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Summary

Evapotranspiration is a key component of the hydrological cycle and has been
identified as an Essential Climate Variable (ECV). It plays a critical role in the
carbon-energy-water nexus, with latent heat flux being the largest heat sink in
the atmosphere. In semi-arid regions, actual evapotranspiration (ET) is almost
equal to precipitation, and potential evapotranspiration exceeds precipitation.
This prompts the importance of accurate estimation of this variable for
improved water resource management in dry regions. However, estimation of
ET from ground-based station data is challenged by the poor state of hydro-
meteorological networks and low capital investment to maintain them in many
countries.

Remote sensing technology is a critical tool in mapping evapotranspiration,
especially in data-scarce and remote regions. This thesis evaluated the
performance of remote sensing-based evapotranspiration estimates in semi-
arid eco-climates. It also assessed the water productivity of different land use
and land cover classes in South Africa, using remote sensing-based products of
evapotranspiration, biomass, and precipitation.

A comprehensive analysis of the surface energy balance closure (SEBC) and
partitioning of a 15-year (2000-2014) eddy covariance dataset from the Skukuza
FLUXNET site was done in Chapter 2, to quantify and understand the quality of
these data. With an overall surface energy ratio (EBR) of 0.93, the results
showed the years of low and acceptable EBR and therefore were used to discard
data of low quality. They also highlighted the variation of the surface energy
balance closure per season, per year, including the climatic effects of wind
speed, vapour pressure deficit and net solar radiation on the diurnal variations
of the surface energy balance closure. The EBR analysis results were used to
select periods of high-quality eddy covariance data that were used for
evaluating the performance of the remote sensing-based ET models.
Meanwhile, as characteristic of semi-arid regions, the energy partitioning
analysis showed that sensible heat flux is the more dominant portion of net
radiation during periods of little or no precipitation (low water availability)
between March and October, than latent heat flux, and during the wet season
latent heat was the more dominant flux. Water availability is a controlling factor
in surface energy partitioning in tropical semi-arid ecoclimates.

In Chapter 3, we investigated the performance of two satellite-based ET retrieval
methods and two large-scale ET products in two contrasting eco-climatic regions
in South Africa. These were the Priestley-Taylor based land surface
temperature/vegetation index (TsVI), the satellite-based Penman-Monteith
(PM-Mu) model, and the large-scale ET products being the regional Meteosat



Second Generation ET (MET) and the Global Land-surface Evaporation: the
Amsterdam Methodology (GLEAM)datasets. Our results were a reflection of
previous ET model intercomparison studies, showing that no one model
outperformed the others at the two sites across time. However, the PM-Mu
model performed significantly better during periods of high evapotranspiration
compared to periods of low evapotranspiration. For the large-scale and global
evapotranspiration products, the biggest challenge was the spatial scale (10 to
25 km?) which was compared against an average 1-km? ground measurement
scale. In essence, our results conclude that further investigation of the PM-Mu
model is possible to improve its estimation of ET measurements under dry
conditions in South Africa.

Chapter 4 analysed uncertainty and sensitivity of core and intermediate input
variables of a remote sensing data based version of the Penman-Monteith (PM-
Mu) evapotranspiration (ET) model. This is a necessary step in environmental
modelling, although it is often ignored in evapotranspiration modelling. The
Welgegund FLUXNET site was used in this study, in addition to the Skukuza flux
site due to data availability during the time of analysis. Absolute and relative
uncertainties of the core meteorological and remote sensing-based,
atmosphere and land surface input variables and parameters of the PM-Mu
model were derived, and propagated through the intermediate parameters of
net radiation and aerodynamic and surface resistances, to the final
evapotranspiration uncertainty. Our analysis indicated relatively high
uncertainties associated with relative humidity (RH), and hence, all the
intermediate variables associated with RH, like vapour pressure deficit (VPD)
and the surface and aerodynamic resistances in contrast to other studies who
reported LAl uncertainty as the most significant. The semi-arid conditions and
seasonality of the regional South African climate and high temporal frequency
of the variations in VPD, air and land surface temperatures could explain
observed uncertainties in this study. Moreover, the results also showed the ET
algorithm to be most sensitive to the air - land surface temperature difference.
Accurate assessment of those in situ and remotely sensed variables is required
in order to achieve reliable evapotranspiration model estimates in these
generally dry regions and climates. Apart from showing the most important
input variables in PM-Mu model evapotranspiration estimation, these results
give an indication of the effect of climate and land-use/ land cover change on
evapotranspiration in this semi-arid region.

Finally, an assessment of remote sensing-based water use and productivity of
different land use/ land cover classes was done, based on data from the FAO
WaPOR platform. An accuracy assessment of the WaPOR precipitation and ET
products showed a reasonable performance of the evapotranspiration product,



whereas the precipitation accuracy was quite low. The variability of biomass,
water use and productivity was captured across the different land-use and land
cover classes. However, a proper assessment of biomass production and water
productivity for individual crops was not yet achieved, because the individual
growth cycles for specific crops in all the regions need to be determined and are
not yet available for South Africa from WaPOR. The biomass data are also
available for C3 and C4 crops, and require conversion to estimate biomass for
other crop and vegetation types.



Samenvatting

Verdamping is een belangrijk onderdeel van de hydrologische cyclus en is
erkend als een essentiéle klimaatvariabele (ECV). Verdamping speelt een
cruciale en verbindende rol in de koolstof, energie en water cycli op aarde. Met
name de latente warmteopslag en uitwisselingen zijn de grootste bron van
energie in de atmosfeer. In semi-aride gebieden is actuele verdamping bijna
gelijk aan neerslag, en potentiéle evapotranspiratie aanzienlijk hoger. Dit duidt
het belang van een nauwkeurige schatting van verdamping ter verbetering van
het waterbeheer met name in droge gebieden. De bepaling van verdamping
middels conventionele metingen van meteorologische stations, wordt
gehinderd door de gemiddeld slechte staat en beperkte ruimtelijke dichtheid
van hydro-meteorologische netwerken en lage kapitaalinvesteringen om deze
te onderhouden in vele landen.

Aardobservatie technologie kan een cruciaal hulpmiddel zijn voor het bepalen
en in kaart brengen van verdamping, vooral in afgelegen gebieden met weinig
of geen grondgegevens. Dit proefschrift evalueerde de prestaties van
berekeningen van verdamping door middel van aardobservatie in semi-aride
ecosystemen in Zuid-Afrika. Het evalueerde ook de waterproductiviteit, afgeleid
met behulp van aardobservatie, van verschillende landgebruik en
bodembedekking klassen, in Zuid Afrika.

Een uitgebreide analyse van de straling- en energiebalans van het
landoppervlak, alsmede het balansoverschot en de verdeling (partitie) van
zonnestraling in andere energie componenten, van een 15-jarige (2000-2014)
eddy covariantie dataset van de Skukuza Fluxnet-site werd behandeld in
hoofdstuk 2. Dit om de kwaliteit van deze meetgegevens te kwantificeren en
beter te begrijpen. De energie balans ratio (EBR) of de verhouding tussen, a>
zonnestraling minus grond opwarming door warmte geleiding en b> de
convectieve en latente warmte stromingscomponenten werd gebruikt om
gegevens van lage kwaliteit te verwijderen. Ze benadrukten ook de variatie van
het energiebalans overschot aan het landoppervlak per seizoen, per jaar,
inclusief de weer invloeden zoals windsnelheid, waterdampdruk deficit en netto
zonnestraling, op de dagelijkse variaties van de energiebalans aan het
landoppervlak. De EBR analyseresultaten werden gebruikt om perioden van
hoogwaardige eddy-covariantie gegevens te selecteren die werden gebruikt
voor het evalueren van de prestaties van op satelliet data gebaseerde ET-
modellen. Ondertussen, als kenmerk voor semi-aride gebieden, toonde de
analyse van de energieverdeling aan, dat de voelbare of convectieve warmteflux
de meest dominante omzetting vormt van de netto zonnestraling tijdens



perioden van weinig of geen neerslag (lage waterbeschikbaarheid) tussen maart
en oktober. Tijdens het natte seizoen was de latente warmte uitwisseling of
verdampingswarmte dan weer de meest dominante energieomzetting. De
beschikbaarheid van water (neerslag en bodemvocht) bleek een bepalende
factor bij de verdeling van zonnestralingsenergie aan het landoppevlak in
tropische semi-aride ecoklimaten.

In hoofdstuk 3 hebben we de prestaties onderzocht van twee op satelliet
gebaseerde berekeningsmethoden voor verdampings (ET) en twee globale of
regionale ET-data producten in twee contrasterende ecoregio's in Zuid-Afrika.
Dit waren de op het Priestley-Taylor model gebaseerde landopperviakte
temperatuur / vegetatie-index (TsVI), en een op satelliet data gebaseerde
Penman-Monteith (PM-Mu) model. De ET- data producten zijn de Meteosat
Second Generation ET (MET) en de Global Land-oppervlakte-verdamping:
Amsterdam Methodology (GLEAM). Onze resultaten waren een weerspiegeling
van eerdere onderzoeken naar de toepassing van ET-modellen, die aantoonden
dat geen enkel model op jaarbasis beter presteerde dan de andere op de twee
locaties. Het PM-Mu-model presteerde echter significant beter tijdens perioden
van hoge verdamping in vergelijking met perioden van lage verdamping. Voor
de wereldwijde evapotranspiratieproducten was de grootste uitdaging de
ruimtelijke schaal (e.g. 10 km?) die werd vergeleken met een gemiddelde
meetschaal aan de grond van ongeveer 1 km?2. Onze resultaten toonden aan dat
verder onderzoek van het PM-Mu model mogelijk is om de schatting van lage
ET-metingen onder droge onstandigheden en dus in semi-aride gebieden in
Zuid-Afrika te verbeteren.

Hoofdstuk 4 analyseerde de onzekerheid en gevoeligheid van basis- en
intermediaire input variabelen van een op satelliet data gebaseerde versie van
het Penman-Monteith (PM-Mu) verdampings (ET)-model. Onzekerheid- en
gevoeligheidsanalyse is een noodzakelijke stap in elke wiskundige modellering,
hoewel het vaak wordt genegeerd bij verdampingsmodelleren. De Welgegund
Fluxnet site werd mede gebruikt in deze studie, naast de Skukuza flux-site
vanwege de beschikbaarheid van gegevens tijdens de analyse periode. Absolute
en relatieve onzekerheden van de meteorologische en op satelliet data
gebaseerde variabelen en parameters voor de input van de atmosferische- en
landoppervlakte gegevens van het PM-Mu-model werden afgeleid. De
propagatie van fouten en onzekerheden, via de tussenliggende variabelen, o.a.
netto zonnestraling en aerodynamische- en oppervlakte weerstandsvariabelen,
werd ook uitgevoerd om tot de uiteindelijke totale onzekerheid van verdamping
te komen. Onze analyse wees op relatief hoge onzekerheden geassocieerd met
relatieve vochtigheid (RH), en dus alle intermediaire variabelen geassocieerd



met RH, zoals het waterdampdruk deficit (VPD) en de oppervlakte- en
aerodynamische luchtweerstanden. Dit in tegenstelling tot vele andere studies
die de “leaf area index” (LAI) of blad oppervlakte index als grootste onzekerheid
en als meest significant rapporteerden. De semi-aride omstandigheden en grote
seizoensgebondenheid van o.a. neerslag van het regionale Zuid-Afrikaanse
klimaat en de zeer hoge tijdvariaties in luchtvochtigheid, lucht- en
landoppervlaktetemperaturen kunnen de waargenomen onzekerheden in deze
studie verklaren. Bovendien toonden de resultaten ook aan dat het PM-Mu ET-
algoritme het meest gevoelig was voor het temperatuurverschil tussen lucht en
het landoppervlak. Een nauwkeurige beoordeling van deze “in situ” en op
afstand door satelliet waargenomen temperatuur variabelen is vereist om
betrouwbare schattingen van een verdampingsmodel te verkrijgen in deze
droge regio's en klimaten. Naast het aantonen van onzekerheden van de
belangrijkste model variabelen in de schatting van verdamping met het PM-Mu-
model, geven deze resultaten ook een goede indicatie van het effect van
klimaatverandering en veranderingen in landgebruik en bodembedekking op
verdamping in deze semi-aride regio’s van Zuid Afrika.

Ten slotte is een evaluatie gemaakt van op satelliet data gebaseerde
watergebruik en productiviteit schattingen van verschillende landgebruiks- en
bodembedekking klassen, gebruik makend van data van het FAO WaPOR-data
platform. Een nauwkeurigheidsbeoordeling van de WaPOR-neerslag en ET-
producten toonde een redelijke prestatie van het verdampingsproduct, terwijl
de neerslagnauwkeurigheid vrij laag was. De variabiliteit van biomassa,
verdamping en waterproductiviteit werd geanalyzeerd voor de verschillende
klassen van landgebruik en bodembedekking. Een volledige beoordeling van
biomassaproductie en waterproductiviteit voor individuele gewassen was op dit
moment nog niet mogelijk, omdat de gegevens over de groeicyclus van vele
gewassen in de regio’s, vooral jaarlijks beschikbaar zijn voor Zuid-Afrika. De
biomassagegevens zijn ook beschikbaar voor C3- en C4-gewassen en vereisen
een goede conversie om biomassa correct in te schatten voor andere gewassen
en vegetatie.
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1 INTRODUCTION



1.1 Background

Water is the most abundant element on the Earth’s surface (about 71%);
however, 96.5% is held in oceans, and therefore not fit for human consumption.
Of the remaining 3.5%, 87% is inaccessible, locked in either polar icecaps or deep
underground aquifers. Therefore, only 0.4% is available as renewable
freshwater for human consumption (Cap-Net, 2014). Water constantly changes
from one state to another, reaching the land as precipitation (liquid or snow)
and returning to the atmosphere through evapotranspiration (ET) in gaseous
form, and some is available as runoff and groundwater storage. Global
estimates of evapotranspiration are 60-65% of precipitation Rockstrom &
Gordon, 2001; Trenberth et al., 2007). In semi-arid regions (with an Aridity
Index of 0.2 to 0.5) (Middleton and Thomas 1997), however, precipitation is
highly variable and unpredictable, with ET almost equal to, and potential ET
(ET,) being significantly higher than precipitation (Kurc & Small, 2004; Sala
et al., 1992). These areas cover over 40% of the terrestrial surface and are
expected to be highly sensitive to climate and land-use change (Asner et al.,
2003; Jia et al., 2014). This, combined with the spatial and temporal variability
of each hydrological cycle component and/or process, makes water resources
planning and management complex. Despite the importance of establishing
water resources management principles and practices at operational scale,
there is insufficient information on water use by different land uses (UNESCO &
Earthscan, 2009). In sub-Saharan Africa particularly, this is further aggravated by
the poor state of hydro-meteorological networks and low capital investment to
maintain them.

Evapotranspiration is a key component of the hydrological cycle. It is listed as
one of the 48 observation priorities of water societal benefit area (Water SBA)
by the Group on Earth Observation (GEO) (GEO, 2010), as well as one of the
essential climate variables (ECV) (GCOS, 2009). It is a critical nexus between the
energy, water and carbon cycles, with latent heat of vapourisation serving as the
largest heat sink in the atmosphere (Trenberth et al., 2009). It facilitates the
continuation of precipitation by replacing the vapour lost through condensation
(Brutsaert, 2009), and is crucial for the transportation of minerals and nutrients
required for plant growth as well as creating a beneficial cooling process to plant
canopies in many climates. Consequently, it plays an important role in
hydrology, agriculture, meteorology, and climatology.

Accurate estimates of ET contribute to confidence in the quantification of
the catchment water balance and facilitate a variety of operational and
management actions in sustainable water resources management ( Allen et
al., 2007; Mu et al., 2007; Su, 2002). The accurate ET estimates also improve
how we understand the state, spatial and temporal variability of this



significant component of the water cycle at different scales. Managing the
evaporative water use from various landscapes and at different scales is
important to researchers, water resource managers, and policymakers. To do
so, the relationship between land use, water resources, and their use needs to
be described quantitatively and accurately (Jewitt, 2006). However, quantifying
this variable comes with a number of challenges because of its high spatio-
temporal variability, and the uncertainties that originate from the indirect
nature of its measurement.

Semi-arid regions, for instance in Southern Africa, are characterised by
abundant sunshine, high rainfall variability, frequent droughts, low soil moisture
and extreme events such as flash floods. These conditions provide the
foundation for climatic and water vulnerability of communities in these areas,
which can ultimately threaten community health and food security. Improving
the water resources management of semi-arid regions requires accurate
knowledge of the hydrological processes involved. Indeed, data scarcity is still
a major bottleneck for improving sustainable water use and water resources
management. Worldwide, river flow monitoring networks are in decline and
other hydrometeorological measurements tend to follow the same fate, due
to lack of maintenance (Maidment et al., 2014; Pegram & Bardossy, 2013). On
the other hand, advances in remote sensing and numerous recent satellite
missions have generated a wealth of potentially relevant data that may lead
to improved water resources management.

1.2 Problem statement

Evapotranspiration is one of the major hydrologic processes, and is responsible
for regulating the water and energy balance of the Earth's atmosphere,
biosphere, and hydrosphere; hence, it has been under significant investigation
for over a century (Bowen, 1926; Dalton, 1802; Rohwer, 1931). ET is a
challenging variable to measure due to its high spatial and temporal variability,
and the complexity of the associated hydrometeorological processes. In (semi-)
arid regions, this is exacerbated by the fact that a large proportion of the low
and sporadic precipitation is returned to the atmosphere via ET. These regions
face water scarcity, which is a major constraint on economic welfare and
sustainable development. Techniques have been developed to measure and
estimate ET at different scales. They are categorised into methods based on i)
direct measurements with porometry or lysimeters (Allen et al., 1991; Gebler et
al., 2015; Lopez-Urrea et al., 2006), and soil moisture depletion measurements
(Hillel,  1982); and i) atmospheric  measurements, including
micrometeorological and energy balance techniques like Bowen ratio (Bowen,
1926; Peacock & Hess, 2004; Perez et al., 1999), eddy correlation (D. Baldocchi
et al., 2001; R Leuning et al., 1982; John L. Monteith & Unsworth, 2013; Stull,



2012), and scintillometry (Hemakumara et al.,, 2003; S. M. Liu et al., 20133;
Meijninger et al., 2006). The high cost of establishing and maintaining these
(in)direct measurement systems through field networks continues to present an
obvious limitation in understanding and monitoring ET dynamics. Hence, models
were also developed to estimate this variable from routinely available
meteorological and land surface characteristics data (Bouchet, 1963;
Hargreaves & Samani, 1982; J. Monteith, 1963; J. L. Monteith; Penman, 1948;
Priestley & Taylor, 1972). These techniques and methods mainly estimate ET at
local, field-scale or as an average over a large area. However, the spatial
averaging of ET presents inaccuracies because of its high spatial variability and
complexity of the associated hydrometeorological processes.

The emergence of remote sensing (RS) technology, consequently, presented the
research community with the opportunity to map ET and investigate its use and
dynamics at larger spatial scales. RS provides spatially explicit and relatively
frequent measurements of biophysical variables that affect ET, such as land
cover type, surface albedo (a), emissivity (¢) and density, hence it provides
inputs to ET models. Research has been conducted to develop RS based ET
mapping models. Based on their structural complexities, theories and
underlying assumptions, parameterisations, and uncertainties and limitations,
these models are categorised under: (i) empirical methods that use statistically-
derived relationships between ET and vegetation indices such as the normalised
difference vegetation index (NDVI) or the enhanced vegetation index (EVI), or
between ET and the difference between surface and air temperatures; (ii)
residual surface energy balance methods, including the Surface Energy Balance
Algorithm over Land (SEBAL), Mapping EvapoTranspiration at high Resolution
with Internalized Calibration (METRIC), Surface Energy Balance System (SEBS),
Atmosphere-Land EXchange Inverse (ALEXI); (iii) physically-based methods
involving the Penman-Monteith (PM) and the simpler Priestley—Taylor (PT)
equations; and (iv) data assimilation methods applied to the heat diffusion
equation and radiometric surface temperature sequences.

Remote sensing-based ET models are under constant refinement to improve
their accuracies, especially in non-water stressed climates where there are more
established, long-term calibration and validation (cal/val) ET measurement and
weather stations, including eddy covariance systems, lysimeters, and large
aperture scintillometers. The refinements also include the models evolving from
single-source energy balance models, where vegetation and soil are analysed in
a combined energy budget, to dual-source models, where vegetation and soil
energy budgets are analysed separately, and multi-source and multi-layer
models where vegetation, soil and intercepted precipitation are analysed
separately. A number of issues and/or challenges are, however, presented in



semi-arid regions, especially Sub-Saharan Africa, which has fewer hydrological
measurement networks for rigorous cal/val of ET models. These regions are also
water-scarce, which is an additional constraint when applying models that were
initially developed for non-water strained environments.

The issues which will be discussed in this thesis (and more in-depth literature
review from Chapter 2 to Chapter 4) include, although not limited to, the ones
detailed in Section 1.3.

1.3 Literature review

1.3.1 Eddy covariance flux data quality and surface energy partitioning

Turbulent fluxes, i.e. sensible and latent heat fluxes, are key variables of the
energy and water exchanges in the land-atmosphere interactions. They are
responsible for the dynamics of the energy, water, and biogeochemical cycles
while driving the evolution and characteristics of the planetary boundary layer,
such as its depth, thermodynamic behaviour, surface-air temperature, and
humidity. The partitioning of available solar radiation into turbulent fluxes
impacts the hydrological cycle, planetary boundary layer characteristics, cloud
development, and climate. How the partitioning varies across different climates
is a function of, among others, water availability, solar radiation, and land
surface/ vegetation characteristics. Studies on surface energy partitioning have
been covered under different climates with varying results.

To measure these fluxes, techniques like the scintillometer, lysimeter, and eddy
covariance (EC) systems have been developed. So far, the EC technique is
considered the most reliable method for measuring carbon, energy and water
fluxes, and has become a standard measurement technique in the study of the
surface-atmosphere boundary layer. Combined with measurements of solar
radiation and soil heat flux, this technique provides detailed data for the
estimation of the terrestrial water, energy, and carbon balances, and for the
understanding of the related physical and biological processes (Aubinet et al.,
1999; Baldocchi et al., 2001; Law et al., 2002). They play a critical role in the
calibration and validation of ecosystem, climate, and land-surface models. More
details on its practical and theoretical aspects are given by Leuning et al. (1982),
Goulden et al. (1996), Finnigan et al. (2003), Baldocchi et al. (2001), and Gash
and Dolman (2003). Many EC systems have been established across the globe
for long-term monitoring of the different fluxes under the FLUXNET network.
However, most of the stations are deployed in the Northern Hemisphere than
the Southern Hemisphere, especially Sub-Saharan Africa (Baldocchi, 2008;
Baldocchi, 2003; Schmid, 1994; Wofsy et al., 1993). The lack of instrumentation
in these regions means there are limited long-term flux measurements to study



the energy flux partitioning and its control, to support comprehensive analyses
of the land surface exchange processes and to advance model development and
validation (Kurc & Small, 2004; Saux-Picart et al., 2009).

As much as EC systems are the most reliable, they pose a number of challenges
in terms of data processing methods and quality, especially under complex
conditions (such as heterogeneous topography and unfavourable weather, like
high turbulence and low wind speed). These result in surface energy imbalance,
where available energy (A), i.e. net radiation less soil heat flux (Rnet-G), does
not equal the sum of turbulent fluxes (sensible heat flux (H) plus latent heat flux
(AE)). This lack of surface energy balance closure has significant implications on
how energy flux measurements are interpreted and their use in cal/ val of land
surface and climate models. Extensive research done to assess this issue has
shown a closure error of 20 — 30% (Barr et al., 2012; Chen et al., 2009; Foken et
al., 2010; Mauder et al., 2007), with the surface energy balance closure (SEBC)
assessment being a standard performance criterion of EC flux data (Twine et al.,
2000; Wilson et al., 2002). The non-closure of the SEB has been documented to
be a result of a number of factors, such as the exclusion of soil and canopy heat
storage, low and high-frequency turbulence in the computation of the turbulent
fluxes, advective flux divergence, and inadequate sampling of large-scale, land
surface heterogeneities, systematic measurement and sampling errors.

As a standard for quality assessment of eddy covariance data, the SEB closure
will be investigated. Furthermore, how the solar radiation is partitioned into the
two fluxes in a semi-arid FLUXNET site will be addressed in this thesis.

1.3.2 Performance of remote sensing-based ET models

Using the fundamentals of ET estimation, such as the surface energy balance,
great strides have been made on developing models to estimate ET using
remote sensing techniques. These models incorporate meteorological and land
surface parameters retrieved quantitatively from satellite remote sensing data
to estimate ET. Until recently, these models have been calibrated and rigorously
validated in temperate regions due to the availability of in situ networks that
have provided long-term data. The emergence of remote sensing technology
has proven invaluable in providing routine data that cannot be represented by
point measurements, and due to its relative accuracy and cost-effectiveness.
Intensive reviews have been done on the different RS based ET models, resulting
in them being categorised as shown in Section 1.2 (Carlson, 2007; Kalma et al.,
2008; Liou & Kar, 2014; Vinukollu et al., 2011a; Wang & Dickinson, 2012; Zhang
et al., 2016). A recent review examines issues beyond the already tried and
tested ET models, and highlights , need for new paradigms in ET estimation
(McCabe et al., 2019). Prior to reviewing the intercomparison studies of the



different ET methods that have been done, a brief look at each category of the
models will be done.

Surface energy balance (SEB) models were the earliest to be used to estimate
ET using RS data as inputs. In this approach, latent heat flux (AE) is estimated as
a residual of the surface energy budget and heat transfer equation. The main
difference in these methods is the estimation of sensible heat flux (H). In single-
source SEB models, like the Surface Energy Balance Algorithm for Land (SEBAL;
Bastiaanssen et al. (1998a); W. G. M. Bastiaanssen et al. (1998b)), Simplified
Surface Energy Balance Index (S-SEBI; Roerink et al. (2000), Surface Energy
Balance System (SEBS; Su (1999, 2002)), Mapping Evapotranspiration at High
Resolution with Internalized Calibration (METRIC; Allen et al. (2007)), and
Operational Simplified Surface Energy Balance (SSEBop; Senay et al. (2014)), H
estimation is based on how the dry (maximum H and minimum AE) and wet
(maximum AE and minimum H) limits are defined, as well as interpolating
between the defined lower and upper limits of H and AE for a given set of
parameters. One major assumption of the single source models is that there are
little or no changes to the surface available energy in space, with sufficient land
surface variation to allow for dry and wet limits to be identified within the study
area. SEBS was evaluated in this thesis, however, due to calibration difficulties
around model stability, it was not reported on in Chapter 3. Dual-source SEB
models, on the other hand, estimate soil evaporation and transpiration
separately by using different resistances for the two surfaces. These models
include the two source energy balance model (TSEB), Two-Source Model (TSM;
(Norman et al., 2000), Two-Source Time Integrated Model (TSTIM; (Anderson et
al., 1997)), Atmosphere-Land Exchange Inverse (ALEXI; (Anderson et al., 2007)),
Dual Temperature Difference (DTD; (Norman et al., 2000)), and Enhanced Two-
Source Evapotranspiration Model for Land (ETEML; Yang et al., 2015b)).

Combination type models, like the Penman-Monteith (PM) (Monteith, 1965;
Penman, 1948) incorporate the energy (i.e. the energy required to maintain
evapotranspiration) and aerodynamic terms (for the atmosphere’s ability to
remove water vapour from the surface). Deemed as the standard for ET
estimation, the PM model has been adopted by the Food and Agriculture
Organization of the United Nations (FAO) in crop ET modelling, as well as a basis
in the development of the SEB models. The use of remote sensing data as inputs
to this algorithm has also been studied intensively (Cleugh et al., 2007; Leuning
et al.,, 2008; Mu et al., 2007). The initial single-source PM model has been
adapted into a multi-source model that estimates transpiration, soil and
intercepted evaporation separately (Mu et al., 2011). Also, different versions of
PM, for instance, those that include soil moisture to constrain surface
conductance, instead of using vapour pressure deficit as a proxy, and



modifications in the parameterisation of the resistances, are also available (Bai
et al., 2017; Chang et al., 2018; Di et al., 2015; Sun et al., 2013). Meanwhile,
Priestley-Taylor (Priestley & Taylor, 1972), which is a simplified version of PM,
has also been applied to estimate ET using remote sensing data. Modifications
to the PT include adaptations to estimate the evaporative fraction (EF) using the
PT parameter (apr) and the triangle feature space between NDVI and LST (land
surface temperature) (Ts-VI ET estimation method), surface albedo and
vegetation fraction cover; and incorporating ecophysiological constraint
functions (Jet Propulsion Laboratory PT (JPL-PT) method), and the rainfall
interception loss (Fisher et al., 2008; Jiang & Islam, 1999, 2001; Miralles et al.,
2011; Song et al., 2016; Wang et al., 2006; Yao et al., 2013; Yao et al., 2014).

Furthermore, efforts have been made to generate global RS based ET products
by employing the described methods. The Penman-Monteith based (MOD16 ET)
product is derived using MODIS land surface characteristics products and
meteorological data generated by the Global Modelling and Assimilation Office
(GMAOQ) Goddard Earth Observing System Data Assimilation System Version 5
(GEOS-5), as inputs (Mu et al., 2007; Mu et al., 2011). On the other hand, the
EUMETSAT Satellite Application Facility on Land Surface Analysis (LSA-SAF)
derived Meteosat Second Generation geostationary satellites ET product (MET)
using the SEVIRI products, based on the Hydrology Tiled ECMWF Scheme for
Surface Exchanges over Land (H-TESSEL) scheme (Ghilain et al., 2011; Ghilain et
al., 2012; Ghilain et al., 2014). The MET product also uses a version of PM in its
estimation of latent heat flux. The Global Land Evaporation Amsterdam Model
(GLEAM) model is made up of different algorithms, the base being the PT
equation, then a soil water module, stress module, and the interception module.
All these modules are driven by remote sensing data to estimate different
components of ET (Martens et al., 2017; Miralles et al., 2011).

Validating these remote sensing ET models is essential for them to be used
confidently under different eco-climates. Although validation exercises have
commonly focused on single models, ET model intercomparison studies have
been done to rank their performance across different eco-climates. In other
instances, ET models have been intercompared to gain a better understanding
of their differences and possible disparities between the models. In other cases,
these are done to understand the effect of energy and moisture exchange and
transport processes on climate feedback. Finally, studies were done to select
the best performing models for water management, use and application
purposes. Despite that they cover different eco-climates, most intercomparison
studies have mainly concentrated in the Northern Hemisphere and the
Australian region. For instance, as much as their evaluation covered arid and
semi-arid regions, Michel et al. (2015) evaluated PT-JPL, PM-Mu, SEBS and the



GLEAM in 24 FLUXNET sites in Australia, Europe, and North America. Their
results showed good performances of PT-based models (PT-JPL and GLEAM),
while  PM-Mu mostly underestimated and SEBS showed a systematic
overestimation of ET. They also reported on the low performances of the ET
models in dry regions. Similarly, Miralles et al. (2016) assessed global ET
products derived using the same models (except SEBS) against catchment water
balance estimated ET in 837 catchments. PM generally underestimated ET
throughout the continents. PT-based models show overestimations in Europe
and Amazonia and lower than average ET in North America, but disagree in
water-stressed regions of Africa and Australia due to the model representation
of evaporativestress. McCabe et al. (2015) also reported the poor performance
of the same models in water-stressed regions. Chirouze et al. (2014)
intercompared four SEB models (S-SEBI, TSEB, SEBS and a modified triangle
method, VIT) in irrigated semi-arid Yaqui Valley of Mexico. They reported poor
performance of the models during senescence, which they attribute to poor
partitioning of turbulent fluxes and of the ET components of evaporation and
transpiration. In the African continent, Trambauer et al. (2014) intercompared
the MOD16 and GLEAM ET products against water balance based PCR-GLOBWB
modelled ET by subdividing the continent into regions based on aridity and
precipitation. They mention the challenges of deriving ET products calibrated
using input data validated across the African continent, and more importantly
the validation of ET outputs with field datasets acquired in various ecoregions in
Africa. Poor calibration and validation of modelled ET present a huge challenge
in studies investigating the intensification of the hydrological cycle and climate
change in Sub-Saharan Africa (Marshall et al., 2013). This consequently makes
extensive evaluation of remote sensing ET models and products still valid and
necessary in the sub-Sahara African context.

1.3.3 Uncertainty and sensitivity in evapotranspiration estimation

Evapotranspiration is influenced by a number of biological and environmental
factors, making it a complex process to measure. It is therefore often estimated
using models based on weather and land surface data, which on their own are
highly variable and carry uncertainties of their own. These models carry
different errors and uncertainty that are propagated to the final output. The
errors and uncertainties are attributed to i) the model structure, which reflects
lack of understanding of the process, hence presenting simplified descriptions
of the modelled process compared to the reality, ii) input variables, both
measured and derived, and iii) study site characteristics.

The terms uncertainty analysis (UA) and sensitivity analysis (SA) are often used
interchangeably. However, UA assesses the degree of confidence of the model



output and system performance indices by identifying possible model input
errors, whereas SA quantifies the effect of input error and uncertainties on
model output (Saltelli et al., 2004). SA also allows in ranking the influence of
input variables on the models' output, thus identifying the critical model inputs
and in some cases helps in removing insignificant inputs from the model,
resulting in model simplification. These methods have become critical parts of
the modelling process, especially in fields like hydrological, ecological and crop
modelling. They are the first steps towards model development and calibration
as they answer questions like where data collection efforts should focus, what
degree of care should be taken for parameter estimation and the relative
importance of various parameters (Brugnach et al., 2008). SA methods of
varying complexity exist, from simple local (LSA) to global SA (GSA) techniques,
from differential to Monte Carlo analysis, from measures of importance to
sensitivity indices, and from regression or correlation methods to variance -
based techniques (Frey & Patil, 2002; Hamby, 1994, 1995; Lilourne & Tarantola,
2009; Saint-Geours & Lilburne).

Most studies have focused on analysing the sensitivity of reference ET (ETo) and
potential ET (PET) models to climatic input variables across different biomes and
climates (Ambas & Baltas, 2012; Estévez et al., 2009; Gong et al., 2006; Guo et
al., 2017b; Paparrizos et al., 2017), with a few assessing actual ET model
sensitivity. In these studies, different SA methods were applied, from simple
local SA methods where sensitivity indices are estimated by changing a single
variable at a time whilst holding the rest constant to more sophisticated global
SA methods (DeJonge et al., 2015; Su, 2002). Apart from being done to identify
the most critical input variables in ET modelling, SA of ET models has been
conducted to in order to understand the potential implications of climate
change on the catchment water balance (Goyal, 2004; Tabari & Hosseinzadeh
Talaee, 2014), with few analysing the impact of climatic inputs on actual ET.
These studies have shown varying results, for example, Gong et al. (2006)
showed that the PM derived ETO was most sensitive to RH, followed by solar
shortwave radiation (Rsd), Tair and u, and that these sensitivities were season
dependent in the Yangtze River Catchment.

The emergence of RS based ET modelling presents another opportunity to
assess, not only the reaction of the ET models to climatic input variables but also
to land surface parameters, which culminates to how land-use change impacts
on ET. Few studies have investigated the sensitivity of ET models to remote
sensing input parameters (Van der Kwast et al., 2009; Wang et al., 2009). This
indicates that more work still needs to be done to understand the sensitivity of
ET models to remote sensing land surface parameters, especially considering
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the number of remote sensing-based ET models that have been extensively
evaluated across different bioclimates.

Uncertainty analysis is mostly used interchangeably with SA, while other studies
have used the term when evaluating the performance of ET models. For
instance, Westerhoff (2015) showed that PM estimated ETo is most sensitive to
temperature, followed by solar radiation, RH and cloudiness, in several locations
in New Zealand. Also, Paparrizos et al. (2017) analysed the sensitivity of several
PET models to climatic inputs in different Greek locations, to come up with the
best model suited for each area. However, few studies have explicitly explored
UA of ET models. Khan et al. (2018) tested the performance of three actual ET
products (MOD16, GLEAM, and GLDAS) against eddy covariance system
measurements from different land covers. Hofreiter and lJirka used the
International Organisation for Standardisation, Guides to the expression of
Uncertainty in Measurement (ISO GUM) method to evaluate the uncertainty of
the PM to uncertainty associated with net radiation measurements. Using the
same method, Chen et al. (2018) analysed the uncertainty of the Stanghhellini
and Baille ET equations to error associated with instruments used to measure
input variables. An uncertainty analysis study of the PM model to both climate
variables and land surface parameters is necessary to determine the degree of
confidence of the model in relation to input error and/ uncertainty. Also, this
will give an indication of how the model reacts to any change in climatic
variables, such as air temperature, net radiation, and water availability.
Furthermore, through this section, an analysis of how land use/ land cover
change impacts on ET variation.

1.3.4 Using remote sensing products to monitor water use and water
productivity

In semi-arid regions, water is a critical scarce resource that requires sustainable
use and management. Meanwhile, population expansion is resulting in
increased competition for the scarce water resources between urbanisation,
domestic water use, agriculture, mining, industrialisation and the need to
maintain a safe ecological reserve. Agriculture water use, which is already the
largest, will continue to rise as the population grows and diets change due to
improved, prosperity. Moreover, climate and global change continue to add to
the already existing pressure on water resources. This implies there is need to
produce more food with the same or even reduced amount of water from
existing and sometimes reduced croplands. Indeed, expanding croplands may
not be a viable option due to the negative environmental effect of cropland
extension. After alleviating other food production stresses like nutrient
deficiency, pest and weed infestations, improving water productivity through
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better water resource management remains the only feasible option, especially
in water-scarce regions.

Water productivity, sometimes loosely interchanged with water use efficiency,
has been defined differently based on the required outcome, but the
fundamental being the output produced per unit of water consumed. A review
by Zwart and Bastiaanssen (2004) reveals different values of WP of major crops
across the globe based on the different climatic and biome regions. Mapping
WP at various spatial scales allows for the identification of areas with good and
/ or poor water management practices. Hence, with the maturity of remote
sensing-based evapotranspiration and biomass estimation, tools are being
developed to assess and monitor water use and water productivity at larger than
farm spatial scales (Zwart et al., 2010a; Zwart et al., 2010b; Zwart & Leclert,
2010). The main focus of these studies has been wheat since it is a recognised
global staple food. Global crop water productivity maps assist in identifying
where water productivity gaps exist to show understanding where systems
perform well, and where improvements are necessary. Furthermore, they serve
as a base to spatially analyse and explain the underlying reasons for a gap in WP
by combining it with other datasets like soils, agronomic practices, and climate.

FAO, in conjunction with UNESCO-IHE Institute for Water Education and the
International Water Management Institute (IWMlI), under the ‘Remote sensing
for water productivity’ programme, has developed an open-access platform to
assess and monitor WP, as well as identify WP gaps, using remote sensing data.
The ultimate goal of this programme is to identify ways of closing these gaps by
increasing agricultural WP sustainably. WP of different land use classes derived
from this platform needs to be evaluated against existing literature values and
in situ data like EC flux data so that this dataset can be used with confidence
from farm to policy level.

1.4 Thesis objectives

Based on the literature review and previous work done, a number of issues have
been identified, especially concerning remote sensing ET estimation in semi-arid
(Sub-Saharan Africa) regions. The overall aim of this thesis is to

1. evaluate the performance of remote sensing-based evapotranspiration
models in semi-arid biomes, and

2. assess the use of remote sensing-based ET model estimates for monitoring
water use and water productivity of different land use/ land covers.

To achieve the aim of this work, the main objectives were subdivided into the
following specific objectives:
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i To assess the surface energy balance closure and partitioning of the
semi-arid Skukuza eddy covariance flux tower system

ii. To evaluate the performance of remote sensing-based ET models
through comparison with flux tower data in order to identify the most
appropriate model for South African dry ecosystems

iii. To analyse the uncertainty and sensitivity of a selected ET model to
measured and remote sensing derived input variables

iv. To apply different remote sensing products to determine and monitor
water use and productivity under different land cover types.

1.5 Thesis outline

This thesis comprises six chapters, which are organised according to the specific
objectives. The chapters are structured as follows:

Chapter one introduces the scientific background and problem statement. The
objectives of this study are listed in this chapter.

Chapter two presents an in-depth analysis of the tropical savanna Skukuza eddy
covariance (EC) flux tower data, to be further used in this research, is done. This
includes assessing these data for surface energy balance closure, an accepted
quality assurance technique, and how the available energy is partitioned into
turbulent fluxes. In this chapter, years with low-quality EC data are red-flagged
and discarded from further analysis.

Chapter three evaluates the performance of two ET models, plus two global ET
products. The models that were examined include the land surface
temperature- vegetation index triangle method (Ts-VI), which is a modified
version Priestley-Taylor model, and the multisource Mu modified Penman-
Monteith (PM-Mu) model, and the LSA-SAF MET and GLEAM global ET products.
The ET model outputs are tested against two natural vegetation ecosystems in
South Africa, i.e. tropical savanna and Mediterranean fynbos.

Chapter four analyses the uncertainty and sensitivity of the PM-Mu model to
both measured meteorological and remote sensing-based land surface
parameters at two natural vegetation sites.

Given the extensive evaluation of remote sensing-based ET across different
biomes and climates, as shown in the previous chapter, and similar advances in
other areas, including aboveground biomass mapping, chapter five assesses the
use of these Remote Sensing products from the FAO WaPOR platform, to
estimate water use and productivity of different land use classes in South Africa.
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Chapter six provides a synthesis of the findings of this study, giving general
remarks and discussion on the contributions made by this work.

Recommendations for further work to be done for further study are also
mentioned.
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2 SURFACE ENERGY BALANCECLOSURE AND
PARTITIONING ASSESSMENT AT THE SKUKUZA FLUXNET
SITE
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2.1 ABSTRACT!

Eddy covariance flux tower systems provide essential terrestrial climate, water,
and radiation budget information needed for environmental monitoring and
evaluation of climate change impacts on ecosystems and society in general.
They are also intended for calibration and validation of satellite-based Earth
observation and monitoring efforts, such as assessment of evapotranspiration
from land and vegetation surfaces using different modelling approaches.

In this paper, 15 years of Skukuza eddy covariance data, i.e. from 2000 to 2014,
were analysed for surface energy balance closure (SEBC) and partitioning. The
surface energy balance closure was evaluated using the ordinary least squares
regression (OLS) of turbulent energy fluxes (sensible (H) and latent heat (AE))
against available energy (net radiation (Rnet) less soil heat (G)), and the energy
balance ratio (EBR). Partitioning of the surface energy during the wet and dry
seasons was also investigated, as well as how it is affected by atmospheric
vapour pressure deficit (VPD) and net radiation. After filtering years with low-
quality data (2004—2008), our results gave an overall mean EBR of 0.93. Seasonal
variations of EBR also showed the wet season with 1.17 and spring (1.02) being
closest to unity, with the dry season (0.70) having the highest imbalance.
Nocturnal surface energy closure was very low at 0.26, and this was linked to
low friction velocity during night-time, with results showing an increase in
closure with an increase in friction velocity.

The energy partitioning analysis showed that sensible heat flux is the dominant
portion of net radiation, especially between March and October, followed by
latent heat flux, and lastly the soil heat flux, and during the wet season where
latent heat flux dominated sensible heat flux. An increase in net radiation was
characterised by an increase in both LE and H, with LE showing a higher rate of
increase than H in the wet season, and the reverse happens during the dry
season. An increase in VPD is correlated with a decrease in LE and an increase in
H during the wet season, and an increase in both fluxes during the dry season.

! This chapter is based on:

Majozi N. P., Mannaerts C.M., Ramoelo A., Mathieu R.S.A., Nickless A., Verhoef W.
Analysing surface energy balance closure and partitioning over a semi-arid FLUXNET
site in Skukuza, Kruger National Park, South Africa, Hydrol. Earth Syst. Sci., 21, 3401—
3415, 2017, https://doi.org/10.5194/hess-21-3401-2017.
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2.2 Introduction

Net solar radiation (Rnet) reaching the Earth’s surface determines the amount
of energy available for latent (LE), sensible (H), and soil (G) heat fluxes, and heat
stored by the canopy, the ground, and energy storage terms by photosynthesis.
Energy partitioning on the Earth’s surface is a function of interactions between
biogeochemical cycling, plant physiology, the state of the atmospheric boundary
layer, and climate (Wilson et al., 2002). How the turbulent fluxes (H and LE) are
partitioned in an ecosystem plays a critical role in determining the hydrological
cycle, boundary layer development, weather, and climate (Falge et al., 2005).
Understanding the partitioning of energy, particularly the turbulent fluxes, is
important for water resource management in (semi) arid regions, where
reference evapotranspiration far exceeds precipitation.

Eddy covariance (EC) systems are currently the most reliable method for
measuring carbon, energy, and water fluxes, and they have become a standard
technique in the study of surface-atmosphere boundary layer interactions. They
provide a distinct contribution to the study of environmental, biological and
climatological controls of the net surface exchanges between the land surface
including vegetation) and the atmosphere (Aubinet et al., 1999; Baldocchi et al.,
2001). The accuracy of these data is very important because they are used to
validate and assess the performance of land surface and climate models.
However, the EC techniques have limitations in terms of data processing and
quality control methods, especially under complex conditions (e.g. unfavourable
weather, such as high turbulence and low wind speed, and heterogeneous
topography). In EC measurements, the ideal situation is that available energy,
i.e. net radiation minus soil heat flux, is equal to the sum of the turbulent fluxes
(Rnet-G=LE+H); however, in most instances, the measured available energy is
larger than the sum of the measured turbulent fluxes of sensible heat and latent
heat. Extensive research on the issue of surface energy imbalance in EC
observations has been done (Barr et al., 2012; S. Chen et al., 2009; Foken et al.,
2010; Franssen et al., 2010; Mauder et al., 2007), and closure error (or
imbalance) has been documented to be around 10-30% (Sanchez et al., 2010;
Von Randow et al., 2004; Wilson et al., 2002).

Causes for non-closure, as extensively discussed, include unaccounted soil and
canopy heat storage terms, non-inclusion of the low- and high-frequency
turbulence in the computation of the turbulent fluxes, land surface
heterogeneities, systematic measurement, and sampling errors. This imbalance
has implications on how energy flux measurements should be interpreted and
how these estimates should be compared with model simulations. The surface
energy balance closure is an accepted performance criterion of EC flux data
(Twine et al., 2000; Wilson et al., 2002), and different methods have been used
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to assess the energy closure and partitioning, including ordinary least squares
regression (OLS) method, i.e. a plot of turbulence fluxes (H+LE) against available
energy (Rnet-G), the residual method, i.e. Rnet-G-H-LE, and the energy balance
ratio, i.e. H+LE = Rnet-G. Several researchers have investigated surface energy
partitioning and energy balance closure for different ecosystems, including
savannas. Bagayoko et al. (2007) examined the seasonal variation of the energy
balance in West African savannas and noted that latent heat flux played a major
role in the wet season, whereas sensible heat flux was significant in the dry
season. In the grassland Mongolian Plateau, Li et al. (2006) concluded that
sensible heat flux dominated the energy partitioning, followed by ground heat
flux, with the rainy season showing a slight increase in latent heat flux. Gu et al.
(2006) used different ratios (Bowen ratio, G/Rnet, H/Rnet, and LE/Rnet) to
investigate surface energy exchange in the Tibetan Plateau, and showed that
during the vegetation growth period, LE was higher than H, and this was
reversed during the post-growth period.

Research using the Skukuza EC system data has focused mainly on the carbon
exchange, fire regimes, and in global analysis of the energy balance (Archibald
et al., 2009; Kutsch et al., 2008; Williams et al., 2009). However, there has been
no investigation of surface energy partitioning and energy balance closure in this
ecosystem. In this study, we examined the surface energy balance partitioning
into soil heat conduction, convection (sensible), and latent heat components
and its energy balance closure using 15 years (2000-2014) of eddy covariance
data from the Skukuza flux tower.

First, a multi-year surface energy balance closure (SEBC) analysis was done,
including the seasonal and day-night SEBC evaluations, the role of G on SEBC,
and an assessment of its error sources. This included investigating how friction
velocity affects the closure and its link to low night-time SEBC. Then, we
examined how the surface energy partitioning varies with time in this
ecosystem, based on the weather conditions in the region, particularly, in
relation to water availability (precipitation) and vegetation dynamics. The effect
of vapour pressure deficit (VPD) and Rnet on the energy partitioning between
turbulent fluxes during the wet and dry seasons was also examined. Through
this study, we expect to contribute to the existing literature on the surface
energy balance closure and partitioning, especially in semi-arid savanna areas.

23 Materials and methods

2.3.1 Site description

Established in early 2000 as part of the SAFARI 2000 campaign and experiment,
the Skukuza flux tower (25.02° S, 31.50° E) was set up to understand the
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interactions between the atmosphere and the land surface in Southern Africa
by connecting ground data of carbon, water, and energy fluxes with remote
sensing data generated by Earth-observing satellites (R. J. Scholes et al., 2001;
Shugart et al., 2004).

The site is located in the Kruger National Park (South Africa) at 365m above sea
level, and receives 550-160 mm precipitation per annum between November
and April, with significant inter-annual variability. The year is generally divided
into a hot, wet growing season and a warm, dry non-growing season. The soils
are generally shallow, with coarse sandy to sandy loam textures (about 65%
sand, 30% clay and 5% silt). The area is characterised by a catenal pattern of soils
and vegetation, with broad-leaved Combretum savanna on the crests
dominated by the small trees (Combretum apiculatum), and fine-leaved Acacia
savanna in the valleys dominated by Acacia nigrescens (Scholes et al., 2003;
Scholes et al.,, 2001). The vegetation is mainly open woodland, with
approximately 30% tree canopy cover of mixed Acacia and Combretum savanna
types. Tree canopy height is 5-8m with occasional trees (mostly Sclerocarya
birrea) reaching 10 m. The grassy and herbaceous understorey comprises
grasses such as Panicum maximum, Digitaria eriantha, Eragrostis rigidor, and
Pogonarthria squarrosa.

Eddy covariance system
Since 2000, ecosystem-level fluxes of water, heat, and carbon dioxide have been
measured using an eddy covariance system mounted at 16m height of the 22m
high flux tower. The measurements taken and the instruments used are
summarised in Table 2-1.

Table 2-1: Measurements taken and instruments used at the Skukuza eddy covariance flux
tower

Instrument Model/ brand Measurement
Sonic Gill Instruments Solent R3, Hampshire,  3-dimensional, orthogonal components of
anemometer England velocity (u, v, w (ms™)), sonic temperature
Closed path gas IRGA, LI-COR 6262, LI-COR, Lincoln Water vapour, carbon dioxide
analyser concentrations
Radiometer Kipp & Zonen CNR1, Delft, The Incoming and outgoing longwave and
Netherlands shortwave radiation
HFT3 plates Campbell Scientific Soil heat flux at 5 cm depth with 3

replicates, i.e. two under tree canopies and
one on open space

Frequency Campbell Scientific CS615, Logan, Utah ~ Volumetric soil moisture content with two
domain in the Acacia-dominated soils downhill of
reflectometry the tower at 3, 7, 16, 30, and 50 cm, and
probes another two at 5, 13, 29, and 61 cm in the

Combretum-dominated soils uphill
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From 2000 to 2005, H and LE were derived from a closed-path CO2 /H20
monitoring system, which was replaced by the open-path gas analyser in 2006.
Also, from 2000 to 2008, incident and reflected shortwave radiation (i.e. 300-
1100 nm, Wm'z), incident and reflected near-infrared (600—1100 nm, Wm_z) and
incoming and emitted longwave radiation (>3.0 pm, Wm ) measurements were
made using a two-component net radiometer (model CNR 2: Kipp & Zonen,
Delft, the Netherlands) at 20-second intervals and then recorded in the data
logger as 30-minute averages; this was replaced with the Kipp & Zonen NR-Lite
net radiometer in 2009. Soil heat flux is measured using the HFT3 plates
(Campbell Scientific) installed at 5 cm below the surface at three locations — two
under tree canopies and one between canopies.

Ancillary meteorological measurements include air temperature and relative
humidity, also measured at 16 m height, using a Campbell Scientific HMP50
probe; precipitation at the top of the flux tower using a Texas TR525M tipping
bucket rain gauge; wind speed and direction using a Climatronics wind sensor;
and soil temperature using Campbell Scientific 107 soil temperature probe.

Data pre-processing

The Eddysoft software was used to process the raw data collected from the eddy
covariance system (Kolle & Rebmann, 2007). Post-processing of the raw high-
frequency (10 Hz) data for calculation of half-hour periods of the turbulent
fluxes and CO2z (F,; g CO2 m? time™) involved standard spike filtering, planar
rotation of velocities, and lag correction to CO, and g (Aubinet et al., 1999;
Wilczak et al., 2001). Frequency response correction of some of the energy lost
due to instrument separation, tube attenuation, and gas analyser response for
LE and Fc was performed with empirical cospectral adjustment to match the H
co-spectrum (Eugster & Senn, 1995; Su et al., 2004).

2.3.2 Data analysis

Half-hourly measurements of eddy covariance and climatological data from
2000 to 2014 were used to assess surface energy partitioning and closure. When
measuring the different variables, instruments like the sonic anemometer and
the net radiometer are affected by different phenomena, like rainfall events and
wind gusts, resulting in faulty diagnostic signals, outliers and data gaps, which
are sources of error and bias. Thus, cleaning, which involved screening,
diagnosing and editing, of these half-hourly surface energy data, which was
done to reduce bias and error, rejected (i) data from periods of sensor
malfunction (i.e. when there was a faulty diagnostic signal), (ii) incomplete 30
minute data sets of Rnet, G, LE and H, and (iii) outliers. The data outliers were
detected using the outlier detection procedure found in the Statistica software.
After data screening, flux data with non-missing values of Rnet, G, LE, and H data
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were arranged according to monthly and seasonal periods (summer (December-
February), autumn (March-May), winter (June-August), and spring (September—
November)), as well as into daytime and night-time. To be used in this study, soil
heat flux was computed as a weighted mean of the three measurements, i.e.
two taken under tree canopies and one on open space.

Surface energy balance assessment

The law of conservation of energy states that energy can neither be created nor
destroyed, but is transformed from one form to another; hence, the ideal
surface energy balance equation is written as

Rnet— G=H+ LE 1

Energy imbalance occurs when both sides of the equation do not balance. The
energy balance closure was evaluated at different levels, i.e. multi-year,
seasonal, and day/night periods (the assumption being that daytime has positive
Rnet and night-time has negative Rnet), using two methods:

i.  Theordinary least squares (OLS) method, which is the regression between
turbulent fluxes and available energy. Ideal closure is when the intercept
is zero and slope and the coefficient of determination (R?) are one. An
assumption is made using this method, that there are no random errors
in the independent variables, i.e. Rnet and G, which of course is a
simplification.

ii.  The energy balance ratio (EBR), which is the ratio of the sum of turbulent
fluxes to the available energy, Y.(LE + H) / >(Rnet — G).

The EBR gives an overall evaluation of energy balance closure at longer
timescales by averaging over errors in the half-hour measurements, and the
ideal closure is 1. EBR has the potential to remove biases in the half-hourly data,
such as the tendency to overestimate positive fluxes during the day and
underestimate negative fluxes at night. We did not account for the heat storage
terms in the EBR, including soil and canopy heat storage, and energy storage by
photosynthesis and respiration, in this study. The significance and uncertainty
associated with neglecting particularly the soil heat storage term will be
discussed.

To investigate the effect of friction velocity on EBR and how it is related to the
time of day, using friction velocity, the half-hourly data were separated into four
25th percentiles, and the EBR and OLS evaluated. MATLAB was used to create
the graphs.

Analysing surface energy partitioning
To evaluate solar radiation variation and partitioning into latent and sensible
heat fluxes in this biome, EC surface energy data from 2000 to 2014 were used.
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Violations in micrometeorological assumptions, instrument malfunction, and
poor weather resulted in a proportion of the data being rejected. Yet, our aim
was to construct continuous records of half-hourly fluxes measured by eddy
covariance and compute monthly, seasonal and annual sums of surface energy
fluxes. To fill the gaps in our data set, we used the Amelia Il software, an R
program designed to impute missing data using the expectation maximisation
with bootstrapping (EMB) multiple imputation algorithm (Honaker et al., 2011).
The original data set is resampled using bootstrapping, after which the missing
data values are imputed using the EMB algorithm. Each complete imputed data
setisin such a way that the observed values are the same as those in the original
data set; only the missing values are different. The minimum, maximum and
mean statistics of Rnet, H, LE, and G were then estimated. The monthly and
seasonal trends of energy partitioning were assessed, and how each component
is affected by vegetation dynamics at the site. Surface energy partitioning was
also characterised as a direct function of VPD and Rnet during the wet and dry
seasons, following Gu et al. (2006),

2.4 Results and Discussion

2.4.1 Meteorological conditions

Figure 2-1 shows the 15-year mean monthly anomalies of air temperature, VPD
and rainfall totals at the Skukuza flux tower site. The annual average
temperatures over the 15-year period ranged between 21.1°Cin 2012 and 23.2
°C in 2003, with a 15-year average temperature of 22.9 °C. While the 2003
season being the hottest year, it was also the driest year, with an annual rainfall
of 273 mm, with 2002 also recording very low rainfall of 325 mm, both receiving
rainfall amounts below the recorded mean annual rainfall of 550+160 mm. The
wettest years were 2013, 2000, 2014 and 2004 which received 1414, 1116, 1010
and 1006 mm, respectively. 2007 and 2008 had incomplete rainfall data records
to assess their annuals. The annual daily average VPD was between 0.024 and
4.03 kPa, with an overall average of 1.28 + 0.62 kPa. The daily average VPD
decreased with rainy days and showed an increase during rain-free days. The
wet years, i.e. 2000, 2013 and 2014 had low annual average VPD of 1.98, 1.34
and 1.83 kPa, respectively, whereas the drought years exhibited high VPDs with
2002 and 2003 with 2.77 and 2.97 kPa, respectively. The long-term weather
records are comparable with the 1912—2001 and 1960-1999 climate analysis for
the same area as reported by Kruger et al. (2002) and R. J. Scholes et al. (2001),
showing a mean annual total precipitation of 547 mm and air temperature of
21.9 oC. The low rainfall during the 2000-2003 seasons was also reported by
Kutsch et al. (2008), who were investigating the connection between water
relations and carbon fluxes during the mentioned period.
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Figure 2-1: Summary of mean monthly anomalles of (a) air temperature, (b) VPD, and (c) rainfall
from 2000 to 2014

2.4.2 Surface energy balance assessment

Data completeness varied largely 7.59% (2006) and 67.97% (2013), with a mean
of 34.84%. The variation in data completeness is due to a number of factors
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including instrument failures, changes and (re)calibration, and poor weather
conditions.

Multi-year analysis of surface energy balance closure

Figure 2-2 summarises the results of the multi-year energy balance closure
analysis for the Skukuza eddy covariance system from 2000 to 2014. The
coefficient of determination (R2) for the 15-years period varied between 0.74
and 0.92, with a mean value of 0.85+0.06. The slopes ranged between 0.56 and
1.25, with a mean of 0.77+0.19, while the intercepts varied from -23.73 to 26.28,
with a mean of 1.03 and standard deviation of 18.20 Wm™. The annual energy
balance ratio (EBR) for the 15 years extended between 0.44 in 2005 and 2007
and 1.09 in 2011, with a mean of 0.78+0.24. Between 2004 and 2008, EBR
ranged between 0.44 and 0.53, whereas from 2000 to 2003 and 2009 to 2014,
the EBR was between 0.76 and 1.09. The EBR for 2010 to 2012 was slightly
greater than 1 (1.08, 1.09 and 1.01, respectively), indicating an overestimation
of the turbulent fluxes (H+AE) compared to the available energy, this still giving
the absolute imbalance values of within 30%. The remaining years, 2000-2003
and 2009, were less than 1, indicating that the turbulent fluxes were lower than
the available energy. The further away the slope is from unity, the lower the
EBR, as shown by the low slope values between 2004 and 2008. The period of
low EBR between 2004 and 2008 is characterised by the absence of negative
values of available energy (Rnet-G) as illustrated in Figure 2. Between 2000 and
2004, the CNR2 net radiometer was used to measure long and shortwave
radiation, and these were combined to derive Rnet. However, when the
pyrgeometer broke down in 2004, Rnet was derived from measured shortwave
radiation and modelled longwave radiation until the CNR2 was replaced by the
NRLite net radiometer in 2009. This was a significant source of error, as shown
by the low EBR between 2004 and 2008. The closed-path gas analyser was also
changed to the open-path gas analyser in 2006. An analysis of the 2006 data
(which had very low data completeness of 7.59%) showed that there were no
measurements recorded until September, possibly due to instrument failure.
Further analysis and discussion of the EBR were done with the exclusion of years
with low-quality data.

Our final mean multiyear EBR estimate, excluding the years with poor data
quality (2004 to 2008), was therefore 0.93 + 0.11, ranging between 0.76 and
1.09. The R? for these years varied between 0.77 and 0.92, with a mean value of
0.8710.05. The slopes were from 0.7 to 1.25, with a mean of 0.87+0.17, while
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the intercepts varied from -12.57 to 26.28, with a mean of 10.79 and standard

deviation of 13.67 Wm™2.
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Figure 2-2: 15-year series of annual regression analysis of turbulent (sensible and latent) heat
fluxes against available energy (net radiation minus ground heat flux) from 2000 to 2014 at
Skukuza, (SA). The colour bars represent the count of EBR values
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The EBR results for the Skukuza eddy covariance system, which vary between
0.76 and 1.09 with an annual mean of 0.93 (only the years with high-quality
data), are generally within the reported accuracies as shown in most studies that
report the surface energy balance closure error at 10-30%, across different
ecosystems. For instance, Wilson et al. (2002) also reported an annual mean EBR
of 0.84, ranging between 0.34 and 1.69 in an extensive study investigating 22
FLUXNET sites across the globe; EBR in ChinaFLUX sites ranged between 0.58
and 1.00, with a mean of 0.83 (Yuling, 2005); according to Were et al. (2007),
EBR values of about 0.90 were found over shrub and herbaceous patches in a
dry valley in southeast Spain, whereas Chen et al. (2009) showed a mean of 0.98
EBR for their study in the semi-arid region of Mongolia, and an EBR value of 0.80
was found by Xin and Liu (2010) in a maize crop in semi-arid conditions, in China.
Using data from the Tibetan Observation and Research Platform (TORP), Liu et
al. (2011) observed an EBR value of 0.85 in an alfalfa field in semi-arid China.

Seasonal variation of EBR

Figure 2-3 shows the seasonal OLS results for the 15 year period, excluding the
years 2004 to 2008. The slopes ranged between 0.67 and 0.87, with a mean of
0.78+0.08, and the intercepts were a mean of 19.13+ 6.30 Wm™. R? ranged
between 0.81 and 0.88 with a mean of 0.84+0.04. The EBR for the different
seasons ranged between 0.70 and 1.12, with a mean of 0.92 + 0.19. The dry
season had the lowest EBR of 0.70, while summer with an EBR of 1.02, and spring
with an EBR of 1.12, were closest to unity, and autumn had EBR of 0.84. A large
number of outliers are observed in summer due to cloudy weather conditions
and rainfall events that make the thermopile surface wet, thus reducing the
accuracy of the net radiometer. A study comparing different the performance
of different net radiometers by Blonquist et al. (2009) shows that the NR-Lite is
highly sensitive to precipitation and dew/ frost since the sensor is not protected.
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Figure 2-3: Seasonal turbulent fluxes (H+LE) correlation to available energy (Rnet-G) for Skukuza
flux tower from summer(Dec-Feb), autumn (March-May), winter (June-Aug), spring (Sept-Nov).
The colour bars represent the count of EBR values

The results of our study concur with similar studies that assessed the seasonal
variation of EBR. For instance, Wilson et al. (2002) comprehensively investigated
the energy closure of the summer and winter seasons for 22 FLUXNET sites for
50 site-years. They also reported higher energy balance correlation during the
wet compared to the dry season, with the mean R? of 0.89 and 0.68,
respectively. Whereas our results show significant differences between the wet
(1.12) and dry (0.70), their EBR showed smaller differences between the two
seasons, being 0.81 and 0.72, for summer and winter, respectively. Ma et al.
(2009) reported an opposite result from the Skukuza results, showing energy
closures of 0.70 in summer and 0.92 in winter over the flat prairie on the
northern Tibetan Plateau.
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Day- night-time effects

Figure 2-4 shows the daytime and nocturnal OLS regression results for the 15
year period. The daytime and nocturnal slopes were 0.99 and 0.11, with the
intercepts being 76.76 and 1.74 Wm ", respectively. Daytime and nocturnal R?
were 0.64 and 0.01, respectively. The EBR for the different times of day were
0.96 and 0.27, daytime and nocturnal, respectively.
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Figure 2-4: Turbulent fluxes correlation to available energy for daytime and night-time, using
the full (2000-2014) 15-year available data series. The colour bars represent the count of EBR
values

Other studies also reported a higher daytime surface energy balance closure.
For instance, Wilson et al. (2002) showed that the mean annual daytime EBR
was 0.8, whereas the nocturnal EBR was reported to be negative or was much
less or much greater than 1.

To understand the effect of friction velocity on the energy balance closure,
surface energy data which had corresponding friction velocity (u*) data, were
analysed. Using friction velocity, the data were separated into four 25-
percentiles, and the EBR and OLS evaluated. Results show that the first quartile,
the EBR was 3.94, with the 50-percentile at 0.99, the third quartile at unity, and
the fourth quartile at 1.03 (Figure 2-5). The slopes were between 1.01 and 1.12,
with the intercepts ranging between -9.26 and -0.17 Wm™2, whereas R? were
0.82, 0.86, 0.85 and 0.81 for the first to the fourth quartiles, respectively.
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Figure 2-5: OLS and EBR evaluations at different friction velocity sorted at four quartiles. The
colour bar represents the count of EBR values. The colour bars represent the count of EBR
values

An assessment shows that the time associated with the low friction velocities,
i.e. the first quartile are night-time data constituting 81% of the whole first
quartile dataset, and the last quartile had the highest number of daytime values
at 79.29% of the fourth quartile dataset. Lee and Hu (2002) hypothesised that
the lack of energy balance closure during nocturnal periods was often the result
of mean vertical advection, whereas Aubinet et al. (1999) and Blanken et al.
(1997) showed that energy imbalance during nocturnal periods is usually
greatest when friction velocity is small. Another source of error in the nocturnal
EBR is the high uncertainty in night-time measurements of Rn. At night, the
assumption is that there is no shortwave radiation, and Rnet is a product of
longwave radiation. Studies show that night-time measurements of longwave
radiation were less accurate than daytime measurements (Blonquist et al.,
2009). The RN-Lite, for instance, has low sensitivity to longwave radiation,
resulting in low accuracy in low measurements.
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Soil heat flux (G) plays a significant role in the surface energy balance as it
determined how much energy is available for the turbulent fluxes, especially in
areas with limited vegetation cover. In this study, we examined how G, i.e., its
presence or absence, impacts on the EBR. Our results revealed a decrease of up
to 7%, with an annual mean of 3.13+2.70%, in EBR when G was not included in
the calculation. During the daytime, the absence of G resulted in a decrease of
approximately 10% of the initial EBR, while at nighttime EBR was as low as 50%
of the initial EBR, showing that G has a greater impact on the surface energy
balance at night. While G plays a significant role in the surface energy balance
closure, our study ignored the different energy storage terms in determining the
EBR, including the soil heat storage term. The exclusion of this storage term
results in the underestimation of G, as the real value of G is a combination of
the flux measured by the plate and the heat exchange between the ground and
the depth of the plate. This, in turn, contributes to overestimating the available
energy, which then lowers the SEBC. As reported by different studies, the
omission of the soil heat storage results in the underestimation of the energy
SEBC by up to 7%. For instance, Zuo et al. (2011) reported an improvement of 6
to 7% when they included the soil heat storage in their calculation of EBR, at the
Semi-Arid Climate and Environment Observatory of Lan-Zhou University (SACOL)
site in semi-arid grassland over the Loess Plateau of China. In their study in the
three sites in the Badan Jaran desert, Li et al. (2014) analysed the effect of
including soil heat storage derived by different methods in the energy balance
closure; their EBR improved by between 1.5% and 4%. The improvement of the
EBR in the study in a FLUXNET boreal site in Finland by Sanchez et al. (2010) was
shown to be 3% when the soil heat storage was included, which increased to 6%
when other storage terms (canopy air) were taken into account.

2.4.3 Surface energy partitioning

Surface energy measurements

The mean daily and annual measurements of the energy budget components
from 2000 to 2014 are highlighted in Figure 2-6 and Table 2-2. The seasonal cycle
of each component can be seen throughout the years, where at the beginning
of each year the energy budget components are high, and as each year
progresses they all decrease to reach a low during the middle of the year, which
is the winter/ dry season, and a gradual increase being experienced during
spring right to the summer at the end of each year. The multi-year daily means
of Rnet, H, LE, and G were 139.1 Wm™2, 57.70 Wm™2, 42.81 Wm™2, and 2.94
Wm™2, with standard deviations of 239.75 Wm™2, 104.15 Wm™2, 70.58 Wm ™2,
and 53.67 Wm™, respectively.
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Figure 2-6: Time series of daily mean surface energy balance component fluxes from 2000 to
2014 at Skukuza flux tower site (SA)
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The gaps in 2006 indicate the absence of the surface energy flux measurements
in those years, which was a result of instrument failure. Between 2004 and 2008,
the Rnet was calculated as a product of measured shortwave radiation and
modelled longwave radiation, which was a high source of error in the estimation
of Rnet. These years are also characterised by poor energy balance closure, as
shown in Section 2.3.3 above.

Table 2-2: Statistical summary of annual values of the energy balance components

Year % Dat? Statistics H LE G Rnet
completion

Max 470.31 422.89 191.53 817.6

2000 14.16 Min -139.77 -72.43 -61.6 -95.93
Mean 45.82 36.11 5.32 91.46

Max 790.82 513.09 292.87 899.9
2001 12.78 Min -159.87 -85.95 -90.27 -116.58
Mean 58.56 43.68 9.27 128.27

Max 415.93 174.07 171.93 583.3
2002 17.77 Min -117.66 -89.16 -86 -122.21
Mean 61.35 10.29 4.1 90.72

Max 556.21 308.71 217.6 879.3
2003 415 Min -92.99 -97.81 -106.23 -116.04
Mean 58.15 21.68 6.17 94.53

Max 505.36 498.1 129.96 925.3

2004 28.21 Min -150.08 -89.07 -69.76 -5.88
Mean 56.46 17.99 7.97 156.1

Max 606.28 737.43 288.2 933.2

2005 35.37 Min -130.4 -97 -107.37 -4.92
Mean 51.43 17.82 0.99 159.09

Max 583.66 331.25 335.3 1003.3

2006 7.59 Min -72.45 -119.09 -72.8 -6.56
Mean 84.67 35.94 19.69 247.7

Max 552.93 426.34 340.67 1011.3

2007 48.77 Min -131.4 -130.79 -129.7 -6.71
Mean 59.04 14.32 4.14 169.84

Max 616.43 439.76 238.57 1038.5

2008 54.3 Min -140.13 -144.97 -104.6 -5.91
Mean 63.06 26.3 6.22 191.26

Max 551.34 776.62 328.93 1060.5

2009 42.69 Min -96.68 -135.43 -94.2 -155.9
Mean 55.42 96.54 6.87 207.77
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Max 626.68 624.38 199.33 888

2010 57.65 Min -173.11 -135.62 -66.35 -180.7
Mean 57.23 52.54 3.74 105.1
Max 591.16 688.46 171.27 832
2011 41.34 Min -135.77 -127.02 -58.59 -96.5
Mean 63.88 73.11 1.75 127.94
Max 572.11 566.88 185.8 899
2012 27.62 Min -171.83 -148.49 -50.92 -99.69
Mean 59.25 52.49 2.16 111.31
Max 570.79 665.48 146.03 845.58
2013 67.97 Min -197.4 -149.1 -55.36 -107.7
Mean 50.25 38.63 -1.22 92.8
Max 533.46 726.31 89.5 893
2014 28.66 Min -238.65 -134.39 -33.36 -89.7
Mean 59.37 69.55 1.18 147.3

Influence of weather conditions and seasonality

In arid/semi-arid ecosystems, solar radiation is not a limiting factor for latent
heat flux, instead, it is mainly limited by water availability. The seasonal
fluctuations of energy fluxes are affected by the seasonal changes in the solar
radiation, air temperature, precipitation and soil moisture (Arain et al., 2003;
Baldocchi et al., 2001). These climatic variables influence vegetation dynamics
in an ecosystem, as well as how solar radiation is partitioned. Hence, daily
measurements of precipitation, air temperature, and VPD were evaluated to
investigate the partitioning of the surface energy in the semi-arid savanna
landscape of Skukuza.
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Figure 2-7: 15-year (2000-2014) monthly means of surface energy balance fluxes of Skukuza flux
tower site (SA), highlighting the partitioning of Rnet
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To illustrate the partitioning of solar radiation into the different fluxes
throughout the vyear, Figure 2-7 presents the multi-year mean monthly
variations of the surface energy components showing a general decrease of the
components between February and June, which then gradually increases again
until November. The multi-year monthly means of Rnet, H, LE, and G were 71.27
Wm™ (June) and 197.33 Wm "~ (November), 37.11 Wm' (June) and 80.37 Wm"
(November), 8.52 Wm™ (August) and 127.17 Wm' (December), -2.28 Wm'
(June) and 20.78 Wm™ (November), respectively. The month of August had the
highest BR of 6.42, whereas December had the least at 0.42. The residual
accounted for between -19.69 and 34.74% of Rnet, and an average of 4.70%.

The general trend shows that sensible heat flux dominated the energy
partitioning between May and October, followed by latent heat flux, and lastly
the soil heat flux, except during the wet season where latent heat flux was larger
than sensible heat flux. This is illustrated by the trend of BR, showing an increase
from April, with the peak in August, then a steady decrease until it hits lowest in
December. The period of low BR is characterised by high Rnet and high
precipitation. As the season transitions into the dry season, it is characterised
by reduced net radiation and low measurements H and LE.

Just before the first rains, i.e. between September and November, tree
flowering and leaf emergence occur in the semi-arid savanna in the Skukuza area
(S. Archibald & Scholes, 2007), and grasses shoot as soil moisture availability
improves with the increasing rainfall (Scholes et al., 2003). This is characterised
by a gradual increase in LE and a decrease in BR, which, when compared to the
dry season, is significantly lower than the H, as illustrated in Figure 2-7. As the
rainy season progresses, and vegetation development peaks, LE also reaches its
maximum, becoming significantly higher than H, and hence, low BR. Between
March and September, when leaf senescence occurs, the leaves gradually
change colour to brown and grass to straw, and trees defoliate, H again
gradually becomes significantly higher than LE.
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Figure 2-8: Relationship between the fluxes and VPD under wet and dry conditions

The influence of VPD and Rnet on surface energy partitioning was investigated
during the wet and dry seasons. Results show that during both periods there is
an increase in H and decrease in LE with an increase in VPD; although the
gradient of LE decrease differs significantly during the two periods, H increases
similarly during both the wet and dry periods (Figure 2-8). VPD is higher in times
of little or no rain (low soil water availability), which explains the decrease in LE
with a rise in VPD. In this instance, although the evaporative demand is high, the
stomatal conductance is reduced due to the absence of water in the soil,
resulting in smaller LE and higher H. Rnet, on the other hand, is partitioned into
different fluxes, based on other climatic and vegetation physiological
characteristics. Figure 2-9 illustrates that both LE and H increase with an
increase in Rnet, although their increases are not in proportion, based on the
season. During the wet season, the rate of increase of LE is higher than that of
H, whereas in the dry season the reverse is true. The rate of increase of LE is
controlled by the availability of soil water (precipitation), (also illustrated in
Figure 2-6 (LE)), and during the wet season, it increases steadily with increasing
Rnet, whereas the rate of increase of H is concave, showing saturation with an
increase in Rnet. The opposite is true during the dry season, with limited water
availability, where the rate of increase of LE slows down with an increase in Rnet,
and a steady increase of H with Rnet increase.
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Figure 2-9: Effects of net radiation on LE and H under wet and dry conditions

Our study results are consistent with similar studies, for example, Gu et al.
(2006), who examined how soil moisture, vapour pressure deficit (VPD) and net
radiation control surface energy partitioning at a temperate deciduous forest
site in central Missouri, USA. Both studies agree that with ample soil moisture,
during the rainy season, latent heat flux dominates over sensible heat flux, and
reduced soil water availability reversed the dominance of latent heat over
sensible heat, because of its direct effect on stomatal conductance. An increase
in net radiation, on the other hand, also increases both sensible and latent heat
fluxes. The increase of either then becomes a function of soil moisture
availability, since they cannot increase in the same proportion. However,
whereas we found that a rise in VPD is characterised by a decrease in LE and an
increase in H in both periods, their findings show a significant increase in LE and
decrease in H with a rise in VPD during the non-drought period, with both
components showing slight increases with increase in VPD in dry conditions. S.-
G. Li et al. (2006) also investigated the partitioning of surface energy in the
grazing lands of Mongolia, and concluded that the energy partitioning was also
controlled by vegetation dynamics and soil moisture availability, although soil
heat flux is reportedly higher than latent heat flux in most instances. In a
temperate mountain grassland in Austria, Hammerle et al. (2008) found that the
energy partitioning in this climatic region was dominated by latent heat flux,
followed by sensible heat flux and lastly soil heat flux.

The consensus in all the above studies is that vegetation and climate dynamics
play a critical role in energy partitioning. They note that during full vegetation
cover, latent heat flux is the dominant portion of net radiation. However,
depending on the climatic region, the limiting factors of energy partitioning vary
between water availability and radiation. Our study confirms that in semi-arid
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regions, sensible heat flux is the highest fraction of net radiation throughout the
year, except during the wet period, when latent heat flux surpasses sensible
heat flux. However, in regions and locations where water availability is not a
limiting factor, latent heat flux may take the highest portion of net radiation.

2.5 Conclusion

This study investigated both surface energy balance and how it is partitioned
into turbulent fluxes during the wet and dry seasons in a semi-arid savanna
ecosystem in Skukuza using eddy covariance data from 2000 to 2014. The
analysis revealed a mean multi-year energy balance ratio of 0.93, the variation
of EBR based on season, time of day and as a function of friction velocity was
explored. The seasonal EBR varied between 0.70 and 1.12, with the dry season
recording the highest energy imbalance. Daytime EBR was as high as 0.96, with
0.27 EBR for the nighttime. The high energy imbalance at night was explained as
a result of stable conditions, which limit turbulence that is essential for the
creation of eddies. The assessment of the effect of friction velocity on EBR
showed that EBR increased with an increase in friction velocity, with low friction
velocity experienced mainly during night-time. Furthermore, the impact of G in
this biome on EBR, with results showing a decrease of up to 7%, with an annual
mean of 3.13+2.70, in EBR when G was excluded in the calculation of EBR.

The energy partition analysis revealed that sensible heat flux is the dominant
portion of net radiation in this semi-arid region, except during the rainfall
period. The results also show that water availability and vegetation dynamics
play a critical role in energy partitioning, whereby when it rains, vegetation
growth occurs, leading to an increase in latent heat flux / evapotranspiration.
Clearly, an increase in Rnet results in a rise in H and LE, however, their increases
are controlled by water availability. During the wet season, the rate of increase
of LE is higher than that of H, whereas in the dry season the reverse is true. The
rate of increase of LE is controlled by the availability of soil water (precipitation),
and during the wet season, it increases steadily with increasing Rnet, whereas
the rate of increase of H shows saturation with an increase in Rnet. The opposite
is true during the dry season, with limited water availability, the rate of increase
of LE reaches saturation with an increase in Rnet and a steady increase of H with
Rnet increase. An increase in VPD, on the other hand, results in an increase in H
and a decrease in LE, with higher VPD experienced during the dry season, which
explains the high H, although the evaporativedemand is high.
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3 PERFORMANCE OF SATELLITE REMOTE SENSING-
BASED EVAPOTRANSPIRATION ESTIMATES
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3.1 ABSTRACT?

Knowledge of evapotranspiration (ET) is essential for enhancing our
understanding of the hydrological cycle, as well as for managing water
resources, particularly in semi-arid regions. Remote sensing offers a
comprehensive means of monitoring this phenomenon at different spatial and
temporal intervals. Currently, several satellite methods exist and are used to
assess ET at various spatial and temporal resolutions with various degrees of
accuracy and precision. This research investigated the performance of three
satellite-based ET algorithms and two global products, namely land surface
temperature/vegetation index (TsVI), Penman-Monteith (PM), and the
Meteosat Second Generation ET (MET) and the Global Land-surface
Evaporation: the Amsterdam Methodology (GLEAM) global products, in two
eco-regions of South Africa. Daily ET derived from the eddy covariance system
from Skukuza, a sub-tropical, savanna biome, and large aperture boundary layer
scintillometer system in Elandsberg, a Mediterranean, fynbos biome, during the
dry and wet seasons, were used to evaluate the models. Low coefficients of
determination (R?) of between 0 and 0.45 were recorded on both sites, during
both seasons. Although PM performed best during periods of high ET at both
sites, results show it was outperformed by other models during low ET times.
TsVI and MET were similarly accurate in the dry season in Skukuza, as GLEAM
was the most accurate in Elandsberg during the wet season. The conclusion is
that none of the models performed well, as shown by low R? and high errors in
all the models. In essence, our results conclude that further investigation of the
PM model is possible to improve its estimation of low ET measurements.

2 This chapter is based on:

Majozi N. P., Mannaerts C.M., Ramoelo A., Mathieu R.S.A., Mudau A., Verhoef W. An
intercomparison of satellite-based daily evapotranspiration estimates under different
eco-climatic regions in South Africa, Remote Sensing 9 (4), 307.
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3.2 Introduction

As an essential climate variable (ECV), evapotranspiration (ET) plays a critical
role as a link of the energy, carbon and water cycles, with the latent heat of
vapourisation serving as the largest sink of heat in the atmosphere. It is,
therefore, important for disciplines such as agriculture, hydrology, meteorology,
and climatology. Because of its high spatio-temporal variability, it is a challenge
to directly measure this biophysical variable. Remote sensing remains the only
feasible means of spatially estimating ET over varying spatial and temporal
extents. Several authors have reviewed the remote sensing approaches used to
estimate ET (Gibson et al., 2013; Li et al., 2009; Wang & Dickinson, 2012; Zhang
et al.,, 2016) based on their structural complexities, theories and underlying
assumptions, parameterisations, and uncertainties and limitations, and
classified them as: i) empirical methods involving the use of statistically-derived
relationships between ET and vegetation indices such as the normalised
difference vegetation index (NDVI) or the enhanced vegetation index (EVI)
(Glenn et al., 2007; Glenn et al., 2010; Nagler et al., 2005), ii) residual surface
energy balance modelling (single- and dual-source models), which include the
Surface Energy Balance Algorithm over Land (SEBAL)/ Mapping
EvapoTranspiration at high Resolution with Internalized Calibration (METRIC)
(Allen etal., 2011; Allen et al., 2007; Paul et al., 2014; Wang et al., 2014), Surface
Energy Balance System (SEBS) (W. Ma et al., 2014; Su, 1999, 2002), iii) physically-
based methods involving the Penman-Monteith (PM) (Dhungel et al., 2014;
Ershadi et al.,, 2015; Westerhoff, 2015) and Priestley-Taylor (PT) equations
(Colaizzi et al., 2014; Priestley & Taylor, 1972; Szilagyi et al., 2014), and iv) data
assimilation methods applied to the heat diffusion equation and radiometric
surface temperature sequences. Global satellite-based ET products have been
produced using these algorithms, like the MOD16 ET product that is estimated
using the Penman - Monteith equation by Mu et al. (2007); Mu et al. (2011) ,
the Meteosat Second Generation ET product (MET) derived using the physically-
based Soil-Vegetation-Atmosphere-Transfer (SVAT) model Tiled ECMWF
(European Centre for Medium-Range Weather Forecasts) Surface Scheme of
Exchange processes at the Land surface (TESSEL) that uses a combination of
atmospheric model outputs and Meteosat Second Generation’s Spinning
Enhanced Visible and Infrared Imager MSG-SEVIRI remote sensing data
(Arboleda et al.; Dutra et al., 2010; Ghilain et al., 2011) and the Global Land-
surface Evaporation: the Amsterdam Methodology (GLEAM) based on the
Priestley-Taylor equation and the Gash analytical model of forest rainfall
interception (Miralles et al., 2011).

Validation and model comparison studies have been done at different locations,
time steps and periods. Yuting Yang et al. (2015a) examined the performances
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and model physics of three dual-source ET models, the Hybrid dual-source
scheme and Trapezoid framework-based ET Model (HTEM), the Two-Source
Energy Balance (TSEB) model, and the MOD16 ET (PM) algorithm in the Heihe
River Basin in Northwest China. They reported that HTEM outperformed the
other models, whereas PM performed least; and the reason for the poor
performance of PM being that the model does not effectively capture soil
moisture restriction on ET. Singh and Senay (2015) compared four models, i.e.,
METRIC, SEBAL, SEBS, and the Operational Simplified Surface Energy Balance
(SSEBop) models at three AmeriFlux cropland sites in the Midwestern United
States. Their results showed all models recorded R? of 0.81, with METRIC and
SSEBop having low RMSE (<0.93 mmday™) and a high Nash—-Sutcliffe coefficient
of efficiency (>0.80), whereas SEBAL and SEBS gave relatively higher bias. Index
(S-SEBI)) at four sites (marsh, grass, and citrus surfaces), to identify the most
appropriate for use in the humid southeastern United States. SEBS generally
outperformed the other with RMSE of 0.74 mmday™, whereas SSEBop was
consistently the worst performing model (RMSE = 1.67 mmday™). They
observed that for short grass conditions, SEBAL, METRIC, and S-SEBI worked
much better than SEBS. Ershadi et al. (2014) assessed the performance of four
models, i.e. SEBS, PM, Priestley-Taylor Jet Propulsion Laboratory (PT-JPL), and
Advection-Aridity (AA), in twenty FLUXNET towers covering different biomes
that included grassland, cropland, deciduous broadleaf forest and evergreen
needleleaf forest, mainly in Europe and North America, at half-hourly, hourly
and monthly time steps. Their results showed that PT-JPL outperformed the
other models, followed by SEBS, PM, and lastly AA. Their overall findings,
however, were that there was no model that consistently performed well across
all the biomes. A study by Ha et al. (2015) in semi-arid pine forests with variable
disturbance history, over a period of 4 years and at monthly time steps, also
showed that the PT model gave the best results, with the PM model and MOD16
ET product under predicting ET at all sites. Vinukollu et al. (2011b) tested SEBS,
PT, and PM over 16 FLUXNET sites and concluded that PT outperformed the
other models.

Many remote sensing-based ET estimation studies have been performed in
different South African landscapes and land uses, as reviewed by Gibson et al.,
(2013). The review stresses the importance of validating the remotely sensed ET
estimates to allow for confidence in their use and application in the various
biomes. Jarmain et al., (2009b) used a large discontinuous in situ ET dataset,
mainly from agricultural land, to evaluate remote sensing-based ET algorithms
(SEBS, SEBAL, METRIC, and VIIT), and recorded poor performance of all the
models. Evaporativefraction estimation by these models was the main source of
error, which led to low accuracy in ET estimation. One of the challenges of this
study was the limited data points at each site for substantive statistical analysis,
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hence, no distinct conclusion could be made. Jovanovic et al. (2014) reported an
R? of 0.72 and 0.75 in their validation of the 30 minutes and daily MET ET
products for the fynbos vegetation of the Riverlands Nature Reserve. Ramoelo
et al. (2014) validated the PM-derived MOD16 8-day ET product using multiyear
eddy covariance-derived ET datasets for two flux towers in savannahs, Skukuza
and Malopeni. Inconsistent results were attributed to various factors, including
the parameterisation of the PM model, flux tower measurement errors, and flux
tower footprint vs. MODIS pixel size. Furthermore, Sun et al. (2012) used the
Skukuza flux tower data to evaluate a remote sensing - based continental ET
product. The results were reasonable during the wet season, whereas low
coefficients of determination were observed in the dry season. One example of
remotely sensed ET applications in South Africa is the use of SEBAL by the eLEAF
company, in collaboration with the Water Research Commission (WRC), the
South African’s Department of Agriculture (DAFF) and academic institutions, to
provide information on water use efficiency of irrigated crops, inclusive of
grapes, deciduous fruits, sugarcane and grain crops in the Western Cape
Province of South Africa (Jarmain et al., 2009a; Klaasse et al., 2008; Klaasse &
Jarmain, 2011). Overall, limited work has been done to assess and compare the
performance of different ET models in different SA natural ecosystems.

There is still scope to extensively compare different models for different biomes
in semi-arid ecosystems, which would result in the identification of the most
accurate and robust model that could be used to map and monitor ET at national
scale. Hence, this study intended to evaluate and compare the performance of
daily ET estimates derived using TsVlI and MOD16 Penman-Monteith-based
models, and GLEAM and MET global products, under two different climatic
regions, a subtropical, savannah, summer rainfall and a Mediterranean, fynbos,
winter rainfall climates. From each climatic region, rainy and dry periods were
selected to evaluate the performance of each model.

3.3 Materials and Methods

One of the challenges in evaluating evapotranspiration models is the availability
of accurate and complete datasets. The comparisons were performed for two
eco-regions in South Africa, Skukuza in the North-East of South Africa, an area
characterised by summer rainfall, and Elandsberg in the South-West of the
country, characterised by winter rainfall (Figure 3-1). A full description of the
sites is given in Section 3.2.1 below.
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Figure 3-1: Location of Skukuza eddy covariance flux tower and Elandsberg LAS sites
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3.3.1 Site description

Summer rainfall savannas and Skukuza flux tower

The Skukuza eddy covariance flux tower (25.02°S, 31.50°E) was established early
2000 as part of the SAFARI 2000 experiment, set up to understand the
interactions between the atmosphere and the land surface in southern Africa
(Scholes et al., 2001; Shugart et al., 2004).

The site is located in the Kruger National Park (South Africa) at 365 m above sea
level, and receives 550 + 160 mm precipitation per annum between November
and April, with significant inter-annual variability. The soils are generally
shallow, with coarse sandy to sandy loam textures. The area is characterised by
a catenal pattern of soils and vegetation, with broad-leaved Combretum
savanna on the crests dominated by Combretum apiculatum, and fine-leaved
Acacia savanna in the valleys dominated by Acacia nigrescens. The vegetation is
mainly open woodland, with approximately 30% tree canopy cover of mixed
Acacia and Combretum savanna types. Tree canopy height is 5-8 m with
occasional trees (mostly Sclerocarya birrea) reaching 10 m. The grassy and
herbaceous understory comprises grasses such as Panicum maximum, Digitaria
eriantha, Eragrostis rigidor, and Pogonarthria squarrosa. The flux tower was
placed on a vegetation transition to measure fluxes from the different types
(Scholes et al., 2001).
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Figure 3-2: Skukuza eddy covariance flux tower station in Kruger National Park

Eddy covariance system

Since 2000, ecosystem-level fluxes of water, heat and carbon dioxide are
measured using an eddy covariance system mounted at 16 m of the 22 m high
flux tower (Figure 3-2). The measurements that were taken and the instruments
used are summarised in Table 3-1.

Table 3-1: Measurements taken at Skukuza eddy covariance system and the instruments used

Instrument Model/ brand Measurement
Sonic anemometer Gill Instruments Solent R3, 3-dimensional, orthogonal
Hampshire, England components of wind velocity, u,
v, w(ms™)
Closed path gas IRGA, LICOR 6262, LICOR, Water vapour, carbon dioxide
analyser Lincoln concentrations
Radiometer Kipp and Zonen CNR1, Delft, Incoming and outgoing longwave
The Netherlands and shortwave radiation
HFT3 plates Campbell Scientific Soil heat flux at5 cm depth
Frequency domain Campbell Scientific CS615, Volumetric soil moisture content
reflectometry Logan, Utah at different depths
probes
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Ancillary meteorological measurements include air temperature and relative
humidity, also measured at 16 m, using a Campbell Scientific HMP50 probe,
precipitation at the top of the tower using a Texas TR525M tipping bucket rain
gauge; wind speed and direction using a Climatronics Wind Sensor, and soil
temperature using Campbell Scientific 107 soil temperature probe.

Flux footprint modelling for the Skukuza tower was done using footprint models
that are incorporated in the EddyPro software, i.e. the footprint
parameterisation model of Kljun et al. (2004) and footprint model of Kormann
and Meixner (2001). Depending on a number of factors, including wind direction
and friction velocity, atmospheric stability, terrain homogeneity, and
measurement height, either of the models is selected to compute the footprint.
It was estimated that 90% of the fluxes originated from an average of 1.6 km
upwind from the flux tower, as reported by Ramoelo et al. (2014). The shape of
the flux source area is dependent on the wind velocity and direction and varies
throughout the day. With a surface energy balance closure of 1.03, the LE fluxes
were then corrected by:

LE
LE oy = LE + Res (-20) 2

where LEcorr is corrected latent heat flux, Res is the residual (Res=Rnet-G-H-LE).

Winter rainfall fynbos and Elandsberg large aperture scintillometer
Elandsberg Private Nature Reserve (33.47°S; 19.06°E) is situated near Hermon
in the valley of the Berg River, Western Cape Province. It is a South African
National Heritage Site, and it is also a Contractual Nature Reserve, which gives
it formal conservation status in terms of fauna and flora. This study area lies
within the West Coast Renosterveld of the fynbos biome. The vegetation of this
area is classified as the Swartland Shale Renosterveld in the form of discrete
vegetation patches. The dominant vegetation types include shrubland and low
fynbos, thicket, bushland, and high fynbos. This study area is in a winter rainfall
region, with dry summers typical of Mediterranean type climate; it receives
between 250 and 600 mm rainfall per annum.
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Figure 3-3: Left- LAS transmitter of infrared radiation; right- Receiver of the optically modified
infrared beam located about 900 m away from the transmitter

Along the 900 m transect of the scintillometer, the average vegetation height is
1 m, with the general land cover being shrubland and low fynbos (Figure 3-3).

Scintillometry system

Prior to selecting the Elandsberg site for LAS installation and ET validation, a
study was conducted to ensure that the area selected meets a number of criteria
as a suitable flux tower site, including land cover homogeneity (single land cover
type within the image pixel, in this case, the MODIS pixel), vegetation height,
topographic variability, and atmospheric stability (Jovanovic et al., 2013). The
site for the scintillometer study of evapotranspiration was, therefore, selected
based on the extent and uniformity of the natural vegetation, and also to ensure
that the match between the selected pixel and the scintillometer transect would
be accurate enough for the ground-truthing of ET from that pixel.

A mobile large aperture boundary layer scintillometer (LAS) (BLS 900, Scintec,
AG, Germany) was installed in Elandsberg Nature Reserve in October 2012 and
collected data until November 2013. The scintillometer transmitter was located
at 33.47404 °S; 19.06239 °E, while the receiver was placed at approximately 900
m from the transmitter, at 33.47001 °S; 19.05526 °E.

Sensible heat flux was calculated from the changes in the refractive index of air
between the scintillometer transmitter of monochromatic infrared radiation at
880 nm and the receiver. The net radiation was measured using a net
radiometer (Kipp and Zonen, Delft, The Netherlands), installed at 2 m above the
vegetation in the middle of the scintillometer transect. The soil heat flux (Go)
was measured using a cluster of four soil heat flux plates (REBS, Inc. Seattle, WA,
USA), installed at a depth of 80 mm at various positions within the MODIS pixel.

An automatic weather station was also installed to record air temperature,
relative humidity, wind speed and direction, solar irradiance, and rainfall.
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Temperature and relative humidity were measured at 1.5 m using a CS500 probe
(Vaisala, Helsinki, Finland), while windspeed and direction were measured at 2.5
m height using an RM Young wind sentry (Model 03001 — Campbell Scientific
Ltd, USA), and solar irradiance was monitored using a pyranometer (Apogee,
Instruments, USA). Rainfall was measured using a tipping rain gauge (Model TE
525WS — Campbell Scientific Ltd, USA). Soil water content was also measured at
30 min intervals in the depth range 0 - 20 cm using a CS616 capacitance probe
(Campbell Scientific Ltd, USA). All the sensors were connected to a CR23X
datalogger (Campbell Scientific Ltd, USA).

3.3.2 Model descriptions

TsVI method

The concept of the land surface temperature-vegetation index triangle (Ts-VI)
method was discovered by Goward et al., (1985) and has been used to retrieve
soil water content, analyse land use/ land cover change and monitor droughts
with satellite data (Allen et al., 2007; Mallick et al., 2012; Wang et al., 2006).
Using the Ts-VI feature space, Jiang and Islam (1999, 2001; 2003) adapted the
PT equation to estimate regional evaporative fraction (EF) and ET. This method
calculates ET as a function of available energy, i.e. net radiation minus soil heat
flux. Its main assumption is that ET depends on soil moisture and vegetation
cover, the method requires a large heterogeneous area with a varied range of
values. The PT parameter @, which accounts for the aerodynamic and canopy
resistances in the PT formulation is replaced with ¢ in the proposed formula by
Jiang and Islam (1999), which is determined using the triangular shape of the
LST-VI feature space. ET is estimated using:

LE=¢[AATy(Rn—G)] 3

where ¢ is a combined-effect parameter accounting for aerodynamic resistance
(dimensionless), Rnet is surface net radiation (Wm™2), G is soil heat flux (Wm™2),
A is the slope of saturated vapour pressure versus air temperature (kPa°C™), y
is psychrometric constant (kPa°C™).

Defining the ¢ parameter

The TsVI triangle method proposed by Jiang and Islam (1999, 2001; 2003) has
been applied at different scales to estimate the parameter ¢ in the PT method,
and thus evaporativefraction (EF). Modifications have also been made to this
method as shown by Wang et al. (2006) who combined the triangle method with
thermal inertia and developed a day-night LST difference-NDVI triangle using
MODIS land surface products to estimate EF. Stisen et al. (2008) also combined
the triangle method with thermal inertia and developed a quadratic function of

49



NDVI to determine ¢ at the dry edge using MSG-SERVIRI data. Furthermore,
Tang et al. (2010) replaced NDVI in the construction of the triangle with
fractional cover (Fr) and developed an automatic algorithm to determine the
wet and dry edges.

The wet and the dry edges of the two-dimensional triangular space for each
vegetation class are determined first, where the wet/cold edge represents the
potential evapotranspiration, and the dry/warm edge represents water-
stressed conditions. This global ¢min and dmax are set at zero for a dry bare soil
surface, and 1.26 for a saturated or well vegetated surface, respectively.
Assuming that ¢ increases linearly with a decrease in Ts between ¢min and ¢ max
for any given Fr, dmin, is then linearly interpolated between ¢min and dmax, With
d)i,max: d)max =1.26 as:

bmini = Pmax * Fr 4

where

_ NDVI-NDVIpp
T " NDVIpax—NDVipin

Then for each pixel in the triangle, ¢ is then derived by using the normalised
temperature:

¢ = (M) * (Pmax — Pmini) + Prmin.i 6

Tmax—Tmin
where Tmax and Tmin are the corresponding maximum and minimum surface
temperatures at the dry and wet edges, respectively.

The evaporativefraction (EF) is then calculated using:
A

EF:¢*A+}/

Penman-Monteith based MOD16 ET model

The Penman-Monteith (PM) is a physically-based model that incorporates heat
and water vapour mass transfer principles and is known as the combination
equation. Developed and modified by Penman (1948) and Monteith (1965), this
algorithm was initially designed as a single-source model, computing ET from a
heterogeneous land surface as a single component. Modified versions of this
model now include the separate estimation of different components of water
loss from bare soil and canopy intercepted water (evaporation), and
transpiration via the canopy. Following Cleugh et al. (2007) who employed
MODIS data to estimate ET using the PM model, Mu et al. (2007) modified the
model by adding vapour pressure deficit and minimum temperature to constrain
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stomatal conductance, using enhanced vegetation index instead of NDVI to
calculate vegetation cover fraction and included the separate calculation of soil
evaporation. Further improvements were made to the algorithm, including
calculating ET as a sum of day- and night-time ET, adding soil heat flux
calculation, separating dry and wet (interception) canopy surfaces, and soil
surface into saturated and moist surface, as well as improving stomatal
conductance, aerodynamic resistance and boundary layer resistance estimates
(Mu et al., 2011). Taking into account that relative humidity, and by extension,
vapour pressure deficit were soil moisture stress proxies in Mu et al. (2007;
2011), Sun et al. (2013) used the soil moisture index estimated from the TsVI
method to constraint soil evaporation.

Latent heat flux is estimated as:

s*A+p*Cp*(esqt—€)/Tq
s+y*(1+rs/ra)

AE = 8

where AE is the latent heat flux (Wm ™) and A is the heat of vapourisation (Jkg™),
s is the slope of the curve relating saturated vapour pressure to temperature
(PaK), Ais available energy (Wm™), p is the air density (kgm™3), Cp is the specific
heat capacity of air (Jkg™'K™), y (PaK™) is the psychrometric constant, e is the
saturation vapour pressure (Pa), e is the actual vapour pressure (Pa), where esat
— e = vapour pressure deficit (VPD), ra (sm™) is the aerodynamic resistance, and
rs (sm™) is the canopy resistance, which is the reciprocal of canopy conductance
gc (ge=1rc?).

The MOD16 remote sensing-based ET algorithm predicts ET globally at 86%
accuracy when compared with eddy measurements of ET over many sites in the
AmeriFlux network. Building on previous algorithms, it uses a physically-based
PM approach driven by MODIS-derived vegetation data. ET is calculated as a
sum of daytime and night-time components using vapour pressure deficit and
minimum temperature to control stomatal resistance. Stomatal resistance is
scaled up to the canopy level using LAl to calculate canopy resistance for plant
transpiration. The algorithm also models soil heat flux and separates
evaporation from a wet canopy and transpiration from a dry canopy. Actual soil
evaporation is also calculated from potential evaporation.

For arid and semi-arid regions like South Africa and the Nile Basin, the Mu et al.
(2013) version of the MOD16 Penman-Monteith method was used.

Net radiation and soil heat flux estimation

Net radiation (Rnet) is the difference between incoming and outgoing long- and
shortwave radiation fluxes on the Earth’s surface. It plays a very important role
in the exchange processes of water and heat over the land surface. It is a critical
parameter in the estimation of ET, and all ET models require its estimation (R.
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G. Allen et al., 2007; W. G. M. Bastiaanssen et al., 2005; Penman, 1948; Z. Su,
2002).

It is expressed in terms of its components:
Rn=R.— Rl + R} — R} = (1 — )R, + 0¢,T% — o&,T* 9

where a is the land surface albedo, Ré is the incoming shortwave radiation (W/
m2), R% is the longwave incoming radiation (Wm™2), R{ is the outgoing longwave
radiation(Wm™), o is the Stephan-Botlzmann constant (5.670373*10-8
Wm™2K™), €a is the atmospheric emissivity, €s is the surface emissivity, Tair and
Ts are air and surface temperature (K), respectively.

For this study, the method of Shine (1984) was used to estimate Rﬁ:

Ri — Socos?6 10
s 1.2cos0+e(1+c0s0)*10~2+0.0455d?2

where S, is the Solar constant (1367 W/ m?), 8 is the Solar zenith angle, e is the
vapour pressure.

Soil heat flux (G) was computed

G = Rn(Tc+ (1 — Fr)(Ts — Tc)) 11
where Tc is the ratio of G to Rnet for full vegetation cover, and Ts is the ratio of
G to Rnet for dry bare soil.

The results used in the estimation of ET from Rnet and G are estimated using
the same set of equations and parameters for the PM and TsVI models, hence
the study will also compare these parameters.

3.3.3 Global evapotranspiration products

Apart from evaluating the two ET methods, the performance of two global ET
products, i.e. the Meteo-sat (MET) and the Global Land Evaporation: the
Amsterdam Model (GLEAM) ET products, will also be assessed in this study.

LSA SAF Evapotranspiration product

The global ET product (MET) by the EUMETSAT Satellite Application Facility on
Land Surface Analysis (LSA-SAF) based on the SEVIRI sensor on-board the
Meteosat Second Generation geostationary satellites (MSG-SEVIRI), is in near-
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real time, and also available at 30 minute and daily time intervals and 3 km
spatial resolution. This product is derived using the physically-based TESSEL
SVAT scheme that uses a combination of the European Centre for Medium-
range Weather Forecasts (ECMWF) atmospheric model outputs (i.e. air and dew
point temperature, humidity, wind speed, atmospheric pressure, and soil
moisture) and MSG/ SERVIRI remote sensing data (Arboleda et al.; Dutra et al.,
2010; Ghilain et al., 2011). This model divides the pixel into different tiles
representing different land covers within the pixel, with some parameters
defined at the pixel level and the data are extracted from the ECOCLIMAP
database. The pixel ET is the sum of the weighted contribution of each tile. It
can be downloaded from the Land Surface Analysis Satellite Applications Facility
(LSA SAF) website, http://landsaf.meteo.pt/.

GLEAM Evapotranspiration product

The Global Land Evaporation: the Amsterdam Model (GLEAM) ET product is
derived using the semi-empirical PT equation and the Gash analytical model
of forest rainfall interception (Miralles et al., 2011). The model uses inputs from
different satellites to estimate ET daily at 0.25° spatial resolution. The use of the
simple PT equation means there is no parameterisation of stomatal and
aerodynamic resistances. It estimates different evaporation components,
including transpiration for three land cover types, i.e. tall canopies, short
vegetation, interception loss, bare-soil evaporation, snow sublimation, and
open-water evaporation. The potential ET estimates are then constrained by a
multiplicative stress factor computed based on the content of water in
vegetation and the root zone. The final ET estimate presented in a grid is then
given as a weighted average from the three land covers.

3.3.4 Input data

The two models that were tested in this study require different inputs and
parameterisations. Table 3-2 lists each model’s inputs and their sources, i.e.
whether satellite or meteorological based.

Table 3-2: A summary of the different ET algorithms and where they have been applied
Inputs

Method - -
Remote sensing Meteorological

LST, EVI, surface emissivity , albedo,

LST-VI tri | Ta, Pa, RH
S triangle LAI, solar zenith angle 4 %4,
LST, EVI, land cover, surface
PM emissivity, albedo, LAI, solar zenith Ta, Pa, RH

angle
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3.3.5 In situ and meteorological measurements

To select the ET validation periods, eddy covariance data were filtered based
periods having extensive data with minimal gaps per day and per month, and
the availability of all required input data used in the different models. For each
site, two time periods were selected for the summer and the winter season, i.e.
wet and dry periods. For Skukuza, the periods between 01 and 31 January 2012
(wet), and 05 May to 05 June 2012 (dry) were selected, whereas, for Elandsberg,
09 November to 09 December 2012 (dry), and 07 June to 06 July 2013 (wet)
were selected.

Meteorological data used from each site included air temperature (Ta),
precipitation, relative humidity (RH), atmospheric pressure (P) and wind speed
(u) were used to calibrate the models. From these data, we calculated daily
maximum and minimum air temperature, average daily, daytime and night-time
temperatures, daily atmospheric pressure, wind speed, and relative humidity.
The input variables at each site were measured using the instruments listed in
Table 3-3.

Table 3-3: Summary of meteorological input variables and their measurement instruments
for Skukuza and Elandsberg

Measurement instrument used

Input variable Skukuza Elandsberg

Campbell Scientific
HMP50 probe

Campbell Scientific
HMP50 probe

Air temperature (°C) CS500 probe (Vaisala, Helsinki, Finland)

Relative humidity (%) CS500 probe (Vaisala, Helsinki, Finland)

Climatronics Wind  RM Young wind sentry (Model 03001 —

Wind speed (m/s) Sensor Campbell Scientific Ltd, USA)

The 30-minute AE measurements from the Skukuza eddy covariance were
converted to ET, which were summed up to daily ET measurements following
Mu et al. (2011). From Elandsberg, LE was estimated using the energy balance
equation, i.e. as a residual of the surface energy balance from measurements of
Rnet, G and H (estimated with the LAS), and then converted to daily ET
estimates.

3.3.6 Remote sensing data

This study made use of MODIS Terra/ Aqua products as data inputs. The
following MODIS products were used as inputs for this study: daily 1 km
MOD11A1 land surface temperature (LST) and emissivity, 8-day 1 km MOD15A2
leaf area index and FPAR, 16-day 1 km MOD13A2 vegetation indices (NDVI and
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EVI), 16-day 1 km MCD43A3 albedo, and MODO03 geolocation for solar zenith.
These datasets were downloaded from the NASA Land Processes Distributed
Active Archive Centre (LP DAAC) website (https://lpdaac.usgs.gov/data_access).

For the 8-day datasets (i.e. LAl/ FPAR and surface albedo), images for Julian days
1,9, 17, 25 and 33 (Skukuza rainy period), and 121, 129, 137, 145, 153 and 161
(Skukuza dry period); 313, 321, 329, 337 and 345 (Elandsberg dry period), and
145, 153, 161, 169, 177 and 185 (Elandsberg rainy period) were downloaded.
For the 16-day datasets (i.e. vegetation indices) images for days 1, 17, 33, 113,
129, 145 and 161 (Skukuza 2012), and 305, 321, 337, 353 (Elandsberg 2012),
145, 161, 177, 193 (Elandsberg 2013), were downloaded. The inverse distance
weighting interpolation technique was then applied on consecutive 8-day and
16-day MODIS datasets to estimate the daily values of each data input.
Assumptions made here include that the change of vegetation and land
characteristics over time is slow and systematic, depending on seasonal
progression.

Other methods and techniques that compute ET at daily, monthly and seasonal
scale have been developed. These include the integration of the feedback
method that uses the complimentary relationship between actual ET and pan ET
(Long & Singh, 2010), data fusion methods (i.e. combining different data
sources) (Cammalleri et al., 2014; Semmens et al., 2016), and the backward-
averaged iterative two-source surface temperature and energy balance solution
(BAITSSS) algorithm (Dhungel et al., 2016).

3.3.7 Data analysis

The models described in Section 3.2 were run using the above data to estimate
daily ET during the selected times, i.e. 01 and 31 January 2012 (wet), and 05 May
to 05 June 2012 (dry) for Skukuza, and 09 November to 09 December 2012 (dry),
and 07 June to 06 July 2013 (wet) for Elandsberg.

The accuracy of the ET estimates depends on a number of factors, including the
algorithms and their parameterisations and the accuracy of the input datasets.
The performance of each model was assessed using the coefficient of
determination (R?) a measure of goodness of fit, bias, mean absolute error
(MAE), root mean square error (RMSE), and relative RMSE (rRMSE); the latter
being measurements of error/ accuracy. RMSE provides information on the
short-erm performance of a model by allowing a term by term comparison of
the actual difference between the predicted value and the measured value,
although it does not differentiate between under- and over- estimation; bias
provides information on the long-term performance of a model. A positive value
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gives the average amount of over-estimation in the estimated values and vice
versa.

3.4 Results

3.4.1 Ground measurements of  evapotranspiration and
meteorological input variables

The first part of the results describes the meteorological input variations, i.e.
daily mean air temperature (Ta), RH, Rnet and precipitation in relation to ET,
between the two sites (Skukuza located in a rainy summer region, and
Elandsberg characterized by dry summers).

Daily time series of Tair, RH, Rnet, ET and precipitation for Skukuza and
Elandsberg for the validation periods are shown in Figure 3-4. For Skukuza, the
daily ET for the rainy period (DOY 1-31) ranged between 0.96 and 6.24 mmday™,
with an average of 4.06 mmday™ and a standard deviation of 1.24 mmday™.
Temperature varied between 22.16 °C and 30.93 °C, with a mean of 27.25.£2.24
°C, RH ranged between 91.54 and 58.27%, with an average of 69.95%, and the
average Rnet for this period was 144. 32+ 43.7 Wm-2. A total of 280 mm
precipitation was recorded within the same period. During the dry period (DOY
128-153), daily ET ranged between 0.53 and 1.47 mmday™', with an average of
0.99+0.26 mmday™', Rnet was between 40.15 and 91.92 Wm-2, and mean air
temperature of 18.68+1.44 °C was recorded; no precipitation was recorded
during the same period.
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Figure 3-4: Meteorological data input measurements for DOY 1-31 (a) and DOY 128-153 (b)
periods in Skukuza eddy covariance flux tower site; and DOY 314 - 346 (c) and DOY 153 and 180
(d) periods in Elandsberg LAS site
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In Elandsberg, in the summer season (DOY 314-346), which is also the dry
season, Tair recorded an average of 21+3.45 °C, whereas RH was between 27.76
and 77%, with Rnet ranging from 7.83 to 189 Wm%; ET ranged between 1.05 and
4.06 mmday™, with an average of 2.78 + 0.76 mmday™, and a total precipitation
of 9.2 mm. The wet, or winter period (DOY 153 and 180) recorded a total of 191
mm rainfall, and daily ET varied between 0.17 and 2.22 mmday™', with a mean
of 0.65 mmday™" and standard deviation of 0.37 mmday™, Ta ranged from 8.39
to 20.45 °C, RH varied between 8.58 and 100%, whereas Rnet recorded daily
averages between -14.47 and 46.52 Wm 2.

3.4.2 ET models performance evaluation

In this sub-section, the performance of the evapotranspiration models, TsVI and
MOD16-based Penman-Monteith, and MET and GLEAM global products
estimates, against in situ measurements is analysed over two different seasons
and ecosystems. This section will look at the performance of the models per
location per season, and move on the intercompare the different locations per
model per season. The results of the analysis are illustrated in Figures 3-5 and 3-
6, and the statistical analyses summarised in Table 3-4. We also evaluated the
modelled Rnet and against values that were measured at the sites.

Skukuza

Figure 3-5 a and b illustrate the temporal variation of the flux tower based and
the modelled ET, Figure 3-6 a and b show the correlations between the flux
tower and modelled ET, and Table 3-4 highlighting the statistics of the models
comparisons. Generally, all the models underestimated ET on both seasons, as
shown by the negative biases (Table 3-4) that ranged between -2.66 mmday™
(MET) and -0.79 mmday™" (PM) in the wet season, and -0.64 mmday™" (GLEAM)
and -0.01 mmday™ (TsVI) during the dry season. The high underprediction of ET
by MET and GLEAM during the wet period is also illustrated in Figure 3-5 a and
Figure 3-6 a, whereas PM showed the least underprediction of ET. During the
dry season, TsVI (-0.01 mmday™") had the lowest underestimation, and GLEAM
(-0.64 mmday™) had the highest underestimation (Figure 3-5 b and 3-6 b). The
slopes ranged between 0.19 (PM) and 0.66 (MET), and intercepts were between
1.23 mmday™" (MET) and 3.40 mmday™" (PM) in the wet season; in the dry season
the slopes ranged from 0.20 (MET) to 3.35 (GLEAM), and the intercepts were
between 0.02 mmday™ (GLEAM) and 0.66 mmday™ (MET). The correlations (R?)
of the modelled ET against the measured ET were relatively low, ranging
between 0.05 (PM) and 0.45 (MET) during the wet season, and 0.07 (MET) and
0.42 (GLEAM) during the dry season. Although it had the lowest correlation, PM
was the best performing model during the wet period, recording the lowest
MAE, RMSE and rRMSE of 0.89 mmday™, 1.25 mmday™ and 27.34%,
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respectively, followed by TsVI and GLEAM, which had comparable accuracies of
1.40 and 1.46 mmday™, 1.66 and 1.64 mmday™’, and 36.46 and 40.44%, MAE,
RMSE and rRMSE respectively. MET performed the least with MAE, RMSE and
rRMSE of 2.66 mmday™, 2.85 mmday'and 67.5%, respectively. In the dry
period, TsVI and MET had comparable accuracies of 0.23 and 0.25 mmday™
(MAE), 0.29 and 0.32 mmday™ (RMSE), 28.34 and 31.09% (rRMSE); GLEAM
performed the least with MAE 0.64 mmday~', RMSE 0.67 mmday~', and rRMSE
65.96%.
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Figure 3-5: Time series of measured and modelled ET for the wet (a) andDOd:y (b) periods in
Skukuza eddy covariance flux tower site; and the dry (c) and wet (d) periods in Elandsberg LAS
site

Elandsberg

Figures 3-5 cand d present the temporal variation of the LAS-derived ET and the
modelled ET estimates, and Figures 3-6 ¢ and d show the correlations between
the measured and estimated ET. In the dry season, there is a general
underprediction of ET by the models, as shown in Table 3-4 and Figures 3-5 ¢
and d, and 3-6 c and d, whereas during the rainy season GLEAM underestimated
ET. The slopes were between 0.012 (GLEAM) and 1.29 (TsVI), and intercepts
ranged between -1.51 (MET) and 2.13 (GLEAM) in the dry season; during the wet
season the slopes ranged from -0.27 (MET) and 0.57 (MET), and the intercepts
were between 0.41 (GLEAM) and 1.41 (PM). The correlations of the modelled ET
against the ground ET ranged between 0 (GLEAM) and 0.42 (TsVI) during the dry
season, and lowly 0.01 (GLEAM) and 0.12 (MET) during the wet season (Table 3-
4). Although it has higher absolute bias and MAE than MET (-0.09 and 0.65
mmday™), PM (-0.51 and 0.69 mmday™) was best performing with RMSE of 0.85
mmday™', and rRMSE of 28.73%, while MET had RMSE 0.96 mmday~" and rRMSE
35.03%, which was close to TsVI, having recorded RMSE 1.05 mmday™ and
rRMSE 35.42%. The least accurate in this instance was GLEAM, which also had
comparable results of bias -0.65 mmday™', MAE 0.94 mmday™', RMSE 1.15
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mmday™, and rRMSE 40.73%. In the wet season, the performance of all the
models was very poor, with all of them recording rRMSE of over 70%. The best
performing model, GLEAM had rRMSE 73.02%, RMSE 0.42 mmday~', MAE 0.28
mmday™" and bias -0.19 mmday™". Although the rRMSE for TsVI and MET were
88.91 and 119.55%, respectively, they generally performed very close to each
other, with MAE and RMSE of 0.46 and 0.52 mmday™, 0.60 and 0.63 mmday™,
respectively. The lowest performing model, PM, had a bias, MAE, RMSE and
rRMSE of 0.61, 0.69, 0.77 mmday™', and 114.64%, respectively.
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Figure 3-6: Scatterplots of daily measured vs modelled ET for Skukuza (a-wet and b-dry) and
Elandsberg (c-dry and d-wet)
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3.4.3 Net Radiation Estimations

Rnet and G were computed using the same formulae described above for both
ET models at Skukuza and Elandsberg. These were estimated using both
meteorological and remote sensing data inputs. In Skukuza, the results show
thatin the wet season the modelled Rnet was more the measured values. During
the wet season Rnet had exhibited higher accuracies, as shown by R? of 0.46,
rRMSE of 37.07%, whereas in the dry season the R? was extremely low, and
rRMSE of 22%. On the other hand, the estimation of G was comparably poor at
both times. The estimation of Rnet and G in Elandsberg was also characterised
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by a low coefficient of determination (R?) at both periods, with the wet period
giving worse results. To improve the modelling ET using remote sensing-based
ET models, it is critical to first ensure that intermediate input parameters like
Rnet and G are accurately estimated.
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3.5 Discussion

Figure 3-4 shows high evapotranspiration for both sites during the summer
season despite that Elandsberg is located in a winter rainfall region and receives
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higher rainfall in winter. With higher water availability in Elandsberg in winter,
evapotranspiration is expected to be higher, however, low ET is recorded (Figure
3-4 d). In this instance, water availability is not a limiting factor in the process of
evapotranspiration in Elandsberg, solar radiation is. Although different times
were used for the two sites, this simply illustrates the general climatic trends in
the two regions, which experience precipitation at different seasons.

Daily estimates of ET from two models and two products, TsVI, PM, MET, and
GLEAM, of varying structural complexities, assumptions, and parameterisations
were compared with ground measurements at two different ecoclimatic regions
and times. These models gave differing results, mainly due to algorithm
structural errors and input uncertainties and different model sensitivity to the
different inputs. Our study shows that no model clearly outperformed the
others on both sites and times. In Skukuza, PM gave the least error ET estimates
in the wet season, whereas during the dry period TsVI and MET gave relatively
comparable results, although TsVI estimates were slightly better. In Elandsberg
also, no model distinctly outperformed the others during the dry season, as
evidenced by the interchange in hierarchy of the statistics between PM and
MET; during the wet season, GLEAM had the least bias, as shown by low MAE
and RMSE, despite having the lowest R? of 0.01 (Table 3-4). On both sites we are
looking at periods of high radiation and ET during the summer season, despite
limited rainfall in Elandsberg during this period. Furthermore, PM
underestimated ET during periods of low ET on both sites, as illustrated in
Figures 3-5 and 3-6. The poor performance of the models during the wet season
in Elandsberg could be related to the weather conditions, particularly since it
was raining during these days (Figure 3-4). The low correlations that were
recorded in our study, notably for Elandsberg wet season, are comparable to
other studies that have been done in dry ecosystems (Ershadi et al., 2014;
Michel et al.,, 2015). Vinukollu et al. (2011b) reported low correlations in
grasslands and woody savannas with all the models they tested in their study.
They reported Kendall’s tau of 0.01, 0.32 and 0.33 in woody savanna Tonzi, 0.51,
0.27 and 0.37 in grassland Audubon, and 0.55, 0.54, 0.59 in grassland Fort Peck,
for SEBS, PM-Mu, and PT-Fi models, respectively. In their extensive evaluation
of SEBS, PT-JPL, PM-Mu and GLEAM models, across different ecoclimatic
regions, McCabe et al. (2015) also found that the PT-based models, PT-JPL and
GLEAM, performed better than the others in most ecoclimatic regions. Low
correlations and accuracies of the models were also recorded as the aridity
increased, such that they excluded the results of shrublands in their further
analysis. Ershadi et al. (2014) evaluated the performance of PM, advection-
aridity, SEBS and PT-JPL models, and showed that there is no model that
consistently performed well across all biomes. Hu et al. (2015) also reported low
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performance of the MOD16 ET and MET on shrublands located in semi-arid
climates.

Model performance is affected by different attributes, including structural
complexities, model assumptions, parameterisations, and the amount of data
required. To estimate ET using these models, both meteorological data
measured from the study sites and remote sensing data were used as inputs.
The error and uncertainties of the data inputs are propagated into the models’
outputs. For instance, the remote sensing inputs of LST and surface emissivity
are instantaneous in the case, and 8-day averages in cases of vegetation indices,
whereas the ground measurements of air temperature, humidity, atmospheric
pressure, wind speed are daily averages. Also, MODIS products that were used
as inputs in this study come with their level of uncertainty and/or error,
presented as part of the datasets as reported in their user guides (Didan et al.,
2015; Myneni, 2012; Wan, 2008). The MODIS products used as inputs in this
study are affected by artifacts caused by clouds, atmospheric aerosols,
instrument errors and uncertainties of retrieval algorithms. There is, thus, a
need for these data inputs to be improved to improve the ET estimation. The
spatial scale difference between MODIS image footprint of 1 km and the flux
tower and LAS footprints, confounded by the heterogeneity of the landscape,
the wind velocity and direction, and atmospheric stability, within the satellite
footprint also contribute error and uncertainty (Ramoelo et al., 2014). As shown
by the flux footprint model, and discussed in Ramoelo et al. (2014), with a
measurement height of 16 m, the Skukuza flux tower footprint is approximately
1.6 km, i.e. based on the general rule of the thumb which suggests the fetch:
measurement height ratio of 100 484-m: 1 m (Burba & Anderson, 2010; Smith
& Cresser, 2003). This indicates that the flux tower provides a good match to the
MODIS pixel size. Although flux footprint modelling gives a good estimation of
the spatial discrepancy between flux tower measurements and the image pixel,
it is beyond the scope of this study. The coarser the image resolution, the higher
the landscape heterogeneity, and spatial mismatch, introducing errors as shown
by Matthew F. McCabe and Wood (2006) who showed that while Landsat and
ASTER higher accuracies in ET estimates, MODIS was less accurate. For
evapotranspiration models, it is important to have an accurate estimation of
Rnet which is a critical component of each of these models. Low accuracy in
Rnet, as shown in our study also contributed to the error and inaccuracies of the
ET estimates.

GLEAM and TsVI are PT based, which is a simplified version of the PM, with the
TsVI triangle method being a relatively simple formulation that employs
empirical means (using to normalise the PT parameter (¢) using the LST-
vegetation indices triangle feature space, to estimate the evaporativefraction; it
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requires fewer inputs and parameterisations required (see Table 3-2) (Fisher et
al., 2008; Petropoulos et al., 2009). The simplification of the model in the
estimation of EF also means that the computing complexities of surface and
aerodynamic resistances are avoided, thus reducing errors and uncertainty in ET
estimation (Wang & Dickinson, 2012). The main challenge of the TsVI method is
the subjective determination of the wet and dry edges from the triangle feature
space and the neglect of local advection in its formulation. Also, during the rainy
season or in areas of low variability in vegetation cover range, the triangle
feature space is hard to establish, as evidenced in Elandsberg, where it was
generally outperformed by other models. In other instances, the heterogeneity
of the land surface, together with atmospheric forcing complicates the
establishment of the TsVI relationship. Since the TsVI feature space is
established empirically, the method is site-specific. During the rainy days, like in
the Elandsberg winter period and Skukuza summer period, the determination of
the wet and dry edges presents a challenge, hence the non-performance of the
model during this period. GLEAM, on the other hand, is more comprehensive,
combining the PT equation, a soil moisture stress computation, and a Gash
analytical model to compute ET as a total of transpiration from tall canopy, short
vegetation, soil evaporation and canopy interception loss (Miralles et al., 2011).
A plus for the GLEAM model is that in water-limited regions, atmospheric water
demand is constrained by precipitation, surface soil moisture and vegetation
optical depth (VOD, which is a proxy for leaf water content (Liu et al., 2013b)).
Each of the model components within the GLEAM structure has its own
assumptions and complexities with varying levels of error and uncertainty,
which are propagated to the final ET estimate. GLEAM, like the PM used in this
study, also computes interception loss separately, as shown in Miralles et al.
(2011) and Mu et al. (2011). Miralles et al. (2011) assessed the GLEAM product
across different biomes and showed daily average correlation (R) of 0.83. They,
however, stated that the distinct seasonal cycle of evaporation in the dry regions
probably balanced out the correlation coefficients positively. In addition to the
known challenges of the PT equation, the main challenge in validating GLEAM
ET using flux tower derived ET is the coarse spatial resolution of the global
product. The MET product is derived from a scheme that is different from the
other estimates, based on the energy balance budget. The daily MET product is
an aggregation of 30-minute ET values obtained. This presents a challenge
when, for instance, there are gaps in these 30-minute ET data, resulting in
underestimation. Also, the issue of spatial heterogeneity plays a part in the
inaccuracies of this course resolution ET product.

Penman-Monteith is the most robust of these models and theoretically should
present the best performances compared with the other models. The results
(Table 3-4) however, show that this version of PM was only good during periods
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of high ET. One of the biggest challenges of the PM based models is the
parameterisation of the aerodynamic and surface resistances, including
upscaling stomatal to canopy resistance. LAl is an important input in the
parameterisation of canopy resistance, as it is linked with the biophysical control
of vegetation on ET (Fisher et al., 2008; Mu et al., 2007; Mu et al., 2011). Hu et
al. (2015) explored the relationship between PM-MQOD16 estimated ET and LAl,
showing that the two are closely related, especially for the savannas and the
deciduous broadleaf forests. Because soil water availability plays a key role in ET
in semi-arid regions, it is important that models include a soil water constraint
function in the model. However, in this version of PM, relative humidity and VPD
were used as a proxy for soil water in the estimation of soil evaporation, hence
low accuracy of the model during low ET periods. Currently, research is focused
on incorporating soil water constraint function in the ET modelling, especially in
dry regions. Di et al. (2015) incorporated two layers of relative soil moisture
parameters in the PM model to parameterise the surface resistance and added
a multiplier in the vegetation surface resistance model to cater for the influence
of the relative soil moisture in the root zone. L. Sun et al. (2013) also investigated
the incorporation of soil moisture in the PM-Mu method to constrain soil
evaporation by using actual soil water content and the soil water content at
saturation to compute the soil resistance, which they also substituted with a soil
moisture index derived from the T-VI triangle method. These studies showed
improved estimations of ET by the PM algorithm during water constrained
periods. For the estimation of ET to cover different ecosystems, PM would have
to be assessed further and modified, especially for semi-arid climatic regions.

3.6 Conclusion

Accurate estimates of ET are essential especially in semi-arid and arid regions
where there is less water being competed for by different users. Different
remote sensing-based models and products, of varying complexities and data
input requirements, are available, and their applicability at varying ecoclimatic
regions and scales is consistently under scrutiny.

This study, thus, presented an evaluation of four ET models and global products,
i.e. TsVI, PM, and MET and GLEAM global products in two semi-arid eco-
climates. Our results show that there is essentially no model that clearly
outperforms others at the two sites. Low coefficients ranging between 0 and
0.45 were recorded on both sites, during both seasons. It was also observed that
during periods of high ET at both sites, i.e. Skukuza in the wet season and
Elandsberg in the dry season, PM was relatively more accurate than the other
models and products, with rRMSE’s of lower than 30%. In Skukuza, TsVI
marginally outperformed MET during the dry period, whereas GLEAM gave the
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least accurate estimates. ET estimation during the rainy season in Elandsberg
was quite poor with rRMSE’s of over 70%, with GLEAM being most accurate.

The conclusion, therefore, is that none of the models performed well, as shown
by low R2 and high errors in all the models. PM gave the least errors during
periods of high ET on both sites, whereas modelling low ET was a challenge.

These results presented a prerequisite for the next stage of our study, in which
we will investigate the error and uncertainty in the PM model simulations,
inclusive input data (both remote sensing and meteorological input data), model
structure, and parameterisations. In doing this, A. Ershadi et al. (2014) state that
it would allow for the model diagnosis and identification of the main sources of
error in ET estimation, in this case in water-scarce regions.
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4 UNCERTAINTY AND SENSITIVITY OF A REMOTE
SENSING-BASED PENMAN-MONTEITH MODEL TO

METEOROLOGICAL AND REMOTE SENSING-BASED
INPUTS
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4.1 ABSTRACT®

In this paper, we analysed the uncertainty and sensitivity of core and
intermediate input variables of a modified, remote sensing data based version
of the Penman-Monteith (PM) evapotranspiration (ET) model (Mu et al., 2007;
Mu et al., 2011). We used ET model simulations of two locations in South Africa,
equipped with eddy covariance (EC) flux towers for validation. We derived
absolute and relative uncertainties of the core meteorological and remote
sensing-based, atmosphere and land surface input variables and parameters of
the PM-Mu model. Uncertainties of important intermediate data components
(i.e. net radiation and aerodynamic and surface resistances) were also assessed.
To estimate instrument measurement uncertainties of the in situ meteorological
input variables, we used reported accuracies of the manufacturers.
Observational accuracies of the remote sensing input variables (land surface
temperature (LST), land surface emissivity (&), leaf area index (LAI), land surface
albedo (a)) were derived from peer-reviewed satellite sensor validation reports
to compute their uncertainties. We then combined all different uncertainty
types and propagated the errors to the final model evapotranspiration
estimation uncertainty. Our analysis indicated relatively high uncertainties
associated with relative humidity (RH), and hence all the intermediate variables
associated with RH, like vapour pressure deficit (VPD) and the surface and
aerodynamic resistances in contrast to other studies who reported LAl
uncertainty as the most significant. The semi-arid conditions and seasonality of
the regional South African climate and high temporal frequency of the variations
in VPD, air and land surface temperatures could explain observed uncertainties
in this study. The results also showed the ET algorithm to be most sensitive to
the air - land surface temperature difference. Accurate assessment of those in
situ and remotely sensed variables is required in order to achieve reliable
evapotranspiration model estimates in these generally dry regions and climates.
A vast advantage of remote sensing-based ET method remains their full area
coverage in contrast to classic point (station) based ET estimates.

3 Under submission to “Agricultural and Forest Meteorology” Journal, Elsevier.
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4,2 Introduction

Evapotranspiration is dependent on meteorological variables (air temperature,
solar radiation, humidity, and wind speed) and biophysical characteristics of the
land surface and vegetation. It is a challenging process to measure due to its
high spatio-temporal variation, hence, with the advent of remote sensing
technology, models of varying complexities have been developed to capture this
variation (Allen et al., 2007; Bastiaanssen et al., 2005; Bowen, 1926; Monteith,
1981; Nichols et al., 2004; Su, 1999, 2002). These models propagate varying
errors and uncertainties through the final output. Errors are either linked to: i)
an incomplete understanding and simplified descriptions of modelled processes
compared to reality, and ii) input variables and parameterisations used, the
latter being dependent on the biomes and climates where they are used (Ershadi
et al., 2014; McCabe et al., 2015; Michel et al., 2015; Vinukollu et al., 2011b).

While uncertainty analysis (UA) is performed to evaluate the effect of input
variable and parameter uncertainties on the output uncertainties, sensitivity
analysis (SA) quantifies how the uncertainty of different model inputs impacts
the model output (Saltelli et al., 2004). UA and SA are important steps in
evaluating environmental models as they rank the importance of input variable
errors in the final result and highlight the need to assess the physical meaning
of model parameters and their relative influence on the output. UA is divided
into Type A (Ua), which evaluates measurement uncertainty using statistical
analysis of a series of measurements, and Type B (Ug), which quantifies any
other uncertainty other than the statistical analysis, including the instrument
manufacturer’s published accuracy and the quoted accuracies for remote
sensing products (Lira 2002, Taylor 1997). SA techniques range from the
simplest local (LSA, one-parameter-at-a-time (OAT) and derivative-based) to
global SA (GSA, multiple parameters at a time, derivative-based or more often
variance-based) techniques, from differential to Monte Carlo analysis, from
measures of importance to sensitivity indices, and from regression or
correlation methods to variance - based techniques (Frey & Patil, 2002;
Hamby, 1995; Kucherenko & looss, 2017; Lilburne & Tarantola,
2009).

In evapotranspiration (ET) research, most studies have focused on the
sensitivity of potential (PET) and reference (ET,) ET model outputs to
different climatic inputs, with varying outcomes. Tabari and Hosseinzadeh
Talaee (2014) investigated the sensitivity of the Food and Agriculture
Organisation (FAO) PM reference ET (ETo) estimates to air temperature
(Tair), wind speed (u) and sunshine hours in different climates, and their
results showed that sensitivity to u and Tair decreased from arid to humid
environments. In Southern Spain, ET was most sensitive to Tair in summer
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causing ET overestimation, and relative humidity (RH) in winter causing ET
underestimation (Estévez et al., 2009). In the Yangtze River Catchment,
Gong et al. (2006) showed that the Food and Agriculture Organisation (FAO)
PM derived ETo was most sensitive to RH, followed by solar shortwave
radiation (Rsg), Tair and u and that sensitivities were season dependent.
Using GSA, Delonge et al. (2015) evaluated the sensitivity of the ASCE
Standardised Reference Evapotranspiration ET, estimates to input
measurement instrument accuracy. Most of these studies only varied the
input variables by fixed percentage bounds without taking into account the
input variable limits and rarely use measurement instrument accuracy limits
as a basis for comparison. The emergence of remote sensing (RS) based ET
estimation presents an opportunity to investigate the impact of land cover/
land use change on ET, and how these parameters affect different ET
models. Van der Kwast et al. (2009) analysed the sensitivity of SEBS
modelled sensible heat flux to surface elevation, land surface temperature,
albedo, NDVI and emissivity in a test site in Barrax, Spain. They reported low
sensitivity of the modelled sensible heat flux (H) to the land surface
parameters, except LST, attributing this result to the fact that H derivation
only uses meteorological data and LST. Wang et al. (2009) performed a
sensitivity analysis of SEBAL on full, half, and sparse cover conditions, based
on the NDVI of the areas. They reported that ET was most sensitive to the
selection of the wet- and dry- edges, temperature difference between
surface and atmosphere (dT), at the full cover site, which is linked to LST, but
less sensitive to NDVI and albedo; whereas it was sensitive to the selection
of wet and dry spots, roughness length, c, and dT at half canopy cover, and
finally at sparse canopy cover, ET was most sensitive to selection of the dry
spot, ¢ and NDVI. With the remote sensing driven PM model, no wok has
been done to analyse the sensitivity of the model to the land surface
parameters.

The term uncertainty analysis is often used to analyse the sensitivity of an
ET model to its inputs (Westerhoff, 2015), while others use it to evaluate the
performance of ET models (Paparrizos et al., 2017). Meanwhile, only a few
studies have explicitly focused on how input variable uncertainty is
propagated to the final ET uncertainty (Chen et al., 2018; Hofreiter & lJirka).
On top of analysing the sensitivity of ET estimates to climatic inputs that has
been done, the use of RS based inputs in ET modelling gives the chance to
assess the sensitivity and uncertainty of ET models to land surface
parameters, and hence, land use change.

Based on the results of the performance assessment of different models
(Chapter 3), which showed that the PM-Mu model had no table results
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during high ET periods, this study, therefore investigated the sensitivity of
this model to its input variables, i.e. both measured meteorological and
remote sensing-based land surface characteristics. It also quantified the
uncertainty of the input variables and how these were propagated into the
final ET uncertainty. The PM model is a structurally complex and data intensive
model presenting a combination of the energy balance and aerodynamic
components. One of the challenges of the PM method is its high data
requirement and parameterisation, making it important to understand and
guantify potential errors and uncertainties of the input data and how these
impact the final ET output. This process will, therefore, identify the inputs that
are most influential and correlated with the dependent variable in a semi-arid
environment, in order to improve parameterisations that could eventually
improve our results.

4.3 Methodology

4.3.1 Site description

ET was estimated using data from two eddy covariance flux tower sites located
in savanna and grassland southern African ecoregions. The 2012 data were
selected for both sites and considered in this study Based on the surface energy
balance closure results in Chapter 2:

i The Skukuza FLUXNET site is located in a semi-arid, subtropical savanna
ecosystem in the Kruger National Park. It is characterised by low rainfall
averaging 550+160 mm per annum between November and April, and
temperatures range between 15.6 and 29.6 °C, with a mean of 22.6 °C.
Soils in this part of the park are generally shallow, with coarse sandy to
sandy-loam texture. The vegetation is mainly open woodland, with
approximately 30% tree canopy cover of mixed Acacia and Combretum
savanna types, of canopy height, is 5-8 m with occasional trees (mostly
Sclerocarya birrea) reaching 10 m. The grassy and herbaceous
understory comprises grasses such as Panicum maximum, Digitaria
eriantha, Eragrostis rigidor, and Pogonarthria squarrosa (Scholes et al.,
2003; Scholes et al., 2001).

ii.  Welgegund flux tower site (26°34'10"S, 26°56'21"E) is located on a semi-
arid, subtropical grazed grassland plain. It is situated approximately 100
km west of Johannesburg in South Africa. The mean annual rainfall is
540112 mm, spreading between October and April. Temperature
ranges between 0 and 30 °C with an average of 18 °C. The dominant
vegetation comprises grasses, geophytes, and herbs. The dominant
grass species are Hyparrhenia hirta and Sporobolus pyramidalis. Non-
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grassy forbs include Acacia sieberiana, Rhus rehmanniana, Walafrida
densiflora, Spermacoce natalensis, Kohautia cynanchica, and
Phyllanthus glaucophyllus (Rdsanen et al., 2017).

4.3.2 Penman-Monteith equation

The Penman - Monteith model as modified by Mu et al. (2007; 2011) was
assessed in this study. Latent heat flux is estimated as:

sxA+p*Cpx(esar—€)/Ta

AE = s+y*(1+:—;)

12

where AE is the latent heat flux (Wm™2) and A is the heat of vapourisation (Jkg™),
s is the slope of the curve relating saturated vapour pressure to temperature
(PaK-1), A is available energy (Wm™), @ is the air density (kgm™3), Cp is the
specific heat capacity of air (Jkg™'K-™"), y (PaK™) is the psychrometric constant,
esat is the saturation vapour pressure (kPa), e is the actual vapour pressure
(kPa), where esat — e = vapour pressure deficit (VPD, kPa), ra (sm-1) is the
aerodynamic resistance, and rs (sm-1) is the canopy resistance, which is the
reciprocal of canopy conductance gc (gc=1/rc).

On top of estimating ET as a sum of evaporation from moist soil, interception,
and transpiration, Mu et al. (2007), (Mu et al., 2011) further computed the
daytime and nighttime ET separately. Instead of using NDVI to compute the
fraction of vegetation cover, they used Fraction of Absorbed Photosynthetically
Active Radiation (FPAR) as a surrogate of vegetation cover fraction, with another
modification to the derivation of soil heat flux. Other modifications included
separating dry and wet (interception) canopy surfaces, and soil surface into
saturated and moist surface, as well as improving stomatal conductance,
aerodynamic resistance, and boundary layer resistance estimates.

The core input variables used in this model are Tair, RH, land surface
temperature (LST), surface emissivity (gs), leaf area index (LAl), land surface
albedo (a), and were used to derive intermediate inputs like net solar radiation
(Rnet), vapour pressure deficit (VPD), the slope of the saturated vapour — air
temperature curve (A), the air and saturated air vapour pressures (e,, es,) and
the aerodynamic and surface resistances (r,, rs).

4.3.3 Uncertainty and Sensitivity analysis

Uncertainty and sensitivity analyses were performed on the PM-Mu to quantify
input uncertainties and how these are propagated to the final ET uncertainties
and identify the inputs and parameters that are most important in modelling ET
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in a semi-arid environment. This will contribute to informing on efforts needed
for improving input variable accuracies. We assessed the uncertainty of each
input variable. i.e. the direct measured variable uncertainty (core input), derived
input variable uncertainty (intermediate input), and remote sensing-based input
variable uncertainty using Type A and Type B uncertainty methods. The total
uncertainty on the model simulations, i.e. model output uncertainty, was then
evaluated by uncertainty propagation using the Gaussian uncertainty analysis
method.

Based on the PM-Mu model, ET is defined as a function (f) of meteorological
point measurements of Tair and RH, and spatially explicit remote sensing
estimates of LST, and land surface characteristics such as LAI, fraction of green
vegetation cover (Fc)/ fraction of photosynthetically active radiation (FPAR),
NDVI/ EVI and surface emissivity (gs), which are biome /or land cover
characteristics defining parameters.

The generic model presented as:

ET = f(xq, ..., Xp) 13
where x; to x, represents the n input variables and parameters of the PM-Mu
model.

The change in ET, i.e. AET, resulting from errors and/or uncertainties in input
variables (Ax;) is then expressed as:

ET + AET = f(xq £ Axq, ..., X T Axy,) 14

The study analysed the uncertainty and sensitivity of the PM-Mu input variables
and outputs as shown in Figure 4-1, and aimed at:

i. Estimating uncertainty of model inputs and parameters, i.e.
the meteorological and land surface characteristics,
representing both point- and remote sensing-based inputs

ii. Propagating input uncertainties through to the ET model and
computing output uncertainties

iii. Estimating the sensitivity indices of the model inputs.
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Figure 4-1: Steps of the uncertainty and sensitivity analysis of the PM-Mu ET model

Core input variable uncertainties

We estimated the uncertainty of each core input variable as a combination of
Type A and Type B uncertainties. In this study, where each measured input
variable was a daily mean of 30 minute recordings, we computed Type A
standard uncertainty of the meteorological inputs as the standard deviation of
the daily mean:

n —x.)2
Ua(x) = ‘/—Z‘zl(’;‘ ! 15

where x; is the input value of the variable or parameter under consideration, X;
is the average value of the measured values calculated from n number of
independent observations, and v is the degrees of freedom equal to n-1.

Type B standard uncertainty (Ug) was also computed for the meteorological
input variables, based on the instruments manufacturer’s published accuracies.
The quoted accuracies of the measurement instruments are summarised in
Table 4-1. They were estimated using:

Ug(x)) = % 16

where a is the quoted accuracy specification from the manufacturer, and
includes calibration information from calibration certificates.

For meteorological data inputs, the combined standard uncertainty was then
estimated as:

Uc(x;) = \/(Uﬁ(x,-) + Ulzi(xi)) Y

The combined uncertainty was then converted to relative uncertainty for
detailed comparison and analysis.
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Table 4-1: Quoted accuracy of meteorological instruments at the two observation sites

Skukuza Welgegund
t
Measurement Sensor Quoted accuracy  Sensor Quoted
accuracy
0.4°Cat15°C, 0.3°Cat20°C,
Temperature Vaisala WXT510
Campbell 0.5 °C at 40 °C, alsala WA>IY g 4°cat40°c,
L o . meteorological . .
Scientific 0.8°Cat 60 °C : .. 0.7°Cat60°C
HMP50 station (Helsinki, 43% 0 90%
_ » +3% 0 to 90% RH, Finland) £37% 0 to 30%
Relative humidity RH,
(at20°C) 5% 90 to 100%

+5% 90 to 98% RH RH

Remote sensing-based input uncertainties

Remote sensing derived inputs have uncertainties due to a number of factors,
including model algorithm structure and input variables. The uncertainties of the
remotely sensed input variables used in this study (LST, €s, LA, a) were extracted
mainly from published Algorithm Theoretical Basis Documents (ATBD). Based on
the quoted errors (Table 4-2), the uncertainties were then estimated using
equation 16. We give a short description of each variable and associated remote
sensing product below.

LST and surface emissivity: these variables are essential in land surface-
atmosphere studies, including estimation of evapotranspiration and
atmospheric water vapour. In our study, we used the MODIS derived
MOD11A1 V006 product, which is generated from the thermal infrared
channels 31 (10.78 to 11.28 um) and 32 (11.77 to 12.27 um) using the
physically-based , split-window algorithm by (Wan & Dozier, 1996). The
uncertainties associated with these products are extensively discussed in
the MODIS Land-Surface Temperature ATBD (Hulley et al., 2016; Wan,
1999). They indicate an absolute error of 1 K for LST which can increase up
to 5 K in arid regions. For surface emissivity, the absolute accuracy is
reported to be 0.02.

Land surface albedo: defined as a dimensionless characteristic of the soil—
plant canopy system representing the fraction of total solar energy reflected
by the surface, it is expressed as the ratio of the radiant energy scattered
upward by a surface in all directions to that received from all directions,
integrated over the wavelengths of the solar spectrum. Surface albedo is
one of the key geophysical parameters that control the surface energy
budget. The MODIS bi-directional reflectance distribution function (BRDF)
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and albedo product (MCD43A3 version VOO6) were used in this study. This
product was derived using a kernel-driven semi empirical BRDF model using
the RossThick-LiSparse kernel functions for characterizing isotropic, volume
and surface scattering (Schaaf et al., 2011; Schaaf et al., 2002; Wanner et
al., 1997). Studies have given an absolute accuracy of 0.02 to 0.05 as a
requirement for climate modelling (Nobre et al., 1991; Sellers et al., 1995),
with other validation studies (Jin et al., 2003; Wang et al., 2004) reporting
errors falling within the 0.02 accuracy.

e leaf Area Index (LAl): defined as the total one-sided green leaf area per unit
ground surface area, is also dimensionless. This variable measures the total
amount of leaf material in an ecosystem. It is used in the estimation of
biogeochemical processes like photosynthesis, evapotranspiration, and net
primary production. MOD15A2 V0O5 product used in this study was derived
using the three-dimensional radiative transfer (3D RT) model. The product
ATBD reports the accuracy of the LAl product at 0.2 (Knyazikhin et al., 1999).
Furthermore, a review by Fang et al. (2012) summarises uncertainties of
MODIS, CYCLOPES, and GLOBCARBON LAl products under different biomes,
showing relative uncertainty of 0.26 in the savanna biome for the MODIS
product.

Table 4-2: A summary of remote sensing input variable errors

Input variable Error values  Units Reference

LST +3.5 K G. Hulley et al. (2016)
Surface emissivity ~ +0.02 - Wan (1999)

LAl 0.2 - Knyazikhin et al. (1999)
Albedo 0.02 - Strahler et al. (1999)

Intermediate input uncertainty

For intermediate inputs that were derived from the core input variables, such as
net radiation and surface and aerodynamic resistances, the standard
uncertainties were estimated as combined standard uncertainties of their
inputs, using the Gaussian error propagation method, as shown in equation 18:

Uc(Yy) = \/Z?ﬂ ((3_::)2 * (Uc(xi))z) 18

aYj . . . . . . .
where a_x-l is the partial derivative of y with reference to input variables x; to a,,
1

also called sensitivity coefficient.
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Each estimated input variable uncertainty was also propagated to the final ET
output uncertainty using equation 18.

4.3.4 Sensitivity analysis

One of the aims of SA is to identify and rank input variables according to their
importance in modelling a particular phenomenon. This is done to identify the
input variables that require more accurate measurement to reduce model
output variance to a minimum. The sensitivity of the PM-Mu estimated daily ET
was done by varying one input variable at a time within £20% ranges. First, ET
was computed with the initial input variables, then one variable was perturbed
by 5% within £20% whilst the rest of the inputs were held constant, every day
for the whole year of 2012 and the new ET values were recorded. Then the
sensitivity coefficient, S, was computed using equation 19, after which an overall
average was calculated:

Yi-Y
5; = (*£22) + 100 19
Yo
where Y; is the ET recorded when you vary one variable a time at each
percentage step, and Yo is initial ET.

4.4 Results

Uncertainty analysis gives a range of values likely to enclose the true value, thus
the confidence of the modelled values, and includes possibly all sources of error.
Meanwhile, sensitivity analysis ranks the input variables according to their
sensitivity to errors in a model. In our study, we quantified the uncertainty of
the PM-Mu ET model input variables at two FLUXNET sites in semi-arid
ecosystems, Skukuza and Welgegund, and analyse how these propagated
through to the model final output uncertainty.

4.4.1 Core input variables uncertainty

Figure 4-2 illustrates the relative uncertainties for the meteorological inputs Tair
and RH, for the two study sites. While Tair relative uncertainty ranged between
0.5 and 7.6% with an average 3.1+1.5% for Skukuza, and it varied between 0.9
and 10.6% with a mean of 4.0+1.7% for Welgegund. RH relative uncertainty was
8.47+0.9% for Skukuza, and 14.2+5.4% for Welgegund. As illustrated in Figure 4-
2, the relative uncertainties of both Tair and RH showed strong seasonal
variability, with relative uncertainties being higher during the drier months of
the year, i.e. between April and September, compared to the wet months.
During this period, daily temperatures tend to be highly variable throughout the
day, hence the high Type A standard uncertainty. Furthermore, there was much
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less variation in Tair relative uncertainty between the two sites compared to RH
relative uncertainty.

RH Tair

relative uncertainty

g |

0% L N N N . " " . %

2 N o a0 2 2 20 a0 2 o2 a0 ot a0 12 02 a0
SO @ e e @ (e e e PO Y Lol o | oY . ol C Lol
Date Date

Figure 4-2: Relative uncertainty for air temperature (a), and relative humidity (b)), for the
Skukuza and Welgegund flux tower sites

4.4.2 Intermediate input uncertainty

This subsection reports on how the core input uncertainties estimated above
were propagated to the ET intermediate inputs, i.e. Rnet and the aerodynamic
and surface resistances.

Net radiation uncertainty

Net radiation (Rnet) estimation depends on a number of atmospheric and land
surface variables, including a, €, €, LST, and Tair. The relative uncertainty was
4.0+0.6% of the estimated 558.0+105.2 Wm ™~ daytime Rnet in Skukuza, whereas
for Welgegund, a 2.8+0.8% relative uncertainty was reported for the derived
556.4 Wm~ Rnet. For Skukuza, a mean relative air temperature (Tair)
uncertainty of 3.1% was associated with relative Rnet uncertainties of between
23.28+9.85% of the total Rnet uncertainty, whereas a land surface temperature
(LST) error of 3.5 K contributed 59.31+12.87% to the total uncertainty. The
surface emissivity (&) error of 0.02 contributed a Rnet uncertainty between 4
and 7 Wm™, while the albedo (a) uncertainty contributed to an average
2.8+0.42 mm’. Similar results were realised for Welgegund, where a mean
relative Tair uncertainty of 4% resulted in relative uncertainty of 30.25+10.23%,
and 89.42+22.07% being attributed to the LST error of 3.5 K, showing that it was
the highest source of uncertainty in Rnet estimation. €s and a contributed to the
mean relative uncertainties of 38.81+9.43 and 22.06+10.31%, respectively.

Aerodynamic and surface resistances

In the estimation of wet canopy evaporation, the aerodynamic resistance to
evapourated water on wet canopy surface (r."°) is a function of Tair, LAI, and RH
(in the form of wet surface fraction (Fwet)); whereas the surface resistance to
evapourated water on the wet canopy (rs") is a function of LAl and RH. Further,
in plant transpiration estimation, the aerodynamic resistance to water vapour
from a dry canopy surface (rs') is a function of Tair only; and the canopy
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resistance to transpired water (rs') is estimated from LST, LAI, Tmin, and RH. In
the computation of soil evaporation, both the surface (rs*!) and aerodynamic
resistances (r,°) to water vapour from the soil surface are a function of LST and
VPD (which is indirectly RH).

Our results, as illustrated in Table 4-3 (only the standard uncertainties for
resistances are shown here) show that the mean standard uncertainties for r,"*¢
were 0.0011 ms™+ 6.25% and 0.001 sm™ + 0.17% for Skukuza and Welgegund,
respectively. Of the total standard r,** uncertainty, Tair contributed the highest
uncertainty of average 911+5.0% and 96.02+16.54%, with low contributions from
the LAl and RH uncertainties, for Skukuza and Welgegund, respectively.
Meanwhile, r*¢ standard uncertainties were an average 10.34+10.0 sm™ and
18.02+19.0 sm™, respectively, with RH uncertainty contributing most to the total
r"° uncertainty (approximately 80%), on both sites.

Table 4-3: Aerodynamic and surface resistance standard uncertainties (sm™) contributions to
each component of ET uncertainty

Skukuza Welgegund
Aerodynamic Surface Aerodynamic Surface
resistance resistance resistance resistance
Standard Standard Standard Standard

Mean - e .. e . .. ea -
deviation deviation deviation deviation

Interception

Evaporation 1.1*10% 3.5*10* 10.34 10.07 1*10%® 3*10* 18.02 18.96
(rawc, rswc)
Transpiration
(ra", rs)

Soil
evaporation 3.8*103 2.4*10*% 0.53 0.04 3.8*%*103 2.5*10* 0.51 0.06
(ras, rstot)

1.6¥10° 7*10% 21.68 19.68 1.5*10° 4.3*10* 30.71 26.92
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Table 4-4: Contribution of core and intermediate input variable relative uncertainties to each
component of ET uncertainty for Skukuza. Values in brackets are VPD uncertainties

. . Potential soil Wet soil
Transpiration Interception loss . X
evaporation evaporation
Standard Standard Standard Standard
Mean L Mean - Mean .. -
deviation deviation deviation deviation
Total
standard 50 041 0038 014 0.89 034 012 022
uncertainty
(mmday™)
% RH (VPD) 14.63 8.71 6.37 1.45 (21.49) 13.37 -9.71 -2.66
% Fc (1-Fc) 1.36 1.02 0.67 0.28 -0.85 -0.38
0,
#FPWel 964 331 097 005 269 519 1292 4.49
(1-Fwet)
% ry’ 1.93 0.8 2.02 0.74
% rstot 1.29 0.49 1.25 0.45
% rat 0.89 0.08
% st 2.42 5.03
% "¢ 0.97 0.05
% rsVc 21.46 5.97

In the estimation of r' standard uncertainty, the values ranged between
0.00019 and 0.0038 sm, and 0.00031 and 0.0032 sm™ (low average relative
uncertainties of 0.81+0.36% and 0.84+0.22%) for Skukuza and Welgegund,
respectively. These low values indicate that Tair uncertainties have an
insignificant effect on the estimation of r,' uncertainty. Total standard r
uncertainty ranged from 0 to 90 sm™ (mean relative uncertainty of 8.82+2.71%)
for Skukuza; whereas for Welgegund, it was between 20 and 146 sm, (average
relative uncertainty of 8.4+1.7%). The r,° relative uncertainties were on average
around 2% for both sites. Finally, r;* standard uncertainty ranged from 0.45 to
0.73 sm™, and 0.35 to 0.77 sm™, for Skukuza and Welgegund, respectively, an
average 1% relative uncertainty for both sites. Of the total uncertainty, LST
uncertainty contributed the most of the two input variables with an average of
58% and 63%, whereas 5.25% of the total rs° uncertainty was attributed to VPD
uncertainty, for Skukuza and Welgegund, respectively.

Uncertainty in Evapotranspiration

The final estimate of ET uncertainty is a result of uncertainties propagated from
the measured and remote sensing input variables, through intermediate
parameters, up to the final ET uncertainty. The standard uncertainty was
computed for each ET component, i.e. evaporation from intercepted rainfall
(wet canopy), transpiration and soil evaporation, and ultimately combined to
give the total ET uncertainty.
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In Skukuza (Table 4-4), of the 0.038 mmday™" wet canopy evaporation standard
uncertainty, rs" uncertainty contributed the highest with 21.46+5.97%, with
VPD also having a relatively significant impact of 6.37+1.45% while the rest of
the inputs (r."¢, Fc and Fwet) contributed very little. In addition, of the 0.33
mmday™' transpiration uncertainty, 14.63+8.71% of it was attributed to VPD
uncertainty and 9.64+% to Fwet uncertainty. Wet soil evaporation uncertainty
of 0.11 mm day™ was made of 12.3% of Fwet uncertainty, 9.7% of VPD
uncertainty, and very low contributions from the rest of the inputs. Lastly, VPD
uncertainty contributed the highest to the potential soil evaporation
uncertainty of 21.5%.
Table 4-5: Contribution of core and intermediate input variable relative uncertainties to each
component of ET uncertainty for Welgegund

Transpiration Potential soil evaporation

Mean Standard deviation Mean Standard deviation

total uncertainty 0.13 0.28 1.05 0.29
% Tair contribution
% RH (VPD) 26.93 15.13 (46.11) (53.05)
% Fc (1-Fc) 3.85 3.10 (1.27) (0.81)
% Fwet (1-Fwet) 0 0 0 0
% ras 1.97 0.46
rtot 1.45 0.25
ra 0.87 0.12
rs 8.98 1.67

In Welgegund (Table 4-5), ET estimation was only the sum of potential soil
evaporation and transpiration and so were the uncertainties, since wet soil
evaporation and wet canopy evaporation gave zero values and did not
contribute to the final ET. The potential soil evaporation standard uncertainty
of 1.05 mmday™' was mainly a result of VPD which contributed 46.11%, while
other inputs had very low contributions. Transpiration standard uncertainty of
0.13 mmday™ mostly resulted from the VPD that contributed 26.93+15.13%
while other inputs had significantly low contributions.

The total ET mean relative uncertainty for Skukuza was 76.19+30.82%. The total
uncertainty for Welgegund was similar to that of Skukuza, with a mean relative
uncertainty of 81.1+17.57%. In both sites, the highest uncertainty was
attributed to soil evaporation, which contributed 76.74119.13% of the
1.38+0.51 mmday™" in Skukuza, and 90.93+32.46% of the 1.62+0.36 mmday™ in
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Welgegund; subsequently plant transpiration uncertainty with mean
23.06+£18.83%, and 18.21+18.62%, for Skukuza and Welgegund, respectively. On
both sites, the wet canopy evaporation uncertainty was very low, which
corresponded with this portion of evapotranspiration.

4.4.3 Sensitivity of PM-Mu model to core input variables

A sensitivity of the ET output to input variables was done on the PM-Mu model
to determine which input variable contributes the most to ET output variation.
The percentage change in ET with respect to the percentage change in input
variables at the study sites is summarised in Table 4-6 and illustrated in Figure
4-3.

Table 4-6: Sensitivity of ET to input variables

Station Input % change in ET with respect to % change in input variables
variables -20 -10 -5 5 10 20
Tair -92.25  -64.80 38.60
LST 55.08 39.56 -50.56 -77.45

skukuza RH -0.57 -0.30 -0.16 0.17 0.35 0.75
€a 12.06 6.03 -6.03  -12.06
LAI 1.28 0.47 0.19 -0.12 -0.16 -0.02
a 6.16 3.08 1.54 -1.54 -3.08 -6.16
Tair -84.17  -47.71 51.12 93.29
LST 84.75 4415  -57.83  -63.15

Welgegund RH -0.37 -0.19 -0.10 0.10 0.20 0.43
€a 9.42 4.69 -4.69 -9.38
LAI 0.50 0.12 0.03 0.03 0.13 0.48
o 5.00 2.50 1.25 -1.25 -2.50 -5.00

In the savanna biome, the PM-Mu model was mainly sensitive to LST and Tair. A
change of -10% and -5% in Tair resulted in a 92% and 65% ET decrease,
respectively, whereas an increase of 5% increased ET by 39%. In contrast, an LST
decrease by the same values resulted in ET increasing by 55% and 40%,
respectively. On the other hand, an LST increase of 5% and 10% resulted in an
ET decrease of 51% and 77%, respectively. €, changes from -20% to 0% gave ET
increase of +10% generated ET increase and decrease of 12%, respectively, and
a changes of -20% to +20% decreased ET by between 6.16 and -6.16%. ET had
the lowest sensitivities to RH and LA, with the computed parameter variations
producing ET variations mostly inferior to 3%.
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Figure 4-3: Sensitivity of PM-Mu ET model to input variables
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The grassland biome results were quite comparable to the savanna biome
results, and again ET was mostly sensitive to Tair and LST. The percentage
change in ET in relation to Tair decrease of -10% and -5% were -84% and -48%,
while an increase of the same magnitudes showed an increase of 51% and 93%,
respectively. Similarly, an LST decrease of the same magnitudes showed ET
increased by 85% and 44%, respectively, and an increase of 5% and 10% resulted
in an ET decrease of 58% and 63%, respectively. ET was least sensitive to RH, Lai,
and a, with ET variations generally below 2.5%.

4.5 Discussion

In this study, we evaluated how input variable uncertainty was propagated in
the PM-Mu algorithm to the final ET uncertainty, along with the analysis of the
sensitivity of the ET output to the different input variable uncertainties. Our
study only concentrated on the uncertainty associated with the input variables
including uncertainty propagation, and not on the model algorithms used to
compute the intermediate variables and the final ET product.

The measured meteorological input variable uncertainties were estimated as a
combination of Type A and B uncertainties, whereas for the remote sensing-
based inputs, values from literature were used to compute Type B uncertainties.
Another essential assumption made was that there is no correlation between
the input variables. This, in reality, might not be fully true, an example being the
possible relationship between Tair and RH. A sensitivity analysis of ET to both
the measured and remote sensing estimated input variables was also done.
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4.5.1 Input variable and intermediate parameter uncertainty

Core input variables

The mean relative uncertainties for air temperature (Tair) were within similar
ranges for the two sites, i.e. 3% and 4%, for Skukuza and Welgegund,
respectively, with the variable showing slight seasonal uncertainty variation
during the year. The cooler, drier season exhibited higher relative uncertainties
compared with the hotter, wetter season on both sites. This is explained by high
diurnal temperature ranges, and thus, high Type A standard uncertainties during
the dry, cooler months. In contrast, relative humidity (RH) relative uncertainty
showed rather lower variability throughout the year compared to Tair,
especially for Skukuza. This was probably due to more stable RH readings
throughout the day, resulting in less variation in estimated Type A uncertainty.
Welgegund RH relative uncertainties were significantly higher than Skukuza
uncertainties, indicating a higher diurnal variation of RH measurements at this
site compared to the Skukuza site.

Our results are consistent with the ranges reported in other studies that have
been conducted, albeit for different purposes. In most cases, Tair and RH
uncertainties have been evaluated simultaneously. For instance, Muniz et al.
(2014) ascertained uncertainty of air temperature and relative humidity
measured by thermography and found a standard Tair uncertainty of between
0 and 2 °C, and 0 and 5% for RH, in their study to ascertain uncertainty of air
temperature measured by thermography. In their case, though, they only
considered Type B uncertainties, whereas we took into account Type A
uncertainty, which is the variation of temperature over time. In addition, Lin and
Hubbard (2004) reported that the uncertainty of derived dew point temperature
ranged from 1.8 to 3.3 °C. Comparing our results with other studies, like the ones
discussed above is a challenge because of the different metrics used in each
study.

Itis important to have an understanding of uncertainties associated with remote
sensing products that are used in simulating ET, as shown in this study. These
uncertainties are normally estimated and included in the ATB documents, with
further research being carried out per biome. For example, the absolute quoted
accuracy for LST is 1 K and 0.02 for &, in the MODIS ATBD document (Wan,
1999). However, these accuracies vary with the land cover type and the type of
uncertainties included in the estimations (Hulley et al., 2012), and should be
investigated in detail.

Intermediate data components
The core input variable uncertainties had varying effects on the uncertainties of
intermediate parameters like net solar radiation, and the aerodynamic and
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surface resistances. There was little variation in Rnet uncertainty in the
grassland and savanna sites, with the relative uncertainties modelledd at 4% and
3% for Skukuza and Welgegund, respectively. We noted that on both asites, LST
uncertainty contributed the highest to the Rnet uncertainty, with & and Tair
uncertainties also contributing significantly. Contrasting with other studies, our
total Rnet uncertainties are much different. For example, we recorded much
lower Rnet uncertainties than those reported by Mira et al. (2016), who
reported overall uncertainties of between 15% and 20% in varying sites of rain-
fed to irrigated meadows and crops in the Mediterranean region of Rhone
Valley, South Eastern France. In addition, they found that the main contribution
to the total uncertainty was equally distributed between the measured
incoming short and longwave radiations (at 5% and 8%, respectively) with LST
contributing the least uncertainty.

The aerodynamic resistance (r,"S, ra', r.°) relative uncertainties were consistent
at an average of 0.8, 0.5, and 2%, respectively, throughout the year, at both
sites. Considering these low uncertainties, their contribution to the ET
uncertainties was significantly low as well. These results concur with findings of
Ershadi et al. (2015), who also showed that aerodynamic resistances play a
relatively minor role in ET estimation in the PM model. Furthermore, it has been
shown that changes in the parameterisation of aerodynamic resistance in the
PM model produce minor improvements to the model output (Bailey & Davies,
1981; Irmak & Mutiibwa, 2009). Compared to the aerodynamic resistances,
relative surface resistance uncertainties were quite significant. Given that
surface resistances (rs"<, rs!, rs°) have a significant contribution to ET estimation,
the corresponding uncertainties also have a significant impact on standard
uncertainties of ET. This was also reported by Ershadi et al. (2015), who
determined that surface resistance parameterisation significantly affects PM
model performance.

Uncertainty in PM-Mu ET estimation

The final ET uncertainty is a product of all the input variable uncertainties that
were propagated through the PM-Mu model. In our study, we only investigated
the uncertainty associated with the input variables, and not with the algorithms
used to compute the intermediate inputs and the final ET model. Soil
evaporation uncertainty contributed the most to the final ET uncertainty in our
study areas, with wet canopy evaporation uncertainty contributing slightly less.

In both biomes, our results show that RH uncertainty, including RH, used to
compute VPD, Fwet and the different resistances, contributed the highest to the
uncertainties of all the ET components. These results are in agreement with a
study by Langensiepen et al. (2009) who reported that VPD is one of the
principal meteorological variables in ET estimation using the PM model.
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Consequently, any error in the humidity and temperature measurement
significantly impacts VPD uncertainty, and hence, increases the overall
uncertainty.

The overall mean relative ET uncertainty in our study was around 80% for both
biomes, as measured from the propagation of input uncertainties. Nichols et al.
(2004) used a similar approach to quantify propagated ET uncertainty of a
number of ET estimation methods including the Penman method, in a riparian
area of the Middle Rio Grande Basin in New Mexico. They used different values
of input variable errors and obtained a much lower relative ET uncertainty of
only 10% on the Penman method. This notable difference is due to a number of
issues, including the methods and eco-climates under investigation, the
difference in the determination of the individual input uncertainties, and the
number of input variables and parameters considered in the propagation. Our
uncertainties were a product of Ux and Ug estimates propagated from the core
inputs, through intermediate parameters, through to the final uncertainty
product. Nichols et al. (2004)used predefined input uncertainty values from the
manufacturers, for example, they used Rnet uncertainty of 15%, while we
reported a low Rnet uncertainty of 3 and 4% for our sites. Ferguson et al. (2010)
evaluated the uncertainty contributions of input variables to the final ET output.
They show the overall contributions of a and &, to ET uncertainties were minor,
whereas LAl contributed quite significantly.

4.5.2 Sensitivity of PM-Mu ET estimates to input variables

It is always a challenge to compare results on sensitivity analysis with other
studies because of the difference between models, datasets, and procedures
being used to estimate the sensitivity coefficients. Also, these are applied under
different eco-climatic conditions under investigation. In our study, we used the
simple one-at-a-time local sensitivity analysis method to estimate the sensitivity
coefficients. Based on the maximum value of each input, we perturbed each of
the input variables within the £20% range. Our results show that PM-Mu is most
sensitive to Tair and LST, thus making them the most influential input variables
in ET estimation in southern Africa using the PM-Mu method. They also show
that the land surface parameters have little effect on the PM method in these
regions. These results are consistent with other studies in similar semi-arid/ arid
regions, where they reported the PM model is most sensitive to Tair (Eslamian
et al.,, 2011; Debnath et al., 2015). In a comprehensive sensitivity analysis
assessment of the PM and Priestley-Taylor models to various inputs in different
climates in Australia, Guo et al. (2017a) showed that Tair was the most
important variable. In an arid region of India, Goyal (2004) concluded that PET
is most sensitive to potential changes in temperature, with solar radiation being
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the least sensitive. This result is explained by the fact that in dry environments
air has a high capacity to hold water vapour, which can then transfer energy to
the land surface. Fisher et al. (2013) investigated the error caused by LST
variations on the SEBS model at AmeriFlux sites across the USA and reported
that higher LST uncertainty resulted in increased ET uncertainty.

Other studies in similar climates are, however, in contrast with our results of
PM-Mu estimated ET being most sensitive to air and land surface temperatures.
Tabari and Hosseinzadeh Talaee (2014) observed that ETo was more sensitive to
wind speed in a semi-arid climate, with less sensitivity to Tair and sunshine
hours. Garcia et al. (2004) also reported that wind speed is a critical variable in
ETo estimation in arid and semi-arid climates. They reasoned that this is because
of the importance of the aerodynamic term under dry and high wind speed
conditions. Gong et al. (2006) reported that reference ET was most sensitive to
the RH variations, followed by solar radiation in the Changjiang basin in China.

4.6 Conclusion

We conducted a comprehensive uncertainty and sensitivity analysis of the PM-
Mu model with regards to both in situ and remote sensing-based input variables,
in both savanna and grassland biomes of southern Africa. We only assessed the
input variable uncertainties and quantified how these were propagated to the
final ET uncertainty and not the uncertainties related to the model algorithms
used. We found an overall ET uncertainty of approximately 80% in both biomes.
This final propagated uncertainty is considerably larger than those reported in
other studies. A number of reasons have been highlighted, including the number
of input variables assessed for their uncertainty contribution, the assumption
that there is no correlation between these input variables and the uncertainty
analysis method used that gives the total uncertainty as a combination of Type
A and Type B uncertainties. The highest contributor to the final ET uncertainty
in our study was relative humidity uncertainty. This highlights the importance of
accurate input data collection in ET estimation, as any errors are propagated to
the final product. In contrast, the PM model was most sensitive to air and land
surface temperatures, indicating the importance of these input variables to ET
estimation using the PM-Mu model in our study areas. However, the sensitivity
of the PM-Mu model to land surface parameters was quite low. Besides the
importance of these variables in ET estimation using the PM method, these
results show the impact of temperature due to climate change would have on
ET.

Uncertainty and sensitivity studies are fundamental in land surface modelling as
they are needed to understand the dynamics of the models and what role the
input variables play in model outputs. For instance, in our study, although RH
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uncertainty contributed the highest to the final ET uncertainty, air and land
surface temperatures played the most significant role in remote sensing-based
ET estimation using the PM-Mu model.
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5 A REMOTE SENSING-BASED ANALYSIS OF WATER USE
AND PRODUCTIVITY ACROSS SOUTH AFRICAN
LANDSCAPES
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5.1 ABSTRACT

With global water resources facing scarcity, degradation, and overuse, and
arable land limited, the focus is shifting towards improving water resource
management through increasing water productivity. The maturity of remote
sensing-based products of evapotranspiration and other variables gives the
opportunity to explore how these products can be applied to improve water
resource use and management. Hence, water productivity mapping is currently
under development, with the aim to identify water productivity gaps and
providing solutions to improve. This study explored the applicability of the
WaPOR platform to monitor water productivity and its components, of different
land use/ land cover classes across the South African landscape. A performance
assessment was done on the WaPOR precipitation and evapotranspiration using
ground data from two locations. With R? of less than 0.2, results showed that
the performance of WaPOR precipitation was quite poor, whereas ET performed
reasonably with R? of 0.52 and 0.39 for the two sites. An initial analysis of the
water use and productivity of different land use/ land cover classes shows that
the WaPOR products can adequately show the regional spatial and temporal
variability of water use, for example, they can clearly show the effect of the
2014-2016 drought on water use (ET), primary production, and water
productivity. Also, a trend across most of the different land uses/ land classes
assessed shows that the vegetation uses more water than precipitation in these
areas.
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5.2 Background

Globally, water resources continue to be threatened by scarcity, degradation,
and overuse, while population and income growth increase demands for water
consumption for food production. Further, competition for water in other
sectors (urbanisation, industrialisation and ecological reserve), and climate and
global change contribute to increasing pressure on these scarce resources
(Scheierling et al., 2014). Agriculture is the largest water consumer — irrigated
agriculture covers about 19% of agricultural area (Thenkabail et al., 2010) —
accounting for 70% of total water use (Molden et al., 2007). In South Africa, an
already water-stressed country, 40% of the available water is used for
agricultural production, of which 60% is for irrigated agriculture while the
remainder 60% is allocated to other users (environmental, industrial, urban and
domestic uses) (Maila et al., 2018). It is therefore crucial to, first, assess water
use and productivity by the different sectors, and then to find ways to use water
more efficiently to improve water productivity, especially in irrigated and
rainfed agriculture. Increasing water productivity is an important element in
improving sustainable water management for agriculture, food security and
healthy ecosystem functioning (Xueliang Cai et al., 2011; Cook et al., 2006). It
has been estimated that three-quarters of the additional food we need to
balance the growing population could be met by increasing the productivity of
low-yield farming systems by up to 80% of the productivity that high-yield
farming systems obtain from comparable land (Molden et al., 2007). In areas
with large yield gaps, there is a huge scope for improvement (Cai et al., 2011; De
Fraiture & Wichelns, 2010). In that respect, the highest potential water
productivity gains can be achieved in low-yielding rainfed areas in pockets of
poverty across much of sub-Saharan Africa and South Asia (Johan Rockstréom et
al., 2010). As many of the world’s poorest people live in currently low-yielding
rainfed rural areas, improving the productivity of water and land in these areas
would result in multiple benefits.

In its broadest sense, water productivity reflects the objectives of producing
more food, and the associated income, livelihood and ecological benefits, at the
lowest social and environmental cost per unit of water used possible (Molden
et al., 2007). Water productivity is defined as the output per unit water used,
either physical (crop yield, biomass produced) or economic outputs (money) per
unit water applied or consumed (evapotranspiration) (Hsiao et al., 2007; Kijne
et al.,, 2003; Molden et al.,, 2010). Water productivity is often loosely
interchanged with water use efficiency, a term sometimes defined as the ratio
between effective water use and actual water withdrawn for irrigation.
Although some studies argue rightly that water productivity is not the only
component in improving agricultural productivity, water scarcity, aggravated by
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the stiff competition between water users, have prompted the United Nations
to conclude that water, instead of arable land, and is fast becoming the main
constraint to increased food production (Dubois, 2011; Tscharntke et al., 2012).
However, improving water productivity is only feasible when other stresses like
nutrient deficiency, pest, and weed infestations have been alleviated (Bouman,
2007). In some instances, such as in South Africa water-stressed region, land
expansion is no longer a viable solution in increasing food production, hence,
the focus should be on efforts to increase water productivity (Godfray &
Garnett, 2014; Pretty et al., 2018).

Remote sensing-based evapotranspiration (ET) modelling and prediction is a
mature technology, with the available models continually being calibrated,
validated and adapted to different ecosystems, climates and management
systems, and applied at various temporal and spatial scales. Considering the
current urgency of the water crisis, more focus needs to be on transferring these
remote sensing techniques to operational applications in water resource
monitoring and management. Water productivity mapping of different crops is
currently under development at different scales, with different WP tools being
applied to monitor water use per land use and improve on water resource
management. Some of the work done to map water productivity includes the
use of different sensors to map WP for different crops in Galaba in the Syr Darya
river basin in Central Asia (Biradar et al., 2008; Cai & Sharma, 2010; Cai et al.,
2009; Platonov et al., 2008). They derived crop yield empirically by relating crop
spectral information to measurements of LAI, biomass, and yield, and water use
using the Simplified Surface Energy Balance model. Meanwhile, Zwart et al.
(2010) developed a WATer PROductivity (WATPRO) model for wheat using
remote sensing inputs. By combining the dry matter production model from
Monteith’s (1972) theoretical framework and an energy balance based
evapotranspiration model, they ensured the omission of the
evaporativefraction and atmospheric transmissivity. Using Sentinel 2 and
Landsat 8, Nyolei et al. (2019) applied the SEBAL ET model, locally calibrated LAI
map and land use map to map WP in the Makanya river catchment in Tanzania.
Other WP projects include the Futurewater Water Productivity pilot project
involving smallholder farmers in the Gaza region of Mozambique (den Besten et
al., 2017). They employed unmanned aerial vehicles (UAV) and AQUACROP, a
crop water productivity model, to assess yield and WP for maize. They
demonstrated the feasibility of using UAV technology to monitor WP at farm
level. On the same thread, the Food and Agriculture Organisation (FAO) of the
United Nations is running a portal to monitor Water Productivity through Open-
access of Remotely sensed derived data (WaPOR), to assess land and water
productivity, identify water productivity gaps, in a bid to propose solutions to
reduce these gaps and to contribute to a sustainable increase of agricultural
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production. This portal covers Africa and the Near East, with a few designated
pilot project areas in the Nile, Niger, Awash, and Jordan/ Latini river basins.
Products from this portal are now being used in different studies, including
monitoring water use in agriculture (Tantawy, 2019), comparison with other
estimation methods (Javadian et al., 2019) and as inputs in groundwater studies
(Nhamo et al., 2019).

The objectives of this chapter are, therefore, to assess water productivity across
different land use/ land cover classes on the South African landscape, including
natural vegetation and agricultural land. Under natural vegetation, grasslands
and forests will be targeted, whilst subsistence and commercial agricultural
lands will also be assessed. We will evaluate the different inputs of the Water
Productivity through Open access of Remotely sensed derived data (WaPOR) WP
(gross and net WP), including land cover, ET and above-ground biomass (AGBP)
against the SA based and tested products.

5.3 Methodology

5.3.1 FAO WaPOR platform

The FAO Water Productivity Open-access portal (WaPOR) is a tool that has been
developed under the FAO project aimed at monitoring water productivity,
identifying water productivity gaps and proposing solutions. The ultimate goal
is to reduce these gaps, and thus, contribute to a sustainable increase in
agricultural production through the use of satellite remote sensing technology.
This initiative was driven by the fact that agriculture is a major water user,
hence, the need to carefully monitor agricultural water productivity, and
ultimately finding means to improve it. Different datasets are available for
analysis at three spatial scales, i.e. 30 m scale sub-national for selected pilot
sites, 100 m for the pilot countries, and 250 m for the rest of Africa, at annual,
decadal and daily time scales. Table 5-1 gives the datasets that are available on
the platform that will be analysed in this paper. The derivation of each of these
variables is described in detail in (FAO, 2018).
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Table 5-1: Data extracted from the WaPOR platform

Dataset Unit Tempo.ral Method used
resolution
Obtained from the CHIRPS
dataset, which estimates
Precipitation mm annual, precipitation from global models
decadal, daily which use satellite observations
and ground based
measurements
Actual Penman-Monteith model as
Evapotranspiration mm annual, decadal described by W. Bastiaanssen et
(ET) al. (2012) on ETLook
Net Primary gm2 Annual, decadal Derived using a method detailed

Production (NPP) in Veroustraete et al. (2002)

Obtained by converting NPP
using the AGBP Over Total

Above Ground biomass production conversion
Biomass kgDMha™ annual factor which accounts for the
Production (AGBP) division between the above and

below ground components.
Conversion factor fixed at 0.65
Net Biomass
Water Productivity kgm™3 annual, decadal
(NBWP)
Gross Biomass
Water Productivity kgm™3 annual, decadal
(GBWP)

Ratio of above-ground biomass
production to evapotranspiration

Ratio of above-ground biomass
production to transpiration

5.3.2 Study area

The 1.22 million km? of the South African land area, of which 79.8% is
agricultural land, 7.62% is forest, and the remainder classified as other land.
These are further subdivided into 73 different land cover classes, including
natural and cultivated forest, vines, orchards, sugarcane, and annual crops
(Thompson, 2019). The aim of this study is to assess the use of the WaPOR
database to monitor water productivity of different land use/land cover classes,
based on the South African National Land Cover map. Initially, the FLUXNET sites
were assessed, with a few more sites randomly selected (these are initial results
of the study, hence they cover a few sites), as shown below. These sites cover a
range of land use/ land cover classes, including natural vegetation (Kruger
National Park, Welgegund, Elandsberg, and Dukuduku Forest), agriculture
(plantation, subsistence, and rainfed and irrigated commercial).
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Skukuza FLUXNET site (Kruger National Park)

Covering almost 2 million hectares, the Kruger National Park (KNP) is located on
the north-eastern border of South Africa and Mozambique. It is in a subtropical
climate characterised by wet, hot summers, and dry, warm winters. Mean
annual precipitation ranges between 440 mm in the north and 750 mm in the
south significant inter-annual variability. Meanwhile, temperature ranges
between 15.6 and 29.6 °C, with a mean of 22.6 °C. The park is bound by the
Limpopo River in the north and the Crocodile River in the south, with several
other flowing through from west to east, including the Sabie, Oliphants, Letaba
and Luvuvhu Rivers. The park is rich in biodiversity, with flora comprising 1903
species, of which 400 are tree and shrub species and 220 kinds of grass. Four
vegetation types characterise the park, i.e. the well-wooded south-west with
tree species including the red bushwillow (Combretum apiculatum Sond.),
knobthorn (Acacia nigrescens Oliv.), tamboti (Spirostachys Africana Sonder) and
marula (Sclerocarya birrea [A. Rich.] Hochst.). The south-east is grassier and
heavily grazed, with trees like knobthorn, leadwood (Combretum imberbe
Wawra) and marula. On the other hand, the north of the Oliphants River is
poorly grassed, with the main tree species being the mopane (Colophospermum
mopane) and red bushwillow. The north-eastern region is dominated by
mopane shrubs. This park houses 147 mammal species and 492 birds. There are
local communities along the border of the KNP who use the communal
rangelands for livestock ranching, crop agricultural activities, and fuel energy.

Elandsberg Nature Reserve

A South African National Heritage Site, and a Contractual Nature Reserve,
Elandsberg Private Nature Reserve is situated near the town of Hermon in the
valley of the Berg River, Western Cape Province. It is situated on the west-facing
foot slopes of the Elandskloof mountain range, with an area of about 2 000 ha.
The reserve is in a winter rainfall region, with dry summers typical of
Mediterranean type climate, receiving a mean annual rainfall of 660 mm. The
temperatures range between an absolute 2 and 43 °C. Lying within the West
Coast Renosterveld of the fynbos biome, it is home to at least 820 plant species.
The dominant vegetation types include the Swartland Alluvial Fynbos on deeper,
sandy soils interspersed with patches of Swartland Shale Renosterveld on more
stony, shale-derived soils.

Welgegund

Welgegund farm is located within an elevated plateau known as the SA Highveld
in the North West Province, about 25 km north-west of Potchefstroom. It is
situated in a semi-arid climate, grassland biome. The mean annual rainfall in the
area is 540 mm, and temperatures range between 0 and 30 °C with an average
of 18 °C. 13004300 Cattle graze on an area of approximately 6000 ha, with the
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carrying capacity quite low. The dominant vegetation comprises grasses,
geophytes, and herbs. The dominant grass species are Hyparrhenia hirta and
Sporobolus pyramidalis. Non-grassy forbs include Acacia sieberiana, Rhus
rehmanniana, Walafrida densiflora, Spermacoce natalensis, Kohautia
cynanchica, and Phyllanthus glaucophyllus.

Dukuduku Forest and surrounding lands

Dukuduku forest is an indigenous forest located between Mtubatuba and St.
Lucia towns in northern KwaZulu-Natal Province. It is part of the iSmangaliso
Wetland Park, a UNESCO world heritage site, comprising the St Lucia estuary,
the largest estuarine system in Africa (Whitfield & Taylor, 2009). The climate is
subtropical with warm, moist summers and mild winters, and mean annual
temperature exceeding 21 °C. Due to deforestation, this forest has shrunk from
6000 ha, when it was declared a protected area in the early 1950’s, to 3200 ha
in 2013. A 29% loss of the forest has been reported to be due to its conversion
to small farms and squatter camps between 1992 and 2005 (Ndlovu, 2013). The
area is dominated by various natural indigenous vegetation species including
rare tree species like Syzygium cordatum, Cussonia zuluensis, Ficus natalensis,
Canthium inerme, Strychnos madagascariensis, Strychnos spinosa, Apodytes
dimidiate, Ozoroa engleri, Barringtonia racemosa, Albizia adianthifolia,
Ekebergia capensis, Harpephyllum caffrum, Hymenocardia ulmoides, Sclercarya
birrea, and Trichilia dregeana. On the western and southern borders, the forest
is surrounded by sugar and Eucalyptus plantations, and villages that practise
subsistence farming on the eastern border.

5.3.3 Evaluation of WaPOR products

Performance of WaPOR precipitation and evapotranspiration products
Using ground measured data from the Skukuza and Welgegund FLUXNET sites,

the accuracy of the WaPOR precipitation and evapotranspiration was evaluated
using the coefficient of determination (R?), bias, mean absolute error (MAE),
root mean square error (RMSE), and relative RMSE (rRMSE).

Assessment of WaPOR products

Apart from the sites that have already described and investigated in this thesis
(i.e. Skukuza and Welgegund flux tower sites, and Elandasberg), extra sites were
randomly selected from around South Africa based on climate and land cover/
land use, as described in Section 5.2.1. Decadal and annual values of
Precipitation, Evapotranspiration (ET), NPP, AGBP, NBWP and GBWP from 2009
to 2018, were extracted from the WaPOR platform for analysis. The measured
precipitation and ET data from the Skukuza and Welgegund eddy covariance flux
tower sites were then used to evaluate the extracted decadal WaPOR products.
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Furthermore, annual precipitation, ET, NPP, GPP, NBWP, and GBWP were
analysed per site.

5.4 Results and discussion

Water use varies across significantly across different land use/land cover and
vegetation types, depending on a number of factors that include water
availability, soil characteristics, and agricultural management systems. This
section presents the results of the performance assessment of the WaPOR
precipitation and ET products which was done using the Skukuza and
Welgegund eddy covariance system data. Unfortunately, we could not get the
field yield (biomass) values to be able to compute WP and compare these with
the modelled values. Subsequently, the different components of precipitation,
ET, NPP, AGBP, NBWP, and GBWP of each land use/ land cover class were
analysed.

5.4.1 Performance of the WaPOR precipitation and ET

Before any modelled remote sensing-based products can be used and applied
with confidence, they should be tested against ground measured data. Here the
precipitation and ET products were tested using measured data from Skukuza
(savanna) and Welgegund (grassland) eddy covariance flux tower systems.
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comparisons for Skukuza (top), Welgegund (bottom)
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The WaPOR precipitation estimates followed the trend of the measured
precipitation, managing to estimate precipitation at the designated rainfall
intervals (Figure 5-1). However, the estimation accuracy was very low, as shown
by the low R? of 0.0078 and 0.11 for the two sites. Meanwhile, the correlation
between the estimated and measured precipitation was statistically significant
for Welgegund (p-value = 2.43*107%), whereas it was insignificant for Skukuza
(p-value = 2.37). Moreover, the WaPOR precipitation estimates could not
simulate high precipitation events.
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Figure 5-2: Decadal measured and WaPOR ET time series (left) and scatterplot (right)
comparisons for Skukuza (top), Welgegund (bottom)

Figure 5-2 shows that the seasonal trend of WaPOR ET was observed following
the measured ET. With R? of 0.52 and 0.39 for the savanna and grassland sites,
respectively, the statistics (Table 5-2) indicate the WaPOR decadal ET performed
better in the savanna than the grassland biome. For Skukuza, particularly, the
WaPOR ET performed better than the PM-Mu used earlier in Chapter 3. The
periods of low ET are characterized by a more perfect fit between the EC and
WaPOR ET for both sites. Furthermore, for Welgegund, the fit extends to the
periods of higher ET. The main reason could be that WaPOR PM included soil
moisture measurements to constrain the model, whereas PM-Mu used in
Chapter 3 only used RH and VPD as soil moisture proxy. Conversely, WaPOR PM
indicates a general underestimation of ET during periods of higher ET in Skukuza.
This result concurs with previous results of this work in Chapter 3, which shows
a saturation of PM-Mu ET at some point.
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Table 5-2: Statistics summary of eddy covariance derived and WaPOR ET estimates

Skukuza Welgegund
Bias 0.11 0.15
MAE 0.78 0.83
RMSE 1.06 1.24
rRMSE 60.35 67.14

Another evaluation of the MOD16 8-day ET using the Skukuza EC data by Dzikiti
et al. (2019) gave an RMSE of 1.19 mmday™8, which is comparable to the 1.06
mmdekad™ reported in this study. Meanwhile, Gomis-Cebolla et al. (2019) also
showed that PM had an RMSE averaging 1.25 mmday™ in their study in the
Amazonia, with the conclusion that this model overestimated ET.

5.4.2 Evaluation of WaPOR water use across different land use/ land
cover classes

We evaluated water use and water productivity for different land use/ land
cover classes across South Africa using the WaPOR products. Table 5-3 shows
that the Dukuduku forest and surrounding land uses on the eastern part of South
Africa recorded the highest precipitation amount over the 10 year period with
an average of 884 mmyear™. Within the same area, the communal area receives
the highest precipitation, as shown in Figure 5-3. Welgegund received the
lowest precipitation averaging 537+78 mmyear™, although not significantly
different from Elandsberg 5424146 mmyear™. Moreover, 2015 recorded the
lowest precipitation in all the areas around South Africa, except for the high
precipitation Dukuduku area, which experienced low precipitation the previous
year. Also, the winter rainfall Elandsberg experienced a severe drought in 2018.
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Figure 5-3: Mean annual precipitation variation across different biomes and land uses in South
Africa

It can be observed that the multiyear average evapotranspiration was higher
than precipitation at all the sites, except the Dukuduku communal area, which
lost 94% of the multiyear average rainfall of 956 mmyear™ through
evapotranspiration, and Skukuza which lost almost the same amount of water
that fell as rainfall. Higher ET than precipitation is encountered due to a number
of factors, based on location and land use. For example, the Welgegund flux
tower is located on a commercial farm, where they cultivate pastures and
sunflower for grazing. The rainfall is supplemented by irrigation, hence more
water is available for loss through ET, resulting in higher ET compared to rainfall.
The low precipitation recorded in 2014-2015 is followed by a dip in ET in 2015,
especially for Skukuza and the Dukuduku Eucalyptus plantation.
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Figure 5-4: Time series ET of different biomes and land uses

Consequently, although with similar precipitation amounts, the ET to
precipitation ratios in the Dukuduku area vary from 1.39 at the sugarcane
plantations, 1.37 at the natural forest, and 1.3 at the Eucalyptus plantation. A
plausible reason for the higher than unity ET/precipitation ratio in the
Eucalyptus and natural plantations could be because they have deep root
systems that tap into the groundwater. On the other hand, the results point out
that sugarcane production uses more water than plantations, resulting in the
highest ET/precipitation ratio. An extension to drier regions of the country also
shows higher ET than precipitation, with both having a 1.09 ratio. Skukuza was
the exception, losing an equal amount of water as received.

The estimated ET for the Eucalyptus plantation in our study concurs with other
studies done in South Africa, which stated that Eucalyptus ET varies between
1100 and 1200 mm per year (Dyeet al., 2007). However, while our results show
an overall high mean annual water loss for the natural forest compared to the
Eucalyptus forest, contrasting results are reported in other studies where these
plantations consume more water than the baseline vegetation (Gush et al.,
2002, Gush 2006, Dye et al., 2007). The discrepancy in our results is likely
because of the age of the Eucalyptus trees observed, where there they have not
fully matured the deep root system (Dye, 1999). This is further illustrated by the
low ET recorded during the 2016 period (Figure 5-4), which came after two years
of lower than the mean annual precipitation (Figure 5-3). Mean annual
precipitation may not vary too much in an area, except during extreme events,
vegetation water use varies quite a lot depending on the type and maturity
stage. In our study, we, however, did not determine the age of the Eucalyptus
plantation, and so the results are taken as generic. Meanwhile, a study in the
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Brazilian Eucalyptus plantation during a dry (779 mmyear™) and wet (939
mmyear™') year showed lower ET than our results (Ren et al., 2019).

As summarised by Sun et al., (2013), the spatial distribution of AGB is affected
by a number of environmental factors, categorised into meteorological (air
temperature, relative humidity, precipitation), topographic (longitude, latitude,
altitude, slope, aspect), and soil (soil moisture, soil temperature, soil nutrient,
soil texture, soil organic matter). Our results in Figure 5-6 show a positive
relationship between precipitation and NPP, i.e. high NPP corresponds with high
rainfall, and the opposite being true. However, a slight lag in NPP increase is
highlighted in line with the precipitation events. It was observed that there is
little distinction between Elandsberg fynbos biome and Skukuza savanna NPP
(1.1+£0.77 gm~2 and 1.07+0.40 kgDMha™") and AGBP (5799.4+1748.6 gm™ and
5672.2+353.24 kgDMha™). A clear distinction between AGBP from the high
rainfall Dukuduku area and the low rainfall areas is clearly visible in Figure 5-5.
Moreover, in the Dukuduku area, the natural forest had the highest biomass
production of all the land uses.
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Figure 5-5: Time series AGBP of different biomes and land uses

ET versus AGBP correlation was high, with R? between 0.48 and 0.86 for all the
sites. An exception was the Dukuduku natural forest which had the poorest
correlation of 0.1, indicating that other factors other than water availability
affect AGBP. Our results are in line with other studies by Scholes et al., (2002)
and House and Hall (2001) who also confirmed the almost linear relationship
between biomass and precipitation and/or water availability in the savanna
biome.

A number of studies have been carried out to investigate AGBP on the southern
part of the Kruger National Park, including using destructive harvesting data
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collection to develop an allometric equation to estimate AGBP (Colgan et al.,
2013). Their results showed that individual tree biomass ranged between 0.2
and 4531 kgha™. A more detailed investigation of the savanna AGBP mapping
was investigated by Naidoo et al., (2015) and Mathieu et al., (2013), who used
finer resolution active SAR data. Moreover, Odipo et al., (2016) explored the
potential of high resolution TLS-derived canopy cover and height metrics to
estimate plot-level aboveground biomass (AGB) and extrapolated to a
landscape-wide biomass estimation using multi-temporal SAR. Their results
gave AGB ranging between 19.7+5.2 tha™ to 34.2 + 30.78 tha™. Their results
gave AGB ranging between 19.7+5.2 tha™ to 34.2+30.78 tha™. One of the
challenges in comparison to these studies is the metrics used in each of the
studies. For example, the above studies were investigating woody (tree)
biomass, whereas the WaPOR product only considers C3 crop types, and does
not cater for crop type variations. However, this dataset is very useful for cereal
crops like wheat, maize, and wheat, but certainly would need modifications for
it to be applied for other crops like root, tuber and bulb crops, as described in
FAO and IHE (2019).

Gross biomass water productivity provides insights on the impact of vegetation
development on consumptive water use and thus on the area (catchment) water
balance, whereas net biomass water productivity is a useful parameter in
monitoring how effectively vegetation (particularly crops) uses water to develop
biomass (and thus yield). WP analyses in Table 5-3 show a clear distinction
between, first, the different biomes and climatic zones, second, the different
land uses across the natural vegetation and agricultural areas. For example, with
the highest NPP and AGBP, the Dukuduku natural forest recorded the highest
gross and net biomass water productivities.
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Figure 5-6: Time series comparison of precipitation and NPP Skukuza (top) and Welgegund
(bottom)

On the other hand, although with much lower consumptive water use,
Dukuduku communal area recorded quite high water productivity compared to
the surrounding eucalyptus and sugarcane plantations. In the low precipitation
areas, all the three sampled areas, Welgegund (1.45+0.95 kgm™3), Skukuza
(1.35+0.12 kgm™3) and Elandsberg (1.27+0.13 kgm™3) actually had quite
comparable net biomass water productivity.

A comparison with studies within the WaPOR project shows that our results
have lower WP for sugarcane (1.38+0.04) compared to the irrigated Ethiopian
sugarcane (6.13 kgm™3). Other studies across South Africa recorded Eucalyptus
WP between 0.0008 and 0.0123 m3m™3 water consumed (Albaugh et al., 2013).
Furthermore, in the Argentinian Entre Rios region, another study on Eucalyptus
WP (1.20 kgm™3) showed values that were much lower than those recorded in
the Dukuduku plantation.
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Table 5-3: Multi-year annual average values of 2009-2018 WaPOR biomass and water use
components for different land uses across South Africa

. Gross
5 Land use/ land . Evapo- Net Primary AboYeGround Net Biomass Biomass
Site/ Area Precipitation N . Biomass Water
cover transpiration  Production X L Water
Production Productivity L.
Productivity
Natural
Skukuza vegetation 560.8+83.32 559.43+133.03 1.1+0.77 5799.4+1748.6 1.35+0.12 1.0240.15
(savanna)
Welgegund (g::;r:d) 537.4477.95  588.44+57.99  1.3240.96 6941.9+1404.31 1.45:0.95 1.1740.17
Natural
Elandsberg vegetation 542.0£146.38 588.81+82.03 1.07+0.40 5672.2+353.24 1.2740.13 0.9840.11
(fynbos)
Natural
Dukuduku i
forest vegetation 869.6+132.95 1187.55+105.82 3.20+0.80 16860.5+1116.08 1.61+0.25 1.43+0.18
(forest)
pukuduku Commercial
Plantation Eucalyptus  844.69+135.56 1097.79+209.12 2.57+0.81 13576.4+2476.29 1.370.14 1.24+0.10
plantation
Dukuduku Commercial
. 863.4+144.77  1198.99+78.17 2.92+0.94 15386.9+1110.96 1.38+0.04 1.28+0.05
sugarcane rainfed
Dukuduku  Subsistence  goc 1133 49 90134411861  2.3650.77 12440.9:1723.68 150£0.10  1.3840.10
communal agriculture

5.5 Conclusion

The WaPOR platform provides different datasets covering primary production,
biomass, and water availability, use, and productivity. These data products are
critical not only in assessing and monitoring water productivity of different land
use/ land cover classes, but can be used to identify biomass (yield) and WP gaps,
and applying management practices to improve WP and hence, yield. Also, these
datasets can be used as input data to research on the catchment water balance,
especially in areas of scarce in situ data.

Evaluating the performance of these data under different biomes and/or land
uses is a critical step in their production and further application. The main focus
of this study was to assess biomass and water productivity variation between
biomes and land uses across the South African landscape, making it a
preliminary study to using the WaPOR platform to further investigate
agricultural water productivity. Firstly, an evaluation of the precipitation and ET
data against ground measured data showed a good correlation between the two
datasets. These results give confidence in using and applying the WaPOR
products in our region. However, to be applied in cases of crops other than C3/
C4 cereals, the suggested modifications would have to be implemented for more
accurate results. Furthermore, this study is still ongoing to assess water use/
water productivity of a variety of land use/ land classes, with the main focus
being the agricultural areas.

With the challenges facing water availability and food production, water
productivity mapping using remote sensing and modelling techniques assist in
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identifying areas of low WP, which in many instances translates to low biomass
and/or yield. Obtaining such information is important in ensuring sustainable
management strategies would be employed to reduce water use and increase
biomass (yield). This would further ensure increased food production.

With precision agriculture gaining momentum around the world, water use/ WP
mapping are necessary tools to identify, even within field, areas of low WP, in
order to further investigate the reasons for low crop productivity in order to
come up with mitigating actions.
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6 SYNTHESIS AND FINAL REMARKS
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6.1 Summary

Efficient use of water resources in (semi-)arid regions is increasingly becoming
critical due to population increase and income growth leading to higher demand
for water for consumption and food production, and competition for water with
other sectors (urbanisation, mining, industrialisation, and ecological reserve).
Hence, accurate estimation of all hydrological cycle components, including
evapotranspiration is important. Deemed the most complex component of the
water cycle, evapotranspiration is a critical process linking the water and the
energy cycles. Thus, it has been a subject of study since the eighteenth century,
with numerous techniques having been developed and tested under varying
biomes and climatic conditions, including direct measurement and modelling
techniques. The aim of this thesis was, therefore, to evaluate remote sensing-
based evapotranspiration estimates in a semi-arid ecosystem, and apply remote
sensing-based ET estimates in water use/ water productivity assessment.

This chapter will summarise the findings of this thesis and highlight the main
contribution to science.

6.1.1 Eddy covariance data quality assessment

The Skukuza eddy covariance flux tower, located in the Kruger National Park,
has been operational since February 2000. This long-running dataset continues
to contribute immensely to the study of the carbon, energy and water dynamics
of the semi-arid African savanna ecosystem (Archibald et al., 2009; Kutsch et al.,
2008; Nickless et al., 2011; Williams et al., 2009). In the meantime, so much work
has been done to evaluate the quality of these EC data worldwide, including
identifying the sources of error. However, the Skukuza flux data have not been
subjected to this process, which is crucial especially if these data are to be used
in the atmosphere and land surface model cal/val. Furthermore, it is important
to understand the partitioning of solar energy in such an environment
characterized by high temperatures and low, sporadic precipitation. This section
of the thesis was important in identifying the long-running Skukuza eddy
covariance system data, assess their quality, identify windows of compromised
data, and possible reasons for loss of quality. Therefore, in Chapter 2, the quality
of 15 years of EC data from the Skukuza flux tower was assessed using the
ordinary least squares (OLS) and the energy balance ratio (EBR) methods. This
was a critical step in our study, not only to present the EBR information of these
data but also to screen which periods had high-quality data to be used for
further evaluation of the remote sensing-based ET models. During the
assessment, those periods (years) with large data gaps and poor data quality,
i.e. with an EBR of less than 0.5, were discarded and not included in the
subsequent analysis. To add substance to our analysis, the EC data were divided
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between day- and nighttime, and seasonal, and the effect of weather conditions
on the SEBC. While the mean multi-year EBR was 0.93, 60% of the yearly EBR
was within the 10-30% error reported on other FLUXNET sites worldwide, and
the remainder 40% recorded a higher EBR. In this study, the heat storage terms
(soil and canopy heat storage, and energy storage by photosynthesis and
respiration) were excluded. Furthermore, an investigation of the effect of
friction velocity highlighted its effect on EBR, which was in essence linked to the
time of day. The effect of friction velocity on the imbalance was ascertained,
highlighting its link to the time of day. The seasonal variation of EBR showed low
surface energy imbalance during the wet season compared to the dry season.

Generally, the variations in surface energy availability and partitioning depend
on solar radiation, air temperature, precipitation and/or soil moisture.
Additionally, vegetation dynamics provide an explanation for the partitioning of
surface energy. Results obtained in Chapter 2 highlight that in (semi-)arid areas
solar radiation is not a limiting factor to latent heat flux, but water availability
(precipitation and/or soil moisture), unlike in temperate regions where solar
radiation is. The wet season is characterised by high precipitation amount and
high temperatures, hence latent heat flux was more dominant than sensible
heat flux. Vegetation development, i.e. flowering and leaf emergence is
influenced by precipitation, and as it peaks, latent heat flux also peaks whilst
sensible heat flux reaches the minimum. On the other hand, the dry season is
characterised by lower solar radiation, little to no precipitation, leaf senescence
and tree defoliation, resulting in sensible heat flux rising to its maximum and
latent heat flux hitting its bottom. Regardless of the time of year and available
solar radiation, the results also showed that an increase in vapour pressure
deficit is characterised by a rise in sensible heat flux and a reduction in latent
heat flux. The challenges of maintaining such a delicate system running for a
long time could also be identified in this study. These include the measuring
instruments breaking down and needing to be fixed and/or replaced, the effect
of weather on measurements, and the change of instruments from one type to
another as was the case in this system. The biggest challenge has been the
expertise and sourcing funding to maintain the system running.

6.1.2 Model assessment and intercomparison

The objective of Chapter 3 was to identify the best performing ET model and/or
product in semi-arid environments like South Africa. Based on the results of the
EBR analysis in Chapter 2, EC data with the best EBR was selected for use in the
evaluation of ET models, which in this instance was 2012 with the best EBR of
1.01. In addition to the tropical climate savanna biome Skukuza flux tower site,
another ET dataset from the Mediterranean climate fynbos biome region
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(Elandsberg Nature Reserve) of the south-western part of South Africa was used
in this evaluation.

The models tested in this section include the Penman-Monteith model (PM-Mu)
modified by Mu et al. (2007); Mu et al. (2011) and the Priestley-Taylor based
land surface temperature-vegetation index triangle method (Ts-VI), the
Priestley-Taylor based GLEAM (Martens et al., 2017; Miralles et al., 2011) and
the Soil-Vegetation-Atmosphere-Transfer (SVAT) model Tiled ECMWF
(European Centre for Medium-Range Weather Forecasts) Surface Scheme of
Exchange processes at the Land surface (TESSEL) based LSA-SAF MET (N. Ghilain
et al.,, 2011; Ghilain et al., 2012; Ghilain et al., 2014) products. Using the
statistical methods like the relative root mean square error (rRMSE), mean
absolute error (MAE) and bias, all the results showed a general underestimation
of ET, except during the wet season in the fynbos biome. PM-Mu method was
the best performing during periods of high ET for both sites, although there was
no outstanding difference between the other model and products. The PM-Mu
error statistics fall within the globally observed error of up to 30% during these
periods of high ET. This is further seconded by the coefficient of determination
(R?), which showed variable results. Periods of low ET showed Ts-VI performed
the better compared to the other models/ products on in the savanna biome,
with GLEAM outperforming the rest of the models in the fynbos biome.

The variation between the model performances is attributed to factors like
structural complexities, model assumptions, parameterisations, amount of data
required, and atmospheric and land surface characteristics. The MODIS
products, together with in situ measurements, used as inputs to the models they
have their errors and uncertainties that have been investigated and recorded in
the ATBD and product documents. Another source of error discussed was the
flux footprint, i.e. for the 16 m measuring the height of the Skukuza EC system
the footprint of 1.6 km, which, although is almost similar to the MODIS pixel size
of 1 km, is a function of landscape heterogeneity, atmospheric stability, and
wind velocity and direction.

The Ts-VI method is a version of the PT model, which parameterises the PT
parameter (@PT) in order to estimate the evaporativefraction (EF) using the
triangular feature space of the LST-VI scatterplot. One of the biggest advantages
of this method is that it does not require ancillary data, i.e. it is the least data
intensive of the models that were tested in this study. Its reliability depends on
the accurate identification of the wet and dry edges in the Ts-VI feature space,
which is reliant on the heterogeneity of the land surface under investigation,
from full vegetation cover to bare soil surface. In areas and during periods of
high land surface homogeneity, it is challenging for the triangle shape to form
convincingly in the Ts-VI scatterplot, hence the identification of the wet and dry
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is also difficult. The Ts-VI method is not transferable to another area and time
without violating the main assumption of uniform atmospheric forcing across
the image. This is further compromised by the spatial resolution of the images
being used to define the triangle feature space; the coarser the resolution the
wider the area used to determine the dry and wet edges. Meanwhile, the
GLEAM product of Martens et al. (2017); Miralles et al. (2011) also uses the PT
as the base model for computing potential ET before using different modules,
the stress module, soil water module and the interception module, to estimate
actual ET. This 0.25° spatial resolution product estimates different components
of ET (i.e. intercepted rainfall evaporation, soil evaporation and transpiration)
for tall vegetation, short vegetation (including grasses) and bare soil, with the
ET being an average of all the fractions of the four land cover types available in
each grid cell. One of the greatest advantages of this product is the use of
microwave sensors to estimate soil moisture and vegetation optical depth that
are used to constrain PT estimated potential ET. The LSA SAF ET product uses
the TESSEL SVAT scheme, which is based on the surface energy budget for ET
model development. Like the GLEAM product, the LSA SAF ET is an average of
all the tiles (land cover) within each pixel. The daily ET in this product is an
aggregation of 30-minute ET estimates, and this results in ET underestimation,
especially during times when there are data gaps, for instance when there are
clouds. Although it is available in fine temporal resolutions of 30-minute and
daily, the spatial resolution is very course at 3 km. The highlight of this section
was the comparable performance of PM-Mu during periods of high ET, and vice-
versa during periods of low ET. The parameterisation of aerodynamic and
surface resistances is a challenge, including the upscaling stomatal to canopy
resistance. In this version of Mu modified version of PM, VPD and minimum air
temperature were used to constraint canopy resistance, with LAl used in
upscaling stomatal to canopy resistance. While the GLEAM and LAS SAF ET
products use soil moisture to constrain soil evaporation in their modelling, the
PM-Mu method used relative humidity and VPD as a proxy for soil water
availability in soil evaporation. This, among other factors, was seen as the main
contribution to the poor performance of the model during dry periods. Several
modifications have been made to this model to include soil moisture constraints
in the estimation of ET in dry ecosystems, with results showing improved ET
estimates (Di et al., 2015; Sun et al., 2013).

6.1.3 Uncertainty and sensitivity analysis of the PM-Mu model

Uncertainty and sensitivity analyses are critical steps of the modelling process,
particularly in hydrological modelling. Although error and/or uncertainty are an
integral component of the ET modelling process, this component is usually not
investigated and reported on. Hence, Chapter 4 focused on identifying and
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quantifying different sources of error and/or uncertainty in the PM-Mu ET
model and how these impact the final modelled ET product. This study only
focused on the core input variables uncertainty, i.e. measured meteorological
input (air temperature and relative humidity) and remote sensing derived land
surface parameter uncertainty, and their propagation through the intermediate
parameters (land surface temperature, LAI, surface albedo, and emissivity) to
the final ET uncertainty. Moreover, the sensitivity of the PM-Mu model to these
input variables was also investigated.

The results showed that Tair and RH uncertainties followed a seasonal trend,
being higher during the warm, dry season and lower during the hotter, wet
season. However, this variation was more significant for Tair uncertainty, which
could be explained by higher Type A uncertainty during this period, which is
defined by high daytime temperatures and low nighttime temperature.
Compared to air temperature, land surface temperature, LAI, surface albedo,
and emissivity, relative humidity uncertainty contributed the highest to the final
ET uncertainty in our study sites. Any errors associated with relative humidity
could lead to high uncertainty in the final estimated ET. This variable is an input
in the derivation of a number of intermediate parameters, like vapour pressure
deficit, Fwet, aerodynamic and surface resistances, and hence any uncertainty
in RH measurements would contribute significantly the final ET uncertainty. The
overall evapotranspiration relative uncertainty reported in this research was
79%, after propagating all the input uncertainties.

On the other hand, the PM-Mu model was most sensitive to air and land surface
temperatures, with surface emissivity and albedo also showing some slight
significance to ET estimation. One main assumption made in this study was the
non-correlation between the model input variables. Also, the study focused on
model input variable uncertainty and sensitivity analysis and did not investigate
the different algorithms used to compute the intermediate variables.

In some instances, some studies use the term uncertainty analysis to investigate
the performance of the ET models against measured ET, and not to evaluate the
impact of error associated with input variables on the modelled ET error.
Whereas in other instances, uncertainty and sensitivity terms are used
interchangeably. Hence, it is important to have a clear definition of these terms.

6.1.4 Using remote sensing techniques to monitor biomass production
and water productivity

Freshwater resources are under immense pressure as competition between
different users continues to increase. These include an ever growing population,
which results in increased agricultural production, urbanization and
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industrialization, and the need to maintain a safe ecological reserve. Global and
climate change also add pressure to an already strained resource. Water-scarce
regions have an even bigger challenge to produce more food with little water.
Moreover, expanding croplands not being an option, hence, the onus is on
improving agricultural water productivity.

In Chapter 5, therefore, we assessed water productivity, and its components, of
different land use classes, under different climates in South Africa, using the
WaPOR platform. Regions of high and low precipitation, including Dukuduku
natural forests and surrounding commercial Eucalyptus and sugarcane
plantations, and a communal area, Skukuza natural vegetation, Welgegund
commercial farm (pasture), and Elandsberg Nature Reserve, were evaluated.
Precipitation and ET products were validated using eddy covariance data from
the Skukuza and Welgegund flux towers. Comparable results were recorded for
the measured/ WaPOR ET correlation, with Skukuza (R* 0.52, RMSE 1.06)
performing better than Welgegund (R? 0.39, RMSE 1.24). The WaPOR PM model
underestimated ET during periods of high ET in Skukuza, while in Welgegund it
gave a more perfect fit in low ET. Also, although the correlations were higher
during high ET, the model showed some saturation. In an earlier study in Chapter
3, lower ET periods presented better correlations at the Skukuza site, although
the PM-Mu model performed better during the high ET periods. However,
although the temporal trends were similar, the measured/WaPOR precipitation
correlations were very low at both sites.

The spatial variation of the different components was captured. Starting with
precipitation, the Dukuduku forest area recorded the highest precipitation,
compared to the north-eastern located Skukuza, central Welgegund farm, and
the south-western Elandsberg Nature Reserve. It follows that ET followed the
same pattern, together with the NPP and AGBP.

Mapping and monitoring water productivity is essential not only in the
agriculture space, but in the overall water resources management. WP for
different crops has been investigated across different climates, giving a range of
values for each crop. For example, a difference between irrigated and rainfed
WP has been reported. WP is reported in different terms, either as biomass
(yield) or economic output per unit water consumed (ET) or applied.

Reported data on water productivity with respect to evapotranspiration (WPET)
show considerable variation, e.g. wheat 0.6-1.9 kgm ™3, maize 1.2-2.3 kgm 3, rice
0.5-1.1 kgm™3, forage sorghum 7-8 kgm™3, and potato tubers 6.2-11.6 kgm™3,
with incidental outliers obtained under experimental conditions. Data on field-
level water productivity per unit of water applied (WPirrig), as reported in the
literature, are lower than WPET and vary over an even wider range. For
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example, grain WPirrig for rice varied from 0.05 to 0.6 kgm 3, for sorghum from
0.05 to 0.3 kgm3 and for maize from 0.2 to 0.8 kgm™3. The variability occurs
because data were collected in different environments and under different crop
management conditions. These affected the yield and the amount of water
supplied (Kijne et al., forthcoming).

6.2 Final remarks and recommendations

This research work evaluated the performance of remote sensing derived ET
estimates from different models, and the application of these estimates in
monitoring water use and productivity in a semi-arid climate under different
biomes. Before embarking on utilizing any ground based measured data,
including eddy covariance data, to calibrate and/or validate climate and land
surface models, it is crucial to understand the amount of error associated with
these ‘trusted data’.

This was illustrated first in Chapter 2, where we analysed the surface energy
balance closure for the long-running Skukuza eddy covariance flux tower data,
secondly where we investigated the effect of input variable uncertainty to
modelled ET uncertainty and sensitivity. We could not use the Welgegund eddy
covariance system data at this stage because they only became available at a
later stage, hence their use in Chapters 4 and 5. Our results showed that the
surface energy closure imbalance varies in time due to a number of factors,
including instrument malfunction, and unstable weather conditions like clouds,
rain, and strong winds. We, however, did not include the different storage terms
(soil heat and canopy air) when evaluating the surface energy balance closure.
To understand how these storage terms impact the energy balance in this
ecosystem, further studies would be necessary. Including the quality of these
ground data is a critical step in validation exercises, if not to understand the
error associated with the ground data, but to apply correction techniques to
improve the reliability of our baseline datasets.

Validation of remote sensing-based ET modelling techniques has been, and is
still being, done under different climates, biomes, timescales and spatial scales.
The results of these studies, including ours (Chapter 3), vary, and hence the main
message is that there is no model that outperforms others in ET estimation
across the climates and biomes. Also, these models are continually being
modified to improve ET estimation, especially in semi-arid regions, including the
introduction of soil moisture to constrain the models. With such advancement
in the evaluation and application of available ET models, it is important to
understand the accuracy of the inputs used in modelling ET and the confidence
levels of these models based on the input variables used and the model
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parameterisations. Further research could investigate how different
parameterisations of the intermediate inputs affect the output.

Data with very high spatial and temporal resolutions from more advanced Earth
observation technologies, for example, the unmanned aerial vehicles (UAV) and
Cubesats, being introduced, gives the research fraternity the platform to explore
new in-depth descriptions of the evaporative process at finer scales. However,
McCabe et al. (2019) go on further to state that it is time to challenge the
understanding of the evaporativeprocess beyond the already developed and
tested models. Furthermore, with the advancement in remote sensing-based
modelling of the Earth’s surface, including ET, more research is geared towards
application techniques. For example, there is a serious shift toward precision
agriculture, to increase yield with fewer resources, including land, water, and
nutrient use. Moreover, platforms like the WaPOR need to be available at finer
scales to more areas, including South Africa, to assist in monitoring water use
and productivity, with the aim to improve water use and productivity.
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