Soil 
2-3 at the end of the experiment, respectively (Figure 4-6b). A decrease in the 
goethite of Soil 1 occurred at the end of the experiment, too. On the contrary, 
this mineral increased and remained stable for Soil 2 and Soil 3. The other 
mineral, Qz-Gt, increased for Soil 1 and decreased for Soil 2 and 3 at the end 
of the experiment. The Hm-Mh increased at the end of the experiment for all 
the soils. However, this increase was higher for Soil 1 compared to Soil 2 and 
3. 
 

   
 
Figure 4-6. The percentage of the minerals when the soil samples were at the 
freezing treatment. The vertical axis characterizes the percentage of each 
mineral occurring in an image. The horizontal axis represents the Mg-
clinochlore, goethite 125 μm, quartz coated 50% with goethite (Qz-Gt) and 
hematite dimorphous with maghemite (Hm-Mh) of Soil 1 - Soil 3 (S1 - S3) in 
the  field capacity (a) and waterlogging (b) condition at the start and end of 
the experiment. The error bars represent the standard deviation of the 
minerals in duplicated soil samples. Since the SID approach disregards the 
self-shadow areas created by various soil aggregate size, these aggregate 
variations influenced the standard deviation. 
 

4.4 Discussion  
 
The results showed that repeated freeze-thaw cycles affected Mg-clinochlore 
behaviour depending on the soil type and moisture condition. A significant 
amount of unfrozen water has been found in the soil matrix at -20 °C (Rivkina 
et al., 2000). This unfrozen water and the Mg cations could move toward the 
top of the soil, increasing the Mg concentration due to increased potential 
osmotic gradients (Mohamed et al., 1996). This phenomenon could explain the 
increase of Mg-clinochlore for Soil 1 and Soil 2 at the FC treatment at the end 
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of the experiment. Likewise, it has been shown that the exchangeable K, Ca, 
Mg either decrease in concentration or are unaffected by freeze-thaw cycles 
(Hinman, 1970). Here, a decrease of Soil 1(no OM) Mg-clinochlore at the WL 
treatment was observed. The manure present in Soil 3 does not increase the 
soil cohesion (Paré et al., 1999). Therefore, Mg’s leakage and its weak inter-
particle cohesion lead to a decrease in the Mg-clinochlore at FC treatment. The 
opposite was observed for the Mg-clinochlore of Soil 2 with low OM. These 
results suggest that the amount and type of OM are essential in the soil 
organic-mineral interactions experiencing the freeze-thaw cycles.   
The freezing process causes the solutes’ concentration in the freezing front 
(Kuo et al., 2011; Takenaka et al., 1996). Due to this phenomenon, the 
concentrated protons could protonate the iron oxide surface, releasing more 
Fe3+ ions into the freezing front. Another mechanism that encourages dissolved 
iron release upon freezing is the concentrated organic ligands, which serve as 
the iron-chelating agents. Indeed, the dissolution rate of goethite and 
maghemite enhanced due to organic acid. Moreover, it has been shown that 
the dissolution rate of these iron oxides in ice depends on their surface area 
(Jeong et al., 2012). Since the goethite has a higher surface area than 
maghemite and hematite, the former shows a higher concentration of dissolved 
iron (Kim et al., 2019). Goethite interactions with the mineral surfaces, organic 
materials and microbial organisms are known (Heckman et al., 2013; Kaiser 
and Kalbitz, 2012). The chemical composition of the OM determines its sorption 
capacity to goethite. Therefore, the goethite of Soil 2 and 3 behaved differently 
under freeze-thaw cycles. Regardless of the soil moisture conditions (FC or 
WL), the goethite of Soil 3 was not affected by repeated freeze-thaw cycles. 
This stability of goethite could be related to the origin of OM of Soil 3, which is 
sewage sludge (hydrophilic) that sorb to goethite. It has been shown that the 
application of the sewage sludge to soils subjected to freeze-thaw cycles has 
increased the aggregate stability through binding mechanisms (Angin et al., 
2013; Sahin et al., 2008).  
The percentage of goethite of Soil 2 with hydrophobic OM depended on the 
moisture conditions. Repeated freeze-thaw cycles decreased and increased the 
goethite at FC and WL treatment. In the waterlogging soil conditions, the 
freeze-thaw process increases soil microbial activity and accelerates the 
decomposition of organic material and, therefore, reduces the goethite (Chai 
et al., 2014; Haei et al., 2012). On the other hand, the adsorption of 
hydrophobic OM to goethite could become stronger over time at the FC 
treatment. Likewise, the absence of the OM of Soil 1 could explain the decrease 
in the goethite percentage at the WL treatment.  Indeed, Kim et al., (2010) 
observed that the iron oxide (goethite, hematite and maghemite) dissolution 
in ice occurred even in the absence of organic complexing ligands.  
Regardless of OM’s presence, the Hm-Mh decreased and increased at the FC 
and WL treatments, respectively. The freeze-thaw cycles decrease and 
increase the exchangeable Fe under unsaturated and saturated soil conditions, 
respectively (Roy Chowdhury et al., 2015). Several studies have shown that 
the OM content is a critical factor in defining soil resilience to the freeze-thaw 
process (Arthur et al., 2012; Gregory et al., 2009). However, this process 
(freeze-thaw) could reduce the OM content due to soil organic carbon’s 
mineralisation (Yu et al., 2011). Likewise, laboratory experiments with soils 
placed at -15 0C have shown increased leakage and changes in the quality of 
dissolved organic carbon (DOC) due to microbial activity (Campbell et al., 



Monitoring the effect of freeze-thaw cycles on soil surface mineralogy using proximal 
spectroscopy data 
 

 

2014; Fuss et al., 2016; Haei et al., 2012). Indeed, microbial respiration has 
been detected at -40 0C (Panikov et al., 2006). While the hydrophobic OM (Soil 
2) could be quickly easily released from hematite in the reduction reaction 
(Adhikari and Yang, 2015), the hydrophilic compounds (Soil 3) might be 
affected by pH (Nam et al., 2014). Therefore under acidic conditions, the Fe 
might be more hydrolyzed due to freeze-thaw cycles, leading to OM structure 
alterations affecting the bonding strength. 
 
Many studies have shown that quartz is susceptible to weathering, and its 
dissolution depends on the concentration of organic ligands, pH, particle size 
and temperature. The dissolution of quartz increases with increasing 
temperature (thawing), but it stops when the soil is in the frozen state 
(Sokolova, 2013). Moreover, the organic molecules react with quartz 
intensifying the dissolution of the latter. Therefore, the Qz-Gt of Soil 2 and Soil 
3 accumulated over time at the FC treatment (Karlsson and Persson, 2010; 
Sundman et al., 2014). On the other hand, repeated freeze-thaw cycles may 
trigger the precipitation of quartz for Soil 1 due to the absence of OM (Dietzel, 
2005). Moreover, in the saturated soil condition, the disruption of the quartz 
grains occurred due to repeated freeze-thaw cycles (Schwamborn et al., 2012). 
As a result, the increase of  Qz-Gt of Soil 1 over time could be related to the 
disruption of quartz at the WL treatment. The decrease of Qz-Gt of Soil 2 and 
Soil 3 at the WL treatment could be related to the quartz concentration to 
subsurface due to the cryoturbation process (Hugelius et al., 2010; Struyf et 
al., 2010).  
Freeze-thaw cycles decrease the bonding strength between particles, increase 
the pore sizes due to the ice formation inside the clay, altering the structure 
and the properties of the clay (Darbari et al., 2017; Li et al., 2018). Therefore, 
clay minerals’ behaviour depends on the type and the content of clay minerals 
(e.g., kaolinite), their degree of saturation, the frequency and the magnitude 
of the freeze-thaw process (Cui et al., 2014; Svensson and Hansen, 2010). 
Since the clay minerals significantly affect the soil organo-minerals 
interactions, it is crucial to investigate their behaviour at the freeze-thaw 
cycles. In this study, the kaolinite effect was not investigated because this clay 
mineral is detected in the SWIR region of the electromagnetic spectrum.  
It is essential to point out that the freeze-thaw process affects the soil more in 
the vertical direction (depth) than in the horizontal one (surface). Besides the 
most substantial soil structure variations in the vertical direction, the 
temperature and pressure gradients also operate in this direction.  
Although the ice surface reflectance is affected by the grain size and shape, 
surface roughness, water and anisotropy presence, these effects (grain size 
and shape) become important at wavelengths greater than 1000 nm.  
The presence of organic and inorganic materials causes a reduction of the 
spectral reflectance of ice in the visible spectrum. Due to non-ice materials, ice 
has a low reflectance value of 0.3 and 0.2 in the visible and infrared spectrum, 
respectively (Di Mauro et al., 2017). In contrast, ice and water absorb light in 
the infrared range at around 1030 nm (Dumont et al., 2017). Therefore, it is 
assumed that the freezing conditions do not affect the determination of the 
percentage of the minerals in the image. 
The SID classifier uses the divergence measure to compare each pixel spectra 
with the reference spectra. This divergence is directly related to the threshold. 
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When the pixel spectra are close to the reference spectra, then the threshold 
is small. On the contrary, the pixels that have the divergence greater than the 
specified threshold are not classified. Therefore, to avoid misclassification due 
to false positive or false negative errors, the threshold should be specific for 
each mineral occurring in the image. Although the soil aggregates lead to self-
shadowing, the SID classifier neglects the spectral information associated with 
the shadow because it identifies each mineral based on its corresponding 
spectral signature. Indeed, Chang, (2000) specified that the SID classier is 
insensitive to the illumination effects and the brightness shifts. Another point 
to consider is a large number of available spectral bands (169) and the small 
training samples (8) could have affected the classification accuracy known as 
the Hughes phenomenon. 
 

 4.5 Conclusions 
In this study, the VNIR spectroscopy data were used to monitor the soil surface 
mineralogical alterations due to freeze-thaw cycles under laboratory 
conditions. Three Silty Loam soils varying in the OM content (no, low and high) 
were chosen. The trays with aggregates were exposed to FC and WL 
treatments. These treatments were performed because there is limited 
knowledge of the soil mineralogical behaviour resulting from the freeze-thaw 
process at different moisture conditions occurring in a short period. The 
assumption was that using the VNIR spectroscopy data, changes in the soil 
surface mineralogy due to freeze-thaw cycles at various moisture conditions 
could be detected and quantified over time. Using the SID approach, the image 
area occupied by the Mg-clinochlore, goethite, quartz coated 50% by goethite, 
hematite dimorphous with maghemite was determined. The results showed 
that these minerals behaved differently under freeze-thaw cycles, depending 
on the soil type and soil condition. While the Mg-clinochlore, goethite and Qz-
Gt behaviour relies on OM's presence, the Hm-Mh showed not such a 
dependence. Likewise, the results suggest that the amount and the type of OM 
are vital in soil experiencing the freeze-thaw cycles. Also, when the soil is 
exposed to the freeze-thaw cycles, the moisture conditions (FC or WL) 
significantly impact mineral behaviour regardless of the soil type. Using 
imaging spectroscopy data on the Silty Loam soil, it is showed that the surface 
mineralogy changes over time due to freeze-thaw cycles, depending on the soil 
type and the moisture conditions. The freeze-thaw process alters the soil 
mineralogical composition, which might affect the soil aggregate stability. Iron 
hydroxides can interact with both the clay minerals and organic compounds to 
form clay–mineral–organic associations, acting as binding and cementing 
agents in the soil. The interactions between the mineral particles and the OM 
in soil depend on the concentration of the cations. However, the freeze-thaw 
process causes the cations' release and precipitation promoting the 
disaggregation and breakdown of the soil aggregates.  
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Abstract 
 

Remote sensing has shown its potential to assess soil properties and is a fast 
and non-destructive method for monitoring soil surface changes. In this paper, 
soil aggregate breakdown under natural conditions was monitored. From 
November 2014 to February 2015, images and weather data were collected 
daily from five soils susceptible to detachment (Silty Loam with various organic 
matter content, Loam and Sandy Loam). Three techniques that vary in image 
processing complexity and user interaction were tested for the ability of 
monitoring aggregate breakdown. Considering that the soil surface roughness 
causes shadow cast, the blue/red band ratio is utilized to observe the soil 
aggregate changes. Dealing with images with high spatial resolution, image 
texture entropy, which reflects the process of soil aggregate breakdown, is 
used. Also, the Huang thresholding technique, which allows estimation of the 
image area occupied by soil aggregate, is performed. The results show that all  
three techniques indicate soil aggregate breakdown over time. The shadow 
ratio shows a gradual change over time, with no details related to weather 
conditions. Both the entropy and the Huang thresholding technique show 
variations of soil aggregate breakdown responding to weather conditions. 
Using data obtained with a regular camera, it is found that freeze-thaw cycles 
are the cause of soil aggregate breakdown. 
 

5.1 Introduction 
 
Soil aggregate breakdown is a function of soil strength and the kinetic energy 
of the rainfall (Cruse and Larson, 1977; Shainberg et al., 1992). Soil strength 
depends on soil particle distribution, structure, soil organic carbon, ionic 
bridging, clay and carbonates. Different land cover or land use, such as forest 
or agriculture, influences soil structure and organic matter content (Shrestha 
et al., 2014). Other properties may relate to climate (e.g., high calcium 
carbonate content in the drier environment) or soil processes (e.g., high iron 
oxide content in Ultisols or Oxisols). Aggregate stability also decreases when 
water-dispersible clay content increases with total clay, as reported in 
(Shrestha et al., 2004). Weather conditions influence soil aggregate, especially 
when both rainfall and freeze-thaw cycles occur (Mulla et al., 1992). While 
rainfall induces soil aggregate breakdown, compaction and crusting, freeze-
thaw cycles mainly affect the formation and destruction of soil structure 
(Bajracharya et al., 1998; Kværnø and Øygarden, 2006). During a rainfall 
event, soil macro-aggregate (>250 µm) breaks down into smaller aggregate 
(Legout et al., 2005; Plante et al., 2002; Puget et al., 2000). 
Rainfall can destroy soil aggregate via two processes: (i) the direct impacts of 
water drops mechanically disintegrate aggregate into smaller particles leading 
to surface sealing; and (ii) the small aggregates are submerged rapidly during 
rainfall, the air is trapped, and aggregates implode (Agassi et al., 1981). While 
a structural crust is formed when aggregates are reorganized with limited 
particle displacement, a sedimentary crust results from clay particle 
displacement (Cerdan et al., 2002). Both mechanisms help to create a thin 
crust layer with a light colour, high bulk density and low porosity (Ben-Dor et 
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al., 2003; de Jong, 1992; Eshel et al., 2004). Soil detachment by raindrops is 
the start of interrill erosion and surface seal formation. Detecting and 
monitoring soil aggregate breakdown requires a micro-plot scale having an 
area of some hundreds of square centimetres. It is already known that ground-
based methods are time-consuming and expensive. 
Remote Sensing (RS) has shown potential to assess several soil properties such 
as moisture, organic matter, iron, sand and clay (Ben-Dor et al., 1997; Ben-
Dor et al., 2002; Farrand and Harsanyi, 1997; Salisbury and D'Aria, 1992; 
Stoner and Baumgardner, 1981). Microwave RS has been used to determine 
soil moisture and soil surface roughness (Collingwood et al., 2014; Kornelsen 
and Coulibaly, 2013; Seung-Bum et al., 2012). Optical photogrammetry is 
utilized to represent the soil surface roughness as the standard deviation of 
elevation data (Gessesse et al., 2010; Ouédraogo et al., 2014; Taconet and 
Ciarletti, 2007). There are RS studies that have investigated the effect of 
natural rainfall on surface roughness. Calculating surface roughness indices 
such as standard deviation of height (vertical component) and autocorrelation 
length (a horizontal component of roughness spectra) from Digital Surface 
Models (DSM) obtained from a ploughed and harrowed field, Marzahn et al., 
(2012) reported a decline in roughness due to rainfall. Recently, the Structure 
from Motion (SfM) approach is used to calculate the roughness parameters on 
a 2 × 3.4 m2 plot over three months based on the Fourier transform of the 
digital elevation model (DEM). This research concluded that roughness 
changes, due to weather conditions, happened at a spatial resolution below 50 
cm (Snapir et al., 2014). To quantify changes in soil surface structure 
associated with the macro-aggregate breakdown, Croft et al., (2009) combined 
laser scanner and hyperspectral data measured at a variety of viewing and 
illumination solar angles. They found that, due to crusting, the surface 
roughness declines, and the effect of shadow-casting by soil aggregate 
reduces. Also, Moreno et al., (2011) concluded that shadow analysis is a 
suitable technique to assess the soil surface roughness decline of a sandy clay 
loam soil after tillage operation. 
Using RS approach changes on soil aggregate breakdown occurring over a 
short time can be detected. Therefore, understanding and monitoring the 
interaction between the soil surface and the surrounding environment at a high 
temporal resolution is crucial. Also, data acquisition remains expensive, and 
image analysis is often complicated and time-consuming. Therefore, this study 
investigated the possibility to monitor soil aggregate breakdown 
straightforwardly and cost-effectively. A red, green, blue (RGB) Single-lens 
reflex (SLR) camera mounted in a fixed setup was used to enable 
photographing the same location over time acquiring time-series data 
acquisition. Next, the capability of the RGB SLR camera to monitor soil 
aggregate breakdown in soils of different texture classes under natural 
conditions on a micro-plot scale daily was examined.  
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5.2 Materials and methods 

5.2.1 Experimental setup 
 
An outdoor experiment consisted of an RGB SLR camera and a weather station 
both mounted on a tripod was designed to monitor aggregate breakdown under 
natural conditions. Also, below the tripod, five trays filled with soil were placed. 
The soil samples were collected at the end of September 2014 in Limburg (Silty 
Loam with various amount of organic matter content (OM) and Loam) and 
Deventer (Sandy Loam), both in The Netherlands. Soil aggregate stability was 
performed on soils according to ISO 10930 (Le Bissonnais, 1996), to provide 
a realistic analysis of the structural stability of soil aggregates when subjected 
to the action of weather, cultivation, and to enable the soils to be classified 
based on the stability of their aggregates. The results obtained showed that 
the Soil 1 (Silty Loam) was very unstable while the rest of the soils were 
unstable. In order to see the effect of land use/land cover on soil aggregate 
stability samples were collected from topsoil (20 cm) of agricultural fields as 
well as forest area. The soil particle size determination was carried out on fine 
earth (<2 mm) according to the ISRIC protocol (van Reeuwijk, 2002). While 
the OM was oxidized with H2O2, the sand was separated from clay and silt with 
a 50 μm sieve. The clay and silt fractions were determined with the pipette 
method based on sampling a 1-litre suspension with a 20 ml pipette. The 
obtained clay, silt and sand fraction are calculated on a dry-ash-free basis. The 
OM was determined by heating the sample at 600 °C for more than 12 h and 
calculating the weight loss on the dry soil. Table 5-1 summarizes soil 
characteristics used in this study. 
 
Table 5-1. The soils used in this study. Soils 1–4 (Silty Loam and Loam) were 
sampled in the Limburg province, the Netherlands, and Soil 5 (Sandy Loam) 
was sampled in the city of Deventer, the Netherlands. The agricultural crop 
cultivated on all the fields was maize. However, at the time of soil sampling, 
this crop was already harvested. 
Soil ID Location (WGS 84) Soil Particle Size 

(%) 
Texture 
Class 

OM 
(%) 

Land Use 

Lat Long Clay Silt Sand 
Soil 1 50.7758° 5.8824° 16 71 13 Silty Loam 4.6 Agriculture 
Soil 2 50.7687° 5.9201° 23 52 25 Silty Loam 12.3 Agriculture 
Soil 3 50.7727° 5.9213° 22 54 24 Silty Loam 12.5 Forest 
Soil 4 50.8694° 5.7884° 17 44 39 Loam 5.6 Agriculture 
Soil 5 52.2810° 6.1813° 14 11 75 Sandy loam 5.3 Agriculture 

 
The soil samples were air-dried at room condition for four weeks. Five trays of 
60 × 40 × 5.5 cm3 were filled manually with soil using a small shovel. Soil 
aggregates of various sizes were randomly distributed because of this 
procedure. Moreover,  the trays were tilted at an angle of approximately 10 
degrees to allow the trays to drain. Drainage was enabled by 5 mm diameter 
holes drilled in one side of the tray at the bottom. Likewise,  pantyhose filters 
were used to avoid soil leaking out. Together with the camera, a DAVIS 
Instruments ISO 9001(DAVIS, 2010) weather station was installed 2 m above 
ground to record rainfall and air temperature data at a thirty minutes interval. 
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Five trays (60 × 40 × 5.5 cm3) filled with the soil of different texture and OM 
content were photographed each day at 15:00, as shown in Figure 5-1. These 
bare soils were kept undisturbed for photographing. Images were collected 
from November 2014 to February 2015. 

 
 
Figure 5-1. Schematic design of the outdoor experimental setup. On the tripod 
are both the weather station (on the left) and the camera (in the centre) placed 
at an angle of 350. Next to the tripod are the undisturbed soil trays 
photographed each day. From left to right, the Silty Loam with low OM content, 
Silty Loam with high OM content, Loam and Sandy Loam is placed. 
 

5.2.2 Image acquisition 
 
A Canon EOS 600 time-lapse camera housing was mounted on a tripod above 
the trays, to monitor soil aggregate breakdown. The camera had a 60° and 
43° horizontal and vertical field of view, respectively. The camera was placed 
with an angle of approximating 35°, making an oblique capture of the trays to 
avoid influencing the rain. The camera took photos each day, at 15:00 local 
time with a solar elevation varied between 13.6° and 17.5° (with the lowest 
solar elevation of 7.5° on 16 December) while the azimuth changed from 
220.6° to 213.9° on 4 November 2014 and on 10 February 2015, respectively. 
Calibration panels were present in the field of view. The panels however often 
were saturated in the image and also appeared to darken with moist. The 
camera had a 14-bit A/D converter delivering 8-bit (RGB) data. With this 
dynamic range, there was not a single set of camera settings that could answer 
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to all illumination conditions. A histogram-matching of the data was hence 
performed when needed in the subsequent time-series analysis (see below in 
Section 5.2.5). Given the approximated three months duration of the 
experiment, the solar elevation and azimuth change was 3.90 and 6.70, 
respectively. A further correction for this change, as well as BRDF differences 
between the trays, was therefore not implemented. The images were subset 
to the middle of the tray to avoid seeing the edge, as shown in Figure 5-2. 
ImageJ software provides a tool which converts an image from pixels to any 
metric units. Knowing the distance in pixel and the real distance (e.g., in 
millimetres) of the image, the spatial resolution of this image can be calculated. 
The images of 512 × 512 pixels correspond to a 288 × 288 mm area with a 
spatial resolution of 1.8 mm/pixels. 
 

 
 
Figure 5-2. Example of an image selected for analysis: the soil trays 
photographed on 15 November 2014 (a); and one of the five 288 × 288 mm 
image subset with a pixel size 1.8 mm (b). 
 
Images that could not be used for analysis because of snow cover, fog or 
standing water, were discarded after visual inspection. Additionally, the basic 
statistics such as minimum, maximum, mean and standard deviation were 
calculated for each image. These statistics were performed considering the 
three bands (red, green and blue). Images influenced by direct sunlight or a 
frozen soil surface had a higher standard deviation (digital number) value 
compared to an accepted image for further analysis (Figure 5-3f). Therefore, 
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the images with a standard deviation higher than 15 for Soil 1 and Soil 4, 10 
for Soil 2 and Soil 5 and 13 for Soil 3 were discarded (Figure 5-3). These 
thresholds were derived experimentally. 
 

 
 
Figure 5-3. Examples of images that are discarded: snow (a); fog (b); standing 
water (c); sunlight distribution (d); and frozen surface (e). The last image (f) 
is an example of an image accepted for further analysis. 
 

5.2.3 Shadow ratio 
 
Various soil properties affect soil’s spectral reflectance such as soil particle 
distribution, organic matter content, soil moisture, iron oxide, soil minerals, 
presence of salts and soil crusting. The influence of soil structure on soil 
reflectance has been investigated on sieved soil under controlled laboratory 
condition. Banninger and Fluhler, (2004) and Wu et al., (2009) have shown 
that the reflectance decreases with increasing soil particle size or lump size. 
Soil roughness affects the soil optical properties because more light is kept in 
the space between the coarse soil aggregates in comparison to finer 
aggregates or grains. In the field, soil aggregates of various size make the soil 
surface rough. Soil aggregate leads to self-shadowing of the soil surface 
resulting in a low reflectance value (Baumgardner et al., 1986). Cierniewski, 
(1987) found that the shadowing coefficient of the soil surface, which is the 
proportion of shadowed area per unit area of soil fragments, decreased with a 
decrease of soil roughness. Also, the reflectance of a rough soil surface 
diminishes with increasing sun angle (Cierniewski and Verbrugghe, 1997; 
Matthias et al., 2000). However, if the soil surface is smooth, the reflectance 
at any sun angle is a function of the colour, soil aggregate and Bidirectional 
Reflectance Distribution Function (BRDF). Here, no BRDF correction was 
performed. In the visible spectrum, light scatters more in the blue band 
compared to green and red bands. Therefore, the blue band has a relatively 
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higher intensity value than the red band in shaded areas. Using image band 
ratio (blue/red), assuming that the pixels in shadowed regions have higher 
intensity values than those pixels in the non-shadowed region, shadow cast 
could be detected. Considering that the soil surface roughness causes shadow 
cast the mean of blue/red band ratio was used to investigate changes of soil 
aggregate over time. This band ratio (blue/red) was performed using IDL ENVI 
5.2 (ENVI, 2015). The shadow ratio was calculated for each pixel in an image 
with 512 × 512 pixels. After the image with shadow value was obtained, the 
mean and standard deviation of this image is used for further analysis 
 

5.2.4 Grey Level Co-Occurrence Matrix: Entropy 
 
Image texture describes spatial variation in an image. The grey level co-
occurrence matrix (GLCM) is used here to describe image texture (Haralick et 
al., 1973). The GLCM implementation in IDL ENVI 5.2 requires selection of a 
grey level quantization (intensity), an angle to deal with anisotropy and window 
size. The matrix must contain a grey quantization level in order to obtain a 
statistically reliable estimate. Although high grey levels provide details, the 
high grey level quantization increases the computation time. Therefore, a 32 
grey level quantization was used in this research. The GLCM in IDL ENVI 5.2 
considers multiple orientations (0°, 45°, 90°, and 135°). However, in our 
research, the angle of 135° captures the local variation between neighbouring 
pixels. The direction of GLCM represents the occurrence of patterns. 
Reflectance variations causes these patterns due to soil aggregates shadowing 
at 15:00. Therefore, the sun angle-target-camera position during image 
acquisition is essential for GLCM. Also, the direction of 135° of GLCM indicates 
that the soil aggregates start to break down at the edges. Therefore, the 
optimal window size is required in dealing with various soil aggregate size. 
Sometimes, the soil aggregate is more significant than a chosen window size 
meaning that the GLCM is performed on a homogeneous area. The window size 
of GLCM was determined when maximal entropy value was reached using the 
first image of each soil dataset. Due to different soil aggregate size, the window 
size of GLCM varies depending on the soil dataset used. While the window size 
of 27 × 27 pixels was chosen for Soil 1, Soil 2 and Soil 3, for Soil 4 and Soil 5 
the window 29 × 29 pixels and 25 × 25 pixels were selected, respectively. The 
GLCM calculation was performed on the mean of three bands (red, green and 
blue) using IDL ENVI 5.2. Once the GLCM was calculated, descriptive features 
such as contrast, dissimilarity, homogeneity, energy, entropy, mean, variance 
and correlation are derived from this matrix (Anys et al., 1994). To monitor 
and characterize the disintegration of weak rocks, Rincon et al., (2016) 
reviewed various image texture features and chose entropy. This research 
showed that the entropy is an appropriate texture feature for assessing and 
quantifying the degree of disintegration of the weak rocks. Moreover, this study 
demonstrated that colour intensities of an image change due to disintegration 
of weak rocks. Cracks and void space lead to more light absorption and lower 
entropy value. This intensity change in an image is reflected by entropy. Since 
the goal of this study is similar to Rincon et al., (2016), the GLCM entropy was 
selected to investigate soil aggregate breakdown. The entropy is a statistical 
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measure that quantifies the amount of uncertainty in an image and is 
calculated using Equation (5-1). 

Entropy =  −  � � 𝑝𝑝(𝑝𝑝, 𝑗𝑗) log�𝑝𝑝(𝑝𝑝, 𝑗𝑗)�
𝑁𝑁𝐺𝐺−1

𝑗𝑗=0

𝑁𝑁𝐺𝐺−1

𝑝𝑝=0

 (5-1) 

 
where G is grey level, p is the probability of GLCM, i is the intensity in the X 
direction of GLCM, and j is intensity in the Y direction of GLCM. 
 
The maximal entropy is reached when all probabilities in a matrix are equal. 
Minimum entropy is achieved when the image is constant meaning all of the 
pixels have the same grey level. Therefore, the entropy is defined within the 
limits of 0 ≤ Entropy ≥ log2G. The maximal entropy is not a fixed value because 
it depends on the G (grey level) used. The entropy is calculated within a 
window size. Then, its value is assigned to the centre pixel of the window. This 
procedure is repeated until the pixels in an image have an entropy value. 
However, the calculation of entropy is not performed at the edges of the image. 
After the image with entropy values was obtained, the mean and standard 
deviation of this image was used for further analysis. Soil aggregate breakdown 
is considered as a random process because it is difficult to identify how it 
changes under natural conditions. The GLCM entropy might reflect the process 
of soil aggregate breakdown being a measure of the dispersion of a random 
variable. While a high entropy value shows the dispersed distribution, a low 
entropy value indicates a compact distribution of considered phenomenon (soil 
aggregate breakdown). At the beginning of the experiment, the soil surface 
was covered with aggregates of various size randomly distributed. As a result, 
the image is texturally heterogeneous, indicating a high entropy value. Due to 
weather conditions, the soil aggregate breaks down over time resulting in a 
smooth soil surface. Thus, the image tends to become constant meaning all 
the pixels have a similar grey level indicating a low entropy value. 

5.2.5 Object-Based Image Analysis: Huang Thresholding 
 
When an image has a sufficiently high spatial resolution, pixels are smaller 
than the object, so the grouping of pixels is possible in order to obtain real-
world homogeneous features (Blaschke, 2010). Object-based image analysis 
(OBIA) approach, which allows estimation of the image area occupied by soil 
aggregates, was used. OBIA consider not only the spectral reflectance and 
neighbour relations but also the shape and the size of objects (Addink et al., 
2010; van der Werff and van der Meer, 2008). Since the interest is monitoring 
soil aggregate breakdown, choosing the 1st image of each soil dataset as 
reference (start of the experiment) is a reasonable choice. Also, images 
acquired during a day have significant variations caused by illumination 
differences or changing weather conditions. Therefore, when comparing 
physical changes in surface properties from different dates, it is necessary to 
exclude these variations. The exclusion of these variations is achieved by 
normalizing the images with the reference image. Such normalization was 
performed using histogram equalization and histogram matching (Lee and 
Basart, 1999; Ma et al., 2004; Rahman et al., 2015). First, histogram 
equalization was applied to the reference image. Next, the other images in the 
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dataset were imposed on the equalized reference image using histogram 
matching plugins in ImageJ 1.51c (Rasband, 2016). After images were made 
comparable to each other, soil aggregates separation from the background was 
required in order to estimate the area they occupy in an image. This separation 
was achieved by using a histogram thresholding technique, which classifies the 
pixels in two classes: object (soil aggregate) and background. When the 
histogram has no clear separation between object and background, the 
threshold could be determined using fuzzy theory approach (Tizhoosh, 2005; 
Wang et al., 2002). The Huang thresholding technique was selected (Huang 
and Wang, 1995) to identify an appropriate threshold that divides soil 
aggregate from the background. The Huang thresholding method is based on 
the fuzzy theory, and membership function µA(xmn) ϵ [0,1] where A is a fuzzy 
subset of an image X (M × N) and xmn is a pixel with a grey level in X. The 
fuzzy subset A is associated with each pixel xmn of the image X. The 
membership function for a pixel with grey level (xmn) is assigned by:  
 
µA(xmn)= 1

1+| (xmn)−μb|/C
 if (xmn) ≤ threshold (5-2) 

µA(xmn)= 1
1+|(xmn)−μo|/C

 if (xmn) > threshold (5-3) 
 
where C is a constant value which satisfies 0.5 ≤ µA(xmn) ≤ 1 condition, and µb 
and µo are the background and object mean, respectively. 
For a given threshold value, the membership of a pixel is assigned to a class 
(object or background) by the absolute difference between the grey level and 
the average grey level of its belonging class. If this absolute value is high, then 
the pixel membership value becomes smaller. The thresholding technique 
creates a binary image from where the area occupied by soil aggregate can be 
calculated. 
The threshold value of the equalized reference image (120, 107, 104, 99 and 
108 for Soil 1, Soil 2, Soil 3, Soil 4 and Soil 5, respectively) was used to the 
other images of the corresponding dataset. Before calculating the aggregate 
soil area, a calibration procedure that converts an image to metric units was 
completed. While for Soil 1 and Soil 4, the biggest soil aggregate size was 400 
mm2, for the other soils it was 500 mm2. Therefore, soil aggregate sizes 
ranging from 2 mm2 to 400 mm2 or from 2 mm2 to 500 mm2 depending on the 
dataset were included in the calculation. These setting were not the same 
because each dataset had different soil aggregate sizes. The soil aggregates 
that were touching the image edges were excluded. Figure 5-4 shows an 
example of the Huang thresholding technique together, with soil aggregates 
calculated in ImageJ 1.51c. 
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Figure 5-4. On the left side are original images (a, c) of Soil 1. Using the Huang 
thresholding technique, soil aggregates (black colour) on the right side (b, d) 
are defined. While images (a, b) show the results at the beginning of the 
experiment (5 November), images (c, d) show the results at the end of the 
experiment (10 February). The area of some aggregates calculated in mm2 is 
shown as an example. 
 

5.2.6 Weather Data Collection 
 
The DAVIS weather station recorded data most of the time, but from 15 to 23 
November 2014, missing data occurred. The weather station at Twenthe 
Airport, located 4 km away from our experimental site, was used to fill data 
gaps in the temperature recording. The two stations are mounted at a different 
height. While DAVIS sensor is installed at 2 m, the sensor at Twenthe airport 
is at 1.5 m above ground. Also, the air temperature sensor has a nominal 
accuracy of ±0.5 °C and ±0.1 °C for DAVIS and Twenthe station, respectively. 
Despite these differences, we found a correlation with a coefficient of 
determination R2 = 0.96 for the minimum air temperature between the two 
stations. For daily rainfall data, the coefficient of determination between the 
two stations was R2 = 0.31, meaning that this data could not be used. The 
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weather data of Twenthe airport were obtained from the website of the Royal 
Netherlands Meteorological Institute (KNMI). 

5.3 Results 
 
Figure 5-5 shows the original images at three moments in time at the beginning 
of the experiment (on 6 November 2014), after the first cycle of freeze-thaw 
followed by most significant rain events (on 15 December 2014), and at the 
end of the experiment (on 10 February 2015). These observations showed 
changes at the soil surface over time. 
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Figure 5-5. Original images for all soils at the beginning of the experiment (6 
November 2014 images), after the first cycle of freeze-thaw followed by the 
most significant rain event (15 December 2014 images) and at the end of the 
experiment (10 February 2015 images). All soils experienced aggregate 
breakdown over time. 

5.3.1 Weather Data 
 
For the period that the experiment ran, most of the time rainfall intensity was 
mostly less than 2.5 mm·h−1 (light rainfall). However, on 12 and 19 December 
2014 and on 2, 8, 10, 13, 15, and 28 January 2015, the rainfall intensity was 
more than 2.5 mm h−1. We considered here daily rainfall data because the 
images came at the daily base. Since we ran the experiment at wintertime, 
freezing intervals occurred on 1–4 December 2014, 26–30 December 2014, 
20–24 January 2015, and 3–7 February 2015. These four freeze-thaw cycles 
were followed by rain events on 7–24 December 2014, 2–15 January 2015, 
25–31 January 2015 and 9–10 February 2015, respectively. The minimum air 
temperature recorded at the Twenthe weather station was used to fill the data 
gap. 
 

5.3.2 Shadow Ratio 
 
The shadow ratio showed a similar trend for all the soil types (Figures 5-6b, 5-
7b, 5-8b, 5-9b and 5-10b). Weather conditions (freeze-thaw cycles and rain 
events) seem not to affect the shadow ratio. The most significant rain event 
(20 mm day−1) on 12 December does not decrease the shadow ratio, although 
soil splash material was observed at the side of soil trays. In February, the 
shadow ratio is higher compared to November. Below the results of shadow 
ratio at the start and the end of the experiment, together with standard 
deviation were shown. The shadow ratio of Soil 1 varied from 0.62 (±0.09) to 
0.73 (±0.06). Only in January and afterword, the shadow tended to increase 
(Figure 5-6b). Soil 1 (Silty Loam with 4.6% OM) is subject to crust 
development associated with cracks on the soil surface when exposed to 
various stresses (Figure 5-5). The shadow ratio of Soil 2 varies from 0.76 
(±0.11) to 0.85 (±0.12). Apart from some fluctuations in shadow ratio, Soil 2 
shows the same behaviour as Soil 1 (Figure 5-7b). The shadow ratio of Soil 3 
varies from 0.78 (±0.11) to 0.87 (±0.08). The shadow ratio stays more or less 
constant during November and December. An increasing trend is observed in 
January (Figure 5-8b). The shadow ratio of Soil 4 (Figure 5-9b) varies from 
0.77 (±0.16) to 0.80 (±0.10). This soil has stones on its composition, which 
are more noticeable at the end of the experiment. The trend of shadow ratio 
of Soil 4 is similar to Soil 2. Shadow ratio of Soil 5 (Figure 5-10b) varies from 
0.79 (±0.08) to 0.83 (±0.10), and it has a similar trend with the shadow ratio 
of Soil 1. The soil surface smooths out over time, causing high soil reflectance 
value. If a smooth surface had been reached, the value of the shadow ratio 
would have become constant. When our experiment ended, the process of the 
aggregate breakdown was still ongoing, and therefore the ratio was still 
increasing. 
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Figure 5-6. Weather data (a) together with shadow ratio (b); entropy (c); and 
area (d) results of Soil 1 are shown. Grey bars and grey line indicate daily 
rainfall and minimum air temperature, respectively. The grey dashed horizontal 
line indicates the temperature in °C. The vertical black dashed lines show 
missing rainfall data interval from 15 to 23 November 2014. The error bars 
indicate the standard deviation of shadow ratio (b); and entropy (c). The 
standard error bars of area (d) represent the 95% confidence interval of the 
true population mean for the sample size 49. 
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Figure 5-7. Weather data (a) together with shadow ratio (b); entropy (c); and 
area (d) results of Soil 2 are shown. Grey bars  and grey line indicate daily 
rainfall and minimum air temperature, respectively. The grey dashed horizontal 
line indicates the temperature in °C. The vertical black dashed lines show 
missing rainfall data interval from 15 to 23 November 2014. The error bars 
indicate the standard deviation of shadow ratio (b); and entropy (c). The 
standard error bars of area (d) represent the 95% confidence interval of the 
true population mean for the sample size 56. 
 

     

    
 
Figure 5-8. Weather data (a) together with shadow ratio (b); entropy (c); and 
area (d) results of Soil 3 are shown. Grey bars and grey line indicate daily 
rainfall and minimum air temperature, respectively. The grey dashed horizontal 
line indicates the temperature in °C. The vertical black dashed lines show 
missing rainfall data interval from 15 to 23 November 2014. The error bars 
indicate the standard deviation of shadow ratio (b); and entropy (c). The 
standard error bars of area (d) represent the 95% confidence interval of the 
true population mean for the sample size 50. 
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Figure 5-9. Weather data (a) together with shadow ratio (b), entropy (c); and 
area (d) results of Soil 4 are shown. Grey bars and grey line indicate daily 
rainfall and minimum air temperature, respectively. The grey dashed horizontal 
line indicates the temperature in °C. The vertical black dashed lines show 
missing rainfall data interval from 15 to 23 November 2014. The error bars 
indicate the standard deviation of shadow ratio (b); and entropy (c). The 
standard error bars of area (d) represent the 95% confidence interval of the 
true population mean for the sample size 50. 
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Figure 5-10. Weather data (a) together with shadow ratio (b), entropy (c); and 
area (d) results of Soil 5 are shown. Grey bars and grey line indicate daily 
rainfall and minimum air temperature, respectively. The grey dashed horizontal 
line indicates the temperature in °C. The vertical black dashed lines show 
missing rainfall data interval from 15 to 23 November 2014. The error bars 
indicate the standard deviation of shadow ratio (b); and entropy (c). The 
standard error bars of area (d) represent the 95% confidence interval of the 
true population mean for the sample size 54. 
 

5.3.3 GLCM Entropy 
 
In Figures 5-6c, 5-7c, 5-8c, 5-9c and 5-10c, it can be seen that the GLCM 
entropy changes overtime for all the soil types following both freeze-thaw 
cycles and rain events (Section 5.3.1). Due to light rainfall, the entropy 
decreases. The entropy decreases further with the rainfall event of 12 
December 2014 with a total rainfall of 20 mm day−1. While this behaviour is 
notable in November and December (Figures 5-6c, 5-7c, 5-8c, 5-9c and 5-
10c), it is less evident in January and February because of missing image data 
for these months. When there is no rain, or the rainfall amount is 0.2 mm 
day−1, the entropy increases. During the freezing period (1–4 December 2014), 
an increase in entropy is noticed as soon as the thawing period starts (on 5 
December 2014) the entropy decreases. Below the results at the start and the 
end of the experiment, together with the standard deviation are shown. The 
entropy of Soil 1 varies from 4.44 (±0.32) to 3.47 (±0.34) bits. A decrease of 
entropy is observed after the biggest rain event (20 mm day−1) occurred. 
Moreover, after two cycles of freeze-thaw followed by rain events (beginning 
and the end of December), the entropy tends to decrease (Figure 5-6c). The 
entropy of Soil 2 varies from 4.24 (±0.31) to 3.25 (±0.30) bits. Here as well 
the freezing followed by thawing increases and decreases the entropy, 
respectively. As a result of the big rain event (on 12 December 2014), the 
entropy decreases. In January, the entropy shows a decreasing trend (Figure 
5-7c). The entropy of Soil 3 varies from 4.18 (±0.37) to 3.51 (±0.24) bits. 
Although the entropy decreases when a rain event occurs, and it increases 
during dry days, the changes are small. The freeze-thaw cycles followed by the 
rain events (beginning and end of December) do not affect much the entropy. 
However, after 15 January 2015, entropy decrease is visible (Figure 5-8c). The 
entropy of Soil 4 varies from 4.56 (±0.40) to 4.14 (±0.25) bits. This soil shows 
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first a decrease in entropy. Also, the most significant rain event on 12 
December 2014 causes a decrease in entropy. Due to freezing the entropy 
increases. However, it does not decrease during the thawing period (after 5 
December). For the rest of the experiment, the entropy stays high showing a 
small decreasing trend (Figure 5-9c). The entropy of Soil 5 varies from 3.67 
(±0.27) to 3.37 (±0.30) bits. The entropy follows the freeze-thaw cycles and 
rain events like the other soils. However, the entropy fluctuations are smaller 
compared to other soils. From 12 January 2015, the entropy decreases 
continuously (Figure 5-10c). 
 

5.3.4 Huang Thresholding Technique 
 
The image area covered with soil aggregates decreases over time (Figures 5-
6d, 5-7d, 5-8d, 5-9d and 5-10d). The percentage of the area does not change 
much during November. The trigger that initiates the decrease of the area 
covered with aggregates is freeze-thaw, followed by the rain events in 
December. The percentage of area covered with soil aggregates reduces 
significantly after the first freeze-thaw event for all the soils. Below the results 
at the start and the end of the experiment, together with the standard error 
(SE) are shown. For Soil 1, the image area covered with soil aggregates 
decreased from 13.57% (±0.66) to 1.76% (±0.09). In November the area 
covered with soil aggregates remains more or less constant. After the first 
freezing event (1–4 December 2014) the decrease of the area covered with 
aggregates is evident (Figure 5-6d). Soil 2 trend is similar to Soil 1. Image 
area covered with soil aggregates decreased from 19.2% (±0.96) to 4.03% 
(±0.20). The freezing event (1–4 December 2014) causes a decrease in area 
percentage. After the most significant rain event (20 mm day−1) on 12 
December, the changes are small (Figure 5-7d). The image area of Soil 3 
covered with aggregates decreased from 11.47% (±0.57) to 3.9% (±0.20). 
The area decreases because of the first freeze-thaw event (1–4 December 
2014). After this moment, the freeze-thaw followed by rain events had little 
influence on the area (Figure 5-8d). The area covered with soil aggregates of 
Soil 4 decreased from 14.54% (±0.73) to 4.23% (±0.21). This soil shows a 
different trend compared to previous soils. However, like the other soils, the 
first freeze-thaw (1–4 December 2014) decreased the area (Figure 5-9d). For 
Soil 5, the image area decreased from 11.85% (±0.59) to 2.45% (±0.12). Soil 
5 has a similar trend with Soil 4 in November. The first freeze-thaw (1–4 
December 2014) and the rain events on 12 and 19 December 2014 decreased 
the area covered with aggregate (Figure 5-10d). After the first freezing event, 
the SE of all the soils gets smaller, suggesting that the number of soil 
aggregates decreases due to the freeze-thaw cycle. 
Figure 5-11 summarizes the results of shadow ratio, entropy, and image area 
covered with soil aggregates at the start and the end of the experiment for all 
the soils. We observe that the shadow ratio is higher at the end of the 
experiment (Figure 5-11a). Both the GLCM entropy and the image area cover 
with soil aggregates decrease at the end of the experiment, as observed in 
Figure 5-11b,c, respectively. 
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Figure 5-11. Summary results of shadow ratio, entropy and area covered with 
aggregates obtained for all soils using: band ratio (blue/red) (a); GLCM entropy 
(b); and Huang thresholding (c) approaches. The grey and white bars indicate 
the start and the end of the experiment, respectively. Each dataset is relative 
to each tray and cannot be taken as an absolute value. 
 

5.4  Discussion 
 
It is hypothesized that over time soil surface becomes smooth because rainfall 
or freeze-thaw cycles destroy soil aggregate (Figure 5-5). 
 

5.4.1 Shadow Ratio 
 
For all the soil types, the shadow ratio shows a gradual change over time. 
Although the soil aggregates break down because of freeze-thaw cycles 
followed by rain events, the shadow ratio does not show details related to 
weather conditions. In February, the shadow ratio is higher compared to 
November. These results are related to high reflectance of a smooth soil 
surface at the end of the experiment. When both bands (blue/red) have the 
same reflectance value, the shadow ratio becomes constant. The constant 
shadow ratio indicates that no changes occur at the soil surface. The high 
shadow ratio at the end of the experiment is more noticeable for Soil 1, Soil 2 
and Soil 3 than for Soil 4 and Soil 5 (Figure 5-11a). Due to crust formation at 
the end of the experiment, the reflectance and consequently, the shadow ratio 
of Soil 1 is high what it was expected for Soil 1. Similar to Soil 1, Soils 2 and 
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3 are Silty Loam, but they have high OM content. Soil aggregates are formed 
by bonding of clay particle, polyvalent minerals (Fe, Al, Ca) and organic matter 
(Emerson, 1967). Therefore, the organic matter is important not only for soil 
fertility but also for soil structure stability. Although Soil 2 is from agricultural 
land, and Soil 3 is from a forest area, the shadow ratio of these soils is similar 
at the end of the experiment. This similarity could be related to a surface crust 
formation, especially for Soil 3. These soils are subject to frequent crust 
development. Therefore, the creation of the white layer could be a result of 
this process. Moreover, the appearance of wild plants in Soil 2 is noticeable 
(Figure 5-5). At the end of the experiment, the shadow ratio of Soil 4 (Loam) 
and Soil 5 (Sandy Loam) increases 0.03 and 0.04, respectively, when 
compared to the start of the experiment. The low increase of shadow ratio at 
the end of the experiment could be related to BRDF, which was not corrected. 
With a 60° horizontal field of view, the camera observed more shadow in 
aggregates viewed towards the sun (Soils 1 and 2) than in aggregates viewed 
away from the sun (Soils 4 and 5). This implies that interpreted results can be 
compared between the different trays, but that data values cannot be 
compared between trays in absolute terms. The difference in solar azimuth 
overtime is 6.7°, which is negligible for the three measures presented in this 
study. The difference in solar elevation can, however, lead to a ~50% 
difference in shadow length. Different from solar azimuth, it could be expected 
that changing solar elevation would be visible in the shadow ratio, but the 
results do not show that at all. A longer time series might have brought this to 
light. Considering the mean as a signal and the standard deviation as a noise, 
the Signal-to-Noise ratio (SNR) for each band could be calculated. The high 
SNR value indicates that the band has more information than noise. For Soil 1, 
the SNR of the red band was higher compared to the SNR of the blue band. 
The opposite was true for other soils. This is the reason why shadow ratio 
(blue/red) of Soil 1 was lower compared to other soils. Moreover, the standard 
deviation of shadow ratio is relatively large, because it is related to the number 
of pixels in the image (512 × 512 pixels). 
 

5.4.2 GLCM Entropy 
 
The entropy was able to follow changes on the soil surface for all the soils used 
in this study. The high and low entropy value indicates that the image is 
heterogeneous and texturally uniform, respectively. Figure 5-11b shows that 
the entropy is higher at the beginning of the experiment compared to the end 
of the experiment. Although rainfall intensity was low (<2.5 mm h−1) most of 
the time that the experiment ran, the soils were at a wet condition. Soil water 
content at the time of freezing is important because, as the air temperature 
drops below 0 °C, the soil temperature gets low, causing frozen soil. As a 
result, the ice crystals expand in pores between the soil particles affecting 
particle-to-particle bond (Bullock et al., 1988). During freezing days, the 
entropy was high because the frozen soils had many ways to arrange 
themselves, revealing a dispersed distribution of the soil aggregates. As soon 
as the thawing period starts, the soil particles tend to bond again. At this time, 
the entropy stayed constant or decreased because the soil aggregates had a 
limited number of ways to bond together, indicating a compact distribution 
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with a few grey-level variations. The GLCM entropy showed the same trend for 
all the soils, except the magnitude, which differed with soil type. This is, of 
course, related to soil properties affecting the soil aggregate breakdown. Clay 
is one of the aggregating factors in soil (Denef and Six, 2005; Xu et al., 2015). 
However, the effect is different depending on its mineralogy. X-ray diffraction 
of the soil samples indicated that the dominant clay mineral was kaolinite. Also, 
the organic matter is responsible for the soil structure stability (Abdollahi et 
al., 2014; Annabi et al., 2011). Both, Soil 1 and Soil 4 have a low OM and a 
high percentage of silt particles making these soils vulnerable to the freeze-
thaw cycles and the rain events. However, the entropy changes for Soil 4 are 
smaller compared to Soil 1 overtime. This could be related not only with the 
stony composition of Soil 4 but also with a lower silt amount (44%) in Soil 4 
compared to Soil 1 (71%). Soil 2 (agricultural land) had a lower entropy value 
than Soil 3 (forested land) at the end of the experiment. This means that the 
land use/land cover affects soil resistance to freeze-thaw and rainfall impact. 
Unlike the shadow ratio, the GLCM entropy was able to distinguish the 
importance of land use/land cover on soil aggregate breakdown. The entropy 
of Sandy Loam (Soil 5) was calculated over a more homogeneous image 
(similar aggregate size) with fewer intensity variations compared to the other 
soils. This is a reason why Sandy Loam had lower entropy values. This soil type 
drains and dries out more rapidly than the clayey soils. Therefore, freezing has 
little effect on dried soil, indicating the importance of the soil water content at 
the freezing time.  
Entropy is not calculated at the edges of an image. Although the image size 
decreases depending on the window size used, the standard deviation of the 
entropy is relatively large because it depends on the number of analysis 
windows. 
 

5.4.3 The Huang Thresholding Technique 
 
The results obtained using the Huang thresholding technique were the best 
(small error bars indicate high precision) compared to both shadow ratio and 
GLCM entropy (wide error bars indicating a large error). The Huang 
thresholding method was able to quantify the soil aggregates changes over 
time. As mentioned in Sections 5.4.1 and 5.4.2 (shadow ratio and GLCM 
entropy), it is the combination of freeze-thaw cycles followed by rain events 
that trigger the soil aggregate breakdown. 
Soil aggregate stability is its ability to maintain its structural arrangement and 
void spaces when exposed to various stresses. Freeze-thaw cycles affect soil 
aggregate stability (Chai et al., 2014; Dagesse, 2013). However, this effect 
varies with soil texture, OM content, initial aggregate size, soil water content 
at the time of freezing, freezing temperature, number of freeze-thaw cycles. 
Likewise, the raindrop impact affects the soil surface in different ways. When 
the soil is dry, aggregate disruption by splashing is most effective (Furbish et 
al., 2007; Mouzai and Bouhadef, 2003). The impact of a raindrop on the wet 
soil plays a role in compaction (Le Bissonnais, 1996). Also, Algayer et al., 
(2014) showed that the soil aggregate stability varied in a few days, and this 
was related to the soil water content and rainfall intensity. 
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It is interesting to observe that Soil 2 with a high OM content had the highest 
loss of soil aggregates compared to the other soils as it is shown in Figure 5-
11c. Soil 2 is from agricultural land. The high OM content in Soil 2 is probably 
coming from sewage sludge manure mixed with plant residues application by 
the farmer some days before the soil sample was taken. The manure had 
probably not yet appropriately mixed with the soil matrix since it is not normal 
to have such a high amount of OM in agricultural fields. Soil 3 with high OM is 
from the forested area. This soil had the lowest soil aggregates loss compared 
to other soils. In a study of the accumulated effect of rain on micro-topographic 
erosion features in various land uses under natural conditions (Kunwar et al., 
2003) reported higher erosion hazard in agricultural fields and lower in forest 
cover indicating the pronounced effect of the land cover on aggregate stability. 
These results also indicate that forested soils are more resistant to freeze-thaw 
cycles, followed by rain events than agricultural ones. Although the OM content 
of Soil 2 and 3 is very similar, they act differently under freezing and thawing. 
This could be related to the difference in origin in OM. Soil 2 sewage sludge 
could have higher water retention characteristics than the more apolar OM of 
forested soils (Soil 3). Therefore, Soil 2 (agricultural soil) expansion during the 
freezing result in more aggregate breakdown compares to Soil 3 (forested soil). 
As mentioned in Section 5.4.2 (GLCM entropy), Soil 5 (Sandy Loam) drains 
fast, and freezing has little influence on it. Soil 1 (Silty Loam) and Soil 4 (Loam) 
both have low OM, but different amount of silt particles which make them 
behave differently. Soil 1 at the end of the experiment shows crust formation, 
which cannot be seen for Soil 4 (Figure 5-5). Besides the soil properties, these 
results are influenced by soil aggregate size at the beginning of the experiment. 
In Section 5.2.5, it was specified that the smallest aggregate size is 2 mm2, 
and the biggest one is 400 mm2 (Soil 1 and Soil 4) and 500 mm2 for the other 
soils. Within this range (2–400 or 2–500 mm2), soil aggregate sizes vary 
significantly. Although we were not able to follow each soil aggregate change 
over time, at the end of the experiment the average soil aggregate size was 
16 mm2, 12 mm2, 17 mm2, 17 mm2, 13 mm2 for Soil 1, Soil 2, Soil 3, Soil 4 
and Soil 5, respectively.  
Moreover, by visual inspection, it is observed that the size of the aggregates 
of Soil 2 is smaller compared to other soils at the beginning of the experiment 
(Figure 5-5). These results might indicate that while small aggregates are 
destroyed, the big ones decrease in size. This is an objective for further work 
to quantify how much individual soil aggregates change over time. 
When looking at relative changes over time, no absolute calibration per se is 
needed. Both the band ratio and the grey level matrix do not depend on 
absolute data values, while the Huang technique was performed on data 
normalized with histogram matching on each of the five image subsets 
separately. If, for example, vegetation would have started to grow, a histogram 
matching normalization would likely not suffice. In this experiment, however, 
there was only bare soil during the experiment. There was no apparent change 
in surface composition, other than changes in sand and clay fractions. 
In soil erosion models, it is well recognized the importance of soil surface 
conditions and the need to take into account their spatial and temporal 
heterogeneity. RS can play a significant role in acquiring relevant data for soil 
erosion models in order to improve their performance. 
Besides climate, in agricultural area soil aggregates are affected by cultivation 
practices. Soil is less exposed to raindrop impact during the cropping season 
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due to crop canopy. It is essential to identify periods of low stability when the 
soil is particularly vulnerable to structural breakdown. Good ground cover is an 
integral part of the majority of soil conservation programs. At this stage of the 
research, the potential users can be the scientific community dealing with soil 
erosion modelling and environmental concern. Further investigation is needed 
to make these results practical to the decision-makers and farmers. 
 

5.5 Conclusions 
 
In this study, band ratio, image texture analysis and object-based image 
analysis derived from standard photography were used to monitor soil 
aggregate break down under natural conditions. Five different soils were 
chosen, varying in texture classes (Silty Loam, Sandy Loam and Loam) and 
organic matter content (agricultural soil and forest soil). Trays with aggregates 
were exposed to outside weather circumstances during the winter season, with 
exposure to rainfall and freeze-thaw cycles. The winter season (October to 
March) was used as the soils in the Netherlands usually are bare, and 
aggregate breakdown takes place. Images with fog, inundation, freezing and 
inhomogeneous lighting were discarded. A weather station adjacent to the 
plots recorded all meteorological variables. 
The assumption is that the aggregates break down under the kinetic energy of 
rainfall and freeze-thaw cycles, and smooth the surface. A decrease in 
aggregate size and loss of aggregates should be visible in the image series, 
and different indices derived from these images might serve as roughness 
indicators. Of the three image-derived indices, shadow ratio is the worst. The 
assumption is that large aggregates cast a larger shadow than small 
aggregates, but in reality, many roughness elements cause shadows, also 
because the sun during winter is at a low angle (13.6–17.5° at the 
experimental site). The effect of aggregate breakdown cannot be well 
observed, and there is no relation between shadow ratio and rainfall or air 
temperature. The texture index (GLCM entropy) is moderately successful in 
the decreasing trend with cumulative rainfall, but the index is complex to 
compute and has to be optimized for a given situation. Both shadow ratio and 
GLCM entropy have relatively large standard deviations. The Huang 
thresholding technique captures the aggregates themselves and successfully 
shows a decrease in size, with a low standard deviation. Given sufficient 
resolution of the images, the aggregate breakdown can be followed by this 
method. The low standard deviation is logical as the number of aggregates is 
much smaller than the number of pixels (shadow ratio) or the number of 
analysis windows (GLCM entropy). Therefore, the standard deviation should 
not be used as a comparative among approaches. 
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6.1 Soil aggregation and soil stability 
 
Soil is an essential natural resource that supports life on earth. When soil 
quality is degraded, its production capacity or its role in ecosystem services 
decreases. Excessive soil erosion may cause problems not only on-site but also 
off-site due to sedimentation on the river bed, reservoir and causing flooding 
down the slope. Extreme climate and human interventions further aggravate 
soil degradation. It is thus necessary to prevent soil degradation in time. Soil 
erosion by water is primarily related to particle detachment and transport by 
surface runoff. Erodibility or soil susceptibility to erosion depends on particle 
distribution and constituents (e.g. organic matter, iron oxide, carbonates) that 
help soil aggregation. Iron hydroxides can interact with both the clay minerals 
and organic compounds to form clay–mineral–organic associations, acting as 
binding and cementing agents in soil aggregation. The clay forms bridges with 
the polyvalent metal and the organic matter in the soils with a 2:1 layer 
structure. Therefore, investigating the changes in the clay minerals at various 
moisture conditions is important. Moreover, it is crucial to examine the 
behaviour of the organo-clay minerals interactions at the freeze-thaw cycles. 

6.1.1 The influence of clay minerals in soil aggregation 
  
The interactions of the organo-hydroxide, organo-clay minerals and 
phyllosilicate-hydroxide minerals occurring in the soil vary with mineral 
structure, soil solution, ionic strength and pH (Qafoku, 2015). Any alteration 
of these organo-mineral interactions due to the moisture variations needs to 
be identified. In section 3.3, the results showed that the soil surface minerals 
behaved differently, depending on the soil type (various organic matter 
content) and soil treatment (drying-field capacity, field capacity and 
waterlogging-field capacity). While for the soils with organic matter, the 
mineralogical alterations were evident at field capacity state, as it is shown in 
section 3.3.2, for the one with no organic matter, these changes were 
insignificant. Moreover, regardless of the soil type, the minerals were stable at 
the drying-field capacity and waterlogging-field capacity treatments as 
presented in sections 3.3.1 and 3.3.3, respectively.  
The high clay content increases the soil cohesion and decreases permeability 
for the dissolved and colloidal compounds making the leaching process less 
pronounced. Therefore, high clay content has a positive influence on soil 
stability. In this research, Soil 3 with 23% kaolinite showed fewer variations at 
the waterlogging-field capacity treatment than Soil 2 with 16% kaolinite.  Of 
course, the clay content and the clay mineralogy significantly affect the soil 
organo-minerals interactions. In the soils dominated by 1:1 clay minerals, the 
aggregation occurs due to the minerals' binding capacity. Moreover, positively 
charged Fe/Al oxides and negatively charged 1:1 clay minerals form steady 
aggregates through attractive electrostatic forces.  
The clay forms bridges with the polyvalent metal and the organic matter in the 
soils with a 2:1 layer structure. The 2:1 clay minerals have a high specific 
surface area and cation exchange capacity. These clay minerals retain the 
organic matter in their interlayer spaces, forming an organic coating on the 
clay particles. However, the 2:1 clay minerals are characterized by shrinking 
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during drying and swelling during wetting. Therefore, drying-wetting cycles 
might decrease the bonding between particles affecting the chemical 
stabilization.  
One of the biotic factors influencing soil aggregation is microorganisms. The 
microorganisms interact with phyllosilicates and metal oxides as a glueing 
agent forming and stabilizing the micro soil aggregates (Totsche et al., 2018). 
It is necessary to investigate the clay minerals behaviour at various moisture 
conditions and different organic matter types. 

6.1.2 The influence of the freeze-thaw process 
 
Knowledge about minerals' ability to sorb and stabilize the organic matter 
under the freeze-thaw process is still limited. With ongoing climate change, the 
freeze-thaw process is expected to increase its frequency and intensity. The 
freeze-thaw process breaks down the soil aggregates altering the initial soil 
stability. However, the soil mineralogical behaviour resulting from the freeze-
thaw process at different moisture conditions is not apparent. Therefore, the 
investigation of the soil surface minerals behaviour under the freeze-thaw 
process is performed. In section 4.3, the results showed that the soil minerals 
behaved differently under freeze-thaw cycles, depending on the soil type 
(various organic matter content) and soil moisture conditions (field capacity 
and waterlogging as reported in section 4.3.1 and 4.3.2, respectively). 
Likewise, the results suggest that the amount and the type of organic matter 
are vital in soil experiencing freeze-thaw cycles. Freeze-thaw cycles decrease 
the bonding strength between particles, increase the pore sizes due to the ice 
formation inside the clay, altering the structure and the properties of the clay. 
Therefore, clay minerals' behaviour depends on the type and the content of 
clay minerals (e.g., kaolinite), their degree of saturation, the frequency, and 
the magnitude of the freeze-thaw process. Since the clay minerals significantly 
affect the soil organo-mineral interactions, it is crucial to investigate their 
behaviour at the freeze-thaw cycles. The way that the freeze-thaw cycles affect 
the soil particle bonding of 1:1 and 2:1 clay minerals needs to be clarified. 
Soil is a complex mixture of solids, liquids and gases. Therefore, various 
chemical reactions occur in the soil, such as the dissolution of metal oxides, 
reaction between solutes and water, dissolved gases, or reaction between 
different solutes. These chemical reactions in cold regions differ from those in 
warm ones because of the accelerated reactions in ice. These ice reactions are 
related to the freeze concentration effect, which concentrates the solutes and 
dissolved gases in the water area of ice, intensifying the chemical reactions 
(Kim et al., 2017). These chemical reactions need attention too. 

6.1.3 The use of object-based image analysis to monitor aggregate 
breakdown 
In this research, the soil aggregate breakdown under natural conditions was 
investigated using colour (band ratio), image texture analysis (GLCM) and 
object-based image analysis (OBIA). Among these three approaches, the OBIA 
showed the best results (section 5.3.4). Indeed, the OBIA allows quantifying 
the soil aggregate breakdown over time.    
When dealing with very high spatial resolution images, the OBIA is a better 
alternative than a pixel-based one. While the pixel-based approach is based on 
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pixels’ spectral properties, the OBIA method considers the spectral, spatial, 
textural, and shape properties of an object. Each object in the image is formed 
by a group of spatial and spectral homogeneous pixels. These objects can 
represent real-world features better than the pixels.  
Since the OBIA provides similar objects for analysis, it can reduce the local 
noise and heterogeneity. Moreover, a field sample is more probable to occur in 
an object than within a single pixel. Therefore, the positional difference 
between the image and field sample diminishes. Furthermore, the object-based 
approach allows for image segmentation at various scales (different level of 
details). The OBIA is a suitable approach in images with large shadow and 
spectral similarity.  
In object-based image analysis, the determination of segmentation parameters 
is crucial. Setting these segmentation parameters is difficult because they 
depend on image resolution and the objects of interest on the ground. 
Therefore, a trial and error process is usually involved in defining these 
parameters. Among the parameters, scale plays a crucial role in image 
segmentation. An inappropriate scale might lead to either under or over image 
segmentation since a homogeneous object in one scale might be 
heterogeneous at another scale. Consequently, a hierarchical segmentation 
scale is used to map the different level of details in the image. 
Local Binary Pattern (LBP) is a local texture descriptor. The LBP is constructed 
by comparing a centre pixel with its eight surrounding neighbours in an image. 
As a result, a binary number is generated that replaces the value of the centre 
pixel. This LBP value is stored in the output image with the same width and 
height as the input image. Then the histogram of the LBP image is calculated, 
which is used as a texture descriptor. To capture details at varying scales, the 
original LBP is modified by introducing the number of points in a circularly 
symmetric neighbourhood (not square window) and the radius of the circle, 
which allows accounting for different scales. Soil aggregates have different 
sizes, and their shape approximates with a circle. Therefore, it would be 
interesting to use the LBP texture segmentation to monitor soil aggregates 
breakdown. 
 

6.2 Upscaling the proximal sensing data  
 
Variations in soil stability at a small scale are controlled by the soil properties 
such as particle size, organic matter content, cation-exchange capacity and soil 
moisture contents. The study shows that the influence of temperature 
variations below zero degree Celsius also plays a role. At the field scale, the 
aggregates of different sizes are joined and held together by bonding the clay 
particle, polyvalent metal, and organic matter. Moving to the landscape scale, 
the topography and geomorphic processes also influence soil stability. 
Furthermore, the climate, soil type, land use and land management practices 
affect soil stability at the regional scale. Figure 6-1 summarises the controls of 
soil stability at a different spatial scale. 
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Figure 6-1.  Controls of  the soil stability at a different spatial scale 
 
Soil stability is a result of complex soil processes and environmental factors. 
Defining the spatial and temporal scales that represent the soil stability 
dynamics is difficult. For instance, the small scale variability might be 
significant in soils. However, the small scale heterogeneity is not well 
understood because of the effort of data collection. A particular soil process 
should be analysed at an appropriate spatial and temporal scale. Indeed, it is 
crucial to know the processes that influence the soil and how they interact at 
various scales.  
The spatial and temporal aspects of the soil processes are closely connected. 
Since these aspects (spatial and temporal) vary at different scales, they should 
be considered both at the upscaling approach. In the upscaling approach, the 
information at one scale might be assumed at another scale. Therefore, the 
relationships between fine and coarse scales need to be investigated. In the 
remotely-sensed data, the scale is defined by the image pixel resolution. This 
image resolution often does not correspond to the scale of the soil processes. 
Upscaling the high-resolution data to a low resolution leads to the loss of 
information.  
The soil properties’ prediction decreases from laboratory to airborne or 
spaceborne imaging spectroscopy. This decrease in prediction is a result of the 
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soil surface characteristics and sensor performance. While the laboratory soil 
samples are dried and sieved, the natural samples are heterogeneous with 
variations in the surface temperature, moisture and roughness. Likewise, the 
sensors are subjected to atmospheric and geometric distortions and lighting 
conditions. Moreover, they have a low signal to noise ratio, spectral and spatial 
resolution. The latter might induce pixel mixing problems. The atmospheric 
correction is crucial in imaging spectroscopy because it affects the spectral 
signal by increasing the noise. A combination of the empirical and radiative 
transfer models is used for atmospheric correction. Quantifying the soil 
properties using image spectroscopy requires the ground truth data for model 
calibration and validation. Therefore, a correct georeferencing of the image to 
each soil sample on the ground is needed. 
The presence of vegetation cover masks the soil signal. Therefore, image 
acquisition is performed on bare soil to avoid the loss of the soil signal. Another 
possibility is to use DEM derivatives, e.g. slope, aspect, wetness index, profile 
or plan curvatures, to characterise soil. 
 

6.3 Influence of land cover and climate change 
 
The interactions of the organo-hydroxide and organo-clay minerals occurring 
in the soil are the dominant mechanisms for soil stability at the microscale. 
Depending on the climate conditions, the organic matter interacts with 
different soil components. In arid and semi-arid areas, the organic matter 
shows a positive correlation with divalent ions such as calcium and clay 
minerals. Moreover, organic matter has a strong relationship with Fe and Al 
oxyhydroxides in a humid climate. Soil stability is at equilibrium when the soil 
moisture is at the water holding capacity, and the external factors, climate and 
land cover changes, are insignificant. However, climate and land cover might 
have a substantial impact on soil stability.  
Due to climate change, prolonged droughts or excessive rain intensity are 
expected. As a result of heavy and frequent precipitation, the more moisture, 
the more intense the weathering and leaching processes like the transport of 
soluble salts, Fe and Al oxides, clay minerals and carbonates. These soil 
chemical composition changes due to the migration of soil chemical elements 
negatively affect soil stability. Increasing temperature decreases and increases 
the soil aggregation in humid and arid environments, respectively. Due to 
decreasing aggregation, the destabilization of the soil organic matter occurs. 
Also, high temperatures encourage the mineralization of organic matter. Since 
soil organic matter is a crucial factor causing cohesion, its decline leads to soil 
stability weakening. High organic matter occurs in the forest and grassland and 
less in the agricultural land. As a result, land cover changes will affect soil 
stability. Deterioration of soil stability directly affects soil degradation 
processes such as the loss of topsoil due to water or wind, soil fertility depletion 
due to leaching of nutrients, sealing and crusting due to insufficient protection 
to the impact of the raindrop.  
Agricultural management has changed the soil properties over time. Indeed, 
the loss of organic matter and minerals alters the natural soil conditions. 
Therefore, it is crucial to maintain internal soil stability when exposed to 
external stresses. In soil management, physical stresses are related to tillage 
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and compaction. Moreover, the chemical stresses involve fertilizers, which alert 
the cations and ions composition and chemical bonding.  
Unlike conventional agriculture, conservation agriculture follows three 
principles (i) minimal soil disturbance, (ii) continuous soil cover and (iii) crop 
rotation (Corsi and Muminjanov, 2019). Conservation agriculture aims to 
create optimal conditions for crop growth while minimizing environmental 
degradation. Any natural or human disturbances to the soil top layer lead to 
changes in soil stability. For example, conventional tillage breaks down the 
macroaggregates. It enhances the soil organic matter decomposition and 
decreases microbial activities. In addition, the soil is subject to compaction. 
Under these conditions, the soil stability will decline to result in soil erosion. 
Likewise, the drying-wetting, freeze-thaw and biological activities alert the 
pore size distribution affecting the soil hydraulic properties. 
On the contrary, conservation tillage affects soil aggregates and their binding 
agents positively. Crop residues increase soil organic matter, which leads to 
soil aggregation. Moreover, the residues protect the soil from raindrop impact, 
reducing the surface crusting and sealing. Also, the formation of the soil cracks 
diminishes because the crop residues reduce evaporation. Furthermore, the 
plant/crop residues decrease the effect of wetting-drying and freeze-thaw on 
soil aggregate breakdown.  
Crop rotations increase organic matter and nitrogen efficiency for plants 
growth. Likewise, due to crop rotation, the soil microbial activity increases the 
nutrients available to plants. Moreover, the application of organic manure 
increases the accumulation and storage of organic carbon in the soil. Also, 
chemical fertilizers increase the carbon indirectly in the soil through biomass 
production. 

6.4 Recommendation for further study 

The interactions of the organo-hydroxide, organo-phyllosilicate and 
phyllosilicate-hydroxide minerals occurring in the soil vary with mineral 
structure, soil solution, ionic strength and pH. Any alteration of these organo-
mineral interactions due to the moisture variations and freeze-thaw process 
needs to be identified. Using imaging spectroscopy data on the Silty Loam soil, 
it is showed that the surface mineralogy changes over time, depending on the 
soil type, the moisture conditions and freeze-thaw process. Changes in the 
minerals composition might cause changes in the soil aggregate stability. 
Therefore, it will be interesting to investigate the effect of these mineralogical 
changes on soil aggregate stability. Moreover, similar research should be 
carried on soils in other climatic zones. 

The importance of microorganisms on soil aggregation  

Soil aggregation is a result of the physical, chemical and biological processes. 
While the physical and chemical processes are studied extensively, the 
biological ones have received less attention. Since these processes might co-
occur, it is difficult to determine their contribution to soil aggregation. Soil 
holds various microbial communities, and the soil microaggregates are 
considered habitat for microorganisms. The microorganisms bind with mineral 
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particles. Also, the microbial remains might act as a glueing agent for 
microaggregates formation. This description indicates the importance of 
microorganisms in soil aggregation. However, it needs to be proven. The 
knowledge of the biological compound binding with different soil minerals is 
still incomplete. Soil biological activity fluctuates with the seasons. Under 
extreme temperatures, biological processes slow or stop. Therefore, the 
temporal dynamics of the biological compounds in soil aggregation remains 
unknown. Soil biology is difficult to measure due to its diversity. For that 
reason, finding indirect means for soil biology estimation is an alternative. 

Soil porosity influence on soil stability 

Soil porosity controls the storage and movement of water, elements and 
nutrients in the soil subsurface. Pore size distribution, shape, geometry, and 
connectivity are essential features to investigate pore space structure changes. 
Reorganization of soil particles to form aggregates lead to the soil pore space. 
The soil porosity is affected by the organic matter, Fe and Al oxides and clay 
present in the soil. Moreover, repeated drying-wetting and freeze-thaw cycles 
affect the soil pore size distribution. As a result, an increase in the macropores 
volume leads to organic matter decomposition. These changes will influence 
soil water retention and hydraulic water conductivity. Therefore, further studies 
are necessary to investigate pore space's influence on soil stability at various 
scale from micrometre to centimetre. The hydraulic soil variables need to be 
measured and modelled to understand the soil water processes at different 
pore scales. Indeed, with increasing pore scale, the heterogeneity in porous 
media increases too. Consequently, the behaviour of hydraulic conductivity, 
water retention and water flow will vary with scale. 
 
 
The use of multisource remote sensing data for soil surface 
characterization 
 
Multisource data should be used to increase the soil classification prediction 
accuracy and robustness. For example, imaging spectroscopy provides organic 
and mineral soil spectra data. The X-Ray Fluorescence spectrometry measures 
the concentration of elements in the soil. Therefore, by combining the data 
from these sensors, more accurate prediction can be achieved. Soil is a three-
dimensional matrix. Thus, understanding the soil processes might be improved 
using the geophysics techniques and the proximal/remote sensing approach. 
Moreover, proximal sensing and remote sensing should be complementary to 
each other. In this way, they will provide more useful soil information. 
Methodologies for upscaling the fine resolution proximal data and downscaling 
the coarse resolution remote sensing data should be developed. Although 
imaging spectroscopy is a common approach, still it is a lack of standard 
protocols for the soil spectra collection. 
The Unmanned Aerial Vehicles (UAVs) technology can quantify the soil 
properties variability at the field scale.  Microsensors mounted on the UAVs 
allowing the acquisition of very high spatial resolution images. Moreover, the 
same target can be photographed at different altitudes enabling the 
investigation of the scale issues. Also, due to the flexibility of the flight 
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schedule, high temporal resolution data can be obtained. UAVs can carry RGB 
and hyperspectral cameras. The narrow hyperspectral data will allow us to 
understand the relations between the soil spectral data and various soil 
stability processes. Nevertheless, UAVs' use is conditioned by meteorological 
conditions, the battery life and the maximum payload. Also, some regulations 
must be followed for the UAV platforms. 
  
 
Using Mid-infrared for soil  properties estimation  

The mid-infrared (MIR) spectroscopy can estimate the physical and chemical 
soil properties in the laboratory. The fundamental molecular vibrations of the 
soil components occur in the MIR. Therefore, this portion of the 
electromagnetic spectrum contains more information on the organic 
compounds and soil minerals than the NIR and SWIR regions. Moreover, the 
soil spectra have narrow absorption features defining the soil properties better 
in the MIR. However, the MIR data analysis might be affected by organic 
matter, soil moisture, and particle size. These factors can mask the soil 
absorption features influencing soil spectra behaviour. 

 

The need for soil information 

Previous soil data collection and classification have mainly concentrated on 
static soil properties. However, the soil is a dynamic system and monitoring its 
state is crucial. Indeed, soil properties and processes are closely related to soil 
functioning and ecosystem services. Therefore, our focus should be on better 
understanding the soil variability to link these variations to land management 
and environmental, hydrological, agronomic concerns. There is a growing 
demand for high spatial resolution soil data at the field scale and at the 
regional, national or continental scale. Likewise, detailed and quantitative soil 
data should be updated on existing databases. Still, these data are minimal, 
especially in developing countries. Proximal and remote sensing technology 
can facilitate the measurements of soil properties in a cost-effective way. 
Integrating proximal and remote sensing soil data acquired at different spatial 
scale requires further study to understand better the soil processes. 
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