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Summary

Low-cost urban air quality sensor networks are increasingly used to
study the spatio-temporal variability in air pollutant concentrations. In
Eindhoven, the Netherlands, a low-cost air quality sensor network was
set up in 2013 as part of the civil initiative AiREAS. The aim of this thesis
is to evaluate the data quality of the collected data and its usability in
spatio-temporal modelling and health effect estimation.

The first research objective addresses outliers. Those could reflect
measurement errors or unusually high or low air pollution events. In
this first chapter I present a novel outlier detection method based upon
a spatio-temporal classification. The focus is on hourly nitrogen dioxide
(NO2) concentrations, as NO2 has a large spatio-temporal variability
and strong association with health effects. Different spatio-temporal
classes are defined, reflecting urban background vs. urban traffic stations,
weekdays vs. weekends and four periods per day. Truncated normal
distributions are used to set thresholds for the definitions of outliers
in each spatio-temporal class. Based on this study, I conclude that this
method is able to detect outliers while maintaining the spatio-temporal
variability of air pollutant concentrations in urban areas.

The second research objective addresses the calibration of low-cost
sensor networks. Field calibration is typically performed at one loca-
tion, while little is known about the spatial transferability of correction
factors. This chapter evaluates three calibration methods: (1) an iterative
Bayesian approach for daily estimation of the parameters in a multiple
linear regression model, (2) a daily updated correction factor and (3) a
correction factor updated only when concentrations are uniformly low.
Performance of the calibration methods is compared in terms of temporal
stability, spatial transferability, and sensor specificity. A poor spatial
transferability of the calibration parameters was found for all methods.
This is consistent with different responses of individual sensors to envir-
onmental factors such as temperature and relative humidity. Due to their
spatial and temporal variability, calibration parameters require regular
updates and sensor-specific recalibrations.
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Summary

The third research objective addresses prediction of air pollutant con-
centrations at unobserved locations. Spatio-temporal regression kriging
was applied to map NO2 at a 25 m spatial resolution and hourly temporal
resolution. The trend is modelled separately from autocorrelation in the
residuals. The trend part of the model consists of a set of spatial and
temporal covariates including population density, road type and met-
eorological variables. Spatio-temporal autocorrelation in the residuals
is modelled by fitting a sum-metric spatio-temporal variogram model.
The method provides local estimates of the strength and association of
air pollution sources and sinks, and allows for near real-time prediction
of air pollutant concentrations. The resulting maps visualize these in
space and time and can be used to assess exposure for the evaluation of
short-term health effects.

The fourth research objective addresses health effect estimates related
to air pollution, focusing on daily respiratory symptoms in children
with asthma. Bayesian estimates of the exposure-response function
were obtained by updating a priori information from a meta-analysis
with data from a panel study. Positive associations between NO2 and
lower respiratory symptoms and medication use were observed. Credible
intervals substantially narrowed when adding prior information from the
meta-analysis. Burden of disease maps showed a strong spatial variability
in the number of asthmatic symptoms associated with ambient NO2.
Bayesian methods provided accurate local air pollution effect estimates
and subsequent local burden of disease calculations.

To summarize, this thesis evaluates the use of low-cost air quality
sensor network data from data collection to application. After careful
evaluation of the data quality and removal of outliers, it shows that the
data can be used to map air pollutant concentrations at a fine spatial
and temporal resolution. These maps can be used to estimate burden of
disease at the within-city level. Future research may address a wide range
of applications, including sensor network development, policy making,
and further health risk assessment.
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Samenvatting

Relatief goedkope stedelijke netwerken voor het meten van luchtkwali-
teit worden steeds vaker gebruikt om de ruimtelijk-temporele variatie
in concentraties luchtvervuilende stoffen te bestuderen. In Eindhoven
is in 2013 een dergelijk netwerk opgezet geïnitieerd door het burger-
initiatief AiREAS. Het doel van dit proefschrift is het evalueren van de
kwaliteit van de sensordata die met dit netwerk verzameld zijn alsmede
de bruikbaarheid van deze gegevens, zowel voor het ontwikkelen van
ruimtelijk-temporele modellen, als voor het maken van schattingen voor
effecten van luchtkwaliteit op de gezondheid.

Het eerste onderzoeksdoel behandelt uitschieters. Deze kunnen worden
veroorzaakt door meetfouten of door gebeurtenissen die leiden tot on-
gebruikelijk hoge of lage concentraties van luchtvervuilende stoffen. In
dit eerste hoofdstuk presenteer ik een nieuwe detectiemethode voor
uitschieters. Deze is gebaseerd op een ruimtelijk-temporele classifica-
tie. Ik heb ervoor gekozen om de methode toe te passen op stikstof-
dioxide (NO2) concentraties, omdat die een hoge ruimtelijk-temporele
variatie laten zien en een sterke associatie hebben met gezondheidsef-
fecten. Ruimtelijk-temporele klassen zijn gedefinieerd als reflectie van
de dagelijkse variatie in verkeersdrukte, weekdagen vs. weekendda-
gen, en achtergrond vs. verkeerslocaties in de stad. De grenswaarden
voor de definities van uitschieters in iedere klasse zijn gebaseerd op de
afgeknotte normale verdeling. De studie laat zien dat de methode in staat
is om uitschieters te detecteren met behoud van de ruimtelijk-temporele
variatie in luchtvervuilende stoffen in een stedelijk gebied.

Het tweede onderzoeksdoel behandelt de kalibratie van relatief goedkope
netwerken voor het meten van luchtkwaliteit. Kalibratie wordt vaak op
één locatie gedaan, terwijl weinig bekend is over de ruimtelijke ver-
plaatsbaarheid van de correctiefactoren. Dit hoofdstuk evalueert drie
kalibratiemethoden: (1) een iteratieve Bayesiaanse benadering voor de
dagelijkse inschatting van de parameters in een multivariaat lineair re-
gressiemodel, (2) een dagelijks aangepaste correctiefactor en (3) een
correctiefactor die slechts aangepast wordt wanneer de concentraties
uniform en laag zijn. De kalibratiemethoden zijn met elkaar vergeleken
op basis van temporele stabiliteit, ruimtelijke verplaatsbaarheid, en spe-
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Samenvatting

cificiteit van de sensoren. Alle methoden laten een beperkte ruimtelijke
verplaatsbaarheid zien, die in overeenstemming is met de verschillende
gevoeligheden van de individuele sensoren voor omgevingsfactoren zoals
temperatuur en relatieve luchtvochtigheid. Op basis van de ruimtelijke
en temporele variabiliteit in de kalibratieparameters adviseert dit hoofd-
stuk om reguliere aanpassingen en sensor-specifieke herkalibraties toe
te passen.

Het derde onderzoeksdoel behandelt de voorspellingen van concen-
traties luchtvervuilende stoffen op locaties waar geen metingen zijn
gedaan. Om NO2 in kaart te brengen met een ruimtelijke resolutie van
25 m en een temporele resolutie van 1 uur, is ruimtelijk-temporele re-
gressiekriging toegepast. Deze methode modelleert de trend apart van
de autocorrelatie in de residuen. Het trenddeel bestaat uit ruimtelijke
en temporele variabelen, zoals bevolkingsdichtheid, type van de weg en
meteorologische variabelen. Met behulp van een ruimtelijk-temporeel
variogram is de autocorrelatie in de residuen gemodelleerd. De methode
verbetert lokale schattingen van de sterkte en associatie van factoren
die van invloed zijn op de luchtvervuiling, en maakt near real-time
voorspellingen van luchtvervuilende stoffen mogelijk. De resulterende
kaarten kunnen worden gebruikt bij de schatting van korte termijn
gezondheidseffecten.

Het vierde onderzoeksdoel behandelt het schatten van gezondheidsef-
fecten ten gevolge van luchtvervuiling, met een focus op de dagelijkse
variatie in luchtwegsymptomen bij kinderen met astma. Bayesiaanse
schattingen van de blootstelling-responsfunctie zijn verkregen door a
priori informatie van een meta-analyse te verrijken met gegevens uit een
panelstudie. De resultaten suggereren positieve associaties tussen NO2

en lagere luchtwegklachten en medicijngebruik. De betrouwbaarheidsin-
tervallen zijn sterk verkleind door het gebruik van a priori informatie
uit de meta-analyse. Kaarten van de gezondheidsbelasting tonen een
sterke ruimtelijke variabiliteit in het aantal astmasymptomen gerelateerd
aan NO2 in de buitenlucht. Bayesiaanse methoden geven accurate schat-
tingen van de lokale luchtvervuilingseffecten en daarmee nauwkeuriger
berekeningen van de gezondheidslast.

Samenvattend evalueert dit proefschrift het gebruik van gegevens die
met relatief goedkope netwerken voor het meten van luchtkwaliteit zijn
verkregen. Na een zorgvuldige evaluatie van de gegevenskwaliteit en het
verwijderen van uitschieters, laat het proefschrift zien dat de gegevens
gebruikt kunnen worden om met een hoge ruimtelijk-temporele resolutie
de concentraties luchtvervuilende stoffen in kaart te brengen.
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1Introduction

1.1 Motivation

Air pollution has major effects on human health (Cohen et al., 2017)
and globally causes about 7 million premature deaths each year (World
Health Organization (WHO), 2015). Whilst the air pollution levels increase
in developing countries due to rising industry, developed countries are
taking measures to reduce emissions. Even in developed countries,
target limit values are not as strict as those suggested by the WHO to
minimize health impacts (WHO, 2006). Meanwhile, the WHO states that
the suggested guidelines cannot fully protect human health, as there are
no lower limits known below which no health effects occur. A better
quantification of health effects at lower air pollution levels is therefore
required.

To quantify health risks related to ambient air pollution levels, a good
estimate of personal exposure is required. Since personal exposure
monitoring is expensive and time-consuming (Brandt et al., 2015), it is
rarely used and limited to short study periods (e.g. Linn et al., 1996;
Spira-Cohen et al., 2011). Typically, health risk assessments are based
on central monitors of national ambient air quality monitoring networks
(Roemer et al., 1993; Van der Zee et al., 1999, 2000; Dales et al., 2009).
In Europe, these monitoring networks are operated by national environ-
mental agencies and comply with high quality standards (EC Working
Group on GDE, 2010), with the aim to evaluate exceedance of limit values
determined by European guidelines (European Parliament and Council of
the European Union, 2008).

Although national ambient air quality monitoring networks can be used
to obtain high quality measurements, their spatial coverage is limited.
Due to the high costs of the instruments, maintenance and calibration,
typically only one or two monitors are located in each city. However,
air pollution levels typically strongly vary within short distances. This
spatial variation is strongest in urban areas where there is a strong
variety of road types, traffic intensities and land uses (Hoek et al., 2008).
To increase the spatial coverage of air pollution measurements within a
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city, low-cost urban air quality sensor networks have recently been set
up by civil initiatives (Snyder et al., 2013).

1.2 Spatio-temporal big data analysis

Smart city sensor networks can capture multivariate data at multiple
spatial locations and at a high temporal frequency (e.g. every 10 minutes).
Over the span of multiple years, these data add up to big data sets.
These data have a number of challenges when treating them statistically.
Depending on the intended use, data may first have to be selected within
a spatial and temporal window of interest. The resolution should fit the
intended use and data quality, for which aggregation may be needed. To
detect anomalies in the data that could point at errors or observations
of interest, automatic filtering techniques may be useful. Next, one may
be interested in the detection of spatio-temporal patterns and relations
to build prediction models. To do so, data could be analyzed in a spatio-
temporal statistical framework. Finally, the results of the spatio-temporal
data analysis should be visualized to present and communicate results
with users and stakeholders.

We consider the continuous multivariate spatio-temporal field Q(s, t),
where measurements of environmental variables Q are taken at any
spatial location s and time stamp t (Caselton and Zidek, 1984; Sølna
and Switzer, 1996). Here, a spatial location is a three-dimensional set
of spatial coordinates. In practice, however, the vertical height of the
measurement locations in sensor networks is typically kept constant and
ignored in subsequent analyses. A spatio-temporal statistical framework
allows to assess the data quality of a measurement at (s, t), e.g. by
comparing to reference measurements or the expected value at (s, t)
given spatio-temporal patterns in the data. Next, it allows prediction of
Q at any unobserved spatio-temporal location (s0, t0) based on spatio-
temporal autocorrelation in Q and relations between Q and other vari-
ables measured at (s, t) (Cressie and Wikle, 2011; Sherman, 2011; Bivand
et al., 2013).

The advantage of using low-cost sensors is that a relatively high num-
ber of sensors Ns can be used in a relatively small area. In this way the
measurements are better able to reflect the spatial variability in Q, and
thus more useful to model its spatial autocorrelation and predict its val-
ues at unobserved locations. There is, however, a trade-off between the
relative costs and data quality (Snyder et al., 2013). Reis et al. (2015) state
that the number of local sensor networks is small due to the expectation
that all low-cost sensors need to function at the same quality level as the
reference instruments used for legislative purposes. This leads to high
costs for instrumentation, calibration and maintenance. When combining
data of multiple sensors in a model, information content becomes more
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important than data quality, as long as the data quality is known (Reis
et al., 2015). Another advantage of a smart city sensor network is the
ability for sensors to connect with each other – observations of one
sensor can for example be used to calibrate other sensors.

In the city of Eindhoven, the Netherlands, a low-cost air quality sensor
network has been set up by the AiREAS civil initiative (Close, 2016). This
sensor network is used throughout this thesis. More information about
this network can be found in Chapter 2.

1.3 Spatial data quality

As the development of low-cost sensor networks recently started, their
data quality is still unknown (Snyder et al., 2013). It is important to know
the spatial data quality of the sensor data, however, as it will influence
the quality of the output models, maps and exposure estimates. In
literature different lists are named of elements which could be included
in spatial data quality assessment (Guptill and Morrison, 1995; van
Oort, 2006). In order to assess spatial data quality in a transparent
way, an international standard is needed. Such standard is provided by
the International Organization for Standardization (ISO) in ISO 19157
(ISO/TC 211 Secretariat, 2013). Six elements of spatial data quality are
defined: completeness, logical consistency, positional accuracy, thematic
accuracy, temporal quality, and usability element (ISO/TC 211 Secretariat,
2013).

In terms of completeness, an important issue for air quality sensor
networks is missing data. Several methods exist to impute missing data
in air pollution time series (e.g. Basu and Meckesheimer, 2007; Nguyen
and Hoogerbrugge, 2014; Harrell, 2018), which can deal with longer
periods of missing data. Logical consistency deals with the validity of
attribute values and the adherence of relationships and compositions
between objects to logical rules of structure and compatibility (Kainz,
1995). Negative air pollution values should for example be removed, as
they are impossible to occur. Positional accuracy defines the accuracy
of positions of features and is always related to some kind of spatial
reference system (ISO/TC 211 Secretariat, 2013). It deals with the near-
ness of the true values in comparison to the observed values in this
reference system (Drummond, 1995). In sensor networks where the
sensors all have fixed and known locations, this is less of an issue. The
reported positions, however, can be used to assess whether a sensor is
at its usual location or moved for maintenance or calibration. Thematic
accuracy refers to classification correctness, non-quantitative attribute
correctness, and quantitative attribute accuracy. Quantitative attribute
accuracy refers to the closeness of the value of a quantitative attribute
to the true value (ISO/TC 211 Secretariat, 2013). This ‘true value’ often
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refers to a value of a reference dataset which is accepted to be true.
There are different calibration methods available to calibrate low-cost
sensors to reference stations, to improve quantitative attribute accuracy
in the concentration values (Spinelle et al., 2015). An important step in
assessing the non-quantitative attribute correctness of the raw sensor
observations is detecting outliers in the data. Outliers, sometimes re-
ferred to as anomalies (Chandola et al., 2009), are those observations
that differ from the expected observations (Basu and Meckesheimer,
2007; Zhang et al., 2012). Erroneous outliers are those observations that
deviate from the true values. These are different from events, which
are observations that can be detected as outliers, but do not deviate
from the true values (Zhang et al., 2012). Events rather reflect a real
change in the measured phenomenon and can therefore be of interest
depending on the user perspective. Temporal quality explains the quality
of temporal attributes and relationships. It consists of accuracy of a
time measurement, temporal consistency, and temporal validity. Van
Oort (2006) adds three elements which are not in ISO 19157 but which
were present in the European pre-standard ENV 12656 (CEN/TC 287,
1998): last update, rate of change, and temporal lapse. The temporal
lapse represents the average time between change in the real world and
change representations in the data, and is thus related with the temporal
resolution used when averaging the air pollutant concentrations over a
period of time (e.g. ten minutes, hourly, daily). Usability element refers
to the suitability of the data for a specific application. All previously
mentioned elements can be used to describe and assess the usability of
the data (ISO/TC 211 Secretariat, 2013).

1.4 Modelling and mapping

As air quality can only be monitored at point locations while the true air
quality changes over the continuous spatio-temporal field Q, modelling
is required to map air pollutant concentrations at unobserved spatio-
temporal locations (s0, t0). Many models and their classifications exist.
Dispersion models have been used for a long time as they are relatively
easy to use. The Gaussian plume model, as an example, is typically used
for modelling the air pollutant dispersion. Historically, the model was
mainly used for point sources such as factory stacks (Weil et al., 1992),
but it has been improved over time to be used for line sources and to
be applicable even under calm and changing wind conditions (Shorshani
et al., 2015). Empirical models are based on measurements which are
typically interpolated to create air quality maps. Beelen et al. (2009)
compared different methods to map the background air pollution in
the European Union, including kriging and a land use regression model.
Interpolation with kriging of point observations at locations s is based
on a stochastic process that is split into a trend, a spatially dependent
error term and spatially independent noise. In ordinary kriging the trend
is constant but unknown; in simple kriging the trend is constant and
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known. Land use regression (LUR) is based on a regression equation
between predictor variables and measured concentrations. Air pollutant
concentration mapping with LUR predicts values at unsampled locations
using measured concentrations at a number of locations. Those are
combined with a stochastic model using predictor variables such as land
use, altitude and meteorology (Hoek et al., 2008). Regression kriging
combines estimation of the trend using a regression model with simple
kriging on the error component, which is assumed to have a known
mean of zero. Van de Kassteele et al. (2005) evaluated methods for
predicting the annual number of days that the ozone (O3) limit value
is exceeded, using model-based spatial interpolation. In several other
studies the methods for spatial interpolation of particulate matter (PM)
in Europe are evaluated (Van de Kassteele et al., 2006; Hamm et al., 2015).
Van de Kassteele and Stein (2006) developed a geostatistical model for
mapping PM at the European scale, using error-in-variable external drift
kriging (KED). In KED, secondary information is added to the statistical
interpolation model (Van de Kassteele and Stein, 2006). Generally, the
primary variable is expected to be the most precise while the number of
locations is low, whereas the secondary variable can be less precise but is
sampled more densely (Van de Kassteele et al., 2009). In epidemiological
studies, urban scale maps are often used, accounting for short-distance
spatial variability. Klompmaker et al. (2015) studied the spatial variation
in ultrafine particles (UFPs) and black carbon (BC) in Amsterdam and
Rotterdam, the Netherlands. LUR is often applied in urban air quality
mapping, for example for mapping nitrogen dioxide (NO2) (Sahsuvaroglu
et al., 2006; Jerrett et al., 2007; Hoek et al., 2008; Basagaña et al., 2012),
particulate matter (PM) (Hoek et al., 2008; Saraswat et al., 2013), and
more recently also for mapping UFP (Saraswat et al., 2013; Montagne
et al., 2015).

Studies of health effects of long term exposure typically take into
account the spatial component only, ignoring the temporal variability or
adjusting for it (Gulliver and Briggs, 2004; Gehring et al., 2010; Beelen
et al., 2014). Other studies measure exposure in different transportation
modes and combine it with findings from health studies to assess the
health effects of using specific transportation modes, without addressing
the spatial and temporal variation (Knibbs and de Dear, 2010; Knibbs
et al., 2011). Sensor networks measuring at a high spatio-temporal
resolution provide opportunities for assessing short-term health effects.
Exposure can be estimated near the school or work address, instead
of at one central location in the city. The best spatial and temporal
resolution can be achieved by modelling towards the maximum scalable
unit, being the maximum unit in space and time where the air pollutant
concentrations are considered to be homogeneous.
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1.5 Uncertainty

When maps are used to assess health effects, it is important to com-
municate its related uncertainty. Incorrect or inaccurate dose-response
characterizations may lead to overestimation or underestimation of
health effects (Burns et al., 2014). The confidence and trust of the user
in map products depends on user’s awareness of the uncertainties that
they bring along (Sacha et al., 2016).

The U.S. National Research Council (NRC) defines uncertainty as a
lack of information, incorrect information, or incomplete information
(U.S. NRC, 2009). Not surprisingly, it is recognized as an important
element in geo-information science (Foody, 2003), as all geo-information
contains uncertainty to some degree (Hwang et al., 1998). Uncertainty
leads to imperfection and is a result of vague, ambiguous, imprecise,
inaccurate, or incomplete information (Tavana et al., 2016). Low spatial
data quality leads to an increase in uncertainty of the output models
and maps. Uncertainty depends upon the density of observations and
the mapping procedure; increasing the number of observations reduces
the uncertainty about the spatial variability of an attribute rather than it
reduces the spatial variability itself (Heuvelink, 1998).

Tavana et al. (2016) make a distinction between statistical and non-
statistical methods for assessing uncertainty. Uncertainty is a result
of vagueness, ambiguity, imprecision, inaccuracy, or incompleteness.
Vagueness and ambiguity can be assessed using non-statistical meth-
ods such as fuzzy set and possibility theory. Imprecision, inaccuracy
and incompleteness can be assessed using statistical methods, such
as probability theory or Dempster-Shafer theory (Wang et al., 2005b;
Tavana et al., 2016). Other methods include Monte Carlo, Taylor series
expansion and Relative Variance Contribution (RVC) (Wang et al., 2005a).
Fuzzy membership approaches have been used to assess uncertainty
in air pollutant models (Guo et al., 2007; Shad et al., 2009), as well as
probabilistic methods (Colvile et al., 2002; Yegnan et al., 2002). The latter
refers to uncertainty as the variance in the input data compared to the
variance in the output results.

1.6 Air pollution: sources and sinks

In order to model air pollution levels, it is important to understand
the processes that lead to an increase in air pollutant concentrations
(sources) and those that lead to a decrease in air pollutant concentrations
(sinks). Sources can be of natural or anthropogenic origin, or the result of
chemical processes in the atmosphere. Sinks can be related to meteorolo-
gical and chemical processes. We differentiate between PM and gases. PM
can be divided into different categories based upon their aerodynamic
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diameter: PM10 (particles <10 µm), PM2.5 (<2.5 µm), PM1 (<1 µm) and
UFPs (<0.1 µm). Fine particles (PM2.5, PM1 and UFPs) penetrate deepest
into the gas-exchange part of the lung (Brunekreef and Holgate, 2002).
Sources of fine particles include vehicular traffic and exhaust, construc-
tion activities, factories and power generation plants, wood burning, and
agricultural activities (Graham, 2004). The concentration of particulate
matter consists of primary and secondary pollutants. Primary pollutants
include for example motor vehicle emissions. Secondary pollutants are
formed by collision of smaller particles and gases (Gulliver and Briggs,
2004).

Nitric oxide (NO) is brought into the atmosphere by combustion of
fossil fuels in power generators and motor vehicles (Brunekreef and
Holgate, 2002; Graham, 2004) The toxic pollutant NO2is formed when
the non-toxic NO is oxidized in the atmosphere in a chemical reaction
using the O3 present in the atmosphere (Brunekreef and Holgate, 2002;
Fenger, 2009).

1.7 Health effects

Long-term exposure to traffic-related pollutants may have large health
effects and shorten life expectancy (Hoek et al., 2002). An association
has been suggested between long-term exposure to particulate matter
air pollution and increased mortality from lung cancer, respiratory dis-
eases and cardiovascular diseases (Dockery et al., 1993; Pope et al., 1995;
Abbey et al., 1999; Hoek et al., 2002; Brook et al., 2010; Beelen et al.,
2014). In different studies, different exposure-response associations
were found. Those are related to differences in methods used for expo-
sure assessment, differences in infiltration of particles indoors, particle
composition and population composition (Hoek et al., 2013). NO2 expo-
sure has been associated with all-cause mortality in adults (Hoek et al.,
2013) and respiratory infections, lung function growth, and asthma ex-
acerbation in children (Goldizen et al., 2016). NO2 is also a tracer for
other traffic-related air pollutants such as black carbon and UFPs (Health
Effects Institute, 2010). Pollutants have an indirect effect on asthma, in-
teracting with pollen grains and enhancing the release of antigen, causing
inflammation in the airways (Graham, 2004). The number of prospective
cohort studies on the relationship between traffic-related air quality and
asthma is limited (Gehring et al., 2010). It is difficult to distinguish
between effects of specific pollutants due to a large overlap between
the symptoms of different pollutants and a high correlation between
different air pollutants in space and time (WHO, 2013a,b).

Asthma exacerbation in children specifically is a highly relevant end-
point, which needs better quantification to be used in future health im-
pact assessment of outdoor air pollution (WHO, 2013a). Young children
with asthma are very sensitive to the effects of air pollution. Increased
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sensitivity compared to adults is due to a combination of increased time
spent exercising outside, high ventilation rates per body weight, devel-
oping lungs and immature metabolic pathways (Guarnieri and Balmes,
2014). Few epidemiological studies have directly compared effects in
children and adults in the same study. In two studies conducted in the
Netherlands in parallel, of which one was focused on adults and one
on children, Van der Zee et al. found significant effects of increased
PM10 concentration levels on lung function in children, but not in adults.
Similar results were found for acute symptoms in the lower respiratory
tract, which were significantly related to PM10 in symptomatic children
but not in symptomatic adults (Van der Zee et al., 1999, 2000). School
age children have more predictable time activity patterns, allowing more
precise exposure assessment based on outdoor monitors.

1.8 Limit values and guidelines

Based on the scientific literature available on the health effects of air
pollution, the WHO has provided a set of guidelines to reduce the health
impacts of air pollution. The European Commission (EC) also formulated
a directive in which limit values are given that should not be exceeded
by the member states of the European Union (European Parliament and
Council of the European Union, 2008). Table 1.1 shows an overview of
the different maximum concentration values as advised by the WHO and
implemented in the European directive and in the Dutch national law.

Table 1.1 WHO guidelines in comparison with EU directives and Dutch national
law on the concentration limit for different pollutants (in µg m-3) (Ministry of
Infrastructure and the Environment, 1979; WHO, 2006; European Parliament and
Council of the European Union, 2008).

PM2.5

(annual
mean)

PM2.5

(24 hr
mean)

PM10

(annual
mean)

PM10

(24 hr
mean)

O3

(8 hr
mean)

NO2

(annual
mean)

NO2

(1 hr
mean)

WHO 10 25 20 50 100 40 200

EC 25 - 40 50* 120** 40 200***

Dutch law 25 - 40 50* 120** 40 200***

* value may be exceeded maximum 35 times a year.
** value may be exceeded maximum 25 times a year based on a 3-year average.
*** value may be exceeded maximum 18 times a year.

The WHO guidelines concern the concentrations of PM10, PM2.5, O3,
and NO2. There has been too little research on the health effects of
UFPs to set guidelines for those pollutants (WHO, 2006). Unregulated
pollutants, such as PM1 and UFPs, are often not measured by ambient
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air quality monitoring stations (Goldizen et al., 2016). This creates a
vicious circle: without monitoring sites, little research is being done,
which in turn makes it difficult to come up with guidelines – and without
guidelines, no monitoring is performed.

As can be derived from Table 1.1, the values from the European dir-
ective are implemented in Dutch national law without changes. The EC
limit values are up to twice as high as the WHO guidelines for PM2.5

and PM10. The WHO has also set up a set of interim targets, including a
description of the difference in health effects between the interim targets
(IT-x) and the air quality guidelines (AQG). The aim of the interim targets
is to provide policy makers all over the world with various options for
air quality management (WHO, 2006).

Even well below the EC limit values, long-term exposure to fine par-
ticulate matter causes health effects and mortality (Beelen et al., 2014).
Brunekreef and Holgate (2002) mention that a limit value for concen-
trations to cause health effects is absent or at very low value, because
exposure to low concentrations of air pollutants already causes damage.
Acknowledging this, the WHO states that the guideline values mentioned
cannot fully protect human health (WHO, 2006). As lower limits are ab-
sent, there is an interest in health effects at lower levels of air pollution.
To study these, air pollutant models are often used to estimate expo-
sure. A distinction is made between short-term exposure and long-term
exposure. Short-term exposure refers to the exposure for hours up to
days (WHO, 2013b), whereas long-term exposure refers to exposures of a
year or longer (Hoek et al., 2013). A distinction is made as well between
short-term health effects and long-term health effects. Short-term health
effects are acute effects of exposure on daily symptoms or lung function
(Weinmayr et al., 2010). Long-term health effects include the develop-
ment of diseases over a longer period of time. Long-term health effects
are often studied in relation to long-term exposure (Gehring et al., 2010;
Hoek et al., 2013; Beelen et al., 2014), whereas short-term health effects
are studied in relation to short-term exposure (Weinmayr et al., 2010;
Goldizen et al., 2016). This is also reflected in the WHO guidelines (WHO,
2006) that associate daily averages with short-term mortality risks and
annual averages with long-term mortality risks.

1.9 Problem statement

Recently developed low-cost urban air quality sensor networks offer the
possibility for monitoring air pollution at a fine spatio-temporal resolu-
tion. However, low-cost sensors may be more prone to report outliers,
and their data quality is often unknown (Snyder et al., 2013). Compared
to conventional monitors, measurements of low-cost air quality sensors
are more sensitive to interference effects of humidity and other pollut-
ants, as well as a loss of sensitivity to the target pollutant over time,
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referred to as sensor drift. An evaluation of the data quality of low-cost
sensors is of major importance, as it determines the usefulness of the
measurements in different applications. The communication of data
quality issues is of importance to avoid misinterpretation of the data
when open to the public, media, politicians and researchers. Next, the
possibilities of using low-cost urban sensor networks for modelling and
mapping air quality should be evaluated. Using those fine resolution
air quality maps in combination with health data, the spatially explicit
health risks related to air pollution can be visualized. Here, a neglected
topic is the propagation of uncertainty from the input data to the output
maps.

1.10 Research objectives

The key objectives of this thesis are:

1. To develop an outlier detection method suitable to detect outliers
in space and time while accounting for the large spatio-temporal
variability of air pollutant concentrations in an urban area.

2. To develop and evaluate automatic calibration methods for low-cost
sensors in an urban air quality sensor network, accounting for drift
and interference effects.

3. To develop a spatio-temporal kriging framework for modelling air
pollutant concentrations using a low-cost sensor network.

4. To create burden of disease maps, expressing the spatial variability
in health risks related to ambient air pollution, using a low-cost
sensor network to allow spatially refined human exposure assess-
ment.

1.11 Outline

Chapter 1 introduces the challenges related to spatio-temporal big data
analysis and data quality issues associated with low-cost sensor network
data. It provides context and background information related to statist-
ical modelling and mapping, as well as air pollution sources and sinks,
health effects and limit values. It presents research gaps in this field and
the related research objectives of this thesis.

Chapter 2 gives a detailed overview of the case study area and the
low-cost air quality sensor network used in this study.

Chapter 3 presents a new outlier detection method, in which obser-
vations are classified in spatio-temporal classes to determine outlier
threshold levels based on the location and time at which an observation
was taken. Transformations are applied to account for non-normality of
air pollutant concentrations.
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Chapter 4 presents a novel iterative Bayesian calibration method, and
compares the method to several existing calibration methods. The meth-
ods are compared in terms of temporal stability, spatial transferability,
and sensor-specificity.

Chapter 5 presents a spatio-temporal regression kriging framework
to model air pollution in an urban area. The trend part of the model
consists of a set of spatial and temporal covariates, and the residuals are
interpolated using simple kriging.

Chapter 6 presents a burden of disease assessment based on a new
panel study on asthmatic children. The panel study data is combined
with a priori effect estimates from literature in a Bayesian framework.
The updated effect estimates are combined with modelled air pollution
concentrations to obtain a burden of disease map. The propagation
of uncertainty from the input data to the burden of disease map is
evaluated.

Chapter 7 provides a synthesis of this thesis. The main results are
summarized, as well as the implications, limitations and suggestions for
further research.

1.12 Author contributions

Chapters 3, 4 and 5 are based on published papers and Chapter 6 is
currently under review. For the purpose of consistency throughout
this thesis, small changes have been made compared to the published
versions. Case study area descriptions have been removed from the
papers and merged in Chapter 2. Variable names and symbols have been
changed to avoid confusion due to multiple meanings and definitions.
Chapters 3–6 contain references to ‘we’, referring to the authors of
the publication. In these publications, VZ carried out all the scientific
analyses and wrote the manuscript. FO advised on the spatio-temporal
statistical framework, GH advised on air quality, sensor calibration and
health effects, and AS advised on data interpretation and spatio-temporal
data analysis. All authors were involved in textual editing of the final
manuscripts.
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2Case study area

2.1 Study area: the city of Eindhoven

The study area is the city of Eindhoven, located in the southern part of the
Netherlands (Figure 2.1). Its background concentrations of air pollutants
are relatively high, mainly due to surrounding agricultural activities and
to the city’s position with respect to industrial areas such as Antwerp
and Ghent in Belgium, the Ruhr area in Germany and Rotterdam area
in the Netherlands. According to the Royal Netherlands Meteorological
Institute (Koninklijk Nederlands Meteorologisch Instituut, KNMI), the
prevailing wind direction in Eindhoven is from the south-west (KNMI,
2011), causing long range transport of pollutants. The city has a high
population density and traffic intensity, elevating levels of traffic-related
pollutants such as NO2.

Together with the high background concentrations, there is a large
short-distance spatial variation. This short-distance variation is not only
found for PM, but most evidently in gases such as NO2. Traffic-related
air pollutants are a major source of ambient air pollution in urban areas
(Goldizen et al., 2016). Therefore, the spatial variability of PM2.5 and
NO2 is highest in the city, because of the relation of these pollutants
with traffic (Beelen et al., 2014). In recent years, inhabitants of the
city have become more aware of the health effects of traffic-related air
pollution. Because of the low density of existing monitoring networks and
a general mistrust in routine dispersion models used for the evaluation
of exceedance of limit values, the AiREAS civil initiative has been set up
to monitor the air quality at a fine spatio-temporal resolution.

2.2 The ILM air quality network

AiREAS is a civil initiative in Eindhoven in which inhabitants cooperate
with companies, universities and governmental organizations (Close,
2016). As part of this initiative, an air quality sensor network has been
set up in Eindhoven, referred to as Innovatief Luchtmeetnet (ILM). It is the
first fine resolution urban air quality sensor network in the Netherlands
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¯

Figure 2.1 Location of Eindhoven (black dot) within the Netherlands

(Figure 2.2). It was installed in November 2013 and has been operated
continuously since. The network consists of 35 weatherproof ‘airboxes’.
Since the total area of the municipality of Eindhoven is approximately
90 km2, the sensor network is relatively dense. The airboxes are of size
43× 33× 20 cm (Figure 2.3) and contain an array of sensors. They are
manufactured by the former Energy Research Centre of the Netherlands
(ECN), now part of the Netherlands Organisation for applied scientific
research (TNO). Each airbox measures PM10, PM2.5, PM1, O3, temperature
and humidity as the air flows through. A large part, 25 airboxes, also
measures NO2 since 2015 based on available budget. Because of the high
sensor costs, UFPs are measured at six locations. The UFP sensors are
installed in separate boxes which are attached to the airboxes for power
supply and GPRS connection. From November 2016 to February 2017
the UFP sensors were attached to different airboxes every three weeks to
cover multiple locations. All AiREAS data is publicly available (AiREAS,
2016).

2.3 Spatial sampling scheme

The spatial locations of the airboxes were chosen based on several criteria
(Close, 2016), following the philosophy of the ESCAPE study (Eeftens
et al., 2012). Most importantly, sampling sites represent locations where
humans are exposed. The airboxes are located in the build-up area of
the city, near residential areas and schools. The set of locations covers
urban background locations in quiet neighborhoods as well as urban
traffic locations near busy roads. One airbox is located outside of the city
for regional background monitoring. All airboxes are installed in fixed
positions at lamp posts to supply electricity. They are located at 2.5-
3 m height, representing human exposure as closely as possible, while
minimizing the risk of accessibility by third persons. At two locations in
the city, an airbox is collocated with a reference monitor (Section 2.5).
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Figure 2.2 Locations of the airboxes in the city of Eindhoven, the Netherlands

2.4 Airbox sensors

Ventilation strips on the sides of the airbox allow air to flow through. A
gauze protects the airbox from insects and the air is dried to minimize
interference from relative humidity. An overview of the installed sensors
is shown in Table 2.1. An optical PM sensor is used to count the size and
number of particles that flow through with the help of an resistive heater.
The light of an infrared LED is scattered by PM and then measured by a
photo-diode detector. The raw output of the sensor consists of digital
pulses proportional to particle count concentrations (Austin et al., 2015).
A combination of particle size and count is used to convert the particle
counts to concentrations in µg m-3. The particles entering the UFP sensor
are charged and enter a Faraday cage in which the deposited charge is
measured using a very sensitive current meter and converted to particle
number concentrations (Marra et al., 2010). O3 is measured using a
metal oxide sensor after heating and ambient temperature correction.
Sensor resistance is converted to O3 concentrations (Hamm et al., 2016).
NO2 is measured using the electrochemical cell Citytech Sensoric NO2

15



2. Case study area

Figure 2.3 Airbox attached to light pole.

3E50 in a differential measurement setup. A switching valve and reagent
cartridges are used in front of the electrochemical cell to dry the air.
Observations are discarded when temperature and humidity fall outside
acceptable ranges. The airboxes are attached to light poles for power
supply. The data of all sensors is sent to a server every 10 minutes via a
GPRS connection.

After initial lab and field calibration of the sensors, data have been
collected since November 2013. There are some gaps in the data for
moments in time in which the instruments were removed for testing,
adjusting or calibration. The sensors were recalibrated at the end of
2015, together with the installation and calibration of the NO2 sensors.
Throughout this thesis, NO2 sensor data of 2016 are used.

2.5 Reference measurements

The national air quality sensor network (LML) is maintained and operated
by the National Institute for Public Health and the Environment (RIVM,
2019a). The LML sensor network consists of around 60 measurement
stations throughout the Netherlands, of which two are situated in Eind-
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Table 2.1 Variables measured and instruments used in the airboxes

Variable Units Instruments

PM10 µg m-3 Shinyei PPD42 ECN revised

PM2.5 µg m-3 Shinyei PPD42 ECN revised

PM1 µg m-3 Shinyei PPD42 ECN revised

UFP # cm-3 Aerasense NanoMonitor PNMT 1000

O3 µg m-3 E2V MICS 2610

NO2 µg m-3 Citytech Sensoric NO2 3E50 ECN revised

Temperature ◦C Sensirion SHT75

Relative humidity % Sensirion SHT75

hoven. Although the LML has a lower spatial and temporal resolution,
the uncertainty of the measurements is expected to be lower than the
uncertainty of the ILM measurements. The measurement uncertainty of
the LML sensor network is about 15-20% for PM2.5 and PM10 (RIVM, 2014).
The required maximum uncertainty to follow the European directives
equals 25% for PM10 (Nguyen and Hoogerbrugge, 2014). Although the
uncertainty of the LML sensor network is below the threshold set by the
European directives, it may create problems for specific applications. For
example, when the concentrations of PM2.5 and PM10 are close to each
other, the measured values of PM2.5 could be higher than the measured
values of PM10 (RIVM, 2014). This does of course not represent a valid
situation, with PM2.5 being part of PM10. This uncertainty level also
allows for negative values of PM2.5 and PM10 concentrations to occur. For
calibration and validation purposes, airboxes are located within a few
meters from the LML measurement stations.
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3Outlier detection in urban air
quality sensor networks

Abstract

Low-cost urban air quality sensor networks are increasingly used to
study the spatio-temporal variability in air pollutant concentrations.
Recently installed low-cost urban sensors, however, are more prone to
result in erroneous data than conventional monitors, e.g. leading to
outliers. Commonly applied outlier detection methods are unsuitable
for air pollutant measurements that have large spatial and temporal
variations as occur in urban areas. We present a novel outlier detection
method based upon a spatio-temporal classification, focusing on hourly
NO2 concentrations. We divide a full year’s observations into 16 spatio-
temporal classes, reflecting urban background vs. urban traffic stations,
weekdays vs. weekends and four periods per day. For each spatio-
temporal class, we detect outliers using the mean and standard deviation
of the normal distribution underlying the truncated normal distribution
of the NO2 observations. Applying this method to a low-cost air quality
sensor network in the city of Eindhoven, the Netherlands, we found 0.1-
0.5% of outliers. Outliers could reflect measurement errors or unusual
high air pollution events. Additional evaluation using expert knowledge
is needed to decide on treatment of the identified outliers. We conclude
that our method is able to detect outliers while maintaining the spatio-
temporal variability of air pollutant concentrations in urban areas.

This chapter is published as: Van Zoest, V.M., Stein, A., Hoek, G., 2018. Outlier
Detection in Urban Air Quality Sensor Networks. Water, Air, & Soil Pollution 229, 111.
doi:10.1007/s11270-018-3756-7.
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3. Outlier detection in urban air quality sensor networks

3.1 Introduction

Air quality is monitored globally, with national monitoring networks
being used to assess air pollution in relation to environmental limit
values. In Europe, national, regional and local environmental agencies
operate these monitoring networks according to EU guidelines (European
Parliament and Council of the European Union, 2008), complying to
high standards of equivalency (EC Working Group on GDE, 2010). Each
European country has a network of air quality monitoring stations that
are located in urban, suburban and rural areas.

Health effects of air pollution have attracted public and scientific
attention globally as the global burden of disease of outdoor air pollution
is significant (Cohen et al., 2017). The health risks are typically highest in
urban areas because of their high population density, a high density of
schools and hospitals and higher air pollution concentrations. In recent
local networks, urban air quality is measured using a larger number
of sensors than in national air quality networks, allowing detection
of more local sources. In response to the increasing civil interest in
the air they breathe, more local initiatives have resulted in extended
low-cost monitoring networks. These provide more detailed spatio-
temporal data on air quality. Data from such sensor networks however
are more prone to result in errors and their spatio-temporal data quality
is often unknown (Snyder et al., 2013). This leads to an increased need
for data evaluation. Data evaluation of low-cost air quality networks
typically includes outlier detection, comparison with classical monitors,
comparison of inter-sensor measurements and evaluation of the stability
of sensors. In this paper we focus on outlier detection.

Outlier detection is an important part of data cleaning and particu-
larly relevant for low-cost air quality sensor networks. Outlier detection
is defined as the detection of values that are statistically significantly
different from the expected value at a given time and location. Outlier
detection is important for detecting air pollution events, but also for re-
moving errors that might otherwise affect data analysis and comparison,
including unnecessary unrest among the population if data are publicly
available online. Errors in this context refer to inaccuracies due to air
quality sensor faults, mistakes in the human handling of the sensors,
or positioning of the sensors under conditions for which they are not
designed. Events are valid observations of very high or low air pollutant
concentrations compared to the concentrations expected at a given time
in a given location (Zhang et al., 2012). True events can be related to very
local sources (e.g. a small fire, truck idling within meters of a monitor)
or to very unusual weather circumstances such as low mixing height
and high atmospheric stability resulting in poor dispersion of emitted
pollutants.

20
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Functional outlier detection, as a common type of temporal outlier
detection, compares various function curves of fixed time periods. In the
past, this method was applied to PM10, SO2, NO, NO2, CO and O3 to detect
months with unusually high air pollutant concentrations (Martínez Torres
et al., 2011), or to detect working days and non-working days with outly-
ing NOx levels (Febrero et al., 2007, 2008; Sguera et al., 2016). Functional
outlier detection is used to compare entire vectors of measurements
(e.g. all observations in a month) and is therefore less suitable for the
detection of individual outliers. Comparing an observation only to its
temporal neighborhood may also lead to the neglect of a systematic bias
in the sensor.

In spatial outlier detection, an observation is compared to the obser-
vations in its spatial neighborhood. Bobbia et al. (2015) used kriging
to detect outliers in PM10 concentrations on a provincial scale. Spatio-
temporal outlier detection combines the spatial neighborhood with a
temporal neighborhood. It has been applied to PM10 measurements at
the European scale (Kracht et al., 2014). At this scale level however only
rural and urban background stations can be used, as the methods are
not suitable for dealing with the wide spatial variation of air pollutants
in an urban area.

For an urban air quality sensor network, both spatial and spatio-
temporal outlier detection have only been applied to air pollutants that
show a low spatial variation. Hamm (2016) and Shamsipour et al. (2014)
applied spatial and spatio-temporal outlier detection methods on PM10,
which in cities is mostly dominated by regional background concen-
trations from sources outside the city (Eeftens et al., 2012). Distance-
weighting techniques such as kriging were successfully applied to urban
PM10 for filling missing values and for outlier detection. There was no
need for space varying covariates because PM10 concentration was not
related to the type of location or street (Hamm, 2016). For NO2, however,
the concentrations can vary over short distances, e.g. governed by the
traffic density of a street (Briggs et al., 1997; Cyrys et al., 2012). As
the distances over which NO2 concentrations vary (10-s of meters) are
commonly shorter than the distances between sensor locations (km’s),
spatial outlier detection methods based on distance-weighting cannot be
applied to NO2 measurements in cities.

The objective of this study was to develop an adequate outlier detection
method for an urban air quality sensor network. Such a network is
characterized by a fine-scale spatial and temporal variation in air quality.
For this study, we use NO2 data from the ILM air quality sensor network
located in the city of Eindhoven, the Netherlands (Chapter 2).
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3. Outlier detection in urban air quality sensor networks

3.2 Data preprocessing

We focus on NO2, as an air pollutant with a high spatial variability
in urban areas (Cyrys et al., 2012). The hourly concentrations meas-
ured by the conventional monitors in Eindhoven ranged from 2.5 to
123.8 µg m-3 in 2016, with a mean of 28.6 µg m-3 and a standard devi-
ation of 16.5 µg m-3. The distribution of NO2 concentrations is skewed
with a long right-tail (P95 = 61.0 µg m-3, P99 = 78.8 µg m-3). We used
airbox NO2 data for this study, as described in Chapter 2. To reduce the
noise, the 10-minute NO2 measurements were averaged to hourly values
for the current analysis. Data for the full year of 2016 were used for this
study.

The data were cleansed before being used. Negative concentration val-
ues occurred when the concentrations were below the limit of detection
and were removed from the dataset (1.5%). Zeroes in the data indicated
a sensor failure and were removed from the dataset (1%). High peaks in
NO2 concentrations can occur in 10-minute data if the sensor is exposed
to a high concentration peak for a short period of time. Similar peaks
in hourly concentration data however are more likely to be caused by
sensor failure and influence the outlier detection. To carefully remove
extreme peaks in hourly concentrations we turned to the two conven-
tional NO2 monitors in Eindhoven, which are part of the national air
quality monitoring network. We set a threshold equal to three times
the maximum hourly concentration measured in 2016. In doing so, con-
centration values xi > 372 µg m-3 were removed (0.02%). Such extreme
peaks are impossible to occur under natural conditions in this city and
are most probably caused by sensor failures. Such failures also caused
frozen concentration values for several hours or days. Those values were
removed from the dataset as well (1.5%). One airbox showed a consistent
positive bias. Including it in the analysis showed the many outliers of the
airbox, but also strongly influenced the percentage of outliers that could
be detected in other airboxes, which almost dropped to zero. Therefore,
data of this airbox was removed prior to the final outlier detection shown
here.

3.3 Methods

Outlier detection is based upon checking whether an observed concen-
tration value falls within a given confidence interval, set by:

µ ± ζ × σ (3.1)

where µ is the mean NO2 concentration level in µg m-3, σ the standard
deviation, and ζ is an indicator of the size of the confidence inter-
val. We consider Eq. 3.1 for grouped NO2 concentration observations
within temporal, spatial and spatio-temporal neighborhoods. Assuming
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independence and normality, the value of ζ is set at 1.96 for a 95%
confidence level (Kracht et al., 2014) or at 2.97 for a 99.7% confidence
interval, depending on the required strictness of the outlier detection.
We used ζ = 2.97 which in related studies has been rounded to ζ = 3
(Martínez Torres et al., 2011; Shamsipour et al., 2014).

NO2 concentrations in an urban setting, however, highly depend on the
proximity of busy roads and therefore too much noise in concentrations
is found within the neighborhood to detect values that are abnormally
high given their location. Similarly, temporal neighborhoods have a
highly temporally dependent variation in air pollutant concentrations
over the day.

We propose to overcome this by classifying the locations and time
periods into 16 spatio-temporal categories distinguished by different
levels of air pollution. To do so, we divided the measurement locations
into two categories: urban traffic and urban background locations (Fig-
ure 3.1). These take into account the positions of the airboxes near
specific land-use types, the presence of traffic and distance from the cen-
ter. We take four intervals: ‘traffic hours’ (6:01-9:00 and 16:01-20:00 UTC
time), ‘off-peak hours’ (9:01-16:00 and 20:01-22:00 UTC time), ‘transition
periods’ (22:01-1:00 and 5:01-6:00 UTC time), and ‘night hours’ (1:01-5:00
UTC time).

Days of the week were divided into two classes: weekdays (Monday to
Friday) and weekend days (Saturday and Sunday). This all resulted into
sixteen classes: eight temporal classes and two spatial classes. For each
spatio-temporal class K, the three steps described below are taken to
detect outliers.

1. We transformed the NO2 concentrations using the square root
transformation to obtain approximately normally distributed values
(Figure 3.2), i.e. to justify the use of Eq. 3.1.

Before transforming the NO2 concentration values, in line with
Kracht et al. (2013) we added a value of (1 – minimum value of
all observations) to all observations, to prevent values < 1 µg m-3

from increasing during square root transformation while values
> 1 µg m-3 decrease:

xk =
√
NO2k + (1−min(NO2k)) (3.2)

where NO2k is an observation and xk is the transformed observa-
tion in spatio-temporal class K where k is an observation index in
{1 . . . NK} for NK total number of observations in class K. Note that
xk has coordinates in space and time.

2. As a result of the transformation in Eq. 3.2, the distribution of NO2

concentrations is truncated at the left at 1 µg m-3. The resulting
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Figure 3.1 Locations of the airboxes measuring NO2 at urban background
locations (circles) and urban traffic locations (triangles).

distribution thus showed a truncated normal distribution (Figure
3.3). For each square root transformed NO2 observation xk,i, we
temporarily excluded the ith observation from the NO2 concentra-
tion dataset, in order to avoid impact of the observation, a potential
outlier, on the standard deviation and mean. We then obtained the
mean and standard deviation of the remainder of the dataset as:

m−i
K =

∑
k (xk)− xk,i
NK − 1

(3.3)

s−iK =

√√√√√∑k (xk −m−i
K

)2
−
(
xk,i −m−i

K

)2

(NK − 2)
(3.4)

where summation extends over all hourly NO2 observations xk in
one spatio-temporal class K, andm−i

K and s−iK are the mean and the
standard deviation of all hourly NO2 observations excluding the ith
observation xk,i, respectively.
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Figure 3.2 Distribution of NO2 concentrations, before square root transforma-
tion (left) and after square root transformation (right)

0−5 10

0
.0

0
0

.0
5

0
.1

0
0

.1
5

0
.2

0
0

.2
5

0
.3

0

NO! concentration (sqrt−transformed)

D
e

n
s
it
y

Truncated

Underlying 

Normal Distr.

Truncation Point

5 15 20
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concentrations (solid line) and its underlying normal distribution (dot dashed
line). The truncation point is set at 1 (dotted line).

Eqs. 3.3 and 3.4 provided both the mean and the standard devi-
ation of the truncated normal distribution of NO2 concentrations,
referred to as m−i

K and s−iK . Equation 3.1 requires a normal dis-
tribution, and therefore we are more interested in the mean and
standard deviation of the underlying normal distribution, referred
to n−iK and t−iK , respectively, rather than the mean and standard
deviation of the truncated normal distribution. We use a maximum
likelihood estimator to obtain estimated values n−iK and t−iK . The
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log likelihood function is given as:∑
k
ln (f (xk|θ1)) (3.5)

where f (xk|θ1) is the probability density function of the truncated
normal distribution of NO2 concentrations, returning the probabil-

ity of observing xk given a set of parameters θ1 =
(
m−i
K , s

−i
K , a, b

)
,

for a ≤ x ≤ b. In our case of left-truncation we have a = 1 and
b = ∞. Then the probability density function is given as:

f (xk|θ1) =
φ
(
xk−n−iK
t−iK

)
t−iK

(
1− Φ(a−n−iK

t−iK

)) (3.6)

Imputing Eq. 3.6 into the log likelihood function and taking θ2 =(
n−iK , t

−i
K

)
gives:

L (θ2) =
∑
k

(
ln
(
φ
(
xk −n−iK
t−iK

))
− ln

(
t−iK

(
1− Φ(a−n−iK

n−iK

))))
(3.7)

where φ(·) is the probability density function of the normal dis-
tribution and Φ(·) is the corresponding cumulative distribution
function. Optimization of the log likelihood function Eq. 3.7 using
Nelder and Mead (1965) gives maximum likelihood values for n−iK
and t−iK . We used the parameters m−i

K and s−iK as starting values.

For each observation xk,i removed from the dataset, n−iK and
t−iK are computed on the remainder of the spatio-temporal class
dataset as described above.

3. Next, Eq. 3.1 is adapted to find the lower and upper thresholds of
values considered outliers:

n−iK ± ζ × t−iK (3.8)

which is computed for each individual observation. If the ith obser-
vation xk,i falls outside this interval, it is considered to be an outlier.
The observations of spatio-temporal class K are backtransformed
after the outlier detection:

NO2k = (xk)2 − (1−min(xk)) (3.9)

returning the NO2 concentrations in µg m-3. Depending upon the
purpose of the outlier detection, the outlying observations can then
be removed or further investigated.
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3.4. Results

We further computed the thresholds for the entire dataset, without
removal of observation xk,i in Eqs. 3.3 and 3.4. The mean and standard
deviation of the underlying normal distribution are then expressed by
nK and tK , respectively, which results in the following thresholds:

nK ± ζ × tK (3.10)

which are also back-transformed using Eq. 3.9. These thresholds are
not used for actual outlier detection, but as an approximation of the
thresholds for each spatio-temporal class. This allowed us to compare
the thresholds of the sixteen spatio-temporal classes. Given the large
number of observations in each class, the thresholds are not highly
affected by removing one of the observations.

For comparison with conventional monitors, the same analysis was
repeated with data from the two NO2 monitors in Eindhoven which are
part of the national air quality monitoring network. Both conventional
monitors are located in an urban traffic location and therefore considered
as the same spatial class. We used the temporal classification similar to
the one used in the analysis of the airbox data.

3.4 Results

Of the 25 airboxes measuring NO2 that were used for this analysis, 11
were classified as urban background locations, and 14 were classified as
urban traffic locations (Figure 3.1). Table 3.1 shows the approximated
upper thresholds for outliers in each spatio-temporal class (Eq. 3.10).
All lower thresholds were equal to zero. For the values of nK and tK
of each spatio-temporal class we refer to Table A3.1 in the Appendix.
Table 3.2 shows the percentage of outliers detected per spatio-temporal
NO2 concentration class using a full year of hourly NO2 data. Note that
our method defines unusual observations, which are not necessarily
errors, but which could also be very unusual air pollution events related
to local sources, or extreme weather conditions of low wind speed and
high atmospheric stability.

Table 3.2 shows that the period of night hours during the weekend has
an increase in the number of outliers, both for urban traffic locations and
urban background locations. Both nK and tK are relatively small in these
spatio-temporal classes compared to other spatio-temporal classes. The
combination of a short right-tail and the relatively small nK and tK cause
the upper threshold to be low while detecting a relatively high number of
outliers in the thicker tail. All categories have an approximately similar
percentage of outliers and there are no large deviations.

The boxplots in Figure 3.4 show the range in concentrations that were
considered outliers for each spatio-temporal class. The lower whiskers
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Table 3.1 Upper thresholds for hourly average NO2 concentrations (µg m-3)
above which considered outliers, per spatio-temporal class, using ζ = 2.97.
Between brackets: NK shows the number of hourly concentration values in this
class.

Urban traffic Urban background

Week Weekend Week Weekend

Rush hours 96.6 (NK=17,761) 78.4 (NK=7,127) 81.0 (NK=17,660) 62.3 (NK=6,983)

Off-peak hours 87.3 (NK=22,768) 76.7 (NK=9,153) 72.9 (NK=22,554) 61.3 (NK=8,961)

Night hours 63.2 (NK=10,161) 63.6 (NK=4,123) 58.6 (NK=9,983) 57.3 (NK=3,995)

Transition hours 76.5 (NK=10,195) 67.1 (NK=4,129) 67.9 (NK=10,031) 56.4 (NK=3,983)

Table 3.2 Percentage outliers per spatio-temporal NO2 concentration class for
hourly values in 2016, using ζ = 2.97.

Urban traffic Urban background

Week Weekend Week Weekend

Rush hours 0.2% 0.2% 0.2% 0.2%

Off-peak hours 0.2% 0.2% 0.2% 0.2%

Night hours 0.2% 0.5% 0.1% 0.5%

Transition hours 0.3% 0.3% 0.3% 0.3%

are short and close to the threshold values shown in Table 3.1. Especially
during off-peak hours in the weekend, the range in concentrations of
the outliers is large. Extreme outliers, denoted by the dots, representing
observations outside 1.5× IQR (interquartile range) of the outliers, occur
in many spatio-temporal classes. Note that these boxplots are only based
on the outliers, which is a small number of observations.

Figures 5 and 6 show NO2 measurements during two weeks in 2016
containing outliers. Figure 3.5 shows the week from April 25 until May 1,
of an urban background location, whereas Figure 3.6 shows the week
from February 8 until February 14 of an urban traffic location. The
concentrations at the urban traffic location were higher than those at
the urban background location. Due to the spatial classification, some
concentration values are considered outliers at the urban background
location, while they are non-outliers at the urban traffic location. The
temporal classification is also visible in Figure 3.6: concentration values
that are considered outliers at one point in time can be considered non-
outliers at other points in time, e.g. during rush hours in which higher
concentrations are expected. This is a major difference as compared to
applying the outlier threshold on the entire dataset without classification
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(Eq. 3.1), yielding an expected 0.3% of outliers as cut off peaks without
taking spatio-temporal variability in the NO2 concentrations into account.

Figure 3.5 shows two outliers, labelled (a) and (b), occurring during
the night, in the early morning (1:00-3:00) of April 28. During weekday
night hours at an urban background location, the transformed (Eq. 3.2)
parameter estimations are nK=3.965 and tK=1.265. Entered in Eq. 3.8
with ζ = 2.97, and back-transformed using Eq. 3.9, this gives an upper
threshold of 58.6 µg m-3. The concentrations measured at outliers (a)
and (b) were 75 and 70.8 µg m-3, respectively, both exceeding the upper
threshold. Given that these are consecutive observations and within
the range of thresholds of other periods, it is not clear whether these
observations reflect instrument error.

From Figure 3.6 we identify four outliers, labelled (a)-(d). Three outliers,
specifically (a), (c) and (d), are clearly higher than expected concentration
values in any of the spatio-temporal categories. They are furthermore
single observations. Outlier (b) occurred on February 9 from 23:00-
0:00 in the temporal class ‘transition period’. In this spatio-temporal
class, with (transformed) nK=4.76 and tK=1.36, the upper threshold
is approximately (4.76 + 2.97 × 1.36)2 − (1 − 0.0244) = 76.5 µg m-3.
The concentration measured at (b) is 81.8 µg m-3, exceeding the upper
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Figure 3.5 NO2 concentrations (µg m-3) measured by airbox 6, at an urban
background location. Filled circles indicate non-outlying observations; unfilled
circles indicate outliers using ζ = 2.97. The gray bars indicate the threshold
values for each temporal class, for urban background airboxes.
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Figure 3.6 NO2 concentrations (µg m-3) measured by airbox 26, at an urban
traffic location. Filled circles indicate non-outlying observations; unfilled circles
indicate outliers using ζ = 2.97. The gray bars indicate the threshold values for
each temporal class, for urban traffic airboxes.
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threshold. However, during the daytime such a concentration value
would have been within expected concentration values.

There was seasonal deviation in the number of outliers: a higher
number of outliers was detected in spring (0.37%) compared to the mean
percentage of outliers of the entire year (0.22%). In summer, the number
of outliers was relatively low (0.09%).

Table 3.2 shows no difference in the percentage of outliers between
urban traffic locations and urban background locations. Some individual
airboxes however show more outliers than others. Most airboxes have
0–0.1% outliers for a year of data, whereas a few airboxes have a larger
percentage of outliers for some spatio-temporal classes, up to a max-
imum of 2.5% for one airbox for one spatio-temporal class. The highest
percentages of outliers are found in airboxes with the highest mean
concentration values. The percentage of outliers of an airbox varies
between spatio-temporal classes.

Similar results were found using hourly NO2 observations of 2016 from
the two conventional monitors. The total number of outliers detected
was 0.3% of the dataset, which varied from 0-0.7% depending on the
temporal class. In Figure 3.7 we observe a different pattern in the
spatio-temporal thresholds compared to the threshold pattern of the
airboxes (Figures 3.5 and 3.6). Note that for the conventional monitors
we also observe positive lower threshold values, though close to zero. In
Figure 3.7 we identify one outlier, which occurred in the off-peak hours
period after the evening rush hour. This period after the evening rush
hour is the period in which most outliers occurred for the conventional
monitors.

We compared the outliers in the traffic airboxes with the NO2 concen-
trations measured with the conventional monitors at the same time. A
scatterplot is shown in Figure 3.8. The plot shows many observations
down-right in the plot that have similarly high concentrations measured
by the airbox and the conventional monitor, though at different locations.
Some outliers occurred in multiple airboxes at the same time. This may
be an indication of a pollution event that has an effect on the entire
city. Down-left in the plot we find observations that are considered
outliers by the airboxes, but are within normal range of concentrations
according to the conventional monitors. These could be errors or very
local air pollution events. In the upper part of the plot we find very high
concentrations measured by the airbox which are higher than any value
measured by the conventional monitor in the entire year. These are most
likely errors.
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Figure 3.7 NO2 concentrations (µg m-3) measured by a conventional monitor
at an urban traffic location. Filled circles indicate non-outlying observations;
unfilled circles indicate outliers using ζ = 2.97. The gray bars indicate the
threshold values for each temporal class, for urban traffic conventional monitors.

0 100 200 300 400

0
1

0
0

2
0

0
3

0
0

4
0

0

Max. NO
2
 concentration value 

of the two conventional monitors

N
O

2
 o

u
tl
ie

rs
 u

rb
a

n
 t
ra

ff
ic

 a
ri
b

o
x
e

s

Figure 3.8 Scatterplot of traffic airbox outliers vs. the maximum NO2 concen-
tration (µg m-3) measured at the same moment in time by the two conventional
monitors located in traffic sites.

3.5 Discussion

The results show that the spatio-temporal classification of NO2 con-
centration values in an urban sensor network is a simple outlier detec-
tion method in an area with high spatial and temporal variability of air
pollutant concentrations. The number of outliers detected using the
classification (0.1-0.5% for the airboxes and 0-0.7% for the conventional
monitors) matches expectation when using ζ = 2.97 as a threshold for
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the number of standard deviations, including 99.7% of the observations
under the assumption of a normal distribution. The value of ζ can be
tuned depending on the application. A lower value of ζ will result in
more concentration values to be considered outliers. Brown and Brown
(2012) suggest that the choice of the threshold value should be a trade-
off between the extra work associated with investigating false positives,
i.e. observations falsely detected as outliers, and the likelihood of false
negatives, i.e. true outliers that are not detected.

We aimed to compare the above procedure with kriging-based outlier
detection (Zhang et al., 2012). We found that the NO2 concentrations
vary over shorter distances than the distances between measurement loc-
ations, resulting in a pure noise variogram. Sampling NO2 over shorter
distances, e.g. within a few meters, might make it possible to apply
kriging-based outlier detection methods, especially when including cov-
ariates such as road distance and wind direction into the model.

Air pollutant concentrations are generally considered lognormally dis-
tributed (Ott, 1990). Applying the proposed outlier detection method
on log-transformed NO2 concentrations would however result in an im-
plausible number of outliers detected on the left side on the distribution
(99.5%) compared to the right side of the distribution (0.5%). Instead, we
are mostly interested in high peaks in the data, which can be used to
detect air pollution events and errors. Therefore, we used a square root
transformation of the NO2 concentration data.

The temporal classification used in this analysis is mostly based on
expected traffic during certain hours of the day. Other factors that
may influence the temporal variability in NO2 concentrations are met-
eorological factors such as wind speed, wind direction, air pressure,
temperature and solar radiation. An analysis of seasonal and diurnal
variation at a UK city is presented by Bigi and Harrison (2010). NO2

concentrations in Europe tend to be higher in the winter than in the
summer season. Hence observations in the summer season had a lower
chance to be detected as outliers by our method. Our method can be
expanded by defining more classes, for example taking into account
season and meteorological factors, or by taking into account temporal
autocorrelation. For simplicity reasons we used full year data for the
current study.

Public holidays occurring on a weekday are classified as weekdays, al-
though the concentrations are likely lower, and therefore more similar to
weekend concentrations. A visual analysis of the data showed that there
was no increase in low-peak outliers during such holidays. High-peak
outliers occurred and were also detected during the weekday holidays.
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3. Outlier detection in urban air quality sensor networks

In this study, we aggregated the NO2 concentrations to hourly values.
Using 10-minute data, the outlier detection method would give more
detailed instances of outliers compared to using hourly data. The results
of 10-minute outlier detection should be interpreted differently from
the results of hourly outlier detection. In hourly outlier detection, peaks
occurring as a result of a strongly emitting vehicle passing by are more
likely to be averaged out as they may occur every hour. In 10-minute data,
such peaks are more likely to be considered outliers. Hourly outliers
give a better overview of hours in which there is an abnormal number of
peaks rather than showing individual peaks, as in the case of 10-minute
outlier detection.

For the conventional monitors, the largest number of outliers was
found during the off-peak period after the evening rush hours. Com-
paring the daily threshold pattern of the airbox to that of the conven-
tional monitor on a weekday (Figure 3.9), both at an urban traffic loca-
tion, we see that the upper threshold of the airbox in off-peak periods
(87.3 µg m-3) lays between the upper threshold of rush hours (96.6 µg m-3)
and the upper threshold of transition periods (76.5 µg m-3). For the con-
ventional monitor, the upper threshold for off-peak periods (86.4 µg m-3)
is below the threshold for both rush hours (106 µg m-3) and transition
periods (101.6 µg m-3). The threshold for off-peak periods is calculated
using the observations between morning rush hour and evening rush
hour ((9:01-16:00 UTC time)) combined with the observations after even-
ing rush hour (20:01-22:00 UTC time). For the airboxes this is alright
because the concentrations are within a similar range. The conventional
monitors, however, still measure high concentrations for two hours after
the evening rush hour. This leads to underestimation of the threshold
after evening rush hour. The cause of this difference is unclear, but most
likely it is caused by differences between the sensor system of the airbox
and the conventional monitor, and could be solved by defining different
temporal classes depending upon the measurement instrument used.

The spatial classification method has been applied to the city of Eind-
hoven, the Netherlands. The spatio-temporal variability of NO2 concen-
trations in this city is determined mainly by road traffic, like in many
European cities (Cyrys et al., 2012). The spatial classification used in this
analysis, distinguishing between urban background locations and urban
traffic locations, is based upon this spatial variability. In Asian cities
where, for example, industry plays a major role in the spatio-temporal
variability of NO2 concentrations (Cui et al., 2016), other classifications
may be more relevant.

The proposed method for outlier detection using a spatio-temporal
classification of the NO2 variability was found useful for distinguish-
ing outliers in an area with high spatial and temporal variability of air
pollutant concentrations. This provides a basis for future work on distin-
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guishing between types of outliers, e.g. errors and events. Air pollution
events are often characterized by lasting for a period of time, which
would lead to a number of outliers in a row for the same sensor. Such
events can also be characterized by covering a large area in space. The
occurrence of outliers at multiple locations at the same moment may
indicate such an event.

The method provides a useful outlier detection method for those
involved in urban air quality sensor networks. Its use in other fields of
environmental variables with a high spatial and temporal variability is to
be further investigated and will largely depend on the ability to classify
the observations in various spatial and temporal categories.

Future research is needed in order to deal with the application of
this method for (near) real-time outlier detection, in which each new
observation can be compared to previous observations in the same
spatio-temporal class. By using a moving average over the last hour,
applied every 10 minutes, the method can be applied to (near) real-time
data. Its applicability is currently mostly limited by the computation time,
which is too long for real-time outlier detection. This may in the future
be improved by using higher computation power or smaller datasets, or
a combination of these two.
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Figure 3.9 Comparison of NO2 concentrations (µg m-3) measured by an airbox
(left) and a conventional monitor (right) on a weekday at urban traffic locations.
Filled circles indicate non-outlying observations; unfilled circles indicate outliers
using ζ = 2.97. The gray bars indicate threshold values for each temporal
class and are specific for each dataset, characterized by a spatial class and
measurement instrument.
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3.6 Conclusions

We presented a novel method for outlier detection in urban air quality
sensor networks, based on dividing the observations in two spatial and
eight temporal classes. Each of the sixteen resulting spatio-temporal
classes represents a range of typical air pollutant concentrations for this
class. By finding outliers in each class separately, the spatio-temporal
variability in concentrations is maintained. In doing so, this work ad-
dressed an important challenge in outlier detection in urban areas.

In our analysis using hourly NO2 data from an air quality sensor
network in Eindhoven, the Netherlands, we detected 0.1-0.5% of outliers
using a 99.7% confidence interval. The size of the confidence interval
can be changed depending on the application. The non-normality of
air pollutant concentrations is taken into account by using a truncated
normal distribution of square-root transformed concentrations. The
method is easy to implement and simple to adjust to other cities and
pollutants by choosing spatio-temporal classes based on the sources of
the air pollutants.

This research is a first step in outlier detection of NO2 concentrations
in urban areas. The detected outliers are unusually high concentrations,
which can be either errors or events. Expert knowledge is however
required to evaluate each outlier and decide on its treatment. Further
research is needed with a focus on automatically distinguishing errors
from events and (near) real-time outlier detection.

Appendix

Table A3.1 Mean nK (± standard deviation tK) of the distribution underlying
the truncated normal distribution of each spatio-temporal class. Note that
these are not actual concentration values, but transformed concentration values.
Threshold values are obtained by nK ± ζ × tK and back-transformation of the
resulting values using Eq. 3.9.

Urban traffic Urban background

Week Weekend Week Weekend

Rush hours 5.26 (±1.55) 4.54 (±1.47) 4.67 (±1.48) 4.05 (±1.31)

Off-peak hours 5.02 (±1.47) 4.50 (±1.45) 4.46 (±1.39) 4.01 (±1.31)

Night hours 4.30 (±1.25) 4.22 (±1.28) 3.97 (±1.27) 3.83 (±1.28)

Transition hours 4.76 (±1.36) 4.39 (±1.30) 4.33 (±1.34) 3.99 (±1.21)
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4Calibration of NO2 sensors in an
urban air quality network

Abstract

Low-cost air quality sensors measuring air quality at fine spatio-temporal
resolutions, typically suffer from sensor drift and interference. Field
calibration is typically performed at one location, while little is known
about the spatial transferability of correction factors. We evaluated
three calibration methods using a year of hourly NO2 observations from
low-cost sensors, collocated at two sites with a conventional monitor
as reference: (1) an iterative Bayesian approach for daily estimation
of the parameters in a multiple linear regression model, (2) a daily
updated correction factor and (3) a correction factor updated only when
concentrations are uniformly low. We compared the performance of the
calibration methods in terms of temporal stability, spatial transferability,
and sensor specificity. We documented drift within the 1-year period. The
correction factor updated under uniformly low concentrations performed
poorly. The iterative Bayesian approach and daily correction factor
reduced the root mean squared error (RMSE) by 21-46% at the calibration
locations, but did not reduce RMSE at the other location. By examining
the posterior distributions of the regression coefficients, we found that
the poor spatial transferability is consistent with different responses of
individual sensors to environmental factors. We conclude that the spatial
and temporal variability in the calibration parameters requires them to
be updated regularly, including sensor-specific recalibrations.

This chapter is published as: Van Zoest, V., Osei, F.B., Stein, A., Hoek, G., 2019.
Calibration of low-cost NO2 sensors in an urban air quality network. Atmospheric
Environment 210, 66–75. doi:10.1016/j.atmosenv.2019.04.048.
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4. Calibration of NO2 sensors in an urban air quality network

4.1 Introduction

The interest in the use of low-cost air quality sensors at the city level
to extend and densify conventional air quality monitoring is increasing
(Snyder et al., 2013; Jerrett et al., 2017). A dense air quality monitoring
network can be used for modeling and mapping air quality on a finer
resolution in space and time than conventional monitoring networks
that typically include only one or two monitors per city (Schneider et al.,
2017). Such models and maps may be of added value e.g., for health
studies and policy making. The data quality of low-cost air quality sensor
networks however is often poor or unknown, potentially leading to wrong
policy decisions or bias when applied in epidemiological studies (Snyder
et al., 2013). In order to adjust, correct or improve sensor observations,
calibration is important in the development and maintenance of such
networks (Lewis and Edwards, 2016).

Calibration starts in the lab with finding an optimal function to convert
absorbance or conductivity to pollutant concentrations (Neri et al., 2002).
Performance indicators include sensitivity, selectivity, stability, response
time, saturation, sensitivity to humidity, and the limit of detection (LoD)
(Santos et al., 1997; Colin et al., 1998; Penza et al., 1998; Morales et al.,
2002). Lab calibration, however, is not sufficient for field deployment of
air quality sensors. The sensors perform less accurately under changing
weather conditions and when exposed to different mixtures of gases
as compared to calibration in the lab (Kamionka et al., 2006; De Vito
et al., 2009). For long-term performance in the field, there are two main
challenges: drift and interference effects.

The electrochemical cells typically used in low-cost gas sensors are
more prone to lose sensitivity as compared to conventional monitors.
This leads to sensor drift: an increasing bias in the sensor response.
Xiang et al. (2016) showed that the measurement error due to drift in
NO2 sensors increased by a factor three within two months. Low-cost air
quality sensors are also sensitive to relative concentration distribution
changes, for example caused by seasonality or pollution events (De Vito
et al., 2009; Moltchanov et al., 2015). The gas sensor can show an
unwanted response to other pollutants, gases, temperature and relative
humidity (Kamionka et al., 2006; Mead et al., 2013). We refer to these
unwanted responses as interference effects. Field calibration is needed
to estimate the parameters which correct the sensor response such that
it represents the true concentrations as good as possible, accounting for
drift and interference.

Much research has already been done to find the best methods for
field calibration of air quality sensors. Multiple linear regression (MLR)
has been used in the past few years to build calibration functions in
which covariates account for environmental and meteorological vari-
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ability (Piedrahita et al., 2014; Spinelle et al., 2015; Kizel et al., 2018).
Feed-forward artificial neural networks (ANNs) have also been used to
adjust for interference effects (De Vito et al., 2009). Xiang et al. (2016)
also accounted for multiple sensors drifting simultaneously.

In air quality sensor networks, one commonly used approach is that
only one sensor is collocated with a reference monitor during regular
operation. Before operation and in regular intervals during operation,
sensors may be collocated to be calibrated or recalibrated. In addition,
some studies report automatic calibration procedures, aiming at reducing
calibration costs. When recalibrating the sensors in a sensor network to
account for drift and varying meteorological conditions in this way, it
is assumed that all sensors behave similarly, and are influenced by the
same conditions and similar drift. Although there is evidence that this
assumption is not valid (Barakeh et al., 2016), calibration parameters
established at a location with a reference instrument are often assumed
to be transferable to other locations in the network.

The aim of this study is to evaluate the spatio-temporal variability and
sensor specificity of calibration parameters. To do so, we evaluate three
different calibration methods that account for interference effects and
drift. The methodology is applied to the city of Eindhoven, where a low-
cost sensor network was set up with NO2 measurements at 25 locations
(Hamm et al., 2016). At two locations the low-cost sensors were co-located
with reference monitors, allowing us to assess spatial and temporal
variability of correction factors. The focus of this study is on NO2,
because earlier passive sampler measurements have documented large
spatial variation in European cities related especially to road traffic (Cyrys
et al., 2012).

4.2 Methods

We evaluated the performance of (1) an iterative Bayesian approach for
daily estimation of the parameters in a multiple linear regression model,
(2) a daily updated simple correction factor and (3) a uniform concentra-
tion correction similar to the method suggested in Tsujita et al. (2005).
For Bayesian inference we used Integrated Nested Laplace Approxima-
tions (INLA). We evaluated the methods in terms of the stability of the
correction factors or calibration parameters in time, the usability of the
correction factors or calibration parameters at other locations within the
same urban area, and the transferability of the calibration parameters to
different sensors of the same type.

4.2.1 Data

The measurement sites of the ILM sensor network were purposely selec-
ted reflecting background and traffic sites (Figure 4.1). Background sites
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were located in minor residential roads; traffic sites in roads with typic-
ally more than 10000 vehicles/day. The two conventional monitors sites
in Eindhoven are also designated as traffic sites in the Dutch national air
quality measurement network. The focus of this study is on NO2 which
is measured in 25 airboxes of the ILM network since 2016, after an initial
calibration at the end of 2015. More details about the sensors can be
found in Chapter 2.

Figure 4.1 Locations of the airboxes and conventional monitors in Eindhoven

Two conventional chemiluminescence monitors of the Dutch national
air quality measurement network (Buijsman, 2013), operated by the RIVM,
are both located in similar urban traffic locations in Eindhoven and are
used as reference instruments. With each conventional monitor, an
airbox is collocated (Figure 4.1). Airbox NO2 measurements are averaged
to hourly values for analysis of the calibration methods, similar to the
temporal resolution of the conventional monitors. Data cleaning and
outlier detection were performed as described in Chapter 3. We refer
to S = {s1, . . . , s25} as the collection of airboxes measuring NO2 and
Z = {z1, z2} as the collection of conventional monitors, where Z ⊂ S.
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In this study we use covariates c ∈ C = {NO2,O3, RH,T ,WS,WD}.
Nitrogen dioxide (NO2), relative humidity (RH) and temperature (T ) are
measured within the airbox. Ozone (O3) data in the airboxes at z1 and
z2 were missing for most of the year due to sensor failure. Therefore
we used the O3 data available at the conventional monitor at location z1

(O3 not measured at z2). Wind speed (WS) and wind direction (WD) were
obtained from the Royal Netherlands Meteorological Institute weather
station in Eindhoven (KNMI, 2016). For the multiple linear regression
model, NO2 concentrations were square root transformed to approx-
imate a normal distribution. Where needed, the covariates were also
transformed to obtain distributions closer to the normal distribution and
to obtain a more linear relationship between the covariate and square
root transformed NO2 concentrations. An overview of the potential
covariates, their sources and transformations is given in Table 4.1.

Table 4.1 Overview of potential covariates for the calibration model

Covariate Units Source Instrument/method Transformation

NO2 µg m-3 Airbox Citytech Sensoric NO2 3E50
ECN revised

square root

O3 µg m-3 RIVM Ultraviolet photometry log

Temperature (T) ◦C Airbox Sensirion SHT75 none

Relative humidity (RH) % Airbox Sensirion SHT75 squared

Wind speed (WS) m s−1 KNMI Automatic Weather Station (AWS) square root

Wind direction (WD) degrees KNMI Automatic Weather Station (AWS) categorized into
nine categories:
8 wind rose
directions and 1
class calm/variable

4.2.2 Sensor drift

Sensor drift is caused by the loss of sensitivity of the electrochemical
cell measuring NO2. We examine the average drift of the sensor network
by plotting a time series of the difference ∆d,t between the mean NO2

concentration of the two conventional monitors and the mean NO2

concentration observed by all airboxes deployed in the city, for all hourly
observations in 2016:

∆d,t = ∑
S(xNO2,d,t,s)

Ns
−
∑
Z(yNO2,d,t,z)

Nz
(4.1)

where xNO2,d,t,s is the hourly NO2 concentration measured at day d
and hour t = 1, . . . ,24 at airbox location s for Ns number of airboxes,
yNO2,d,t,z is the hourly NO2 concentration measured at day d and hour
t = 1, . . . ,24 at conventional monitor location z for Nz number of con-
ventional monitors. For calculation of ∆d,t we use the actual NO2 ob-
servations before square root transformation. We take a smoothed line
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through the time series of ∆d,t to largely separate the effect of drift from
temporally varying spatial variability.

4.2.3 Multiple linear regression model

Calibration

The term calibration refers to two processes. First, it establishes a
relationship between indicative measurements and standard (reference)
measurements, i.e., estimating the parameters of the calibration function;
second, it uses an established relationship, i.e., the calibration function,
for obtaining a measurement result from an indicative measurement
(Rasch et al., 1994). In this paper, our focus is on the first process, and
we will use the term correction for the second process.

MLR functions have been widely used to build calibration functions
accounting for environmental and meteorological variables (Piedrahita
et al., 2014; Spinelle et al., 2015). We adapted the method, (1) to allow for
transformations of the response variable and covariates to obtain better
linear relationships, (2) to estimate the calibration parameters including
their uncertainty using Bayesian inference, and (3) to iteratively update
the calibration parameters on a daily basis using observations of the
previous 30 days.

The calibration function resembles a generalized additive model (GAM):

yd,t,z = β0,d,z +
∑
c
βc,d,zgc

(
xc,d,t,z

)
+ εd,t,z (4.2)

where yd,t,z is the square root transformed reference NO2 level at day
d, hour t = 1, . . . ,24 and location z, gc

(
xc,d,t,z

)
are covariate-dependent

known functions or transformations applied to covariate xc,d,t,z, β0,d,z
is the intercept and βc,d,z are the unknown coefficients for covariates
c for day d at location z and the error is assumed εd,t,z ∼ N(0, σ 2).
The coefficients βc,d,z have a posterior distribution with mean µβc,d,z and
precision τβc,d,z . The covariate-dependent transformations gc

(
xc,d,t,z

)
are chosen such that xc,d,t,z approximates a normal distribution, and
gc
(
xc,d,t,z

)
has an approximately linear relation with yd,t,z.

We used hierarchical Bayesian estimation and inference. Bayesian
inference provides a posterior distribution for each βc,d,z rather than a
single estimate, and therefore allows for the comparison of estimates of
different airboxes, including their uncertainty. The parameters of the
posterior distributions were estimated using Integrated Nested Laplace
Approximation (INLA). INLA provides fast and accurate Bayesian para-
meter estimates through Laplace approximations. The advantage of INLA
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over Markov Chain Monte Carlo (MCMC) simulations is that the compu-
tation time is significantly shorter, while INLA gives an approximation
which is as good or better (Rue et al., 2009).

We built a set of multiple linear regression models including combina-
tions of covariates which are often used in calibration of NO2 sensors, as
they are known for causing interference effects or sensor bias. All covari-
ates are scaled and centered to zero before running INLA. The calibration
equation is updated every day d to account for gradual drift and met-
eorological variability using all non-missing observations in the previous
30 days, adding up to maximum 720 hourly observations. Moltchanov
et al. (2015) found variability in calibration parameters over shorter
periods of time, e.g. 4 days, using 30-minute averages. We chose a
period of 30 days based on prior analyses (Table A4.1), aiming to include
enough variation in air pollutant concentrations while minimizing the
longer term effects of drift and seasonality. We further note that our
calibration parameters change daily in a smooth manner. Our method
does not distinguish between day and night periods in calibration para-
meters. Using R-INLA (Martins et al., 2013), we built a model on the
calibration set to estimate the parameters of the posterior distribution

θc,d,z =
(
µβc,d,z , τβc,d,z

)
of the coefficients βc,d,z. The models are built at

the two locations z1 and z2 where a conventional monitor is collocated
with an airbox. The model is rebuilt for every day in 2016, such that
there is an overlap of 29 days between the data used for calibration on
day d and for calibration on the next day d+1.

Calibration performance measures

The fit of a Bayesian model is commonly evaluated using posterior
predictive checks or leave-one-out cross-validation. For the first check
the posterior predictive p-values,

p
(
y∗d,t ≤ yd,t|yyy

)
(4.3)

for replicate observations y∗d,t , are evaluated to be uniformly distributed.
For none of the models explored in this study the distribution of the
posterior predictive p-values was uniformly distributed. Wang et al.
(2018) however argue that in some cases the posterior predictive p-
values can be affected by the nature of the data in such a way that they
would never be uniformly distributed even in the case of a perfect model.
Therefore they suggest using the probability integral transform (PIT)
instead:

PITd,t = p
(
y∗d,t ≤ yd,t|yyy−d,t

)
(4.4)

where yyy−d,t are all observations except for the observation at time stamp
t on day d. The performance of the different calibration models is evalu-
ated based on the Deviance Information Criterion (DIC), a generalization
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of the Akaike Information Criterion (AIC), accounting for both model
complexity and fit in a Bayesian model (Spiegelhalter et al., 2002):

DIC = D̄ + pD (4.5)

where D̄ is the posterior mean of the deviance and pD is the effective
number of parameters. A smaller DIC denotes a better fit.

Validation

For temporal validation, we use the calibration function from Eq. 4.2 and
replace the unknown β by β̂ to predict yd,t,z:

ŷd,t,z = β̂0,d,z +
∑
c
β̂c,d,zgc

(
xc,d,t,z

)
+ εd,t,z (4.6)

for which we now know the posterior distributions of β̂0,d,z and β̂c,d,z.
On every day d, Eq. 4.6 is applied on t = 1 . . .24 using the parameters of
β̂0,d,z and β̂c,d,z estimated during the calibration phase. The calibration
and validation are repeated daily, so each 24 hour period is validated with
a new set of calibrated parameters based on the hourly data available in
the previous 30 days.

The number of locations with a collocated reference monitor is always
sparse in low-cost air quality sensor networks. If the drift and the
influence of external variables are similar for each airbox and location, a
calibration model built at one location can be transferred to the other
locations. To test this, we apply spatiotemporal validation by adjusting
Eq. 4.6 to predict yd,t,z at a different location (zi) from where the model
is built (zj):

ŷd,t,zi = β̂0,d,zj +
∑
c
β̂c,d,zjgc

(
xc,d,t,zj

)
+ εd,t,zi (4.7)

for the two locations where a conventional monitor is located. Note
the different subscripts of z to denote the different locations used in
spatiotemporal validation. Similar to the temporal validation, Eq. 4.7
is applied on t = 1 . . .24 on the current day d using the parameters of
β̂0,d,z and β̂c,d,z estimated during the calibration phase, but now at a
different location zj .

Validation performance measures

Prediction performance is based on the Root Mean Squared Error (RMSE).
We consider two RMSE values: the RMSE before calibration (RMSEpre)
and the RMSE after calibration (RMSEpost). RMSEpre is obtained as:

RMSEpre =

√√√√∑Tdt=1(yNO2,d,t,z − xNO2,d,t,z)2

Td
(4.8)
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where yNO2,d,t is the observed reference NO2 concentration (NO2ref )
and xNO2,d,t is the observed airbox NO2 concentration (NO2ab) for time
stamp t in 1, . . . , Td where Td is the total number of non-missing hours
in validation day d. RMSEpost is obtained as:

RMSEpost =

√√√√∑Tdt=1(yNO2,d,t,z − ŷNO2,d,t,z)2

Td
(4.9)

where ŷNO2,d,t is the predicted and back-transformed NO2 concentration.
A smaller RMSE denotes better prediction.

The calibration approach using INLA is compared to two other tech-
niques that are often used for correction of low-cost air quality sensor
networks: (1) a simple daily updated correction factor and (2) a correction
factor which is updated when the concentrations are low and uniform
across the sensor network.

4.2.4 Daily correction factor

Miskell et al. (2018) calibrated low-cost O3 sensors using a conventional
monitor in the vicinity with similar land use type. This method assumes
that the drift between the airboxes is similar and that high peaks missed
by the airboxes are due to meteorological factors which are the same
across the sensor network. We apply a similar method to NO2, distin-
guishing between an absolute correction factor and a relative correction
factor. On each day d we find the relative difference correction factor
γrel,d,z:

γrel,d,z =
Td∑
t=1

(
yNO2,d,t,z

xNO2,d,t,z

)
× 1
Td

(4.10)

and the absolute difference correction factor γabs,d,z:

γabs,d,z =
∑Td
t=1(yNO2,d,t,z − xNO2,d,t,z)

Td
(4.11)

The correction factors are computed on a location z where an airbox
is collocated with a conventional monitor. On a daily basis, γrel,d,z or
γabs,d,z corrects all hourly airbox measurements of that day, for all air-
boxes located at a similar site type (urban traffic or urban background).
The spatial transferability of the correction factor is evaluated by ap-
plying it at the other airbox location in Z and comparing the corrected
airbox NO2 concentrations with the observations of the conventional
monitor at that location. Since both conventional monitors are located
at urban traffic locations, we could only evaluate the method for this site
type. The RMSE is calculated before and after correction.
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4.2.5 Uniform concentration correction

Tsujita et al. (2005) proposed a method for automatic calibration of low-
cost air quality sensor networks. The method differs from the previously
mentioned correction factor, in the sense that the correction factor is
only updated under conditions of uniform low NO2 concentrations. We
tested a similar method. When NO2 concentrations are uniform and low
for any hourly timestamp, the baseline of the low-cost sensors is adjusted
to the mean of the conventional monitors. All hourly NO2 observations
are corrected using a fixed correction factor γuni which is the same for
all airboxes. This correction factor is based on the ratio between the
mean of the two conventional monitors and the mean of all low-cost
sensors. The correction factor is applied to all future observations of the
low-cost sensors, until it is updated at time stamp d, t when standard
deviations of the NO2 concentrations drop below a threshold δ and the
mean NO2 concentrations drops below a threshold χ:√∑

S(xNO2,d,t,s − x̄NO2,d,t)
Ns − 1

< δ∧
∑
S(xNO2,d,t,s)

Ns
< χ (4.12)

We evaluated different values of δ = {4,5,6} µg m-3 and values χ =
{10,12,15} µg m-3.

Following Moltchanov et al. (2015) we also applied night-time calibra-
tions. Every night the concentrations are assumed to be uniform, and
a new airbox-specific correction factor γnight,d,s is retrieved from the
ratio between each individual airbox and the average between the two
conventional monitors between 1:00-4:00 a.m. The correction factor is
used to correct the airbox values during the next day.

4.2.6 Sensitivity of individual airboxes to environmental factors

We evaluated whether individual airboxes reacted similarly to interfering
gases, temperature and humidity. First, using INLA we examined the
relationship between NO2ab and the other variables RH and T meas-
ured in the airbox. For the 25 airboxes the posterior mean estimates
were compared based on slope direction and strength. The differences
in posterior mean estimates between the 25 non-collocated airboxes
reflect both spatial variability in the calibration parameters, as well as
inter-sensor variability (Broday and The Citi-Sense Project Collaborators,
2017). Second, for a comparison independent of the airbox location,
we compared the posterior mean estimates of ten airboxes which were
simultaneously collocated with a conventional monitor for ten days (240
hourly observations per airbox). A separate model, with NO2ref as the
response variable, was built using INLA for each covariate measured in
the airbox: NO2ab, RH, and T . The posterior mean estimates in this
case solely reflect inter-sensor variability.
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4.2.7 Temporal autocorrelation

A first-order random walk model is added to Eq. 4.2 to account for pos-
sible temporal autocorrelation, as suggested in Blangiardo and Cameletti
(2015):

yd,t,z = β0,d,z +
∑
c
βc,d,zgc

(
xc,d,t,z

)
+ rw1(d, t)+ εd,t,z (4.13)

where rw1(d, t) is a first-order random walk function on the time series
of d, t. For both locations z1 and z2, and for both the model with and
without random walk component, the RMSEpre and RMSEpost are ob-
tained. A lower RMSEpost for the model with random walk component
compared to the model without random walk component suggests the
presence of temporal autocorrelation. The models in Eqs. 4.2 and 4.13
are also compared using a full year of data, for which 80% of all hourly
observations in 2016 are randomly selected for calibration and the re-
maining 20% of the observations is used for validation.

4.3 Results

4.3.1 Descriptive statistics

Based on the initial calibration, the airbox showed good agreement with
the conventional monitors. Pearson’s correlation coefficient for the
full year 2016 for hourly NO2 concentrations is 0.75 at z1 and 0.83
at z2. Scatterplots for both locations nevertheless showed substantial
differences of individual observations (Figure 4.2).
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Figure 4.2 Scatterplots of hourly NO2 values in 2016: airbox vs. conventional
monitor at location z1 and z2. Concentrations in µg m-3.

The percentage of missing values in the dataset of 2016 was 23.1% for
the airboxes, of which 4.4% was removed during data cleaning and outlier
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detection (Chapter 3). The remainder is caused by sensor malfunctioning
(6.6%) or displacement during maintenance periods (12.1%). To reduce
the service costs of the sensor network, maintenance periods were long.
The airbox located at z1 was removed for maintenance from March 22
until May 3, 2016. The airbox at z2 was removed from February 22 until
May 3, 2016. In future development of the network, maintenance time
clearly needs to be reduced. For the two conventional monitors, 2.8% of
the hourly NO2 observations was missing in 2016.

4.3.2 Sensor drift

Figure 4.3 shows the time series of ∆d,t , the difference between the
mean NO2 concentration of the two conventional monitors and the mean
NO2 concentration observed by all airboxes. Since all airboxes are at
different locations and their mean concentrations are not necessarily
equal to the mean of the conventional monitors which are both located at
a traffic location, we do not require ∆d,t to be zero. Neither do we require∆d,t to be stable throughout the year, as it could possibly vary with
the seasonality of NO2, meteorological conditions or interfering gases.
However, the downward trend in ∆d,t in Figure 4.3 suggests sensor drift.
After four months of deployment, there is a sudden decrease in ∆d,t ,
which leads to a systematic decrease of ∼ 10 µg m-3. This is related to a
change in the initial calibration factor around May 10. The bias further
increases with time. Compared to the average drift of all airboxes in
the sensor network, the two collocated airboxes do not show the same
decreasing trend. At z1 the fitted smooth curve of the difference is
around zero after May 10, showing no signs of drift. At z2, the fitted
smooth curve follows that of the average drift after May 10 until the
end of August. Due to malfunctioning of the sensor there are no data
available for the last month of the year. The high values at the end of
November would therefore strongly influence the fitted curve to increase
from September onwards. For a better comparison with z1 and the mean
of all airboxes, the line of z2 is drawn until September.

4.3.3 Multiple linear regression model

Calibration

The histogram and Uniform Q-Q plot of the PIT values (Eq. 4.4) are
created for every daily iteration of the models. A sample is visually
inspected to check for uniformity; an example is shown in Figure A4.1
in the Appendix. The PIT values show uniformity for all models, which
means that the models suitably fit the data. The model performance,
based on the DIC, can thus be evaluated for the models. In Table 4.2
we present the DIC values for different models. Since the INLA model is
iteratively rebuilt, giving a new DIC value every day, we report the mean
DIC and median DIC for 2016. The lowest DIC, indicating the best model
fit, is found for model 9 including all covariates. Model 8 (excluding wind
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Figure 4.3 Difference between mean airboxes and mean conventional monitors
over time (light gray line) and fitted smooth curves before and after May 10
(dark gray solid lines). Vertical solid black line: May 10, after which we observe
a sudden decrease in ∆d,t. Red dashed and blue dot-dashed lines: fitted smooth
curves of difference between conventional monitor and airbox at location z1

and location z2, respectively. The line at z2 has been drawn until September.
Missing values in December would otherwise influence the line up towards
the high levels in November, making comparison with z1 and the mean of all
airboxes impossible.

direction) has the next lowest DIC, only slightly higher than model 9. All
models show a better fit at z2 compared to z1.

Figure 4.4 shows the change of the coefficients of covariates over time
when the model parameters are recalibrated on a daily basis for model 8.
We show model 8 (without wind direction) because DIC values are similar
to model 9 and wind direction is represented by 9 slopes, increasing the
complexity of the figure. The intercept β0 for the daily INLA models is
positive between 3 and 7 µg m-3. At z1, βNO2 < 1 and at z2, βNO2 > 1.
Transferring the coefficients to another location where the bias is in a
different direction will lead to an increase in bias rather than a decrease.
Coefficient βO3 is negative throughout the year, and βRH is close to zero.
Coefficient βT is mostly positive for both locations. Coefficient βWS
shows a pattern close to zero but mostly negative. The month of hourly
data used in each calibration iteration should contain enough temporal
variability in the covariates to avoid overfitting. However, both locations
show a large temporal variability in the coefficients. This is probably due
to seasonal variation, as the temporal variability at the two locations is
very similar over time. The patterns are smoothened by the overlap of
the calibration datasets. When the direction of the slopes would be the
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Table 4.2 DIC performance statistics for different models. A lower DIC denotes
better model fit. In each model, the dependent variable is the square root of

hourly average reference monitor concentrations of NO2,
√
NO2ref . NO2ab is

NO2 measured by the low-cost airbox sensor; O3 is ozone measured by one
reference monitor (z1). RH is relative humidity and T is temperature, both
measured by the airbox. WS is wind speed and WD is wind direction, both
measured by the Royal Netherlands Meteorological Institute (KNMI)

Location z1 Location z2

# Covariates DIC mean DIC median DIC mean DIC median

1 β0 + βNO2
√
NO2ab 1459 1630 1352 1464

2 β0 + βNO2
√
NO2ab + βO3 log(O3) 1291 1319 1328 1446

3 β0 + βNO2
√
NO2ab + βRHRH2 1444 1619 1312 1439

4 β0 + βNO2
√
NO2ab + βTT 1406 1506 1136 1242

5 β0 + βNO2
√
NO2ab + βWS

√
WS 1306 1348 1320 1421

6 β0 + βNO2
√
NO2ab + βWDfactor(WD) 1403 1589 1292 1410

7 β0 + βNO2
√
NO2ab + βWS

√
WS + βO3 log(O3) 1221 1243 1297 1409

8 β0 + βNO2
√
NO2ab + βO3 log(O3)+ βRHRH2+

βTT + βWS
√
WS

1134 1208 828 877

9 β0 + βNO2
√
NO2ab + βO3 log(O3)+ βRHRH2+

βTT + βWS
√
WS + βWDfactor(WD)

1104 1161 778 815

same for each location, this would be beneficial for the transferability of
the model from one location to the other. However, when coefficients
tend to have a different direction at different locations at any point in
time, correction may lead to a deterioration.

Validation

A model with only NO2 improved the RMSE modestly at both locations
(Table 4.3). Adding additional covariates substantially further reduced
RMSE. Model 8, with all covariates except wind direction, performed best
at location z1. At z2, model 9 with all covariates performed best. At
both locations, no improvement in RMSE was achieved by correcting the
observations using the calibration models built at the other location.

4.3.4 Daily correction factor

The relative correction factor γrel,d,z shows a higher RMSEpost than
the absolute correction factor γabs,d,z, even exceeding RMSEpre at z1

(Table 4.4). Since this method could be applied to all non-missing NO2

observations at each location, while the Bayesian models could only
be applied to observations non-missing for all covariates at each loca-
tion, the RMSEpre and RMSEpost are not directly comparable to those
retrieved using INLA (Table 4.3).
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Figure 4.4 Time series of the coefficients of the daily INLA models, using
model 8. Red: location z1, blue: location z2.

Table 4.4 also shows the RMSEpre and RMSEpost when we tested the
correction factor determined at the other airbox location collocated with
a conventional monitor. At z1, RMSE is higher after correction; at z2

a modest decrease was found using γabs,d,z1 . The RMSE values can be
influenced by a few extremes in the corrected values, especially when an
extreme correction factor is established at one location and is transferred
to another location. This led to a high RMSEpost of 120.86 µg m-3

at z2. Removing extreme correction factors led to a decrease of this
value, however not decreasing below RMSEpre. A time series plot of the
correction factors illustrates its variability and the extremes (Figure A4.2).
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Table 4.3 RMSE before and after temporal and spatiotemporal calibration using
different models. Covariates in each model are similar to those in Table 4.2.

Temporal calibration Spatiotemporal calibration

Location z1

(# obs.=5684)
Location z2

(# obs.=4816)
Model location z2

validated at z1

(# obs.=4751)

Model location z1

validated at z2

(# obs.=4885)

# RMSEpre RMSEpost RMSEpre RMSEpost RMSEpre RMSEpost RMSEpre RMSEpost

1 9.91 9.44 10.67 8.54 10.00 11.35 10.64 11.39

2 9.91 8.43 10.67 8.43 10.00 10.81 10.64 11.68

3 9.91 9.52 10.67 8.22 10.00 11.86 10.64 12.70

4 9.91 8.83 10.67 7.26 10.00 12.70 10.64 11.62

5 9.91 8.05 10.67 8.28 10.00 10.29 10.64 11.10

6 9.91 9.47 10.67 8.62 10.00 11.55 10.64 11.56

7 9.91 7.97 10.67 8.23 10.00 10.27 10.64 11.42

8 9.91 7.62 10.67 5.80 10.00 11.28 10.64 11.55

9 9.91 7.80 10.67 5.74 10.00 11.66 10.64 11.58

Table 4.4 RMSE values before and after applying a daily correction factor on
hourly values at the same location (temporal calibration) and at the other location
(spatiotemporal calibration)

Temporal calibration Spatiotemporal calibration

Location z1 Location z2 Model location z2

validated at z1

Model location z1

validated at z2

Correction
factor RMSEpre RMSEpost RMSEpre RMSEpost RMSEpre RMSEpost RMSEpre RMSEpost
γrel,d,z 9.94 19.57 10.55 7.34 9.46 13.53 10.68 120.86

γabs,d,z 9.94 6.54 10.55 5.78 9.46 10.17 10.68 9.75

4.3.5 Uniform concentration correction

The results of correction factor γuni updated under conditions of uni-
form and low concentrations are shown in Table 4.5. Depending on the
threshold values of standard deviation δ and mean χ, the number of
updates of γuni in the year ranged between 1 and 39 for the chosen
thresholds. For none of the threshold combinations, the correction
method improved the RMSE value. Instead, the RMSEpost was 27-145%
higher than the RMSEpre, making the method not suitable for NO2 in
this sensor network. Figure A4.3 shows the time series of the correction
factor for δ = 5 µg m-3 and χ = 12 µg m-3. As Figure 4.3 suggested, a
change occurred in May. This is reflected in an update of the correction
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factor in Figure A4.3. Before May the correction factor remains at 1.

Table 4.5 RMSE values before and after updating the correction factor γuni
under conditions of uniform and low NO2 concentrations

δ χ # updates Location z1 Location z2

RMSEpre RMSEpost RMSEpre RMSEpost
4 10 1 9.94 24.33 10.55 19.73

4 12 1 9.94 24.33 10.55 19.73

4 15 2 9.94 17.67 10.55 13.44

5 10 1 9.94 15.97 10.55 12.33

5 12 16 9.94 18.42 10.55 14.60

5 15 36 9.94 23.01 10.55 19.58

6 10 8 9.94 20.00 10.55 15.91

6 12 39 9.94 22.12 10.55 18.33

6 15 39 9.94 22.96 10.55 19.58

Table 4.6 shows the results of the night-time calibration. At z1 the
RMSE is almost doubled after night-time calibration, while at z2 there is
a slight improvement in RMSE. The increase in RMSE at z1 is mainly due
to some extreme values for γnight,d,s in May (Figure A4.4).

Table 4.6 RMSE before and after night-time calibration

Location z1 Location z2

RMSEpre RMSEpost RMSEpre RMSEpost

9.94 19.51 10.55 9.86

4.3.6 Sensitivity of individual airboxes to environmental factors

Figure 4.5 shows a boxplot of the posterior mean estimates for relative
humidity and temperature for a model with airbox NO2 as response
variable. When using a full year of data at once, the posterior mean
estimate for temperature is negative for each airbox, varying between -0.1
and -0.7 for different airboxes. The posterior mean of relative humidity
differed between the different airboxes from -0.5 to +0.3. A difference
in slope direction can have large influence on the transferability of
calibration models to other airboxes.
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Figure 4.5 Posterior mean estimates of different airboxes, for airbox NO2 vs.
covariates ‘relative humidity’ and ‘temperature’ measured in the same airbox,
full year 2016.

Figure 4.6 shows the posterior distributions of βNO2, βRH and βT for
ten collocated airboxes for a shorter period of time with NO2 from the
conventional monitor as the response (240 hours). The posterior distri-
butions of βNO2 are around 1. For some of the NO2 sensors, however, the
β coefficient was below 1 while for other airboxes the β coefficient was
above 1. The NO2 concentrations would thus be corrected in the wrong
direction when using the estimated coefficients of another airbox. βRH
and βT have posterior distributions around zero, indicating different
slope directions for different airboxes. We note that the short duration
may have contributed to some uncertainty in the estimates.

4.3.7 Temporal autocorrelation

In the iterative calibration procedure, the dataset for calibration was
not large enough to model the temporal autocorrelation in the NO2

data. Inclusion of the random walk component (Eq. 4.13) did not lead
to improvements in RMSEpost . When applying the model in Eq. 4.2
to the full year dataset, however, there were clear signs of temporal
autocorrelation in the residuals. Including random effects in the model
using Eq. 4.13 led to a significant decrease in RMSEpost from 8.30 to 3.12
at z1, and from 6.76 to 3.71 at z2. A complete overview is given in Table
A4.2. Inclusion of random effects narrowed the scatterplot closer to the
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1:1 line (Figure A4.5). A substantial decrease in residuals and removal of
the temporal pattern is visible in the residual plot (Figure A4.6).
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Figure 4.6 Posterior distributions of slopes for reference monitor NO2 per
covariate, for 10 airboxes collocated for ten days.

4.4 Discussion and conclusions

After approximately two to six months after the initial calibration, the
airbox NO2 sensors showed signs of drift. We have evaluated three dif-
ferent methods for regular calibration: daily updated correction factors,
corrections based on uniform low concentrations, and a Bayesian re-
gression model. The Bayesian regression model and the daily correction
factors both worked very well on the airbox for which they were created,
accounting for both systematic bias due to drift and non-systematic
errors due to interference effects. However, we found that the transfer-
ability of the correction parameters and coefficients to another airbox
was limited, though the other airbox was within a short distance and in
a similar traffic situation. The poor spatial transferability is consistent
with the different sensitivity of individual airboxes to environmental
factors including temperature and relative humidity, in agreement with
Broday and The Citi-Sense Project Collaborators (2017).

The sensitivity of electrochemical cell NO2 sensors to temperature
and relative humidity has already been evaluated for different types of
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sensors (Neri et al., 2002; Mead et al., 2013; Phala et al., 2016). With a set
of collocated sensors, we found that the interference effects might be
different for individual sensors of the same type when deployed in an
outdoor environment. We also showed, in line with Kizel et al. (2018),
that for each airbox the coefficients strongly vary over time, emphasizing
the need for regular recalibration. These results may be different for
other pollutants or sensors. Zalel et al. (2015), for example, found a good
temporal stability and spatial transferability for benzo(a)pyrene.

Wind speed data was only available at a single location in Eindhoven.
In the model we could therefore only include the temporal variation in
wind speed but not its spatial variation. Lerner et al. (2015) found that
local wind speed affects the NO2 concentrations. The NO2 sensors in
our study are covered by the airbox to minimize the influence of direct
wind. The regression model may be improved by adding measurements
of wind speed and wind direction on each airbox location. Ozone data
are measured by the airboxes, but were only available for two months
in 2016 for the two airboxes collocated with a conventional monitor,
due to sensor failure. Therefore we used O3 data available at one of
the conventional monitor sites. This limited the O3 data to only one
location, but the relation between NO2 and O3 is strong and the temporal
variability in O3 is typically higher than the spatial variability. This
solution was therefore preferred over using no O3 data or using only two
months of data for analysis. Due to a change in initial calibration factor,
there is a sudden change in NO2 concentrations around May 10. This has
affected the models based on 30-day periods including May 10, but not
other periods. The change thus does not affect our general conclusions.

We evaluated the performance of the calibration models, their temporal
stability and spatial transferability by comparing the RMSE values before
and after calibration. This measure is widely used to evaluate sensor
performance, but can be influenced by extreme values (Fishbain et al.,
2017). We cleaned the data from outliers before the analysis to minimize
the influence of extreme values on calibration parameters and their
performance (Chapter 3). Besides the RMSE, other performance measures
can be used to assess the quality and usability of low-cost air quality
sensors. For example, Fishbain et al. (2017) developed a tool kit to
evaluate the performance of air quality micro-sensing units. Here, our
focus is on calibration performance only.

Miskell et al. (2018) suggested to calibrate low-cost sensors using a
conventional monitor in the vicinity with similar land use type. They
successfully applied the method on O3 with an averaging time of 72 hours.
We applied a similar method on NO2 using daily absolute and relative
correction factors and an averaging time of 24 hours. This method
accounts for drift and daily variability in interference effects. Despite
similar traffic conditions at both locations, and traffic being the major
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contributor to NO2 levels in Eindhoven, the correction factors could
not successfully be transferred from one location to the other. This is
probably due to variability between individual airboxes in the strength
of drift or interference.

The uniform concentration correction method was proposed by Tsujita
et al. (2005) and only adjusts the correction factor when concentrations
of pollutants are uniform over the city. This method accounts mostly for
drift but also for long-term variability in interference effects. Moltchanov
et al. (2015) applied this method using nighttime calibrations (1:00-
4:00 a.m.) when O3 concentrations are uniformly negligible. For NO2

they could not apply the method because they did not find periods
of sufficiently long duration with negligible spatial variation in NO2

concentrations. We faced the same issue for NO2.

We evaluated the presence of temporal autocorrelation in the resid-
uals by adding a first-order random walk component to the model, as
described in Blangiardo and Cameletti (2015). In our case the addition
of this random effect only led to an improvement in RMSE when applied
on 80% of the full dataset (2279 hourly non-missing observations) rather
than iteratively using the hourly observations of the previous 30 days
(maximum 720 hourly non-missing observations).

The need for regular recalibration of parameters is clear. The time
series plots of the daily correction factors, the correction factors based
on uniform low concentrations, and β coefficients of the INLA model
show that independent of the method used, there is significant variability
in the correction factors and parameters over time. Also, the parameters
are dependent on the individual sensor. Hasenfratz et al. (2012) proposed
an on-the-fly calibration procedure for gas sensors mounted on public
transport vehicles, calibrating the sensors when in each other’s vicinity or
when in the vicinity of a conventional monitor. In static sensor networks,
a moving reference sensor could be used for regular calibration and data
quality evaluation of the sensors in the network as suggested by Kizel
et al. (2018). A moving reference sensor takes the different response
of individual sensors into account, and would be a suitable solution to
account for the spatio-temporal variability in the calibration parameters.
A disadvantage is the added workload. Besides a moving reference
sensor, it would still be of added value to collocate the sensors once a
year to compare performance differences.

Low-cost air quality networks provide data of a fine spatial and tem-
poral resolution. They provide valuable opportunities for spatiotemporal
modelling and health risk mapping. It can be debated whether one should
use modelled values, as derived from the calibration model, as an input
for spatiotemporal modelling purposes and health studies, in which the
same covariates are likely to be used again as potential confounders in
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for example time series studies. The purpose of this model is however
different, the calibration parameters are optimized for the calibration of
NO2, and the covariates have been transformed and scaled. Therefore
we do not expect major issues regarding the use of calibrated values in
future modelling.

Calibration procedures are important to correct air pollution data
before online publishing, to avoid misinterpretation of the results. This
study has highlighted the need for such calibration procedure to not
just account for drift and interference effects, but also for the variability
in drift and interference effects in space, time and between sensors.
The strength of this variability may differ between locations, pollutants
and sensors used. Transferability of calibration parameters from one
sensor to the other and similarities in drift are often assumed, but this
assumption is not always justified. Regular calibration should therefore
be performed at the location of the low-cost sensor, for example using a
moving reference sensor.

Low-cost air quality sensors are valuable instruments to increase the
spatial and temporal resolution of air quality sensor networks. When
aware of their limitations, sensor-specific differences and when com-
municating the uncertainties related to their measurements, they could
prove useful in various settings.
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Appendix

Table A4.1 RMSE before and after temporal calibration, for different lengths
of the calibration dataset. In each case, the full model including all covariates
(model 9) is used. The length of the validation dataset is 1 day (max. 24 hourly
observations) in each case. The minimum number of observations in a calibration
dataset is 72 to continue calibration. Slight differences in RMSEpre occur
because this minimum is more easily met in a larger calibration dataset.

Location z1 Location z2

# cal. days (max.
# hourly observations)

RMSEpre RMSEpost RMSEpre RMSEpost

7 days (168 hours) 9.91 8.45 10.67 5.97

14 days (336 hours) 9.91 7.79 10.67 5.68

30 days (720 hours) 9.91 7.80 10.67 5.74

45 days (1080 hours) 9.91 7.56 10.70 5.80

Figure A4.1 Histogram and uniform(0,1) Q-Q plot of the PIT values on June 15,
2016 at location z1.
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Figure A4.2 Time series of the relative correction factors γrel,d,z and absolute
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Figure A4.3 Time series of the correction factor γuni using airbox NO2 stand-
ard deviation threshold δ = 5 µg m-3 and airbox mean NO2 threshold χ = 12
µg m-3
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Figure A4.4 Time series of the correction factor γnight,d,s using night-time
calibrations. Red: location z1, blue: location z2

Table A4.2 RMSE for the models with random effects vs. without random
effects. In each model, the dependent variable is

√
NO2ref

Location z1 Location z2

Model RMSEpre RMSEpost RMSEpre RMSEpost

Model excluding random effects:

β0 + βNO2
√
NO2ab

+βTT + βRHRH2+
βO3 log(O3)+ βWS

√
WS

9.32 8.30 10.77 6.76

Model including random effects:

β0 + βNO2
√
NO2ab

+βTT + βRHRH2+
βO3 log(O3)+ βWS

√
WS

+rw1(d, t)

9.32 3.12 10.77 3.71
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Figure A4.5 Scatterplots before calibration, after calibration without random
effects, and after calibration with random effects, for locations z1 and z2.
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Figure A4.6 Residual plots for INLA models without random effects and with
random effects. Note the different scaling used on the y-axes to improve
readability.
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5Spatio-temporal regression
kriging for modelling urban NO2

concentrations

Abstract

Recently developed urban air quality sensor networks are used to mon-
itor air pollutant concentrations at a fine spatial and temporal resolution.
The measurements are however limited to point support. To obtain areal
coverage in space and time, interpolation is required. A spatio-temporal
regression kriging approach was applied to predict NO2 concentrations
at unobserved space-time locations in the city of Eindhoven, the Neth-
erlands. Prediction maps were created at 25 m spatial resolution and
hourly temporal resolution. In regression kriging, the trend is separately
modelled from autocorrelation in the residuals. The trend part of the
model, consisting of a set of spatial and temporal covariates, was able to
explain 49.2% of the spatio-temporal variability in NO2 concentrations in
Eindhoven in November 2016. Spatio-temporal autocorrelation in the re-
siduals was modelled by fitting a sum-metric spatio-temporal variogram
model, adding smoothness to the prediction maps. The accuracy of the
predictions was assessed using leave-one-out cross-validation, resulting
in an RMSE of 9.91 µg m-3, a Mean Error (ME) of -0.03 µg m-3 and a
Mean Absolute Error (MAE) of 7.29 µg m-3. The method allows for easy
prediction and visualization of air pollutant concentrations, and can be
extended to a near real-time procedure.

This chapter is published as: Van Zoest, V.M., Osei, F.B., Hoek, G., Stein, A, 2019.
Spatio-temporal regression kriging for modelling urban NO2 concentrations. International
Journal of Geographical Information Science. doi:10.1080/13658816.2019.1667501
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5. Spatio-temporal regression kriging for modelling urban NO2 concentrations

5.1 Introduction

Geo-information science supports the computation and visualization
of large amounts of spatio-temporal data. In combination with spatio-
temporal statistics, prediction maps can be made, for example to visual-
ize air pollution. Air pollution is worldwide a major cause of morbidity
and mortality (Cohen et al., 2017) and national air quality monitoring
networks have been set up to monitor whether it exceeds legal limit
levels. Due to the high costs of the instruments, their maintenance and
validation, the number of measurement locations is typically limited to
one or two in each city. Low-cost air quality sensor networks, measuring
pollutant concentrations at a fine spatio-temporal resolution at urban
scale level, are gaining interest (Snyder et al., 2013). These networks can
be operated for a longer period of time (>1 year) and can be used to
model air pollution at a fine spatial and temporal resolution.

Modelling air pollutant concentrations is done with the aim to predict
air pollutant concentrations at unmeasured locations. Land use regres-
sion (LUR) models, referring to regression models including land use
covariates from a geo-information system (Hoek et al., 2008), are used
for modelling fine scale variation in air quality at an urban scale level.
In most LUR studies, the models are used to obtain seasonal or annual
average predictions (Lee et al., 2017; Kashima et al., 2018; Weissert et al.,
2018). These are suited for applications where mostly spatial variability
is of importance, such as policy decisions regarding polluted areas of
a city or assessing long-term health effects of air pollution. All tem-
poral variation will be neglected when an LUR model is used to predict
annual mean concentrations, leading to a loss of precision and power
(Klompmaker et al., 2015). The spatial covariates in an LUR model will
also not be able to account for all spatial variability, nor for spatial
autocorrelation in the residuals.

When a regression model is combined with spatial kriging, the spatial
autocorrelation structure can be accounted for. Spatial kriging is then
used to interpolate the concentration values between different measure-
ment locations (Beelen et al., 2009; Van de Kassteele et al., 2009). To
account for temporal variability and temporal autocorrelation, the re-
gression model can be extended to include temporal covariates, and the
residuals of the model can be interpolated using spatio-temporal kriging
(Kilibarda et al., 2014; Hu et al., 2015). A spatio-temporal variogram
function is then used to describe the spatio-temporal autocorrelation
structure (Gräler et al., 2016).

The main objective of this study is to model spatio-temporal variability
in urban air pollutant concentrations using a spatio-temporal regression
kriging model. We applied the method on a low-cost urban air quality
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sensor network in the city of Eindhoven, the Netherlands (Chapter 2),
focusing on NO2.

5.2 Methods

5.2.1 Model formulation

We consider a sensor network with Ns number of sensor locations si,
i = {1, . . . ,Ns}. The sensor measurements are taken at point support in
space, represented by a two-dimensional set of spatial coordinates for
each sensor location. At sensor location si, the air pollutant concentra-
tion NO2(si, tj) is stored for each of the Nt number of time stamps tj ,
j = {1, . . . ,Nt}. Each time stamp denotes the end of an hourly averaging
period.

We modelled the air pollutant concentration NO2(si, tj) with mean
µ(si, tj) and residual η(si, tj):

NO2(si, tj) = µ
(
si, tj

)
+ η

(
si, tj

)
(5.1)

The mean µ(si, tj) incorporates the trend component of the model, con-
sisting of a linear combination of covariate values xc from a set of spatial
and temporal covariates C . The trend part of the model is estimated as:

µ̂
(
si, tj

)
= β̂0 +

∑
C
β̂cxc

(
si, tj

)
. (5.2)

Here β̂0 is the estimated intercept and β̂c are the estimated regression
coefficients for covariates c ∈ C , based on ordinary least squares.

After estimating the parameters and predicting µ(si, tj) at each ob-
served space-time location (si, tj), we model the spatio-temporal autocor-
relation in the residuals. We take the residuals as the differences between
the observations and the estimated trend, and in this approach we ignore
any uncertainties in the estimated trend. Their inclusion could be part of
future research. The distribution of the residuals is visually checked for
normality. To explore the spatio-temporal dependency in the residuals,
we use the spatio-temporal variogram (Cressie and Wikle, 2011; Sher-
man, 2011). The spatio-temporal variogram represents the semivariance
between any pair of residuals which are separated by spatial lag h and/or
temporal lag u:

γ(h,u) = 1
2
E
(
η
(
si, tj

)
− η

(
si + h, tj +u

))2
. (5.3)

Here, E denotes the expected value. A spatio-temporal sample variogram
is formed by averaging the semivariance in regularly spaced spatio-
temporal bins, similar to standard spatial variograms. A space-time
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variogram model is fitted to the spatio-temporal sample variogram. Based
on the smallest mean square error (MSE) between the sample variogram
and fitted variogram we fitted a sum-metric space-time variogram model.
The sum-metric model combines a spatial, temporal and metric model
accounting for space-time anisotropy (Gräler et al., 2016):

γ (h,u) = γ (h)+ γ (u)+ γ
(√
h2 + (κ ×u)2

)
(5.4)

where γ (h,u) is the space-time variogram, γ (h) is the spatial vari-

ogram, γ (u) is the temporal variogram, γ
(√
h2 + (κ ×u)2

)
is the joint

variogram, and κ is a spatio-temporal anisotropy scaling parameter. This
requires estimation of κ, as well as a set of spatial variogram model
parameters θs = {τ2

s , σ 2
s ,φs}, a set of temporal variogram model para-

meters θt = {τ2
t , σ

2
t ,φt} and a set of joint variogram model parameters

θjoint = {τ2
joint , σ

2
joint ,φjoint}. Each set of parameters contains, respect-

ively, the nugget, partial sill and range of – in our case – a spherical
variogram model (Zimmerman and Stein, 2010). The nugget consists
of two components: microscale variance and variance induced by inac-
curacies in the measurement device (Cressie and Wikle, 2011). The partial
sill and range affect the shape of the variogram model. Depending on
the spatio-temporal autocorrelation of the pollutant, different pollutants
have different variogram models. Variogram model parameter estimation
is done through optimization using the bound constrained BFGS method
(Byrd et al., 1995). We assume isotropy and stationarity in space and
time, which allows for the same variogram to be used in all directions
and at all spatio-temporal locations.

5.2.2 Spatio-temporal predictions

We combine the estimated parameters of the regression model and the
estimated semivariance parameters to predict the NO2 concentration

N̂O2 (s0, t0) at any unobserved spatio-temporal location (s0, t0) located
on a spatio-temporal prediction grid:

N̂O2 (s0, t0) = µ̂ (s0, t0)+ η̂ (s0, t0) (5.5)

where the predicted trend component µ̂ (s0, t0) = β̂0 +
∑
C β̂cxc (s0, t0)

is based on the covariate values xc (s0, t0) at spatio-temporal prediction
location (s0, t0). Kriging gives us the Best Linear Unbiased Predictor
(BLUP) of the residual component, η̂ (s0, t0) = λ0η̄, where η̄ is a vector
of observed space-time residuals and λ0 is a vector of kriging weights
(Diggle and Ribeiro, 2007). The kriging weights express the strength
of the association between observation locations and the prediction
location, estimated as λ0 = γT0 Γ−1. Here, γ0 is a vector containing the
semivariances between the observation locations and the prediction
location (s0, t0), and Γ is a matrix containing the semivariances between
all possible combinations of space-time observations. We apply simple
kriging, as we assume the residuals to have a known mean of zero.

68



5.3. Application

The prediction maps on the full space-time grid were accompanied
with kriging variance maps to evaluate the uncertainty of the kriging
predictions. The kriging variance σ 2

0 at a prediction location (s0, t0) is
defined as (Webster and Oliver, 2001):

σ 2
0 = γT0 Γ−1γ0. (5.6)

Variogram parameter estimation and spatio-temporal kriging were done
in R using the ‘gstat’ package (Gräler et al., 2016). The used code is
available from the authors upon request. Spatio-temporal kriging is
computationally demanding, as it requires computation of the inverse
of the spatio-temporal semivariance matrix at every location on the
spatio-temporal prediction grid. To improve efficiency and to reduce
computation time, we limit the temporal observation locations used for
predictions, i.e. perform local kriging on the temporal part. While using
all spatial locations, we limit the number of temporal neighbors to those

within a temporal distance of max
(
φt ,φjoint/κ

)
, rounded up to the next

whole number. This should not meaningfully influence the predictions,

as the kriging weights approach zero when u >max
(
φt ,φjoint/κ

)
.

5.2.3 Validation

To evaluate the accuracy of the kriging predictions, we performed leave-
one-out cross-validation (LOOCV) at all observed space-time locations(
si, tj

)
. For one space-time location

(
si, tj

)
at a time, the value η

(
si, tj

)
is removed from the dataset. The remainder of the dataset, temporally

limited to tj ± max
(
φt ,φjoint/κ

)
, is used to predict η

(
si, tj

)
. This

process is repeated for each observed space-time location
(
si, tj

)
. The

Root Mean Square Error (RMSE) is then used to assess the accuracy of
the kriging predictions:

RMSE =

√√√√√ 1
NsNt

Ns ,Nt∑
i=1,j=1

(
N̂O2

(
si, tj

)
−NO2

(
si, tj

))2
(5.7)

as well as the Mean Error (ME):

ME = 1
NsNt

Ns ,Nt∑
i=1,j=1

(
N̂O2

(
si, tj

)
−NO2

(
si, tj

))
(5.8)

and Mean Absolute Error (MAE):

MAE = 1
NsNt

Ns ,Nt∑
i=1,j=1

(∣∣∣N̂O2
(
si, tj

)
−NO2

(
si, tj

)∣∣∣) . (5.9)

5.3 Application

For this study we used the AiREAS NO2 data as described in Chapter 2.
We estimated the model parameters for one month of data at a time, to
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account for sensor drift and seasonal variability in the regression coeffi-
cients and semivariance parameters. As an illustration of the method, we
used in this study hourly data from November 2016, when NO2 data were
available for 20 airbox locations (Figure 5.1). The airboxes measure NO2

every 10 minutes, and the data were averaged to hourly concentration
values to reduce noise and to match the data with the temporal support
of the meteorological covariates. Data cleaning and outlier removal were
performed as described in Chapter 3 and missing values (9.8%) in each
airbox were imputed using regression on the NO2 values of the remaining
airboxes, following Harrell (2018). The observed hourly average NO2

concentrations varied between 0 and 96 µg m-3 in November 2016.

Figure 5.1 Locations of the airboxes in Eindhoven used for modelling NO2 in
November 2016. The coloured lines represent major roads.

The main source of NO2 is traffic inside the city and it may be trapped
in street canyons between high buildings, especially in the areas with a
high population density. In the trend part of the model, three spatial
covariates and five temporal covariates were included, which significantly
affected the NO2 concentrations at significance level α = 0.05 as shown
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in the results section. This set of covariates

C = {pop, road, east, RH,WS,WD,hour,wday}

contains population density (pop), road type (road), easting coordinates
(east), relative humidity (RH), wind speed (WS), wind direction (WD),
hour of day (hour ) and weekday/weekend (w), respectively. The final
prediction model then becomes:

N̂O2 (s0, t0) = β̂0 + β̂popxpops0 + β̂roadxroads0 + β̂eastxeasts0

+ β̂RHxRHt0 + β̂WSx
WS
t0 + β̂WDxWDt0

+ β̂hourxhourt0 + β̂wdayxwdayt0 + γT0 Γ−1η̄. (5.10)

Population density was obtained as the number of inhabitants km-2,
from Statistics Netherlands (CBS, 2018) at neighborhood level. The
lattice data were converted to a raster with a grid cell size of 25 m,
similar to the spatial resolution of the prediction grid. Road type data
was obtained from the topographic base dataset TOP10NL (Kadaster,
2018). We reclassified the road types to distinguish between small roads
(width 2–7 m) and main roads (width >7 m). In rasterizing the vector
data to fit the prediction grid, any raster cell containing a piece of
road was classified as a road cell. The distinction between small roads
and main roads was based upon the maximum combined area of each
road type overlapping with the raster cell. Easting coordinates were
included as the coordinates of the prediction grid. Relative humidity,
wind speed and wind direction are centrally monitored at the Royal
Netherlands Meteorological Institute weather station in Eindhoven (KNMI,
2016), and are therefore considered as temporal covariates only. We
distinguish between weekdays and weekends, since the traffic patterns
are highly different during weekdays as compared to weekends, thus
causing different air pollutant concentrations. Similarly, we include
hour of the day in the model to account for diurnal variability in traffic
intensity and weather. The prediction grid has a temporal resolution of
1 hour.

5.4 Results and discussion

5.4.1 Model parameter estimation

The regression model, representing the spatio-temporal trend part of
the model, explained 49.2% of the variability in NO2 concentrations in
Eindhoven in November 2016. The estimated coefficients and their p-
values are shown in Table 5.1. Population density was positively related
to NO2 concentrations, as areas with higher population density tend
to have a higher traffic intensity and more high-rise buildings. Areas
between high-rise buildings form street canyons in which the pollutants
are easily trapped. Road type is related to the amount of traffic and
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therefore an important predictor of air pollution. Especially the presence
of main roads had a large influence on the NO2 concentrations, due to
the higher traffic intensity. Easting is a case study area specific covariate,
which is likely related to the prevailing west/south-west wind direction
and accumulation of air pollution in the east. Relative humidity and
wind speed were negatively related to NO2 concentrations. A higher
wind speed dilutes the pollutant concentrations in the air and therefore
naturally leads to lower NO2 concentrations. Wind direction was related
to the temporal variability in NO2 concentrations, with winds from the
South, South-East, East, North-East and North leading to lower NO2

concentrations than winds from the South-West, West and North-West.
The β coefficients of the latter three wind directions were not significantly
different from zero, the baseline β coefficient for calm or variable winds.

Relative humidity, wind speed and wind direction cannot be controlled
to reduce air pollution in the city. However, policy makers can consider
these in spatial planning. Based on prevailing winds from the west/south-
west and their impact on the transportation of air pollutants, spatial
planners would be advised to locate main sources of air pollution, such as
highways and the airport, on the east side of the city. We also observe a
strong relationship between NO2 concentrations and population density.
The exposure to air pollutants would be more equally divided amongst
inhabitants when spatial planners would step away from the traditional
city plan, in which high-rise buildings are clustered in the center and low-
rise buildings are clustered in the suburbs. Making main roads smaller
might decrease local air pollution, but will likely create congestion and
increase air pollution elsewhere.

The residuals follow an approximately normal distribution. The left
panel in Figure 5.2 shows the spatio-temporal sample variogram of the
residuals of the fitted regression model, using a temporal bin size of 1
hour and a spatial bin size of 500 m. The sample variogram shows some
periodicity along the spatial axis, likely due to the limited number of
spatial locations on which the variogram is based. The fitted sum-metric
variogram model is shown in the right panel of Figure 5.2. Its MSE of
288 was lowest compared to metric and separable variogram models,
as also found in the example shown in Gräler et al. (2016). Visually,
the fitted variogram model well represents the overall shape of the
sample variogram both in terms of spatial, temporal and joint spatio-
temporal dependencies. The estimated parameters of the sum-metric
variogram model are shown in Table 5.2. We observe that the spatial
parameters indicate a pure nugget variogram. The spatial dependencies
are therefore only considered in the joint variogram model. The temporal
dependencies are considered both in the temporal variogram model and
in the joint variogram model.
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Table 5.1 β̂ and p-values for the fixed effects part of the regression model. The
baseline for road type is ‘no road’. The baseline wind direction is ‘Calm/Variable’,
the baseline weekday/weekends is ‘weekday’, and the baseline for hour is ‘0’
(23:00-0:00).

Covariate Covariate unit β̂ p-value

Intercept N/A -113.38 <0.001
Population density inhabitants km-2 (s) 1.47 <0.001
Road type: Small roads factor 0.59 0.02
Road type: Main roads factor 16.16 <0.001
Easting km 0.82 <0.001
Relative humidity % -0.07 <0.001
Wind speed m s-1 -1.03 <0.001
Wind dir.: North factor -2.11 <0.001
Wind dir.: North-East factor -2.00 <0.001
Wind dir.: East factor -4.23 <0.001
Wind dir.: South-East factor -2.67 <0.001
Wind dir.: South factor -1.76 <0.001
Wind dir.: South-West factor 0.19 0.71
Wind dir.: West factor -0.92 0.10

Wind dir.: North-West factor -1.28 0.07
Weekday: Weekend factor -3.79 <0.001
Hour: 1 factor -1.61 0.004
Hour: 2 factor -2.25 <0.001
Hour: 3 factor -2.97 <0.001
Hour: 4 factor -3.20 <0.001
Hour: 5 factor -2.77 <0.001
Hour: 6 factor -0.50 0.37
Hour: 7 factor 2.59 <0.001
Hour: 8 factor 3.91 <0.001
Hour: 9 factor 3.29 <0.001
Hour: 10 factor 2.59 <0.001
Hour: 11 factor 2.04 <0.001
Hour: 12 factor 2.14 <0.001
Hour: 13 factor 2.78 <0.001
Hour: 14 factor 4.32 <0.001
Hour: 15 factor 6.03 <0.001
Hour: 16 factor 8.05 <0.001
Hour: 17 factor 9.70 <0.001
Hour: 18 factor 8.99 <0.001
Hour: 19 factor 6.78 <0.001
Hour: 20 factor 5.46 <0.001
Hour: 21 factor 4.68 <0.001
Hour: 22 factor 4.36 <0.001
Hour: 23 factor 2.70 <0.001
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Figure 5.2 Spatio-temporal sample variogram (left) and sum-metric fitted vari-
ogram model (right)

Table 5.2 Spatio-temporal variogram parameter estimates for the fitted sum-
metric variogram.

Parameter Estimate

τ2
s 35.2 (µg m-3)2

σ 2
s 0.00 (µg m-3)2

φs 2692 m

τ2
t 0.00 (µg m-3)2

σ 2
t 10.8 (µg m-3)2

φt 6.1 hrs

τ2
joint 10.6 (µg m-3)2

σ 2
joint 40.3 (µg m-3)2

φjoint 2670 m
κ 61.1 m hr-1

5.4.2 Prediction maps

Figure 5.3 shows the prediction maps of four time stamps on Monday
November 7, 2016. The maps represent the spatial variability as well
as the diurnal variability in NO2 concentrations. The dark blue colors
between 2 and 3 a.m. suggest that the concentrations are low. This
can be expected during night hours when traffic intensity is low as well.
Main roads have a substantially higher NO2 concentration than small
roads within the neighborhoods. The neighborhoods can be clearly
distinguished due to the effect of population density. Some smoothing
is visible thanks to kriging of the residuals. During rush hours, e.g.
between 7 and 8 a.m. and between 5 and 6 p.m., the concentrations are
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higher than during the night, both at the main roads and at background
locations. Especially the air close to the roads south of the center is most
polluted with concentrations >40 µg m-3. At this location, we find one
of the main roads connecting the highway to the city center. At noon,
background levels slightly drop, but still a hotspot exists around the
southern main entrance road (red ellipse).

Figure 5.3 Prediction maps of NO2 concentrations at four time stamps on
Monday November 7, 2016 (UTC time; local time is one hour later). The covariate
‘population density’ was included as lattice data, creating clearly distinguished
features for the neighborhoods. The red ellipse indicates a hotspot, with locally
elevated NO2 concentrations around the southern main city entrance road.

The prediction maps also allow for visual inspection of extreme values.
Spatial extremes could be identified as local hotspots on the map. Tem-
poral extremes can be identified by comparing predictions at different
time stamps. Figure 5.4, for example, shows the prediction maps of four
different Sundays in November 2016 between 5 and 6 p.m. Clearly, the
NO2 concentrations on November 27 were extremely high throughout the
city. The high concentrations on November 27 could not be explained
by the meteorological covariates in the trend part of the model, nor
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Figure 5.4 Prediction maps of NO2 concentrations at four Sundays in November
2016, between 5 and 6 p.m. (UTC time; local time is one hour later). Note that
different concentration limits were used as compared to Figure 5.3, to visualize
the high concentrations on November 27.

by other extreme weather conditions, public events or traffic intensity.
However, it should be noted that air pollution levels are based on a very
complex combination of sources and sinks, which can be anthropogenic,
natural or chemical (Fenger, 2009; Brook et al., 2010). Since all airboxes
measured high values on November 27, the extreme values are likely due
to a real air pollution event rather than measurement error.

Prior to the analysis, covariates were selected to be included in the
trend part of the model. Some covariates were not included due to a
lack of significant association with NO2 concentrations (α = 0.05) or
lack of improvement in the amount of explained variability. Distance
to the nearest road had no significant impact on NO2 concentrations,
because all airboxes were attached to light poles near a road and the
variability in distance was only minor. As an alternative, distance to
the nearest main road was explored as a covariate. For most airboxes
at background air pollution locations, however, these distances were
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too large to find significant effects. When systematically sampling at
different distances from the road smaller than φs , it is more likely to find
significant effects for this covariate. Instead, we included road type as a
factor covariate, distinguishing between no road, small roads and main
roads. The difference between the predictions for ‘no road’ and ‘small
road’ is small, as can be seen in Table 5.1 and in the prediction maps.
This is no surprise due to the low traffic intensity in smaller streets,
practically diluting to background concentrations. We expected distance
to highway to be negatively related to NO2 but found opposing results,
likely because of an inverse relationship between distance to highway
and population density. The final model included three spatial covariates
and five temporal covariates, a number small enough to avoid overfitting.

5.4.3 Model performance

The RMSE obtained using LOOCV was 9.91 µg m-3, the ME was -0.03 µg m-3

and the MAE was 7.29 µg m-3. Due to the use of lattice data for the co-
variate ‘population density’, the boundaries between neighborhoods are
clearly visible on the prediction map. Although this may partly be caused
by differences in building patterns, some smoothness is expected. The
covariate ‘Easting’ should be interpreted as one specific to the study
area, and β̂east should therefore not be used outside the study area. A
combination of this covariate with a low population density on the west
side of the study area, creates low NO2 predictions in the western part
of the city. No airboxes are located in this area, therefore the kriging
variances are higher here (Figure 5.5). Due to the airport and highways
located in this area, true concentrations could be higher as well.

Figure 5.5 Kriging variance map (Monday 07-11-2016 between 7 and 8 a.m.)

For the spatial variogram, we found a pure nugget effect. Optimization
of the sampling scheme, e.g. by using shorter distances between some of
the sensors, may further improve the estimation of the spatial variogram
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parameters. The sampling scheme in Eindhoven is mostly based on
variability in air pollutant concentrations and on the locations of people
at risk. Sampling near sources of air pollutants, e.g. the airport, and
sampling at different distances from the road may lead to additional
covariates of interest and improved model predictions. Further research
is needed on sampling scheme optimization, for which the rise of low-
cost sensor networks provides valuable opportunities.

5.5 Conclusions

In this paper we predicted urban NO2 concentrations in space and time
using a spatio-temporal regression kriging approach. We applied the
model on a low-cost urban air quality sensor network in the city of
Eindhoven, the Netherlands. A set of spatial covariates, including road
type, population density and easting coordinate, and a set of temporal
covariates accounting for meteorological variability and periodicity, were
included in the trend part of the model. Kriging of the residuals led to
more smoothness in the prediction maps compared to a trend model
only. Due to the strong temporal variability in the data, spatio-temporal
kriging was more useful than spatial kriging. It also allowed for more ac-
curate variogram estimation using all 14400 space-time locations rather
than the limited 20 spatial locations. Using the sum-metric variogram
model, the spatial and temporal dependencies were not only modelled
independently, but also their joint dependencies. In our case of a pure
nugget spatial variogram, these joint dependencies were stronger than
the purely spatial dependencies.

The method was useful for spatio-temporal prediction of NO2 in an
urban area, where the resulting maps can assist policy makers in infra-
structural decision making and epidemiologists in health risk mapping.
They can also improve the development of healthy cyclist route planning
(Sharker and Karimi, 2014) and they can be of use in outlier detection to
distinguish between errors and events. After selection of relevant site-
specific covariates, the method can be applied in other urban areas where
fine resolution urban air quality sensor networks are emerging. While
traffic-related covariates are of importance in Eindhoven, other covariates
such as distance to factories may be of relevance in highly industrial
cities. As the emissions of factories are, like traffic, also dependent on
hour of the day and weekday/weekends, including these covariates will
likely also be of added value in industrial cities. Interactions between
covariates can also be included in the trend part of the model, when
enough spatial and temporal locations are available to avoid overfitting.

The estimates of the β coefficients and spatio-temporal variogram
parameters should be regularly updated, e.g. every month, to account
for drift and seasonal variability in the estimates. Prediction could be
extended to a near real-time procedure in a straightforward way, for
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example by creating prediction maps of the air pollutant concentrations
each hour. In this way, air pollutant concentrations can be efficiently visu-
alized, allowing for communication with citizens and creating awareness
about the quality of the air they breathe.
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6Short-term impact of NO2

exposure on local burden of
asthmatic symptoms

Abstract

Short-term exposure to air pollution has been associated with exacerba-
tion of respiratory diseases such as asthma. Substantial heterogeneity in
effect estimates has been observed between previous studies. This study
aims to quantify the local burden of daily asthma symptoms in asthmatic
children in a medium-sized city. Air pollution exposure was estimated
using the nearest sensor in a fine resolution urban air quality sensor
network in the city of Eindhoven, the Netherlands. Bayesian estimates
of the exposure-response function were obtained by updating a priori
information from a meta-analysis with data from a panel study using a
daily diary. Five children participated in the panel study, resulting in a
total of 400 daily diary records. Positive associations between NO2 and
lower respiratory symptoms (LRS) and medication use were observed.
The odds ratio (OR) for any lower respiratory symptoms was 1.07 (95%
C.I. 0.92, 1.28) expressed per 10 µg m-3 for current day NO2 concentra-
tion, using data from the panel study only (uninformative prior). ORs
for dry cough and phlegm were close to unity. The pattern of associ-
ations agreed well with the updated meta-analysis. The meta-analytic
random effects summary estimate was 1.05 (1.02, 1.07) for LRS. Credible
intervals substantially narrowed when adding prior information from
the meta-analysis. The OR for LRS with an informative prior was 1.06
(0.99, 1.14). Burden of disease maps showed a strong spatial variability
in the number of asthmatic symptoms associated with ambient NO2

derived from a regression kriging model. In total, 70 cases of asthmatic
symptoms per day can be attributed to NO2 exposure in the city of Eind-

This chapter is submitted as: Van Zoest, V., Hoek, G., Osei, F.B., Stein, A. Bayesian ana-
lysis of the short-term impact of NO2 exposure on local burden of asthmatic symptoms
in children. Environmental Research.
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hoven. We conclude that Bayesian estimates are useful in estimation of
specific local air pollution effect estimates and subsequent local burden
of disease calculations. With the fine resolution air quality network,
neighborhood-specific burden of asthmatic symptoms was assessed.
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6.1 Introduction

Air pollution has major effects on human health including respiratory
and cardiovascular diseases (Brunekreef and Holgate, 2002; Brook et al.,
2010; Guarnieri and Balmes, 2014; Goldizen et al., 2016). In the re-
cent Health Risks of Air Pollution In Europe (HRAPIE) report, the WHO
presents the key health endpoints which require further quantification
for a full health impact assessment of outdoor air pollution (WHO, 2013a).
One of the endpoints is the association between short-term exposure
to air pollutants and incidence of daily asthma symptoms in children
(WHO, 2013a). Asthma symptoms cause a significant burden of disease
(Martinez and Vercelli, 2013). A number of panel studies have been
conducted with the aim to quantify the short-term effects of air pollut-
ants on asthmatic symptoms, particularly in Europe and North-America
(Weinmayr et al., 2010).

To assess the burden of disease related to asthmatic symptoms in
a specific city, generic concentration-response functions can be used,
based on previous studies conducted in other areas. Alternatively, data
from typically a single epidemiological study in the specific city can
be used. Both approaches have pros and cons, including more robust
evidence from multiple studies versus differences in the magnitude of
effect between different study areas. An interesting option is to combine
both approaches in a Bayesian analysis. Previous studies have suggested
that accurate estimates and narrow credible intervals can be acquired
with Bayesian estimates that include prior information in addition to
local effect estimates on the exposure-effect relationship (Post et al.,
2001; Le Tertre et al., 2005; Liu et al., 2009; Beach et al., 2012).

Daily exposure is estimated in various ways in panel studies, including
measurements at a central monitoring site, personal monitoring and
satellite imagery (Chambers et al., 2018). Personal monitoring of air
quality is expensive and time-consuming (Brandt et al., 2015), so its rare
use is mostly limited to short measurement campaigns (e.g. Linn et al.,
1996; Spira-Cohen et al., 2011). In the majority of panel studies, one or
two central monitors in a city are used to estimate exposure (Roemer
et al., 1993; Van der Zee et al., 1999, 2000; Dales et al., 2009). However, air
pollution levels typically show a strong short-distance variability within
urban areas, because of the variety of road types and land uses within
the city (Hoek et al., 2008). A more accurate estimate of exposure can be
acquired by estimating exposure at or near the individual residence and
work or school address.

The objective of this study is to estimate the spatially explicit burden
of air pollution exposure on daily symptom prevalence in asthmatic
children in a medium-sized urban area. We used a Bayesian analysis
for effect estimation, with the aim to combine prior information from
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a meta-analysis with data from a panel study conducted in the city of
Eindhoven, the Netherlands. The ILM fine resolution urban air quality
sensor network in this city was used for exposure estimation (Chapter 2).

6.2 Methods

Figure 6.1 Flowchart of daily asthma symptom calculation

Our study included the following components to assess the local
burden of disease (Figure 6.1):

1. Panel study among asthmatic children in Eindhoven, combining a
daily symptom diary and a fine resolution sensor network to obtain
local effect estimates

2. Update of the meta-analysis by Weinmayr et al. (2010) to obtain
prior information on the association between air pollution and daily
asthma symptoms in children

3. Bayesian analysis with and without informative prior to obtain
the concentration-response function to be used in the burden of
asthma symptom calculation
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4. Spatial modelling of outdoor air pollution across the city of Eind-
hoven, averaged to annual mean concentrations per neighborhood

5. Collection of data on number of children per neighborhood, propor-
tion of children with asthma, and daily asthma symptom prevalence
rate

6. Calculation of neighborhood-specific and overall city burden of
daily asthma symptoms, combining prevalence of daily asthma
symptoms with the attributable fraction related to the average
neighborhood air pollution

6.2.1 Panel study

The design of the panel study is based upon previous panel studies in
the Netherlands (Roemer et al., 1993; Van der Zee et al., 1999, 2000)
and elsewhere (Weinmayr et al., 2010). An important lesson from pre-
vious studies is that short observation periods (<2 months) are prone
to confounding by infection episodes which are difficult to characterize
(Weinmayr et al., 2010). Therefore, in our panel study, each participant
was asked to participate for 4 months. To increase variability in air
pollutant concentrations, participants started at different moments in
time. The total study period was 13 months (March 29, 2017 – April 22,
2018).

Participants were recruited in different ways. Articles advertising about
the panel study were published in local newspapers, on social media
and on websites. Flyers were spread door-to-door to ~5000 households,
and flyers were displayed in schools, at general practitioners and at
pulmonologists in hospitals in Eindhoven. In order to be eligible to
participate in the panel study, a subject had to meet all of the following
criteria: (1) the child has current asthma, (2) the child is 7 to 11 years
old at the start of his or her participation, and (3) the child lives and
attends school in the municipality of Eindhoven. A child was considered
to have current asthma when at least two of the following three criteria
were met: (1) asthma diagnosis by a physician ever, (2) wheeze in the
past 12 months, and (3) use of asthma medication in the past 12 months.
Children living in a house in which people smoke indoors were excluded
from participation, to avoid noise related to this strong risk factor.
Children aged 7-11 years were selected because a minimum age of 7 is
required for lung function measurements.

The parents of the children were asked to fill out an electronic diary
with the child every evening during the 4 months of participation. Elec-
tronic diaries are considered more accurate than paper diaries, since
the electronic diaries could only be filled in retrospectively for a limited
amount of days up to a week (Velická et al., 2015). The diary ques-
tions were based on previous panel studies in children (Roemer et al.,
1993; Van der Zee et al., 1999, 2000). The symptoms included wheeze,
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shortness of breath in rest, shortness of breath after exercise, waking
up during the night with breathing problems, dry cough, phlegm, and
nose complaints. In the diary, the participants reported on-demand
medication use and the presence of asthma symptoms as absent, mild,
or moderate / severe. The participants were visited at home three times:
at the start of the 4-month study period, after 2 months, and at the
end of the study period. During the first visit, the study was explained
to the child and parent(s), there was an opportunity to ask questions,
informed consent forms were signed, and instructions for filling out the
daily diary were given. Furthermore, the parent(s) filled out a baseline
questionnaire to characterize the child’s health status, medication use,
daily activities and indoor sources of air pollutants. After 2 months the
research assistant visited the participants to keep motivation up, answer
potential questions and monitor general progress. All parents signed an
informed consent form. The study was approved by the Medical Ethical
Committee of University Medical Center Utrecht.

6.2.2 Statistical analysis

Multiple logistic regression models are often used to model the relation
between air pollutant concentrations and occurrence of asthma-related
symptoms (Roemer et al., 1993; Forsberg et al., 1998; Van der Zee et al.,
1999, 2000; Migliore et al., 2009; Schinasi et al., 2011; Ranzi et al., 2015).
The binary outcome yv,d denotes the presence or absence of an outcome
reported by participant v on day d. Separate models were built for
each of the symptoms and for any lower respiratory symptoms (LRS),
including wheeze, shortness of breath in rest, shortness of breath after
exercise, and waking up during the night with breathing problems. Daily
exposure to NO2, PM10, PM2.5 and PM1 was estimated by the ILM air
quality monitoring network (Chapter 2), using the airbox closest to
the house and school of the child. All airboxes measure particulate
matter, whereas 25 airboxes measure NO2. Only six airboxes measure
UFPs, so the distance from the house of the child to the nearest UFP
sensor could be >2.5 km in some cases, while UFP varies strongly over
shorter distances. Therefore, daily exposure to UFP was estimated by the
mean of the six airboxes. We evaluated the associations of air pollution
concentrations of the same day (lag 0), day before (lag 1), and average of
lag 0-2 to allow for delayed associations on the various symptoms. The
effect estimates were calculated per 10 µg m-3 increase in air pollutant
concentrations for NO2, PM10, PM2.5 and PM1, and per 10000 particles
increase for UFP. Separate models were built for each lag. The presence
of a symptom yv,d follows a Bernoulli distribution with probability of
occurrence pv,d:

yv,d ∼ bernoulli
(
pv,d

)
(6.1)
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where

logit
(
pv,d

)
=β0,v + βapxapv,d + βsdayx

sday
v,d + βRHxRHd + βTxTd

+ βf luxf luv,d + βwdayx
wday
d (6.2)

Here, βc are the coefficients and xc are the covariate values for the
different covariates c, consisting of the air pollutant ap in {NO2, PM1,
PM2.5, PM10, UFP } and confounders. Confounders were included
a priori based upon previous studies: day of follow-up (sday), daily
mean relative humidity (RH), daily mean temperature (T ), daily reported
flu (f lu), and day of the week categorized as weekdays/weekend days
(wday). Daily temperature and relative humidity were obtained from the
Royal Netherlands Meteorological Institute weather station in Eindhoven
(KNMI, 2019). Characteristics of the child that are expected to remain
constant over the full study period, such as gender, socio-economic
status, and presence of pets in the household, were not included in the
analysis because the form of the model considers each subject as its
own control. To adjust for differences in baseline symptom reporting,
individual-specific intercepts β0,v = ψ + γv were specified for each
individual, consisting of an overall intercept ψ and a random intercept
γv for each participant v . Our interest is in the odds ratio (OR): OR =
exp(βap).

We first estimated the parameters using restricted maximum likeli-
hood (REML). Based on this pre-liminary analysis (Tables A6.1–A6.5 in
the Appendix), we found no informative results (i.e. wide confidence
intervals) for PM10, PM2.5, PM1 and UFP. We therefore continued our
Bayesian analysis and burden of disease study on NO2 only.

Bayesian estimation of the parameters was performed using JAGS
(Plummer, 2003), through the ‘R2jags’ package in R (Su and Yajima,
2015). We used the Gelman-Rubin diagnostic R̂ to evaluate convergence
(Gelman and Rubin, 1992), by comparing variances of different Markov
Chain Monte Carlo (MCMC) simulation chains. Values close to 1 indicate
convergence. Two chains of MCMC simulations were ran until conver-
gence was achieved for all parameters in the model (R̂ < 1.1).

6.2.3 Meta-analysis and prior selection

First, we used an uninformative prior for all parameters in the model
(Table 6.1). The individual-specific intercepts were considered as ex-

changeable random effects γv ∼ N
(
µ = 0, σ = σγ

)
with an uninformat-

ive prior on σγ .

We then evaluated the effect of choosing an informative prior for βNO2.
To obtain these informative priors we performed a meta-analysis of the
literature, updating the work by Weinmayr et al. (2010). They performed
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Table 6.1 Uninformative priors for Bayesian estimation of the parameters in
the model (Eq. 6.2)

Variable Prior distribution a

βNO2,y for each symptom βNO2,y ∼ N
(
µ = 0, σ = σy

)
σy ∼ N+∞

(
µ = 0, σ =

√
0.1

)
βc for each confounder βc ∼ N (µ = 0, σ = σc)

σc ∼ N+∞
(
µ = 0, σ =

√
10
)

ψ (fixed intercept) ψ ∼ Unif (−100,100)

γv (random intercept) γv ∼ N
(
µ = 0, σ = σγ

)
σγ ∼ N+∞

(
µ = 0, σ =

√
10
)

a N+∞ denotes a half-normal distribution truncated at zero,
such that the standard deviation can only take positive values.

a systematic review and meta-analysis of literature published between
1990 and July 2008 on short-term health effects of NO2 on respiratory
health among children with asthma or asthma-like symptoms, providing
estimates for asthmatic symptoms and cough. To get a more up-to-date
estimate, we updated the meta-analysis to include publications from
August 2008 to March 2019. We followed the same procedure applied by
Weinmayr et al. (2010). The MEDLINE database was searched through the
PubMed search engine, using the search string [(“asthma” OR “wheeze”
OR “cough” OR “bronchitis” OR “lung function”) AND (“air” AND pollut*)
AND (“NO2” OR “NO(2)” OR “nitrogen dioxide”)] and limits were set to
retrieve only publications about children (0-18 years). Based on the
abstracts, we excluded indoor air pollution studies, laboratory studies
and studies on infants. The meta-analysis included only panel studies on
asthmatic or symptomatic children which reported a quantitative effect
estimate and which controlled for temperature and day of the week or
temporal autocorrelation.

The effect estimates of all panel studies (1990 to March 2019) were
combined in a random effects meta-analysis model (DerSimonian and
Laird, 1986) using the ‘metafor’ package in R (Viechtbauer, 2010). The
effect estimates of all studies were standardized to βNO2 coefficients
per 10 µg m-3. Where needed, concentrations in ppb were converted to
µg m-3 using the standard conversion at 20 ◦C: 1 ppb = 1.91 µg m-3. ORs
were converted to βNO2 coefficients before standardization, using the
natural logarithm βNO2 = log (OR). The combined effects estimate of
βNO2 was used as a normally distributed prior in the Bayesian estimation.

6.2.4 Burden of disease mapping

To obtain the burden of disease we calculated the potential health risk
reductions when NO2 exposure levels would be reduced from its actual
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levels per neighborhood to zero. The analysis was conducted per neigh-
borhood because this was the smallest unit with data on number of
children available. We determined the number of attributable cases ACq
for each neighborhood q:

ACq = AFq × PR × Pq (6.3)

where the attributable fraction AFq = RRq−1
RRq (Shaddick et al., 2018) is

based on the neighborhood-specific relative risk RRq and PR is the pre-
valence rate. We use the OR as a proxy for RR, as it typically represents
RR well (Liu et al., 2009). Since we obtain the OR per 10 µg m-3, multi-
plication by 0.1 is required for standardization. RRq is then obtained as:

RRq = exp
(
0.1× log (OR)×∆xNO2

q−0

)
(6.4)

where xNO2
q−0 = xNO2

q − xNO2
0 is the annual average NO2 concentration in

neighborhood q minus the baseline NO2 concentration. We set xNO2
0 = 0.

The NO2 concentrations were estimated on a 25× 25 m grid using a re-
gression kriging model for each hour of the day and weekdays/weekends
separately. Details are described in Chapter 5. The sensor network
data was not available for the entire year 2016 due to a few months of
maintenance. The lack of complete daily data for 2016 also precluded
linking the exposure response function with daily spatial exposure data.
Therefore, an average of the modelled values for June and November was
used. This is a reasonable proxy for the annual average when consult-
ing the measurements of the central monitoring stations in Eindhoven
(Table A6.6), which are part of the national ambient air quality monitor-
ing network (RIVM, 2019b). All raster cells within neighborhood q were
used to obtain the average NO2 concentration in neighborhood q.

In Eq. 6.3, Pq is the exposed population at risk in neighborhood q.
Assuming that all people are exposed to ambient NO2 air pollutant con-
centrations, Pq represents the population at risk Pq = nchildq × pasthma,

where nchildq is the number of children in neighborhood q, and pasthma
is the average proportion of asthmatic children, estimated at 0.126 based
on the PIAMA birth cohort study in the Netherlands (Scholtens et al.,
2009). In the absence of local data on the daily prevalence of asthmatic
symptoms in asthmatic children, we estimated the prevalence rate PR at
0.17 asthmatic symptoms per person-day in the exposed population at
risk, based upon the HRAPIE report (WHO, 2013a).

To obtain a measure of uncertainty propagated from the input data
into the number of attributable cases, we ran MCMC simulations drawing
samples from prior distributions of the input variables. For log (OR),
this prior distribution equals the posterior distribution of βNO2, which
was obtained through Bayesian estimation of the parameters in Eq. 6.2.
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The number of children per neighborhood, approximated by E
(
nchildq

)
=

pchildq × E
(
npopq

)
, is retrieved from the Statistics Netherlands 2016 pop-

ulation data (CBS, 2018). Here, pchildq is the proportion of children

between 0-14 years as part of the total population npopq . The percentage
of children is considered to be measured without uncertainty. How-
ever, to avoid privacy concerns, CBS rounds the population data to
a multiple of five in a random manner. Therefore, CBS provides an
approximation of the number of inhabitants E(npopq ) for each neighbor-
hood, and we consider the uncertainty in the true number of inhabitants

per neighborhood by posing npopq ∼ Unif
(
E
(
npopq

)
− 5, E

(
npopq

)
+ 5

)
.

We account for uncertainty in the proportion of asthmatic children
by sampling from a truncated positive normal distribution pasthma ∼
N+∞ (µ = 0.126, σ = 0.05). For the prevalence rate we sample values
from PR ∼ N+∞ (µ = 0.17, σ = 0.05). The modelled NO2 exposure at
25 m raster resolution is within the 30% uncertainty required for mod-
elling annual average values (European Parliament and Council of the
European Union, 2008). Averaging to neighborhood averages however
leads to added uncertainty at measurement locations, since concentra-
tions near main roads can be substantially higher than the background
concentrations in the neighborhoods. As most people live in areas
with background concentrations, we consider the average uncertainty at
background locations only (Figure 3.1). We sample values from the dis-

tribution xNO2
q ∼ N+∞

(
µ = E(xNO2

q ), σ = σNO2
q

)
, where E(xNO2

q ) is the
average modelled NO2 concentration of the raster cells in neighborhood
q, and σNO2

q = 2.64 is the standard deviation of the absolute differ-
ences between modelled and observed annual average NO2 concentration
values at the background airbox locations.

We obtained the total number of LRS related to ambient NO2 concen-
trations in the city, ACcity , by summing the number of attributable cases
from all neighborhoods:

ACcity =
∑
q
ACq. (6.5)

We then compared ACcity with the number of LRS which would have been
obtained in a non-spatial analysis, in which only one central monitoring
station is used to estimate exposure. Typically, when no fine resolution
sensor network would be available, a central monitor of the national
ambient air quality network would have been used for this purpose. How-
ever, the two central monitors in Eindhoven are both in traffic locations,
which are not representative for the background concentrations in which
most people live. We therefore use the airboxes from the sensor network
in background locations to obtain a burden of disease estimate from
one airbox at a time. We report the minimum and maximum values to
show the variability in estimates depending on the location of the central
monitoring site.
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6.3 Results

6.3.1 Panel study descriptives

Despite extensive recruitment efforts, only seven children could be re-
cruited to participate in the panel study. Two participants stopped filling
in the diary within the first three days of the study and were excluded
from the analysis. The remaining five children were two boys and three
girls with a mean age of 9.4 yr (range 7-11 yrs). The participants were liv-
ing in different areas of the city with highly different NO2 concentrations:
the mean concentration during the study period varied between 19.7 and
49.3 µg m-3 for the different participants, based on the closest airbox.
Differences in mean NO2 between children were accounted for using
random intercepts in the model. Daily variability is therefore considered
more important than variability between individuals and locations.

Days with missing NO2 values were removed from the analysis. In
total, 394 diary entries were included. Table 6.2 shows the frequency of
symptoms reported in these diary entries. There were signs of clustering
of symptoms within participants, but each individual symptom was
reported by at least three of the five participants. One of the participants
only reported one symptom throughout the entire study period, which
was removed due to missing NO2 data. The remaining non-symptomatic
days of this participant were included in the analysis.

Table 6.2 Frequency of reported daily symptoms in the panel study

Symptom Frequency (%)

Any lower respiratory symptoms (LRS) 111 (28.3 %)
Wheezing 7 (1.8 %)
Shortness of breath in rest 65 (16.5 %)
Shortness of breath after exercise 38 (9.7 %)
Waking up with breathing problems 17 (4.3 %)

Dry cough 98 (24.9 %)
Phlegm 44 (11.2 %)
Nose complaints 138 (35.0 %)
Medication use 37 (9.4 %)

6.3.2 Meta-analysis and prior selection

Weinmayr et al. (2010) included 20 studies on NO2 and symptoms in
their meta-analysis. Based on our extended literature search, we added 5
more publications with one study population each. All studies included
in the meta-analysis reported effect estimates for asthmatic symptoms,
with varying definitions. From the 39 study populations, effect estimates
for cough were reported in 32 study populations.
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Based on the combined meta-analysis, the combined ORs (95% confid-
ence intervals) were 1.048 (1.023, 1.074) for asthmatic symptoms (Figure
6.2) and 0.995 (0.973, 1.018) for cough (Figure 6.3). We used prediction
intervals instead of confidence intervals to obtain prior distributions. A
prediction interval represents possible outcomes of single studies rather
than the overall OR, and therefore allows for heterogeneity in individual
studies. The prediction intervals of the meta-analysis resulted in a prior
βNO2 ∼ N(µ = 0.047, σ = 0.040) for any lower respiratory symptoms
and βNO2 ∼ N(µ = −0.005, σ = 0.039) for cough. We used the prior
distribution for cough for the effect estimates of both dry cough and
phlegm, as both were combined in the original meta-analysis (Weinmayr
et al., 2010).
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Figure 6.2 Results of the meta-analysis on NO2 and lower respiratory symptoms
(LRS). Some studies distinguished between study populations in rural (R) and
urban (U) areas. OR per 10 µg m-3
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Figure 6.3 Results of the meta-analysis on NO2 and cough. Some studies
distinguished between study populations in rural (R) and urban (U) areas. OR
per 10 µg m-3

6.3.3 Effect estimates

Table 6.3 shows the odds ratios (95% C.I.) for the different symptoms
related to NO2, obtained with uninformative priors. Despite the small
number of children, we observed some associations between NO2 and
lower respiratory symptoms and medication use. ORs for cough were
close to unity. This pattern of associations agrees well with the meta-
analysis of previous studies. Table 6.4 shows the ORs for lag 0 obtained
using informative priors based on the meta-analysis for LRS, dry cough
and phlegm, in comparison to the ORs obtained using an uninformative
prior. The ORs for lag 1 and mean lag 0-2 using the same informative
priors are shown in Table A6.7. Convergence was achieved for all para-
meters in the model (R̂ < 1.1) and convergence was strong for the ORs

93



6. Short-term impact of NO2 exposure on local burden of asthmatic symptoms

of all symptoms (R̂ < 1.02). The fastest and strongest convergence was
found for the models using informative priors. The credible intervals
were also much smaller when using informative priors, indicating less
uncertainty about the estimates. ORs with informative prior for lag 1
and mean of lag 0-2 were similar to ORs for lag 0 (Table A6.7), reflecting
the large impact of the prior.

Table 6.3 Association between NO2 and daily symptoms, expressed as odds
ratios (95% C.I.) based on panel study without informative prior information.

Symptom Lag 0 Lag 1 Mean lag 0-2

Any lower respiratory symptoms (LRS) 1.07 (0.92, 1.28) 1.16 (0.96, 1.40) 1.20 (0.95, 1.52)
Wheezing a 1.02 (0.80, 1.32) 1.00 (0.66, 1.43) 1.00 (0.63, 1.50)
Shortness of breath in rest 1.12 (0.95, 1.44) 1.23 (0.97, 1.58) 1.24 (0.93, 1.66)
Shortness of breath after exercise 1.15 (0.96, 1.55) 1.30 (0.99, 1.69) 1.50 (1.06, 2.06)
Waking up with breathing problems a 0.98 (0.73, 1.23) 0.79 (0.46, 1.10) 0.81 (0.46, 1.18)

Dry cough 1.03 (0.87, 1.23) 1.02 (0.83, 1.22) 1.01 (0.80, 1.27)
Phlegm 1.07 (0.87, 1.40) 1.17 (0.88, 1.59) 1.16 (0.80, 1.65)
Nose complaints 1.04 (0.88, 1.26) 1.02 (0.81, 1.25) 1.02 (0.78, 1.31)
Medication use 1.03 (0.84, 1.29) 1.35 (1.00, 1.95) 1.35 (0.97, 1.94)

All OR are adjusted for daily temperature, relative humidity, day of follow-up, daily flu, weekday/
weekend day and participant ID.
a Symptom prevalence < 5% (Table 6.1); results should be interpreted with care.

Table 6.4 Association between NO2 at lag 0 and daily symptoms, expressed as
odds ratios (95% C.I.) for LRS and cough. Comparison between local OR based
on uninformative prior and OR based on informative prior

Symptom OR based on OR based on
uninformative prior informative prior

Any lower respiratory symptoms (LRS) 1.07 (0.92-1.28) 1.06 (0.99-1.14)
Dry cough 1.03 (0.87, 1.23) 1.00 (0.93, 1.08)
Phlegm 1.07 (0.87, 1.40) 1.00 (0.93, 1.08)

All OR are adjusted for daily temperature, relative humidity, day of follow-up, daily flu, weekday/
weekend day and participant ID.

6.3.4 Burden of disease calculations

Figure 6.4 shows maps of the number of children per neighborhood, the
mean NO2 exposure per neighborhood, and the number of attributable
cases per neighborhood per day, based on the association between NO2

and LRS at lag 0 using an informative prior. In most neighborhoods,
between 0 and 1 LRS per day are attributable to ambient NO2 concen-
trations. In some more populated neighborhoods, this can increase
up to 3 LRS per day. Some neighborhoods show ‘No Data’, where the
percentage of children is unavailable due to privacy issues. This only
occurs if the number of inhabitants <50. Since the number of children is
also expected to be small here (<8), the attributable number of cases is
expected to be close to zero.
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Figure 6.4 (a) Number of children per neighborhood. (b) Mean NO2 exposure in
2016. (c) Number of lower respiratory symptoms per day attributable to ambient
NO2 concentrations in Eindhoven, per neighborhood. White areas represent
‘No Data’, which applies to neighborhoods where the percentage of children is
unavailable due to privacy issues, related to a very small number of inhabitants.
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The number of attributable cases of LRS per neighborhood strongly
reflects the number of children per neighborhood, as expected (Pearson’s
correlation coefficient r = 0.96). NO2 exposure is modelled using popu-
lation density as one of the covariates and is therefore also, though less
strongly, related to the number of children (r = 0.27). NO2 exposure has
a stronger relation with the number of LRS (r = 0.45).

Summing the ACq for each neighborhood, ACcity = 70 cases of LRS
attributable to ambient NO2 exposure on a daily basis. When only one
background concentration monitor would have been consulted to es-
timate the burden of disease, the number of attributable cases would
vary between 45 and 73, depending on the location of the background
monitor. The spatial variability in exposure and the related burden is
large, however, and ACcity therefore represents a much better estimate
of the true burden of disease.

We chose a normal distribution to represent the uncertainty in PR
and a uniform distribution to represent the uncertainty in Pq. Even
though no parametric distribution is posed on the OR, the posterior
density function of the OR is close to a normal distribution (Figure 6.5a).
This is also reflected in AFq, which has a symmetrical distribution with
long tails on both sides. Since Eq. 6.3 is a multiplicative function in
which the distributions of PR, Pq and AFq are multiplied, the uncertainty
propagated in ACq is skewed (Figure 6.5b) – a characteristic of multiply-
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Figure 6.5 Posterior densities of (a) odds ratio of lower respiratory symptoms
(LRS), and (b) the attributable cases of LRS in neighborhood ’t Hofke. Neighbor-
hood ’t Hofke here serves as an example; similarly shaped posterior densities
were found for the other neighborhoods.
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ing normal distributions. The 95% credible interval of ACq is therefore
highly unsymmetrical around the mean.

6.4 Discussion

In this study we estimated the burden of NO2 exposure on daily symptom
prevalence in asthmatic children in the city of Eindhoven, the Nether-
lands. We used a Bayesian method for estimation of the effect estimates,
combining prior information from an updated meta-analysis with data
acquired in a local panel study. Odds ratios for lower respiratory symp-
toms for an increment of 10 µg m-3 NO2 were 1.07 (0.92, 1.28) and 1.06
(0.99, 1.14) using an uninformative and informative prior respectively.
The OR based on the meta-analysis was 1.05 (1.02, 1.07).

Although the number of participants in the panel study was low, we
saw that the data affected the posterior distributions for all symptoms,
by modestly pushing up the estimates of the prior distributions. The
modest difference between posterior and prior distributions was due
to the small size of the panel study but also because of the similarity
in effect estimates between the local panel study and the meta-analytic
combined estimate. The use of prior information narrowed the credible
interval compared to the use of the panel study alone, in line with
previous studies (Post et al., 2001; Le Tertre et al., 2005; Liu et al., 2009).
Where feasible, this combination of local and generic exposure response
data seems preferable to using only one of the two sources. The amount
of work to recruit subjects for a panel study may however be problematic,
unless strong cooperation with medical specialists is obtained. In the
current setting, medical doctors were only willing to passively inform
their patients by allowing leaflets in their facilities.

The priors used in this study were obtained by updating the meta-
analysis by Weinmayr et al. (2010) with more recent panel studies on
associations of NO2 with daily asthmatic symptoms. . The inclusion of
5 more recent studies modestly increased the summary OR: from OR
= 1.031 (95% C.I. 1.001, 1.062) in the published meta-analysis to 1.048
(1.023, 1.074) in the current review.

There were signs of heterogeneity between studies, for example due
to differences in study design, exposure estimation and study area.
The effect estimates from the meta-analysis were based on the most
significant lag in each study, which varied between different studies. To
obtain a general overall estimate to be used as prior information, we
combined all studies despite their heterogeneity and different lags, and
used the same combined prior for all lags. For the priors we used the
prediction interval rather than the confidence interval of the random
effects estimates from the meta-analysis. The prediction interval is
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wider, representing the uncertainty of one single study rather than the
uncertainty of the mean of all studies. The first is more appropriate, as
we use the prior to predict the effect estimates of a single study.

We accounted for uncertainty in the number of attributable cases of
LRS per neighborhood by sampling from prior distributions represent-
ing the uncertainty in the population at risk, attributable fraction and
prevalence rate. The resulting posterior distribution was highly skewed.
However, there may still be remaining sources of uncertainty, and the
burden of disease may likely be an underestimation of the actual number
of attributable cases in children with asthmatic symptoms. For example,
we here only used the number of children between 0-14 years old, based
on available CBS data. Also, the NO2 exposure estimates used here are an
average over each neighborhood, while concentrations near traffic roads
may be substantially higher than background concentrations. Compared
to the use of one central monitor to represent exposure, however, we
believe that our method shows a more realistic picture of the burden
of disease per neighborhood, dependent on the neighborhood-specific
population at risk and relative risk.

This study has a number of strengths and limitations. Strengths
include the Bayesian analysis combining prior and local information
of exposure response functions and the use of a spatially refined low-
cost sensor network to assess exposure more refined than in typical
epidemiological panel studies (Weinmayr et al., 2010). Limitations include
the small size of the local panel study, the inability to derive daily spatial
maps that could have been linked with exposure response functions,
and the lack of local data on number of children with asthma and the
frequency of daily asthma symptoms in children with asthma. Although
linking the annual average concentration with the exposure response
function does not result in identical AF values compared to averaging
daily AF values in a full year, the difference is likely small as βNO2 is
small and thus exp(βNO2) is close to 1+ βNO2.

With 70 cases of LRS per day attributable to ambient NO2 exposure
only in the city of Eindhoven, the air pollution problem is one that should
not be neglected even in cities where the air pollutant concentrations are
generally below European limit values. The absolute number of cases is
affected by the choice to calculate the burden compared to a zero NO2

concentration. We do not know whether associations with NO2 extend to
zero, but so far there is little evidence of a threshold in the relationship
between outdoor air pollution and respiratory symptoms.

6.5 Conclusions

We conclude that a Bayesian analysis is useful to estimate location-
specific air pollution effects and subsequent local burden of disease.
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Despite the small number of participants in the panel study, we were
able to derive narrow credible intervals around the effect estimates, by
incorporating prior information from updating an existing meta-analysis
using a Bayesian framework. With the help of a fine resolution urban
air quality sensor network we were able to obtain air pollution exposure
estimates close to the houses of the participants, rather than at a central
location in the city. This allowed for spatial variability in the exposure
of different participants. We created burden of disease maps, showing
the spatial variability in the number of LRS attributable to ambient
NO2 exposure. The uncertainty propagation analysis showed that the
uncertainty in the number of LRS is positively skewed. Imposing a normal
distribution would have led to a biased mean and an unrealistically
symmetrical 95% credible interval. By means of the Bayesian analysis we
obtained more realistic estimates of the number of LRS attributable to
ambient NO2 exposure.

Appendix

Table A6.1 Odds ratios (95% C.I.) related to a 10 µg m-3 increase in NO2

ambient air pollution, based on REML estimation of the model parameters

Symptom Lag 0 Lag 1 Mean lag 0-2

Any lower respiratory symptoms (LRS) 1.15 (0.92, 1.43) 1.19 (0.97, 1.48) 1.25 (0.97, 1.61)
Wheezing a 1.12 (0.67, 1.88) 1.00 (0.59, 1.68) 1.01 (0.58, 1.78)
Shortness of breath in rest 1.32 (0.99, 1.75) 1.34 (1.01, 1.76) 1.34 (0.96, 1.86)
Shortness of breath after exercise 1.43 (1.06, 1.94) 1.44 (1.08, 1.91) 1.76 (1.25, 2.49)
Waking up with breathing problems a 0.78 (0.44, 1.36) 0.51 (0.28, 0.94) 0.51 (0.25, 1.04)

Dry cough 1.06 (0.85, 1.34) 1.02 (0.82, 1.26) 1.01 (0.78, 1.32)
Phlegm 1.35 (0.94, 1.95) 1.35 (0.97, 1.89) 1.38 (0.94, 2.03)
Nose complaints 1.08 (0.83, 1.41) 1.00 (0.78, 1.28) 1.00 (0.74, 1.35)
Medication use 1.10 (0.79, 1.54) 1.58 (1.13, 2.19) 1.58 (1.05, 2.36)

All OR are adjusted for daily temperature, relative humidity, day of follow-up, daily flu, weekday/
weekend day and participant ID.
a Symptom prevalence < 5%; results should be interpreted with care.

Table A6.2 Odds ratios (95% C.I.) related to a 10 µg m-3 increase in PM1

ambient air pollution, based on REML estimation of the model parameters

Symptom Lag 0 Lag 1 Mean lag 0-2

Any lower respiratory symptoms (LRS) 2.16 (0.38, 12.46) 2.41 (0.41, 14.24) 5.03 (0.54, 46.39)
Wheezing a 0.08 (0.00, 31.60) 0.10 (0.00, 33.18) 0.26 (0.00, 37.85)
Shortness of breath in rest 2.66 (0.16, 44.69) 3.63 (0.20, 67.40) 5.67 (0.12, 263.67)
Shortness of breath after exercise 2.91 (0.34, 25.06) 3.04 (0.34, 26.85) 8.09 (0.53, 122.69)
Waking up with breathing problems a 0.03 (0.00, 28.01) 1.00 (0.00, 231.55) 0.02 (0.00, 91.86)

Dry cough 0.75 (0.16, 3.48) 1.01 (0.22, 4.62) 1.24 (0.19, 8.14)
Phlegm 2.45 (0.13, 45.21) 1.14 (0.04, 30.96) 1.35 (0.03, 69.87)
Nose complaints 1.05 (0.14, 7.83) 0.14 (0.01, 1.53) 0.24 (0.02, 3.46)
Medication use 0.00 (0.00, 0.67) 0.03 (0.00, 8.45) 0.00 (0.00, 0.00)

All OR are adjusted for daily temperature, relative humidity, day of follow-up, daily flu, weekday/
weekend day and participant ID.
a Symptom prevalence < 5%; results should be interpreted with care.
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6. Short-term impact of NO2 exposure on local burden of asthmatic symptoms

Table A6.3 Odds ratios (95% C.I.) related to a 10 µg m-3 increase in PM2.5

ambient air pollution, based on REML estimation of the model parameters

Symptom Lag 0 Lag 1 Mean lag 0-2

Any lower respiratory symptoms (LRS) 1.14 (0.34, 3.80) 1.53 (0.44, 5.30) 2.44 (0.55, 10.89)
Wheezing a 0.54 (0.03, 8.85) 0.33 (0.01, 9.24) 0.55 (0.03, 11.47)
Shortness of breath in rest 1.39 (0.17, 11.72) 2.19 (0.25, 19.44) 3.06 (0.21, 44.29)
Shortness of breath after exercise 1.21 (0.28, 5.20) 1.71 (0.40, 7.40) 2.94 (0.51, 16.91)
Waking up with breathing problems a 0.37 (0.01, 17.69) 2.29 (0.08, 64.71) 0.96 (0.01, 66.62)

Dry cough 0.95 (0.33, 2.72) 0.87 (0.29, 2.60) 1.12 (0.30, 4.11)
Phlegm 3.36 (0.78, 14.55) 1.53 (0.21, 10.86) 2.30 (0.26, 20.35)
Nose complaints 1.26 (0.36, 4.43) 0.39 (0.10, 1.61) 0.45 (0.08, 2.40)
Medication use 0.05 (0.00, 2.16) 0.10 (0.00, 3.55) 0.00 (0.00, 0.07)

All OR are adjusted for daily temperature, relative humidity, day of follow-up, daily flu, weekday/
weekend day and participant ID.
a Symptom prevalence < 5%; results should be interpreted with care.

Table A6.4 Odds ratios (95% C.I.) related to a 10 µg m-3 increase in PM10

ambient air pollution, based on REML estimation of the model parameters

Symptom Lag 0 Lag 1 Mean lag 0-2

Any lower respiratory symptoms (LRS) 0.84 (0.31, 2.28) 1.24 (0.46, 3.35) 1.67 (0.47, 5.95)
Wheezing a 0.93 (0.15, 5.64) 0.57 (0.07, 4.43) 0.82 (0.10, 6.44)
Shortness of breath in rest 1.28 (0.23, 7.06) 3.00 (0.57, 15.79) 5.12 (0.57, 46.05)
Shortness of breath after exercise 0.75 (0.21, 2.70) 1.23 (0.36, 4.26) 1.88 (0.38, 9.24)
Waking up with breathing problems a 0.79 (0.10, 6.55) 1.70 (0.20, 14.79) 1.21 (0.09, 17.04)

Dry cough 1.29 (0.57, 2.92) 0.88 (0.37, 2.06) 1.25 (0.43, 3.59)
Phlegm 2.73 (0.77, 9.63) 1.06 (0.23, 5.02) 1.67 (0.28, 9.94)
Nose complaints 1.13 (0.41, 3.12) 0.46 (0.15, 1.39) 0.45 (0.11, 1.86)
Medication use 0.45 (0.05, 3.76) 0.99 (0.14, 7.14) 0.16 (0.01, 1.94)

All OR are adjusted for daily temperature, relative humidity, day of follow-up, daily flu, weekday/
weekend day and participant ID.
a Symptom prevalence < 5%; results should be interpreted with care.

Table A6.5 Odds ratios (95% C.I.) related to a 10000 particle # increase in UFP
ambient air pollution, based on REML estimation of the model parameters

Symptom Lag 0 Lag 1 Mean lag 0-2

Any lower respiratory symptoms (LRS) 1.00 (0.72, 1.37) 1.12 (0.81, 1.54) 1.03 (0.71, 1.48)
Wheezing a 0.65 (0.13, 3.17) 0.56 (0.09, 3.32) 0.67 (0.12, 3.85)
Shortness of breath in rest 1.28 (0.86, 1.93) 1.34 (0.88, 2.03) 1.24 (0.77, 1.99)
Shortness of breath after exercise 0.99 (0.57, 1.73) 1.19 (0.72, 1.98) 1.23 (0.70, 2.15)
Waking up with breathing problems a 0.14 (0.01, 2.55) 0.07 (0.00, 2.66) 0.10 (0.00, 2.99)

Dry cough 0.55 (0.34, 0.89) 0.32 (0.16, 0.63) 0.36 (0.18, 0.72)
Phlegm 0.76 (0.40, 1.44) 0.55 (0.23, 1.30) 0.51 (0.19, 1.35)
Nose complaints 1.13 (0.80, 1.60) 0.83 (0.56, 1.23) 1.02 (0.67, 1.54)
Medication use 0.83 (0.39, 1.79) 1.11 (0.59, 2.07) 0.73 (0.27, 1.99)

All OR are adjusted for daily temperature, relative humidity, day of follow-up, daily flu, weekday/
weekend day and participant ID.
a Symptom prevalence < 5%; results should be interpreted with care.

Table A6.6 Comparison of June, November, mean June and November, and
annual mean concentrations measured at the two RIVM reference monitors in
Eindhoven, 2016. Concentrations in µg m-3

Monitoring station Jun. mean Nov. mean Jun.+Nov. mean Annual mean

Genovevalaan 19.0 30.4 24.7 25.7
Noord-Brabantlaan 25.8 36.5 31.2 31.5
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6.5. Conclusions

Table A6.7 Association between NO2 and daily symptoms, expressed as odds
ratios (95% C.I.) based on panel study and prior information from the meta-
analysis on LRS and cough. The same prior is used for all lags.

Symptom Lag 0 Lag 1 Mean lag 0-2

Any lower respiratory symptoms (LRS) 1.06 (0.99, 1.14) 1.07 (0.99, 1.15) 1.07 (0.99, 1.14)
Dry cough 1.00 (0.93, 1.07) 1.00 (0.93, 1.08) 1.00 (0.93, 1.08)
Phlegm 1.00 (0.93, 1.08) 1.01 (0.93, 1.08) 1.00 (0.93, 1.08)

All OR are adjusted for daily temperature, relative humidity, day of follow-up, daily flu, weekday/
weekend day and participant ID.
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7Synthesis

7.1 Main findings

In this thesis I have investigated the usability of a low-cost air quality
sensor network. The research comprised key steps from data collec-
tion to application. It focused on outlier detection, calibration, spatio-
temporal modelling and health effect assessment. In this section, my
aim is to summarize the research objectives and major findings, and to
guide further discussion of their implications in the next section.

Research objective 1: To develop an outlier detection method suitable
to detect outliers in space and time while accounting for the large spatio-
temporal variability of air pollutant concentrations in an urban area.
Air pollutant concentrations show a large spatial and temporal variability
within urban areas. This spatio-temporal variability argues against the
use of a single threshold level for the definition of outliers. This study
proposes a spatio-temporal classification of observations, where each
class of observations has its own truncated normal distribution after
transformation. The underlying normal distributions are used to obtain
threshold levels for each spatio-temporal class individually. The pro-
posed method provided spatio-temporally varying threshold levels for
outlier detection, well reflecting the spatio-temporal variability in NO2

concentrations. Spatio-temporal correlations could be used to further
distinguish between errors and events.

Research objective 2: To develop and evaluate automatic calibration
methods for low-cost sensors in an urban air quality sensor network,
accounting for drift and interference effects.
Low-cost electrochemical gas sensors are prone to loose sensitivity over
time (drift) and show signs of interference effects from other gases.
Regular calibration can help to minimize these effects. Calibration can,
however, only take place at locations where reference measurements
are available. Calibration parameters need to be transferred from those
locations to locations without available reference data. In this study I
developed an automatic calibration method and assessed two existing
calibration methods. The methods were evaluated in terms of temporal
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7. Synthesis

stability, spatial transferability, and sensor specificity. All methods
showed a poor spatial transferability, consistent with different responses
of individual sensors to environmental factors such as temperature and
relative humidity. These results led to the advice to regularly recalibrate
sensors using a moving reference sensor.

Research objective 3: To develop a spatio-temporal kriging framework
for modelling air pollutant concentrations using a low-cost sensor network.
Sensor observations are limited to point support. This study proposes
spatio-temporal regression kriging to interpolate air pollutant concen-
tration values between observed space-time locations. First, a set of
spatial and temporal covariates was selected. Population density, road
type, easting coordinate, wind speed, wind direction, relative humidity,
hour of the day and weekday/weekend were useful predictor variables.
Second, the residuals of the linear regression model were checked for
spatio-temporal autocorrelation, and the resulting space-time variogram
was used for interpolation. The method provided local estimates of the
strength and association of air pollution sources and sinks, and allowed
for near real-time prediction and spatio-temporal mapping of air pol-
lutant concentrations. This research also led to advices for sampling
scheme optimization in future sensor networks.

Research objective 4: To create burden of disease maps, expressing the
spatial variability in health risks related to ambient air pollution.
Burden of disease maps can be used to express the spatial variability in
health risks related to environmental exposure. In this study, asthma
symptom exacerbation was related to air pollutant exposure. Population
data, symptom prevalence data, exposure data and exposure-response
functions were combined to create burden of disease maps. A panel
study was set up to obtain estimates of the exposure-response functions.
Despite the low number of participants recruited in the panel study,
accurate Bayesian estimates of the exposure-response functions and
local burden of disease could be obtained by combining the panel study
data with information from an updated meta-analysis of the literature.
Burden of disease maps showed a strong spatial variability in the number
of asthmatic symptoms associated with ambient NO2.

7.2 Significance

The number of low-cost sensor networks is growing and new insights
support further development progress. This thesis contributes to the
further development of low-cost sensor networks. It firstly does so
by providing methods for data quality evaluation, outlier detection,
calibration, modelling and health risk assessment. Secondly, it provides
guidance to improve calibration frameworks and to optimize sampling
schemes. These results are useful to sensor developers and sensor
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7.2. Significance

network developers, as well as researchers in this field. The development
of sensor networks can lead to new applications in the future, such as
healthy cyclist route planning and dynamic smart cities.

This thesis provided key steps to assess the data quality of low-cost
sensors and to visualize air quality in space and time (Figure 7.1). Sensor
observations have spatial and temporal locations, and so do health
effects of air pollution. These can be linked based on their space-time
coordinates, for example to create exposure-effect estimates and health
risk maps. The quality of the sensor observations is reflected in the
results. Data quality evaluation, through assessment of drift, interference
effects, accuracy and outliers, as well as calibration, is therefore an
important aspect of low-cost sensor data analysis.

Sensor 
observations

(s,t)

Outlier 
detection

Exposure 
estimation

Health
(s,t)

Data quality 
evaluation

Calibration

Space-time 
interpolation

Air pollution
maps

Exposure-effect
estimation

Health risk
mapping

Figure 7.1 Framework of this thesis. The grey ellipses refer to inputs with a
spatio-temporal location (s,t). The yellow ellipses refer to work related to data
quality assessment, including outlier detection in darker yellow (Chapter 3) and
calibration in lighter yellow (Chapter 4). The pink ellipses refer to modelling and
prediction work (Chapter 5). The blue ellipses refer to health effect assessment
(Chapter 6) and the orange ellipse to refers to a combination of the work in
Chapters 5 and 6.

After data quality evaluation and outlier removal, air quality maps are
able to provide policy makers with valuable information on air pollution
events in space and time. Since the trend part of the model is based
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on a monthly average, the residuals account for short-term variability.
In case of polluting events, the contribution of the kriged residuals to
the predictions will be higher compared to the trend part of the model.
The fine resolution air pollution maps can be used to create awareness
about highly polluting events such as fireworks, and may help to start
a discussion on the trade-off between traditions and health effects. In
the long run, spatial locations with consistently high concentrations can
be marked. This information can lead to infrastructural decisions, for
example reducing speed limits, converting traffic lights to roundabouts,
and adding or removing road lanes. Combined with temporal air pollu-
tion trends and real-time pollution data, spatio-temporal models can lead
to smart city interventions such as dynamic speed limits and dynamic
directions based on current traffic and air pollution patterns.

The temporal covariates used in the air pollution model relate to
meteorological and diurnal variability. Spatial covariates, such as road
type and population density, are related to city planning. Information
about important spatial predictor variables of air pollution can therefore
help city planners to develop cleaner and healthier cities.

For people with respiratory diseases such as asthma, real-time maps
and forecasts of the air pollution can be used to advice on the optimal
time and location to move through the city. This research provided
critical steps towards real-time mapping and forecasting, which can
be further developed in e.g. smartphone applications. The burden of
disease calculations can be used to create awareness on the severity of
the health effects attributable to air pollution. The corresponding maps
show the spatial variability of the burden of disease.

7.3 Limitations

Throughout the research conducted as part of this thesis, useful lessons
were learnt on sensor data quality, calibration and sampling scheme
optimization. Part of the developed methods could directly be applied –
for example, the removal of outliers in the development of calibration
methods. Some, however, could not directly be applied. For example,
we found that calibration of the low-cost sensors is not possible in
the current measurement setup, due to sensor specificity and a lack of
spatial transferability of the calibration parameters. The advice to use
moving reference sensors would be useful in the future development
of the network and other sensor networks worldwide, but could not be
applied in the current network before a further data analysis. In general,
however, the sensors performed well and the data have been valuable
for modelling and health risk analysis. In the future, more stable and
consistent sensors may be developed and implemented.
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7.3. Limitations

The advantage of low-cost sensor networks is the large number of
sensors that can be deployed at relatively low cost, resulting in data at
a fine spatial and temporal resolution (Snyder et al., 2013). One may
argue, however, that the costs of calibrating and maintaining a large
number of sensors quickly rises to a level that the network can no longer
be considered ‘low-cost’. Moving reference sensors would for example
be beneficial in low-cost sensor networks, but expensive to implement.
In the future, this may be solved by, for example, mounting reference
sensors on buses or other public transport vehicles (Hasenfratz et al.,
2012). In the sensor network used in this study, transportation of the
sensors for maintenance was relatively expensive. Therefore, sensors
were only repaired after a few were broken – or fixed – so they could
be transported at the same time. This sometimes led to long periods
of missing data. This is undesirable when interpolating and modelling
health effects. The method used to impute missing values, however, was
able to fill large data gaps.

Throughout this thesis, a spatial location is assumed to consist of a
two-dimensional set of coordinates. With this assumption, the vertical
position of the sensors is ignored. As long as those are similar across
the sensor network, and the height of the sensor closely represents
exposure of the population at risk, this issue can be ignored. In practice,
however, concentrations higher in apartment buildings differ from those
at ground level (Amato et al., 2019). Further research could focus on
three-dimensional modelling and mapping, for example using sensors at
different levels of tall buildings (Azimi et al., 2018) or using unmanned
aerial vehicles (Li et al., 2018b,a).

A spatio-temporal regression kriging framework was used for model-
ling and prediction of air pollutant concentrations in this thesis. The
trend part of the model is very similar to a LUR model. In the LUR literat-
ure, typically tens of variables are evaluated at different buffer sizes to
select the best covariates in the model (Montagne et al., 2015; Lee et al.,
2017; Kashima et al., 2018). Acknowledging that covariate selection
was not the main purpose of this study, this thesis only evaluated a
small number of variables and buffer sizes based on the ones most often
related to NO2. It is possible that a larger part of the spatio-temporal
variability can be explained after a full assessment of possible LUR cov-
ariates. This could also create a smoother spatio-temporal variogram of
the residuals.

One of the major challenges faced in this thesis was the recruitment of
participants for the panel study. Despite extensive efforts and contacts
with local newspapers, health care practitioners and schools, only five
children participated in the panel study while the proposal aimed at
100. Given the attention given to the study via newspapers, social media,
websites, posters and leaflets, the study should have reached the target
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group of potential participants. The parents of many asthmatic children
apparently did not see the advantages of participation. A possible reason
could be the burden of participation for four months compared to the
perceived benefits. Further research on this aspect is required to avoid
this happening in future studies, as much money and time is spent on
obtaining medical ethical permission and recruitment of participants.
In this thesis, narrow credible intervals were found for the odds ratio’s
relating NO2 exposure to asthmatic symptoms, when combining the data
with a priori information from literature in a Bayesian analysis. When
more participants would have been recruited, more accurate estimates
could have been made for other air pollutants as well.

The main focus of this thesis has been on NO2, while data on other
pollutants is also collected in the sensor network. This choice was made
largely because of the spatio-temporal variability in NO2, which within
the city is much larger than spatio-temporal variability in particulate mat-
ter (PM10, PM2.5, PM1). Low-cost sensors were not available for particle
metrics that do show large spatio-temporal variation, such as UFP and
BC. UFP was measured at only six locations precluding detailed ana-
lyses, while BC was not measured at all. For modelling and prediction,
it is important that the spatio-temporal variability is higher than the
measurement error of the sensors. This is most prevalent in the NO2

measurements, as is also reflected in the results of the health effects
estimation. Since the effects of single pollutants are hard to distinguish
(WHO, 2013a,b), one may also argue to evaluate the mixture of pollutants
rather than specific pollutants.

7.4 Prospects

This thesis provides methods and recommendations to improve the
development and use of low-cost air quality sensor networks. There
are, however, remaining challenges for future research. In terms of
methodological development, future work may extend the current work
on outlier detection, by distinguishing between erroneous values and
true air pollution events. The first steps have been made to accomplish
this. The spatio-temporal air pollution maps allow for visual inspection
of outliers in space and time. When extreme values occur for longer
periods of time or at multiple locations in space, they are more likely
to represent actual air pollution events (Zhang et al., 2012). When a
single observation is an outlier, it is more difficult to distinguish errors
from events. Correlation with other air pollutants may be useful to
obtain, for example, further conclusions on the reliability of individual
measurements (Shahid et al., 2015).

Some suggestions on sampling scheme optimization are already given
in this thesis. Further research is needed to optimize those for different
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pollutants, for example to determine air pollution level degradation as a
local function of distance to the road (Amato et al., 2019). For different
sources of air pollution, depending upon the location and pollutant, other
covariates may be of interest. Sampling scheme optimization should
target multiple aspects. Sampling near the population at risk is beneficial
for epidemiological studies, as measurements are used to approximate
exposure (Chambers et al., 2018). Meanwhile, for optimal geostatistical
modelling, a varying distance between sensors locations is important
(Webster and Oliver, 2001). For accurate regression models, e.g. as
trend part in a regression kriging model, covariates should represent the
sources and sinks of air pollution. Sampling at different distances of
the sources leads to better regression models. All levels of a covariate
should be covered by multiple sensors to avoid overfitting. The latter is
important to support accurate predictions.

The methods developed in this thesis are applicable to other low-
cost air quality sensor networks and may as well be more generally
applicable to other environmental phenomena. This will require a good
understanding of the other variables (e.g. sources and sinks) that are
related to spatio-temporal variability of the location and phenomenon
of interest. Recalibration of the parameters and reconsideration of
covariates and classes is always required. Moreover, when working
with low-cost sensors, the data quality of the sensors should be carefully
evaluated for the purpose at hand (Snyder et al., 2013). The precision and
accuracy of the low-cost sensors can be further evaluated with reference
monitors (Thomson et al., 2005). In case the absolute measurement
values are close to the reference values, they can be used to evaluate
the exceedance of limit values. When the accuracy is too low for this
purpose, the relative values of the sensors could still be useful to assess
spatio-temporal variability, under the condition that the uncertainty of
the sensor measurements is below the spatio-temporal variability of the
phenomenon of interest. This can be an air pollutant or another variable
measured using low-cost sensors.

The maps created throughout this research project can be used to
visualize many air pollution problems. Visualizations can help to create
awareness about their health effects. When anthropogenic sources of
air pollutants are clearly visible, maps also create awareness about the
human influence on these air pollution risks. This awareness is often
not enough, however, for people to change their behavior. Behavioral
changes require more than a sense of awareness – they require a sense
of urgency. This urgency may be lacking in developed countries, as the
life expectancy is already high, and quality of life is considered more
important than quantity of life. More research, for example in the field
of behavioral science, is needed to create the sense of urgency that is
needed to tackle the air pollution problem.
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In the advancements of smart cities and sensor networks, more and
more data will become available. This will increase the importance
of big data analysis methods, data quality analysis, pattern analysis
and filtering (Lau et al., 2019). With increasing computational power,
it is possible to process larger datasets in shorter amounts of time,
allowing for near real-time modelling and mapping at ever finer spatio-
temporal resolutions. Moreover, it will allow for the integration of data
from multiple sources and scale levels (Xu et al., 2019). When more
applications emerge, the demand for low-cost sensors will increase. This
will contribute to the development of higher quality sensors at lower
cost. In turn, the higher quality of the sensor data will propagate into
better products, such as more accurate models and exposure estimates.
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