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Summary 
 

 
 
 
Rapid development and population growth in coastal areas always bring a 
risk of coastal damage. In this situation, monitoring of shoreline position 
plays an important role in achieving a balanced condition between economic 
development and coastal protection. For this purpose, local authorities and 
coastal planners require information on shoreline changes for coastal land 
use planning and disaster risk management. Monitoring shoreline change for 
larger areas and longer time spans, however, is challenging due to limited 
data availability and high cost. Remote sensing and specific image processing 
methods for the identification and monitoring of shorelines are needed, 
especially methods that can handle the uncertainty in shoreline positions. 
This dissertation investigates and develops image analysis methods from 
remote sensing images to provide information for the sustainable coastal 
development. It focuses on using a fuzzy classification and a change 
detection technique to identify shorelines and monitor their changes. 
Emphasis is given on data quality and the estimation of uncertainty. The 
methods proposed in this dissertation are applied on a series of images to 
identify shoreline positions in the northern part of the Central Java Province, 
Indonesia which experienced a severe change of shoreline position over three 
decades.  
 
First, an unsupervised fuzzy c-means (FCM) classification is presented to 
observe the shoreline positions by taking the gradual transition between 
water and land into account. The FCM is a clustering method that separates 
data clusters with class means and fuzzy boundaries allowing for partial 
membership. Two methods to generate shorelines are proposed. The first 
method derives the shoreline as a single line by applying a threshold of 0.5 
on the water membership images. The second method derives shorelines as 
an area or a margin, presented as a crisp object with a boundary determined 
by threshold values resulting from parameter estimation. Crisp and fuzzy 
methods are combined for change detection. The post-classification 
comparison method is implemented to distinguish abrupt and gradual 
changes at the object level and provide the change uncertainty at the pixel 
level. Two perspectives of uncertainty are addressed: uncertainty that is 
inherent to shoreline positions as observed from remote sensing images, and 
the uncertainty that propagates from object extraction and implementation of 
shoreline change detection method. Shoreline and its changes are presented 
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as crisp sub-areas. The changed areas are thus associated with the spatial 
distribution of change uncertainty. 
 
Second, the possibility of using fuzzy-crisp objects to derive shoreline 
positions as the transition zone between the classes water and non-water is 
addressed. Pixels at which the membership value (μ) exceeds 0.99 are the 
core of a class, for example the water class, whereas pixels with 0.01൏
μ ൏0.99 belong to transition zones or shoreline class, and pixels with μ ൏0.01 
do not belong to objects of water or shoreline. A change detection method for 
shorelines which accounts for their fuzzy character in remote sensing images 
is proposed and implemented. The change of shoreline is explained in terms 
of change magnitude and change direction using change vector analysis 
(CVA). Information provided by CVA allows us to see the trend of the 
fluctuating shoreline over time. The analysis of information provided by the 
change magnitude and direction reveals that each change combination 
represents one specific type of change process. It shows a multi-year pattern 
of water membership changes over the observation periods that could 
indicate certain coastal processes, for instance, erosion and accretion. Based 
on these results, it can be concluded that the proposed method can assess 
changes in a shoreline by taking into account that it is a fuzzy boundary. 
  
Third, uncertainty modelling of shorelines by comparing fuzzy sets and 
random sets is presented. Both methods quantify extensional uncertainty of 
shorelines extracted from remote sensing images. Two datasets are tested: 
pan-sharpened Pleiades with four bands (Pleiades) and pan-sharpened 
Pleiades stacked with elevation data as the fifth band (Pleiades + DTM). Both 
fuzzy sets and random sets model the spatial extent of shoreline including its 
uncertainty. Fuzzy sets represent shorelines as a margin and their 
uncertainty as confusion indices. They do not consider randomness. Random 
sets fit a mixed Gaussian model to the image histogram. The random sets 
represent shorelines as a transition zone between water and non-water. Their 
extensional uncertainty is assessed by the covering function. The results 
show that fuzzy sets and random sets result in shorelines that are closely 
similar. Kappa values are slightly different and McNemar’s test shows high ݌-
values indicating a similar accuracy. Inclusion of the DTM (digital terrain 
model) improves the classification results, especially for roofs, inundated 
houses and inundated land. The shoreline model using Pleiades + DTM 
performs better than that of using Pleiades only, when using either fuzzy sets 
or random sets. It achieves κ values above 80%. 
 
Fourth, the transferability and upscaling of a fuzzy classification of shoreline 
changes to a different area and towards larger area is investigated. Three 
strategies are conducted: (i) optimizing two FCM  parameters based on the 
predominant land use/cover of the reference subset; (ii) adopting the class 
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mean and number of classes resulting from the classification of reference 
subset to perform FCM on target subsets; and iii) estimating the optimal level 
of fuzziness of target subsets. From the experimental results, ݉ values in the 
range from 1.3 to 1.9 are obtained for seven land use/cover classes that 
have been analysed. For the ten images used in this research, ݉=1.8 is 
obtained as optimal value. For a coast with similar characteristics, this ݉ 
value can be adopted and the relation between land use/cover and the two 
FCM parameters can help to shorten the time needed to optimize the 
parameters. The proposed method for upscaling and transferring the 
classification method to a larger and to different areas is promising, showing 
κ	values >0.80 and agreement of water membership values >0.82 between 
the reference and target subsets.  
 
To summarize, this dissertation focuses on modelling shoreline as an object 
with vague boundaries using multi-temporal remote sensing images. The 
associated uncertainties are estimated by means of possibility and necessity 
measures, and by confusion index. In this sense, this dissertation contributes 
to the monitoring of shorelines trough the development and the 
implementation of image analysis methods to quantify and monitor the 
changes of shorelines and related change uncertainty using remote sensing 
images. 
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Samenvatting 
 

 
 

 

Een snelle ontwikkeling van kustgebieden en een snelle bevolkingsgroei 
brengen altijd een risico van schade aan de kust met zich mee. Om in deze 
situatie een balans tussen economische ontwikkeling en kustbescherming te 
bereiken, speelt monitoring van de positie van de kustlijn een belangrijke rol. 
Voor dit doel hebben lokale autoriteiten en planners informatie nodig over 
veranderingen aan de kustlijn, voor de planning van het grondgebruik aan de 
kust en risicobeheersing met betrekking tot rampen. Voor grotere gebieden 
en langere tijdspannen is het monitoren van veranderingen aan de kustlijn 
echter een uitdaging vanwege de beperkte beschikbaarheid van gegevens en 
de hoge kosten. Aardobservatie en specifieke beeldverwerkingsmethoden 
voor de identificatie en monitoring van kustlijnen zijn nodig, met name 
methoden die de onzekerheid in de positie van de kustlijn kunnen hanteren. 
Dit proefschrift onderzoekt en ontwikkelt analysemethoden voor 
aardobservatie beelden om informatie te verschaffen voor de duurzame 
ontwikkeling van kustgebieden. Het richt zich op het gebruik van een fuzzy 
classificatie en een detectietechniek om kustlijnen te identificeren en hun 
veranderingen te volgen. De nadruk wordt gelegd op de kwaliteit van de 
gegevens en de schatting van de onzekerheid. De methoden die in dit 
proefschrift worden beschreven, worden toegepast op een reeks beelden om 
de posities van de kustlijn te identificeren in het noordelijke deel van de 
provincie Midden-Java, Indonesië, die gedurende drie decennia een 
belangrijke verandering in de positie van de kustlijn heeft doorgemaakt. 
 
De eerste studie behelst een ongesuperviseerde fuzzy c-means (FCM) 
classificatie om de posities van de kustlijn te observeren door rekening te 
houden met de geleidelijke overgang tussen water en land. De FCM is een 
clustermethode die gegevensclusters scheidt op basis van klasse-
gemiddelden en vage (fuzzy) grenzen die gedeeltelijk lidmaatschap van 
meerdere klassen mogelijk maken. Er worden twee methoden beschreven om 
kustlijnen te genereren. De eerste methode leidt de kustlijn af als een enkele 
lijn door een drempel van 0,5 toe te passen op de beelden met water 
lidmaatschap. De tweede methode leidt een kustlijn af als een gebied of 
marge, gepresenteerd als een duidelijk begrensd (crisp) voorwerp waarvan 
de grens bepaald wordt door drempelwaarden die resulteren uit 
parameterschatting. Crisp en fuzzy methoden worden gecombineerd voor de 
detectie van verandering. Na classificatie wordt een vergelijkingsmethode 
geïmplementeerd om abrupte en geleidelijke veranderingen op objectniveau 
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te onderscheiden en de onzekerheid van de verandering op pixelniveau weer 
te geven. Twee perspectieven op onzekerheid worden opgepakt: de 
onzekerheid die inherent is aan de posities van de kustlijn zoals 
waargenomen in aardobservatie beelden, en de onzekerheid die voortkomt 
uit objectextractie en implementatie van de detectiemethode voor 
veranderingen in de kustlijn. Kustlijnen en de bijbehorende veranderingen 
worden gepresenteerd als duidelijk begrensde deelgebieden. De veranderde 
gebieden houden dus verband met de ruimtelijke verdeling van de 
onzekerheid van de verandering. 
 
Als tweede studie wordt de mogelijkheid behandeld om fuzzy-crisp-objecten 
te gebruiken om posities van kustlijnen af te leiden als de overgangszone 
tussen de klassen water en niet-water. Pixels waarbij de 
lidmaatschapswaarde (μ) hoger is dan 0,99, vormen de kern van een klasse, 
bijvoorbeeld de waterklasse, terwijl pixels met 0,01 <μ <0,99 behoren tot 
overgangszones of kustlijn klasse, en pixels met μ <0,01 behoren niet tot 
objecten van water of kustlijn. Een detectiemethode voor veranderingen in 
kustlijnen, die hun vage karakter in aardobservatie beelden in acht neemt, 
wordt besproken en geïmplementeerd. De verandering van de kustlijn wordt 
uitgelegd in termen van grootte en richting van de verandering met behulp 
van veranderings-vector analyse (CVA). Informatie uit CVA stelt ons in staat 
om in de loop van de tijd de trend de fluctuerende kustlijn te zien. De 
analyse van informatie over de veranderingen in grootte en richting onthult 
dat elke combinatie van veranderingen een specifiek type veranderingsproces 
vertegenwoordigt. Het toont gedurende de observatieperioden een meerjarig 
patroon van veranderingen in het lidmaatschap van de waterklasse, dat kan 
wijzen op bepaalde processen aan de kust, bijvoorbeeld erosie en aanwas. 
Op basis van deze resultaten kan worden geconcludeerd dat de voorgestelde 
methode veranderingen in een kustlijn kan beoordelen door er rekening mee 
te houden dat het een vage grens is. 
 
In de derde studie wordt onzekerheidsmodellering van kustlijnen door een 
vergelijking van fuzzy sets en random sets beschreven. Beide methoden 
kwantificeren extensionele onzekerheid van kustlijnen via extractie uit 
aardobservatie beelden. Twee datasets worden getest: (pansharpened) 
Pleiades met vier banden, waarbij de panchromatische band gebruikt is om 
de vier multispectrale banden een hogere resolutie te geven (Pleiades) en 
(pansharpened) Pleiades met de toevoeging van hoogtegegevens als de 
vijfde band (Pleiades + DTM). Zowel fuzzy sets als random sets modelleren 
de ruimtelijke extensie van de kustlijn inclusief de onzekerheid. Fuzzy sets 
geven kustlijnen weer als een marge en hun onzekerheid als confusie-indices. 
Ze houden geen rekening met toeval. Random sets passen op een gemengd 
Gauss-model van het histogram van het beeld. Random sets geven kustlijnen 
weer als een overgangszone tussen water en niet-water. Hun extensionele 
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onzekerheid wordt vastgesteld door de dekkingsfunctie. De resultaten laten 
zien dat fuzzy sets en random sets resulteren in kustlijnen die sterk op elkaar 
lijken. Kappa-waarden zijn slechts enigszins verschillend en de test van 
McNemar toont hoge ݌-waarden die een vergelijkbare nauwkeurigheid 
aangeven. Toevoeging van het DTM (digitaal terrein model) verbetert de 
classificatieresultaten, vooral voor daken, overstroomde huizen en 
overstroomde grond. Het kustlijnmodel met Pleiades + DTM presteert beter 
dan het model waarbij alleen Pleiades gebruikt wordt, zowel wanneer fuzzy 
sets als wanneer random sets worden gebruikt. Het bereikt κ-waarden van 
meer dan 80%. 
 
De vierde studie onderzoekt de overdraagbaarheid en de opschaling van een 
fuzzy classificatie van veranderingen in de kustlijn naar een ander gebied en 
naar een groter gebied. Er worden drie strategieën toegepast: (i) het 
optimaliseren van twee FCM-parameters op basis van het overheersende 
landgebruik / landbedekking van de referentiesubset; (ii) het gebruiken van 
het klassengemiddelde en het aantal klassen die resulteren uit de classificatie 
van een referentie-subset om FCM op de doel-subset uit te voeren; en iii) het 
schatten van het optimale niveau van vaagheid (fuzziness) van doel-subsets. 
Uit de experimentele resultaten worden ݉ waarden in het bereik van 1,3 tot 
1,9 verkregen voor zeven landgebruiks- / landbedekkingsklassen die zijn 
geanalyseerd. Voor de tien beelden die in dit onderzoek worden gebruikt, 
wordt ݉ = 1,8 verkregen als optimale waarde. Deze ݉ waarde kan worden 
gebruikt voor een kust met vergelijkbare kenmerken en de relatie tussen 
landgebruik / landbedekking en de twee FCM-parameters kan helpen om de 
tijd te verkorten, die nodig is om de parameters te optimaliseren. De 
beschreven methode voor het opschalen en overdragen van de 
classificatiemethode naar een groter- en naar andere gebieden is 
veelbelovend, toont κ-waarden > 0,80 en een overeenstemming > 0,82 
tussen de water lidmaatschapswaardes van de referentie- en de doel-
subsets.  
 
Samenvattend richt dit proefschrift zich op het modelleren van de kustlijn als 
een object met vage grenzen, met behulp van multi-temporele 
aardobservatie beelden. De bijbehorende onzekerheden worden geschat als 
mate van mogelijkheid en mate van noodzakelijkheid en door de confusie-
index. Op deze manier draagt dit proefschrift bij tot de monitoring van 
kustlijnen door middel van de ontwikkeling en de implementatie van 
methoden voor de analyse van aardobservatie beelden, die de veranderingen 
van kustlijnen en de daarmee samenhangende onzekerheid van die 
veranderingen kwantificeren en monitoren. 
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Introduction 
 

 
 
 
 
 
 
 
 
 
 

 
 
This chapter motivates the scope of this work in terms of the importance of 
shoreline monitoring and the information that is needed to enable their 
sustainable. It defines shoreline and mentions a number of benefits derived 
from monitoring of shoreline positions. It continuous with a description of 
methods applied for shoreline identification. This proceeds with the 
introduction of the challenges constraining the identification of shoreline in 
remote sensing images. The chapter ends by setting objectives and research 
questions to be addressed throughout the rest of the thesis.   

1 
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1.1 Shoreline 

 
A shoreline represents the boundary where the land meets the sea. It 
is a dynamic environment as the land and sea are changing in 
response to natural (e.g., erosion, accretion, waves, daily tides and 
sea-storms) and human-induced (such as coastal development) 
factors (French, 2001). The positions of the shoreline could vary 
between a few centimetres to a few metres on short term, depending 
on beach profile, the tidal range and the prevailing wave. On a longer 
term, the position of the shoreline could vary by hundreds of metres 
(Boak and Turner, 2005; Stive et al., 2002b).  
 
In the literature, the terms shoreline and coastline are found. The 
strips of land adjacent to shorelines and coastlines are shores and 
coasts, respectively. The shore denotes a relatively narrow strip of 
land adjacent to water bodies, whereas the coast is a strip of land 
that extends from a body of water inland to a regional break in 
terrain features (Bird, 1985; Oertel, 2005). Bird (1985) stated that 
the shore is usually occupied by salt-marshes and mangrove swamps 
found at various inter-tidal levels and the coastline is equivalent to 
the high spring tides shoreline. Furthermore, Oertel (2005) 
mentioned that the shoreline demarks the boundary between the 
shore and the water varying between the low and the high tides. 
 
In this thesis, the term shoreline is italized when it denotes class 
name during an image classification. Italizing is applied in similar way 
for other land use/cover classes such as water, non-water and built-
up.   
 

 

1.2 The need of shoreline information 

 
The dynamic interfaces between the coastal land and the sea are 
commonly sites of high density residential and commercial 
development. Coastal areas are popular for settlement, because of 
their beauty, access to relatively flat, low lying land for agriculture 
and water for fisheries and transport. However, natural hazards 
frequently occur such as flooding, storm, coastal erosion, and 
tsunami. Some shoreline changes have resulted from these human 
activities, such as land reclamation for industry, housing, recreation 
site, farmland and airport; and dredging to create and deepen 
harbours. Furthermore, coastal communities tend to keep the 
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boundary of land and sea in the same location to protect their 
belongings by introducing structures such as groynes and 
breakwaters intended to stabilize features.  
 
The increase in the number of inhabitants and the related increase of 
infrastructure have an impact on the coastal processes that further 
shape the shoreline. In fact, coastal processes in one part of the 
shore have a close link to those in its neighbourhood with respect to 
sediment budget (French, 2001). While coastal populations continue 
growing and infrastructures are threatened by coastal hazards, the 
need for shoreline information is increasing. 
 
Both coastal management and coastal engineering require 
information about the shoreline and its changing position. Shoreline 
information is required for the design of coastal protection, coastal 
planning and development and safe navigation. Furthermore, the 
current and historical positions of the shoreline are key information to 
understand coastal processes, anticipate climate change and prevent 
any development in high risk areas. By analysing data over a period 
of time, we can determine where and how fast the coast has 
changed, which can help coastal planning in the future. 
 
 

1.3 Monitoring of shoreline change 

 
Monitoring of shoreline position is an important element of planning 
and management of the coast. Monitoring can be undertaken on 
various spatial and temporal levels since shorelines can change over 
a wide range of different temporal and/or spatial scales (Hayden et 
al., 1979; Stive et al., 2002a). On a short term, the shoreline can 
change over periods ranging from days to seasons for instance due to 
waves, winds, tides, and storms. Meanwhile on a long term, the 
changes may be caused by a rise in sea level, land subsidence, and a 
change in natural sediment supply. This long term variation can only 
be observed after several years (in decades to centuries) and results 
in more predictable trends (Dolan et al., 1991). Given these facts, 
monitoring of shoreline changes should have sufficient temporal 
frequency and duration to differentiate short term from longer term 
variability (Bracs et al., 2016).  
 
Shoreline position is one of the primary geo-indicators for monitoring 
coastal changes as the shoreline is sensitive to natural processes 
(e.g., fluvial processes, water quality, sea level and sediment supply) 
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and anthropogenic alteration (e.g., construction of coastal structures, 
construction of river dams, and mining of coastal materials). A long 
term natural advance of shoreline position implies a decrease in wave 
energy, an increase in sediment supply, or a low relative sea level. 
On the contrary, a natural retreat of shoreline position indicates an 
increase in wave energy, a decrease in sediment supply, a rise in sea 
level, or a combination of those causes (Morton, 2002). Monitoring 
the changes of shoreline position over a long time span will enable 
coastal planners and resources managers to provide such information 
that play an important role in balancing the demand for exploitation 
and preservation of the coastal environment. Furthermore, the 
significance of shoreline position as coastal geo-indicators increases 
when they are integrated with human safety for example for coastal 
hazard maps and risk analysis in the context of disaster risk 
reduction. Before being able to reduce risk, we need to understand 
the hazards. Hazard maps (e.g., coastal erosion and inundation 
maps) are used to identify high-risk zones and safe places for a 
community, for instance for relocating exposed people and assets 
away from an area highly effected by erosion or flooding.   
 
The frequency of monitoring of shoreline changes can vary from place 
to place depending on shoreline conditions. Much of the shoreline 
remains in a relatively undisturbed condition so that it can be 
monitored less frequently. In contrast, other shorelines may be 
situated in a highly urbanized area with greater threat from erosion 
and coastal floods, which may require more frequent monitoring. The 
frequency of monitoring can also be influenced by the need of 
observation. For example, a swash zone study may need to observe 
shoreline positions in seconds, while a long-term analysis of shoreline 
change may require a 10-year observation. In the Netherlands, for 
coastal defence monitoring, coastline position is measured and 
compared to the reference standard annually as a basis for the 
annual sand nourishment programme (Anonymous, 2006b). 
Meanwhile, for the national assessment of shoreline change in the 
United States, the U.S. Geological Survey plans to report on shoreline 
changes every five to ten years (Morton et al., 2004). 
 
 

1.4 Methods for shoreline monitoring 

 
Shoreline position can be extracted from various data sources. 
Historical shoreline positions may be derived from old topographic 
maps or may be digitized from aerial photographs based on physical 
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features (Pajak and Leatherman, 2002). Shoreline can be 
interpolated from cross-shore profile measured by beach surveys 
(Anonymous, 2006a). Furthermore, shoreline can also be derived 
from remote sensing imagery. 
 
Shoreline position can be identified based on different shoreline 
indicators or proxies depending on topography of the area, the 
sources of data, and scientific preferences. For example, for 
navigational purposes, the National Oceanographic and Atmospheric 
Administration (NOAA) publishes nautical charts with shoreline is 
positioned at mean lower low water (MLLW) line (NOAA, 2018). 
Meanwhile, for the National Shoreline, US.Geologic Survey publishes 
topographic quadrangle with the shoreline positioned at mean high 
water (MHW) line (Li et al., 2002; Oertel, 2005). 

  

The most common shoreline indicators can be summarized as follows 
(Boak and Turner, 2005; Crowell et al., 1991): 
a) Distinguished coastal features which can be classified based on 

the alignment of man-made structures e.g., landward edge of 
shore protection structures; morphological features (berm crest, 
vegetation line, dune toe, and dune crest); and a selected 
waterline (high water line/HWL or previous high tide level, and 
wet/dry line or wet and sand line). These features are delineated 
from aerial photographs or very high resolution images. 

b) Tidal datum based indicators (tide-coordinated shoreline) e.g., 
MHW or MLLW lines. It is determined by intersecting the coastal 
profiles with a certain vertical elevation defined by tidal 
components. This information can be derived from LIDAR data 
and ground surveys data (cross-shore profile). 

c) Shoreline features extracted by image processing techniques 
from remote sensing imageries e.g., water/non-water pixels or 
wet/sand pixels. This shoreline is considered as an instantaneous 
shoreline and can be derived from hyperspectral, multispectral 
and RADAR imageries. 

  
Shoreline position can be monitored using a range of methods as 
described below. 
 

1.4.1 Ground survey-based method 

In the early years, ground survey-based method to derive shorelines 
in the United States used devices e.g., plane tables, which can obtain 
a high accuracy. In this surveys, the direction and distance of 
shoreline features were observed and determined by at least four 
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persons on beach with the plane table and rod (Graham et al., 2003). 
The shorelines were drawn through series of measured points. At this 
time, the HWL was considered as the best indicator of the land-water 
interface. It was mapped by NOS (National Ocean Service) 
topographer as the shoreline position in the Topographic sheet 
(Crowell et al., 1991). Other equipment for this method may include 
kinematic differential Global Positioning System (GPS) mounted on a 
vehicle, which is driven at a constant speed along the visibly 
distinguished line of interest (Morton et al., 1993). The advantage of 
this method compared to use of plane tables is that it is a relatively 
rapid method (Stockdon et al., 2002).  
 
Survey data can provide accurate shoreline positions, however, the 
historical data tend to be limited both spatially and temporally (Boak 
and Turner, 2005). Moreover, they are high-cost (both in time and 
money) and labour-intensive methods (Anonymous, 2006b; Morton 
et al., 1993).   

 

1.4.2 Aerial photograph-based method 

Since the late 1920s, aerial photograph-based method started to 
replace ground survey-based methods to monitor shoreline changes, 
but only since the late 1930s stereo aerial photographs became 
available. This method became the primary technique since it can 
cover wider areas with good accuracy (Li et al., 2004; Moore, 2000).  
 
In the early days, the method included visual interpretation of 
shoreline features from aerial photographs and manually digitized 
shorelines. The shoreline obtained from the photographs is based on 
a visually distinguished feature such as the MHW line (Graham et al., 
2003), the wet and sand line (Fisher and Overton, 1994), and the 
edge of vegetation (Ford, 2013). This line was determined more from 
physical appearance (approximated the line of the MHW) rather than 
precisely measured (Li et al., 2002). In fact, the MHW line is 
determined by running levels along the coast and it estimates the 
average height of the high water level (HWL) over the period of 18.6 
years (Pugh, 1987). 
 
At present, modern photogrammetry allows a scanned pair of aerial 
photo to be converted into a three-dimensional digital terrain model 
and a georectified orthophoto (Boak and Turner, 2005). Hence, a 
tide-coordinated shoreline can be determined accurately. However, 
aerial photographs taken at these water levels are more expensive 
than remote sensing imageries (Li et al., 2004) and the temporal 
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coverage is site specific (Boak and Turner, 2005). Furthermore, the 
process of shoreline identification from aerial photographs has 
several potential sources of error, for instance the distortion of the 
photographs, the georeferencing of permanent features, and human 
error in measuring and digitizing (Crowell et al., 1991; Fisher and 
Overton, 1994; Moore, 2000; Thieler and Danforth, 1994). At present 
time, shorelines are still determined through interpretation of the 
stereo-photogrammetric models of aerial photographs, however, new 
methods for monitoring of shoreline changes are increasingly 
available (Liu, 2009).  

   

1.4.3 LIDAR-based method  

Airborne LIDAR (Light Detection and Ranging) is an active remote 
sensing system which has the ability to cover a wide coast area in a 
short time. The United States has been mapping shoreline using 
LIDAR since 1996 (NOAA, 2014). The LIDAR system is operated by 
using laser light to illuminate the terrain and measures a highly 
accurate elevation. LIDAR acquisition should be planned at a low tide 
condition (e.g., neap tides) with a calm and low wave (Stockdon et 
al., 2002). Shoreline position can be extracted by intersecting the 
digital elevation model derived from LIDAR data with the desired tidal 
datum (tide-coordinated) or tide level indicators. Robertson et al. 
(2004) derived shorelines by generating contours on a DEM derived 
from LIDAR based on tide level (high water/HW) and tidal datums 
(mean higher high water/MHHW and MHW lines) obtained from 
nearby tide gauges. Kim et al. (2017) analyzed shoreline changes by 
using airborne LIDAR bathymetry and derived MHHW (approximated 
higher high water/AHHW) shorelines. In this regard, the choice of the 
specific datum depends on the use of the LIDAR-derived shorelines. If 
this LIDAR-derived shoreline will be compared with other historical 
shorelines, then the same datum should be used accordingly 
(Stockdon et al., 2002). Despite the main advantage of LIDAR that 
can cover a large area in a short amount of time, this data source is 
generally limited in its temporal and spatial availability because it is 
costly. Furthermore, weather conditions can affect the recording of 
the LIDAR system (Anonymous, 2006b; Boak and Turner, 2005). 

 

1.4.4 Satellite image-based method 

Nowadays, remote sensing data have become increasingly popular 
for the monitoring of shoreline changes due to their large coverage 
and low cost. Remote sensing data can extract shoreline features 
e.g., water/non-water or wet/dry pixels to derive shorelines. 
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Shorelines derived from remote sensing imageries are considered as 
instantaneous shorelines since the time of acquisition of those images 
barely corresponds with a specific tidal datum (e.g.,  MHW or 
MHHW). However, remote sensing techniques can objectively define 
a proxy (not only visually distinguished) of shoreline features (Boak 
and Turner, 2005). In the end, this will support the robustness and 
repeatability of the extraction of shoreline methods.  
 
Several image classification techniques exist to identify shoreline 
features. A review of methods for identification of shoreline features 
permits to identify three approaches as described below.  
 
a) Band ratios 

Ratios of different spectral bands from the same image have been 
used to identify shoreline proxies in remote sensing images. This is 
because band ratios can enhance spectral reflectance characteristics 
for certain features such as water, soil and vegetation (Richards, 
2013). For the case of shoreline extraction, the presence of water 
features is enhanced while other features are minimized. In the 
estimation, the band ratio method uses visible and infrared bands of 
multi-spectral images. Further, a histogram thresholding approach is 
applied in the determination of foreground and background pixels 
which represent shoreline features (water and land). Unfortunately, 
using two bands for band ratios can only enhance water without 
removing completely the non-water features (Xu, 2006).  
 
Several works have investigated this approach to monitor shoreline 
changes using different combination of band for example ratioing 
band 5 and band 2 (b5/b2) of Landsat TM and ETM  (Ervita and 
Marfai, 2017; Kuleli, 2010; Sarwar and Woodroffe, 2013), and 
combination of band 2 and band 4 (b2/b4) and band 2 and band 5 
(b2/b5) of Landsat TM (Masria et al., 2015; Ozturk et al., 2015).  

 

b) Water index method 

McFeeters (1996) proposed normalized difference water index 
(NDWI) to discriminate open water. The method uses the green band 
(band 2) and near-infrared/NIR (band 4) of Landsat TM. It assists to 
enhance the presence of water, while simultaneously eliminating soil 
and terrestrial vegetation. In the results, water features have positive 
values; whereas soil and vegetation features have zero and negative 
value, respectively. Xu (2006) proposed modified NDWI by replacing 
the NIR band with the middle infra red band (MIR) in order to remove 
the noise from built-up in the coastal area. Further, Feyisa et al. 
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(2014) proposed a new automatic water extraction index (AWEI) to 
improve the classification accuracy for shadow and dark surfaces.  
 
In literature, these methods have been used to extract shoreline 
features and develop binary images consisting of water and land. To 
derive shoreline position from these water indices images, many 
studies used threshold segmentation e.g., the OTSU method (Choung 
and Jo, 2016; Kuleli, 2010; Liu et al., 2017), manual digitizing 
(Ghosh et al., 2015), and Kittler algorithm (Wang et al., 2014). 
However, the choice of threshold in defining water and land is still a 
problem (Feyisa et al., 2014; Sunder et al., 2017) that causes the 
classification to be more time-consuming.  
 
c) Unsupervised and supervised classification methods 

Various unsupervised and supervised methods are used to monitor 
the changes of shoreline. The principal idea of unsupervised 
classification is that pixels within a group have intensities with similar 
spectral pattern.  ISODATA (Iterative Self-Organizing Data Analysis) 
is the most common unsupervised classification that has been used 
to identify the shoreline proxies e.g., the wet and dry sand (García-
Rubio et al., 2015; Sekovski et al., 2014). ISODATA is a clustering 
algorithm that requires the user to set values for various 
classification parameters. It is suggested to set a higher number of 
classes for coastal areas with various land covers and lower number 
of classes for those areas with only a few land cover types (Liu et al., 
2011a). However, a problem may arise when the spectral separability 
among classes is low (Andrieu, 2018).   
 
Meanwhile, another group of image classification to generate 
shoreline position and its changes is supervised classification which 
requires relevant training areas based on a priori knowledge of the 
users of study area characteristics. Several studies on this method 
include support vector machines (SVM) (Hannv et al., 2013; Kalkana 
et al., 2013; Yin and He, 2011) and maximum likelihood classification 
(MLC) (Duru, 2017; Sekovski et al., 2014; Tamassoki et al., 2014). 
Since supervised classification takes advantage of information 
provided from training samples, the classification works effectively. 
However, to collect a sufficient number of reliable training samples is 
time-consuming and costly in operational scenarios which in the end 
can affect the final accuracy of the products (Demir et al., 2014).  
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1.5 Uncertainty associated with remote sensing 
classification products 

 
The concept of uncertainty arises when discussing the imperfection 
that is inherent to all remote sensing products. Heuvelink (1998) 
indicates that uncertainty is “...synonymous with error”. Atkinson and 
Foody (2002) argue that uncertainty is “…a general concept and one 
that actually conveys little information”. Meanwhile, Shi (2010) refers 
uncertainty to “…vagueness, ambiguity, or anything that is 
undetermined”. 
 
Uncertainty may exist for many reasons. Taylor (1982) mentioned 
that the uncertainty arises because of a problem in definition. 
Uncertainty can also occur due to inability to measure precisely. 
Fisher (1999) divides the nature of uncertainty into vagueness, 
ambiguity and error. Vagueness is associated with fuzziness 
(Atkinson and Foody, 2002), and lack of clarity in meaning (Klir and 
Wiennan, 1999; Shi, 2010) thus it should be handled with fuzzy sets 
(Fisher, 1999; Klir and Wiennan, 1999). Ambiguity refers to 
uncertainty due to the difference in classification system and 
perception of objects (Fisher, 1999) and is related to crisp sets 
(Atkinson and Foody, 2002). Meanwhile, Heuvelink (1998) defines 
error as the difference between reality and our representation of 
reality. When objects can be clearly identified then the sources of 
uncertainty are in data measurements and processing (Atkinson and 
Foody, 2002; Shi, 2010) and can be handled by the probability 
theory (Taylor, 1982). 
 
Problems in several stages of processing are associated with the 
uncertainty in remote sensing products including: the type of 
information and how to define the information, the scale that is 
required, the nature of the input and its quality, the area to be 
mapped and the accuracy of the resulting map (Woodcock, 2002). 
Meanwhile, Shi (2010) mentioned four sources of uncertainty: 
inherent uncertainty in the real world, the limitation in human 
knowledge, the limitation of measurement technology in capturing 
spatial data, and the potential of generating and propagating 
uncertainty in the spatial data processing and analysis. Furthermore, 
uncertainty in remote sensing products is also related to the quality 
aspect of spatial data. Quality is defined as “…totality of 
characteristics of a product that bear on its ability to satisfy stated 
and implied needs” (ISO (2002) citing Oort (2005)). The elements of 
spatial data quality include for example positional, attribute, and 
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semantic accuracies, temporal and variation in quality, logical 
consistency, lineage, completeness, and resolution (Oort, 2005).  
 
By limiting the discussion to the analysis of shorelines from remote 
sensing data in this thesis, the uncertainty can be divided into three 
categories: attribute, existential, and extensional uncertainties. 
Attribute uncertainty (also termed thematic or categorical 
uncertainty) shows how close the attribute value of geographic entity 
is to its reference value (Shi, 2010). Existential uncertainty is 
uncertainty regarding the existence of the object due to the fact that 
e.g., image analysis can only suggest that an object might exist 
without giving definite certainty that it really exists (Molenaar, 2000). 
Meanwhile, extensional uncertainty refers to the uncertainty related 
to the spatial extent of the objects (Molenaar, 1998). For shorelines 
derived from image classification, uncertainties can arise from: (1) 
the nature of the shoreline, (2) the applied shoreline definition, (3) 
differences in applied threshold value for segmentation, (4) tide 
conditions during image acquisition, and (5) the application of image 
classification and change analysis methods.  
 
The boundary between water and land can not be defined exactly due 
to for example the degree of wetness of the beaches. Moreover, 
shoreline is vague in nature as its position is changing through time. 
In this regard, the existential uncertainty of shoreline will arise when 
we select a method that does not accommodate the vagueness of the 
shoreline. For this reason, a fuzzy set-based classification method 
was selected to represent spatial object with vague properties (Shi, 
2010; Zadeh, 1965). In this context, the existence of an object to be 
observed is measured by a membership function that represents the 
similarity of an element to a class. 
 
The definition of shoreline applied in this study is a potential source 
of uncertainty, in particular of attribute uncertainty. Shoreline 
position in the real world is complex and always changing. We have 
to select a proxy that can represent shorelines that can be captured 
by remote sensing. Choosing shoreline as a single line (e.g., HWL) 
will introduce uncertainty resulting from a short-term natural 
migration of the shoreline due to e.g., wave and tide actions. 
Moreover, HWL may appear as a gradational zone of change 
(Stockdon et al., 2002). In this case, defining shoreline as an area 
may reduce the uncertainty resulting from the instantaneous position 
of the shoreline captured by remote sensing images. 
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The application of image classification (e.g., the choice of optimal 
threshold value for shoreline delineation) may cause uncertainties 
related to the extensional uncertainty. For a crisp object, there are 
three possible situations that define the boundary to a related object: 
inside or outside  an object or part of the boundary of an object 
(Molenaar, 1998). Whereas, for a fuzzy object (e.g., fuzzy 
shorelines), these three situations can not be determined clearly. For 
this situation, the boundary can only be established for specified 
certainty (conditional boundary) by selecting certain threshold values 
(Cheng, 1999). 
 
Attribute uncertainties may also arise from the application of image 
classification and change analysis. The main uncertainty refers to the 
attribute accuracy defined as the accuracy of all attributes of a spatial 
data set by excluding positional and temporal attributes (Oort, 2005). 
For quantification of this uncertainty, an accuracy assessment i.e. 
confusion error matrix is frequently used. However, this error matrix 
does not provide the spatial variation of the accuracy. For shoreline 
margin in images, uncertainty is expected to be higher towards the 
boundary then in the core area of the margin. Uncertainty measures 
at pixel level can provide more information on how the quality of 
remote sensing products varies spatially. Increasingly studies are 
interested in the spatial variation of the associated uncertainty  
(Bogaert et al., 2017; Brown et al., 2009). Failure to characterize 
uncertainty may cause erroneous and misleading interpretations. 
 
 

1.6 Problem definition 

 
The emergence of new and low-cost satellites that make a large 
number of satellite images available to a wide community has greatly 
influenced the advancement of image-based methods for monitoring 
of shoreline changes. Although several image processing techniques 
are available, it is still a challenge to implement a soft classification-
based method for shorelines detection and monitoring their changes. 
Methods used for shoreline extraction from remote sensing images 
are mostly based on hard classifications while the use of soft 
classification is very limited. Given the nature of the shoreline, the 
use of soft classification is a logical choice and this dissertation aims 
to lessen the hurdles that have prevented the use of soft 
classification in monitoring application like this. 
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Some issues considering shoreline detection and monitoring using 
remote sensing images are: 
 
a) The nature of shorelines 

A shoreline which represents the boundary between the land and 
the sea is vague in nature. To determine the exact position of this 
boundary is problematic since there is no sharp transition from 
the land to the water for example when defining an instantaneous 
shoreline from remote sensing images. The instantaneous 
shoreline is the position of the land-water interface at one 
moment in time which can be defined as the waterline at various 
stages of the tides. During the rise and fall of the tide, there are 
an infinite number of shorelines (Oertel, 2005). Furthermore, the 
shoreline is vague as its position changes over time due to the 
dynamics of the water level. The quantification of shoreline 
positions or the interface between the land and the water may 
involve a number of assumptions. Therefore, all estimates should 
include uncertainties associated with e.g., the nature of shoreline, 
techniques for image analysis and the assumption made 
regarding the definition of the shoreline.   

 
b) Data availability 

Shoreline can be detected by a range of methods: in-situ 
geographic positioning systems, airborne LIDAR, and video 
imaging which provide a highly accurate elevation and near-
continuous shoreline data. All of those methods are valuable 
sources for detailed investigation of coastal processes. However, 
for monitoring coastal areas on a wider spatial scale and a long 
time span, these systems are relatively costly and limited in 
coverage. LIDAR data are also not available over long time spans. 
Moreover, the budget available for purchasing those data (e.g., in 
developing countries) may be limited. Therefore, it is important 
to explore alternative ways for extracting shorelines from satellite 
imagery which can cover wider spatial scales and longer time 
spans. Landsat missions, for example, have long historical record 
of space based moderate-resolution remote sensing data, making 
it possible to assess coastal dynamics over decades and over 
large areas. 
 

c) Coastal characteristics and land use/cover complexity 

A coastal area is not a constant environment, but it is rather a 
dynamic place that can change rapidly in response to processes 
such as seasonal weather patterns and human activities. These 
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processes are responsible for shaping and modifying coastal 
areas by eroding, transporting and depositing sediment. Their 
dynamic nature results in their diversities. Many types of coasts 
are found ranging from sandy beaches, muddy coasts, rocky 
coasts, coral coasts, and arctic coasts. Some of those coasts are 
heavily populated, while some others have low building and 
population densities. For this study, these different types of coast 
with various complexity of land use/land cover correspond to the 
uncertainty issues with respect to the choice of parameters in 
image classifications. Therefore, developing a robust shoreline 
model for different coastal characteristics is challenging. 
 
 

1.7 Study area 

 
The northern part of Java was chosen as the study area in order to 
demonstrate the usefulness of the developed methods. The area is 
situated along the north coast of Central Java Province, Indonesia, 
covering some part of Semarang city in the west and Demak regency 
in the east (Figure 1.1). The study area is a deltaic plain formed by 
sand and silt from the rivers. The site is a typical tidal area with a 
high density of rivers. Rural settlements are found along the 
riverbanks or adjacent to the shorelines. The rivers have been used 
for irrigation purposes for centuries since the area is a paddy-
dominated agricultural area. In addition, the area at the northern 
edge of the land is dominated by fishponds. The Central Java 
Province is well known as one of the largest milkfish producers in 
Indonesia.  
 
The coast along the north of Java is categorized as a low wave-
energy coast and influenced by the micro-tidal Java Sea 
(Ongkosongo, 2010) with an average tidal range of approximately 
1.0 m (BIG, 2017). The coast has a mixed semi-diurnal tide with two 
high tides and two low tides with varying heights. In general, the 
study area is relatively flat with elevation of less than 10 m above 
mean sea level (MSL). It has muddy coast with mudflats at certain 
locations and a gradual transition between water and land. Intertidal 
areas (the areas between tide marks) generally extend for about 1 
km with muddy substrate (Winterwerp et al., 2014).  
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Figure 1.1 Location of the study area, coastal area of Central Java Province. 
Indonesia.  Area 1 was used as the study area in Chapter 2 and 3, while area 
2 was used as a test case in Chapter 4. The transferability and upscaling of 
the methods (Chapter 5) was tested at the whole study area 

 
The study area is prone to frequent inundations at high tide. Two 
types of flood occur in the area: (a) floods caused by a tidal flood; 
and (b) floods due to poor drainage systems during rainy seasons 
(Harwitasari and van Ast, 2011; Marfai et al., 2008b). This 
contributed to an extensive change of shoreline in the study area 
over more than 20 years. Furthermore, the change of shoreline 
position is also caused by other natural processes (e.g., erosion and 
accretion) and by the development of man-made structures (e.g., 
beach reclamation and extended seaport). The productive fishponds 
and rice fields have been submerged and abandoned as swamp areas 
due to these extensive changes.  
 
The coastal inundation accelerating these changes has increased 
recently in terms of frequency and duration as a result of many 
factors, for instance, extreme winds, land subsidence, the rise of sea 
level, mangrove conversion and excessive ground water extraction 
(Harwitasari and van Ast, 2011; Kurniawan, 2003; Marfai and King, 
2007; Sarbidi, 2001). Several measures have been taken to minimize 
the impact of large changes of shoreline position. The efforts include 
for example embankment along the drainage system near the 
settlements, dredging the drainage channels, elevating roads and 
house floors, building a permeable dam as sediment traps, and 
mangrove planting. 
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1.8 Research objectives and questions 

 
The main objective of this research is to develop and apply image 
analysis methods to identify shorelines and monitor their changes. To 
achieve this main objective, the following specific objectives and 
questions are addressed: 
 
a) Develop a method for detecting shorelines by taking the gradual 

transition between water and land into account. 
Research questions: 

i. Can fuzzy sets-based theory be applied effectively to 
extract a fuzzy shoreline? 

ii. Can random sets be applied effectively to extract a fuzzy 
shoreline? 

iii. Can a digital elevation model be used effectively to improve 
shoreline extraction? 

 
b) Develop a method for spatio-temporal change detection and 

monitoring of fuzzy shorelines. 
Research question:   
How can fuzzy approaches be used for spatio-temporal change 
detection and monitoring fuzzy shorelines? 
 

c) Determine the uncertainty of spatial and temporal information on 
shoreline positions in objectives 1 and 2. 
Research questions:  

i. How can the uncertainty of the developed and implemented 
methods be estimated? 

ii. How can the spatial accuracy of the developed and 
implemented methods be assessed? 

 
d) Test the transferability and upscaling of the methods developed 

in objective 1 and 2 to a different area and to a larger area of 
land. 
Research question:  
Can the method developed in objective 1 and 2 be transferred 
and upscaled to another area and towards a larger area? 
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1.9 Thesis outline 

 
This thesis consists of six chapters. Chapter 1 contains an 
introduction of the research. Chapters 2 up to 5 are based on the 
scientific output of the research that has been published by, or 
submitted to ISI journals. Chapter 6 contains a synthesis of the 
research. The six chapters are organized as follows: 

a) Chapter 1 provides a general introduction of this thesis. It 
describes definition of shoreline and the importance of shoreline 
information including a variety of methods available to extract 
and monitor shoreline changes.  

b) Chapter 2 presents a method to identify fuzzy shorelines by 
taking into account the gradual transition between water and 
land. Two types of shorelines were presented: shoreline as a 
single line and shoreline as an area or margin. 

c) Chapter 3 describes a change detection method for shorelines 
which account for their fuzzy character in remote sensing images. 
The change of shoreline was explained in terms of change 
magnitude and change direction using change vector analysis. 

d) Chapter 4 compares shoreline models developed from a fuzzy 
classification with random sets. Fuzzy sets theory describes 
uncertainty associated with the vagueness of shoreline position, 
whereas random sets deal with uncertainty due to random 
phenomena. 

e) Chapter 5 investigates a framework to test the transferability and 
upscaling of the developed method to a larger and to a different 
area. 

f) Chapter 6 summarizes the results and conclusions obtained from 
this research including answers related scientific questions. It 
describes the main contributions of this study to the shoreline 
research and to research on monitoring of fuzzy boundaries and 
gives further recommendation for future studies. 
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Fuzzy Classification for Shorelines Change 
Monitoring1 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
This chapter presents two methods to identify shoreline positions: as a line 
and as a margin, including a measure of change uncertainty at different 
epochs. Shoreline changes can be detected by both methods. The shoreline 
as a margin provides a more detailed estimation of change area than the 
shoreline as a line. By having shoreline as a margin, its spatial extent can be 
assessed and its change uncertainty can be measured at different levels of 
uncertainty.  

                                          
1 This chapter is based on the published paper: Dewi, R.S., Bijker, W., Stein, A., 
Marfai, M.A., Fuzzy Classification for Shoreline Change Monitoring in a Part of the 
Northern Coastal Area of Java, Indonesia. Remote Sensing. 2016, 8, 190. 

2 
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Abstract 
 
This study presents an unsupervised fuzzy c-means classification 
(FCM) to observe the shoreline positions. We combined crisp and 
fuzzy methods for change detection. We addressed two perspectives 
of uncertainty: (1) uncertainty that is inherent to shoreline positions 
as observed from remote sensing images due to its continuous 
variation over time; and (2) the uncertainty of the change results 
propagating from object extraction and implementation of shoreline 
change detection method. Unsupervised FCM achieved the highest 
kappa (κ) value when threshold (݀) was set at 0.5. The highest κ 
values were 0.96 for the 1994 image. For images in 2013, 2014 and 
2015, the κ values were 0.95. Further, images in 2003, 2002 and 
2000 obtained 0.93, 0.90 and 0.86, respectively. Gradual and abrupt 
changes were observed, as well as a measure of change uncertainty 
for the observed objects at the pixel level. These could be associated 
with inundations from 1994 to 2015 at the northern coastal area of 
Java, Indonesia. The largest coastal inundations in terms of area 
occurred between 1994 and 2000, when 739 ha changed from non-
water and shoreline to water and in 2003–2013 for 200 ha. Changes 
from water and shoreline to non-water occurred between 2000 and 
2002 (186 ha) and in 2013–2014 (65 ha). Urban development in 
flood-prone areas resulted in an increase of flood hazards including 
inundation and erosion leading to the changes of shoreline position. 
The proposed methods provided an effective way to present shoreline 
as a line and as a margin with fuzzy boundary and its associated 
change uncertainty. Shoreline mapping and monitoring is crucial to 
understand the spatial distribution of coastal inundation including its 
trend. 

 
Keywords: shoreline change; fuzzy classification; coastal 
inundation; uncertainty; Indonesia 
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2.1. Introduction 

 
Shoreline location and its change in position are critical for 
understanding coastal structures (Vaidya et al., 2015), safe 
navigation (Ali, 2010; Li et al., 2002), sustainable coastal resource 
management (Klemas, 2011), and for flood protection and other risk 
management (Dean and Dalrymple, 2002; Dolan et al., 1991). 
Furthermore, shoreline mapping and monitoring can help to 
understand the spatial distribution of coastal inundation including its 
trend over time.  
 
In the literature, shoreline is defined as an intersection of coastal 
land and water surface indicating water edge movements as the tides 
rise and fall (Bird, 1985; Boak and Turner, 2005; Davidson-Arnott, 
2010). Even though shoreline position can be defined as the 
waterline at various stages of the tides, e.g., high tide, mid tide, and 
low tide, the shoreline is largely associated with the sea level (Oertel, 
2005). Ideally, the shoreline is the physical interface of land and 
water with its position changing through time (Doland et al. (1980) in 
Boak and Turner (2005)). Its change results from long-term, cyclic 
and random variation. Long-term variation includes variation due to 
sediment storing or due to the relative sea level rise. Cyclic variation 
is a combination of seasonality and tide, whereas waves, storms and 
floods cause random variation of a local character. 
  
To properly extract trends from shoreline positions has been a 
subject of considerable interest. Due to the dynamic nature of the 
shoreline, shoreline indicators were used as a proxy to represent the 
“true” shoreline position. Boak and Turner (2005) and Gens (2010) 
distinguished: (1) a feature that can be distinguished in a coastal 
imagery; for example, the high water line (HWL) (Gorman et al., 
1998; Leatherman and Eskandary, 1999); (2) the intersection of a 
tidal datum with a coastal profile, such as the mean high water 
(MHW); and (3) proxy shoreline features extracted from digital 
images at the coast, e.g., water and non-water pixels following a 
binary classification (Chen and Chang, 2009; Ghosh et al., 2015).  
 
Ground surveys and photogrammetry have been used widely to 
detect shoreline position (Li et al., 2002). Both methods are relatively 
expensive and time consuming, hence data derived from remote 
sensing platforms are widely used nowadays (Boak and Turner, 
2005). Wang (2004) and Dewan and Yamaguchi (2008) applied the 
optimal threshold values to separate water and non-water by giving 
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different cut-off values for each dataset of Landsat TM images. 
Senthilnatha et al. (2012) used a genetic algorithm and particle 
swarm optimization to distinguish the water from the non-water 
region, based on time-series analysis of images. Martinis et al. 
(2013) applied spectral indices EVI (Enhanced Vegetation Index), 
LSWI (Land Surface Water Index) and DVEL (Difference Value 
between EVI and LSWI) to detect water on MODIS data. Ouma and 
Tateishi (2007) and Ghosh et al. (2015) generated a water index to 
produce a binary class of water and non-water, then manually 
digitized the result to produce a shoreline map. Other methods such 
as post-classification comparison (Tamassoki et al., 2014), binary 
slicing (Li and Damen, 2010), masking operation and visual 
interpretation (Ford, 2013; Marfai et al., 2008a) have been 
implemented to derive shoreline change maps.  
 
Many studies on shoreline mapping used hard classifications, whereas 
few studies exist for fuzzy classification of shorelines (Muslim et al., 
2006; Taha and Elbeih, 2010). A hard classification assigns a single 
label to a pixel, thus allocating each pixel to the class to which it has 
its highest membership. This could be misleading, because a 
shoreline is by definition the physical interface of coastal land and 
water surface with its position changing through time. There is a 
transition zone between water and land, and hence the boundary is 
imprecise. In addition, manual digitizing methods are time 
consuming, costly and labour intensive as they are associated with 
the large amount of image data required for shoreline mapping and 
monitoring. Because of these limitations, this study explores fuzzy 
classification in deriving proxy shoreline features from digital images. 
Moreover, to map the dynamic shoreline positions and to extract their 
changes requires the handling of uncertainty. Most studies regarding 
shoreline change detection explored uncertainty modelling with a 
focus on aerial imagery (Rı´o and Gracia, 2013; Yao et al., 2015b) 
and a statistical uncertainty analysis (Genz et al., 2007; Maiti and 
Bhattacharya, 2009). Our study focuses on: (1) inherent uncertainty 
due to continuous variation of a shoreline over time; and (2) 
uncertainty as it propagates from extraction and implementation of 
the shoreline change detection method. 
 
To deal with these uncertainties, fuzzy c-means classification 
developed by Bezdek et al. (1984) was applied. Unsupervised FCM for 
two classes (water and non-water) is expected to support a rapid 
mapping of shoreline changes and give an accurate shoreline position 
by allowing multiple memberships for a pixel. The current study 
extends that approach by including tide condition. Thus, a change 
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detection method was implemented to distinguish abrupt and gradual 
changes at the object level and provide the change uncertainty at the 
pixel level. 
 
The objective of this study was to develop a fuzzy method that is 
useful for detecting shoreline changes from multi-temporal images by 
taking the gradual transition between water and land and the tides 
into account. The method, based on fuzzy classification and change 
uncertainty, will be described by means of possibility and necessity 
measures. The method is applied to an area in Java, where the 
northern coastal area of Sayung sub-district experienced a severe 
change of shoreline position. 
 

 

2.2. Fuzzy method for shorelines identification 

 
2.2.1 Satellite images and data pre-processing 

Landsat images from three different sensors were used to monitor 
the shoreline change between 1994 and 2015. Landsat has a 16-day 
revisit time, and passes Indonesia at approximately 02.00–03.00 
GMT. Six spectral bands of Landsat TM and ETM and seven spectral 
bands of Landsat OLI/TIRS were used. Spectral bands of Landsat TM 
and ETM applied in this research cover the blue (0.45–0.515 µm), 
green (0.525–0.605 µm), red (0.63–0.69 µm), near infrared (0.75–
0.90 µm), short wave infrared 1 (1.55–1.75 µm) and shortwave 
infrared 2 (2.09–2.35 µm) parts of the electromagnetic spectrum. In 
addition, the spectral bands of Landsat OLI/TIRS included in FCM 
consisted of coastal and aerosol (0.43–0.45 µm), blue (0.45–0.51 
µm), green (0.53–0.59 µm), red (0.64–0.67 µm), near infrared 
(0.85–0.88 µm), shortwave infrared 1 (1.57–1.65 µm) and 
shortwave infrared 2 (2.11–2.29 µm). Table 2.1 shows the images 
used in this study supplemented by tidal data. Tidal data in 
accordance with the time of acquisition of the images was collected 
from the Indonesia Geospatial Information Agency. 
 
Pre-processing consisted of histogram minimum adjustment to 
reduce the effect of atmospheric path radiance (Hadjimitsis et al., 
2010; Mather, 2004), followed by geo-referencing using >100 ground 
control points (GCP) that were carefully selected on both Landsat and 
ortho-rectified WorldView-2 images from road intersections, building 
corners, wall boundaries, river and other prominent features, and re-
sampling to a 30 m pixel size using the nearest neighbour resampling 
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method and third order polynomial transform algorithm. The root 
mean square error (RMSE) was less than 0.1 pixels. 
 
Table 2.1 Landsat images from three different sensors (Thematic Mapper, 
Enhanced Thematic Mapper, Operational Land Imager/Thermal Infrared 
Sensor) supplemented by astronomical tide level, and reference data. All 
images were captured in the low tides 

Acquisition 
Date 

Acquisition 
Time (GMT) 

Sensor Astronomical 
Tide Level (m) 

Reference Data 

11 Nov 1994 02:02 TM −0.321 Topographic map, 1994 
(published on 2000) 

5 Dec 2000 02:41 ETM −0.215 QuickBird image 
acquired on 3 May 2003 

11 Dec 2002 02:36 ETM −0.364 QuickBird image 
acquired on 3 May 2003 

2 April 2003 02:36 ETM −0.118 QuickBird image 
acquired on 3 May 2003 

27 August 
2013 

02:50 OLI/TIRS −0.054 Pleiades image acquired 
on 27 February 2013 

8 April 2014 02:48 OLI/TIRS −0.025 Image via Google Earth 
acquired on 1 July 2014 

26 March 
2015 

02:47 OLI/TIRS −0.109 Field measurement 
(2015) 

 
2.2.2 Fuzzy c-means classification and parameter estimation 

The FCM iterative clustering method developed by Bezdek et al. 
(1984) was performed on the images to discriminate the land and 
water classes. FCM separates data clusters with fuzzy means and 
fuzzy boundaries allowing for partial membership. Let ܺ ൌ ሼݔଵ, ,ଶݔ … ,  ேሽݔ
be a sample of the ܰ pixels on an image, with ݔ௞߳	ܴ௡ where ݊ is the 
number of bands in an image, i.e., ݊=6 or ݊=7 for Landsat images 
used here. Let ܿ denote the number of subsets (clusters or partitions) 
with 2≤ܿ≤ܰ. In this research, we have ܿ=2 for the classes water and 
non-water, respectively, since we considered the boundary between 
these two classes as the shoreline position. FCM minimizes the 
following objective function ܬ௠ (Bezdek et al., 1984): 

௠ܬ ൌ ෍෍ሺμ௜௞ሻ௠ ௞ݔ‖ െ ௜‖ଶݒ , 1 ൑ ݉ ൑ ∞

௖

௜ୀଵ

ே

௞ୀଵ

  (2.1) 

where μ௜௞ is the membership value of ݇௧௛ pixel to class ݅, ݉ is the 
fuzzy weight controlling the level of fuzziness, and ݒ௜ ൌ 	 ሺݒ௜ଵ, ,௜ଶݒ . . . ,  ௜௡ሻݒ
is the mean vector for class ݅. The membership value μ௜௞ for class ݅ 
and pixel ݇ satisfies the following constraints: 

0	 ൑ μ௜௞ ൑ 1 ݅ ∈ ሼ1, … . , ܿሽ, ݇ ∈ ሼ1, … ,ܰሽ (2.2) 
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෍μ௜௞

ே

௞ୀଵ

൐ 0, ݅ ∈ ሼ1, … , ܿሽ (2.3) 

෍μ௜௞

௖

௜ୀଵ

ൌ 1, ݇ ∈ ሼ1, … . , ܰሽ (2.4) 

There should be at least one class for which the membership value 
μ௜௞ of the ݇௧௛ pixel larger than 0. Meanwhile, the sum of all 
memberships μ௜௞ in a pixel should be equal to 1. The membership 
values of the classification corresponding to the pixel value ܺ follow 
the trapezoidal membership function in Figure 2.1 and Equation 2.5: 
 

 
Figure 2.1 Trapezoidal membership function. Area between ܾ and ܿ is a 
core zone which has a membership value equal to 1 to the water class. Area 
ܽ െ ܾ and ܿ െ ݀	are transition zones or boundaries which have value between 
0 and 1 to the water class, while the pixels with 0 memberships do not belong 
to the water class 

μሺݔ, ܽ, ܾ, ܿ, ݀ሻ ൌ

ە
ۖۖ
۔

ۖۖ
ۓ

0, ݔ ൏ ܽ,
ݔ െ ܽ
ܾ െ ܽ

	, ܽ ൑ ݔ ൑ ܾ

1, ܾ ൏ ݔ ൏ ܿ	
݀ െ ݔ
݀ െ ܿ

, ܿ ൑ ݔ ൑ ݀

0, ݔ ൐ ܾ

	 (2.5) 

If ݉ equals 1, clusters that minimize the objective function are hard 
clusters and FCM is a hard classifier. An increase of ݉ tends to an 
increase in fuzziness. Bezdek et al. (1984) further explained that no 
evidence distinguishes an optimal ݉, but for most data, 1.5≤݉≤3.0 
give good results. In addition, Foody (1996) stated that in most 
studies, ݉=2.0 produces an accurate fuzzy classification. In this 
work, the values ݉=1.5,1.6,1.7,1.8,1.9,2.0,2.5, and 3.0 were used 
to test the influence of ݉ on the classification results. 
 
FCM was finalized by labelling one of the two membership images 
resulting from each (unsupervised) FCM as the water membership 
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image. To do so, we used the combination of near infrared (NIR) and 
shortwave infrared (SWIR) of Landsat bands. Infrared bands exhibit a 
strong contrast between water and land features, because water 
absorbs these wavelengths while they are reflected by land 
(Richards, 2013). In the visible part of the spectrum, the differences 
between land and water are less outspoken, especially if the water 
contains some sediment. Therefore, the water label was given to the 
class which has the lowest value of the sum of the cluster means in 
the infrared bands, defined as: 

௪௔௧௘௥ܯܥܨ ൌ ,௖ଵሻூோ݅ݒሾሺܰܫܯ ሺ݅ݒ௖ଶሻூோሿ  (2.6) 

where ݅ݒ௖ଵ is the sum of mean vector for the first class in the infrared 
bands IR, and ݅ݒ௖ଶ is the sum of mean vector for the second class in 
the infrared bands IR. Table 2.2 shows an example of cluster means 
of each subset in the infrared bands. The labelling of ܿ1 or ܿ2 as water 
was decided by using Equation 2.6. In this example, the water label 
was given to ܿ1 as it has the lowest value of the sum of the cluster 
means in the infrared bands. 
 
Table 2.2  Mean vector of two subsets in the infrared bands of 2015 Landsat 
image. The labelling of ࢉ૚ or ࢉ૛ as water was determined by assessing the 
sum of the mean vector cluster 

Subset 
Mean vector of the cluster in the infrared 

bands ሺ࢏࢜ሻ Total (Band5 + 
Band6 + Band7) 

Band5 Band6 Band7 

ܿଵ 2085.711 925.3242 591.7152 3602.75 

ܿଶ 8824.05 7427.402 5240.535 21491.99 

 
2.2.3 Deriving water class images 

Water membership images, resulting from the FCM classification, 
show the membership of pixels to the water class. Thresholding was 
applied to transform the water membership image into several hard 
classifications. The class ܥ௪ in water class images was defined as: 

௪ܥ ൌ ൜
1 ݂݅ μ݅݇ ൒ ݀
0 ݁ݏ݅ݓݎ݄݁ݐ݋

(2.7) 

where 1 is water class, 0 is non-water class, and ݀ is threshold value. 
The possible ranges of the threshold values are between 0 and 1. In 
this study, we set the value of ݀ between 0.1 and 0.9 to observe the 
influence of ݀ on the results of classification. The results of 
thresholding were binary images called water class images. 
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2.2.4 Accuracy assessment 

Reference data are described in Table 2.1. For the 2015 image, 
reference data were derived from fieldwork conducted at the end of 
March 2015. In this case, 150 points from fieldwork data were 
selected based on the same tide condition. Furthermore, an image 
made available via Google Earth 2014 captured during the high tide, 
a 2013 Pleiades image during low tide, and a 2003 QuickBird image 
captured during the rising tide were interpreted visually to generate 
150 reference points. Further, because of limited availability of high-
resolution images and maps, the 2003 QuickBird image was used as 
well for accuracy assessment of images in 2000 and 2002. Finally, 
the topographic map published in 2000 and generated from aerial 
photographs of 1994 was manually digitized on-screen to produce 
water and non-water classes. For this map, 150 points were 
randomly selected, and were used as reference data against the 
classification result of the 1994 image. To evaluate how well the 
remotely sensed classifications agree with the reference data, error 
matrices were generated. A kappa (κ) coefficient was computed for 
each error matrix (Richards, 2013). 
 

2.2.5 Shoreline generation 

Two methods were followed to identify the shoreline. The first 
method determined shoreline as a single line, as has been widely 
considered in the previous studies, whereas the second method 
assumed shoreline as a margin, which reflects the possible locations 
of shoreline influenced by the membership to the water class in a 
pixel. 
 
Shoreline as a single line 

First, the shoreline was derived by generating water class image and 
set ݀=0.5. Two sub-areas were identified, namely water and non-
water. Shoreline was located at the boundary of the two  
sub-areas and obtained by converting the water class image to line 
features in GIS. For this research, a sub-area was defined as a set of 
contiguous cells with the same value. 
 
Shoreline as a margin 

Secondly, we considered the shoreline as an area (margin). The 
shoreline margin was generated by creating a crisp sub-area 
determined by ݀=0.3 and ݀=0.7 as the lower and upper thresholds 
obtained in the parameter estimation. Afterwards, each water class 
image was converted into polygon feature in GIS. Thus, three sub-
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areas were identified, namely water if μ௜௞≥0.7 non-water if μ௜௞<0.3 
and shoreline margin if 0.3≤μ௜௞<0.7. Over time, the changes of 
shoreline position are due to the exchanges between the shoreline 
margin and water or non-water sub-area. 

 
2.2.6 Uncertainty estimation 

Considering the imprecise position of the shoreline in remote sensing 
images and the uncertainty propagated through the change detection 
method, shoreline margin, water and non-water sub-areas were 
associated with values reflecting the uncertainty of pixels belonging 
to any of these classes. Water membership values were used for this 
purpose. The certainty of pixel ݇	to belong to any class was assessed 
using possibility and necessity measures (Dubois et al., 2007; Li et 
al., 2015; Sebari and He, 2013; Zadeh, 1978). If ܥ is a subset of a 
universe of discourse ܷ and ݔ ∈  ሻ is the degree ofݑthen π௫ሺ ,ܥ
possibility that ݔ takes value ݑ. The value of π௫ሺݑሻ is evaluated by the 
degree of membership μ஼ሺݑሻ. This can be written as: 

π௫ሺݑሻ ൌ μ஼ሺݑሻ, ݑ∀ ∈ ܷ (2.8) 

The value of ݔ ∈  :is then estimated by assessing possibility measure ܥ

Π஼ ൌ ݌ݑݏ
௨∈஼

π௫ ሺݑሻ (2.9) 

The possibility measure Π஼	corresponds to the element of ܥ that has 
the highest possibility degree according to π௫. Further, to inform that 
the event will be realized, the certainty of ܥ is defined as the 
impossibility of the complement: 

஼ܰ ൌ 1 െ Π஼  (2.10) 

ܰ஼ ൌ 1 െ Π஼  (2.11) 

The ܰ pixels in ܺ are therefore indicated as ܥ if Π஼ ൐ Π஼ and 	 ஼ܰ ൐ ܰ஼. 
Further, the uncertainty of ܥ is defined as: 

ܷ஼ ൌ 1 െ ஼ܰ (2.12) 

 
2.2.7 Shoreline change detection 

To detect the changes in the positions of the shoreline, shoreline 
margin, water and non-water areas, results for two dates ݐଵ and ݐଶ 
had to be superimposed in GIS. In order to have a detailed “from-to” 
change trajectory information, the post-classification comparison 
approach was used (Lu et al., 2014). Topological relation between 
two sub-areas can be characterized by considering the nine-
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intersection model of interiors and exteriors (Ardila et al., 2012; 
Egenhofer and Al-Taha, 1992). Based on this method, a sub-area 
identified at time ݐଵ is denoted as ܴ௧ଵ, with the boundary ܤሺܴ௧ଵሻ, 
interior ܫሺܴ௧ଵሻ, and exterior ܧሺܴ௧ଵሻ. It intersects with another sub-area 
identified in time ݐଶ and denoted as ܴ௧ଶ, with the boundary ܤሺܴ௧ଶሻ, 
interior ܫሺܴ௧ଶሻ, and exterior ܧሺܴ௧ଶሻ. These intersections define the 
nine-intersection matrix as: 

ܯ ൌ ቌ
ሺܴ௧ଵሻܤ ∩ ሺܴ௧ଶሻܤ ሺܴ௧ଵሻܤ ∩ ሺܴ௧ଶሻܫ ሺܴ௧ଵሻܤ ∩ ሺܴ௧ଶሻܧ
ሺܴ௧ଵሻܫ ∩ ሺܴ௧ଶሻܤ ሺܴ௧ଵሻܫ ∩ ሺܴ௧ଶሻܫ ሺܴ௧ଵሻܫ ∩ ሺܴ௧ଶሻܧ
ሺܴ௧ଵሻܧ ∩ ሺܴ௧ଶሻܤ ሺܴ௧ଵሻܧ ∩ ሺܴ௧ଶሻܫ ሺܴ௧ଵሻܧ ∩ ሺܴ௧ଶሻܧ

ቍ (2.13) 

with intersections being either empty ሺ∅ሻ or non-empty ሺ൓∅ሻ.  
 

 
Figure 2.2 Topological relationships between two sub-areas. Green polygons 
represent sub-area ܴ௧ଵ and blue polygons represent sub-area ܴ௧ଶ 

 
Figure 2.2 shows eight topological relationships of two sub-areas for 
each intersection value in the matrix ܯ including disjoint, meet, 
overlap, contains, inside, covers, covered by, and equal (Egenhofer 
and Al-Taha, 1992). Following the aforementioned methods in the 
shoreline generation, the changes of shoreline and its change 
uncertainty can be presented as follows: 
 
Shoreline as a single line 

In the first method, the changes of this single shoreline may have 
occurred as a consequence of changes between water and non-water 
sub-areas. We determined the changes of these sub-areas at times ݐଵ 
and ݐଶ and analyzed the uncertainty of the changes at pixel level. 
Water class images from two dates ݐଵ and ݐଶ were superimposed, and 
abrupt and gradual changes were identified. An abrupt change is 
defined when a sub-area emerges at ݐଶ without a corresponding sub-
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area at ݐଵ. Also, a sub-area present at ݐଵ without a corresponding 
sub-area at ݐଶ indicates an abrupt change. A gradual change specifies 
an increase or decrease of sub-areas that were both present at ݐଵ and 
 ଶ. The process occurs in small stages over a period rather thanݐ
suddenly. The overlay analysis between images at different epochs 
permitted the identification of changes categorized as: water to non-
water, and non-water to water. Considering the topological 
relationship as given in Figure 2.2, disjoint and meet were found 
where a sub-area emerges or disappears. Meanwhile, any of the 
other six relationships account for gradual changes. 
 
Shoreline as a margin 

The second method measured the changes of the shoreline margin at 
different epochs. Change uncertainty was presented at the pixel 
level. Water class images from times ݐଵ and ݐଶ were superimposed in 
a GIS. We distinguished again abrupt and gradual change. In this 
method, the overlay analysis between water class images at different 
epochs, however, permitted more changes to be identified 
categorized as: (1) shoreline to non-water; (2) water to shoreline; 
(3) water to non-water; (4) non-water to shoreline; (5) shoreline to 
water; and (6) non-water to water. The changes of a sub-area where 
sedimentation has taken place resulted in changes of shoreline to 
non-water, water to shoreline, and water to non-water. These types 
of changes were considered positive changes to non-water sub-area 
(+). Coastal inundation led to the changes of non-water to shoreline, 
shoreline to water, and non-water to water. These types of changes 
were considered negative changes to non-water sub-area (−). These 
changes were identified either as abrupt or gradual changes, using 
the same criteria on corresponding objects as in the previous section. 
 

2.2.8 Change uncertainty and change area estimation 

Shoreline changes and the related sub-areas were associated with 
change uncertainty values. Change uncertainty was derived based 
upon the uncertainty of pixels belonging to the specified sub-areas in 
 :ଶ (Cheng, 1999)ݐ ଵ andݐ

ܥ ௧ܷభ,௧మ ൌ ሾܰܫܯ ௖ܷሺܴ௧ଵሻ, ௖ܷሺܴ௧ଶሻሿ (2.14) 

where ௖ܷሺܴ௧ଵሻ is the uncertainty of pixel ݇ belonging to sub-area ܴ௧ଵ at 
 ଵ, and ௖ܷሺܴ௧ଶሻ is the uncertainty of pixel ݇ belonging to sub-area ܴ௧ଶݐ
at ݐଶ. Based upon the results of the change uncertainty estimation, 
the changed area of a specific change category, e.g., water to non-
water, or shoreline to water was defined as:  
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ሻ݄ܥሺܣ ൌ ௞ܲሺ݄ܥሻ ൈ ሺ݇ሻܣ (2.15) 

where ௞ܲሺ݄ܥሻ is number of pixels belonging to the area of a specific 
change category, ܣሺ݇ሻ is area of pixel ݇ equal to 30 ൈ 30 (m2). 
 
Change area of shoreline as a single line 

Figure 2.3 illustrates the procedure to estimate the net change 
between ݐଵ and ݐଶ defined as: 

௧భ,௧మܪܥ ൌ ௞ܲሺ݄ܥ஺ሻ െ ௞ܲሺ݄ܥ஻ሻ (2.16) 

where A and B represent the area described in Figure 2.3, and ௞ܲሺ݄ܥ஺ሻ 
and ௞ܲሺ݄ܥ஻ሻ are the number of pixels belonging to the change area A 
and B, respectively. 
 

 
Figure 2.3 (a) Shoreline at time ݐଵ; (b) Shoreline at time ݐଶ; (c) Shoreline 
change estimation considering two categories of changed areas, namely: (A) 
water to non-water, and (B) non-water to water. Solid lines represent 
shoreline at ݐଵ whereas dashed lines refer to shoreline at ݐଶ 

 
The negative sign (−) shows that the change in B categorized as the 
change from non-water to water has produced a negative change to 
the non-water area. Meanwhile, the positive sign (+) represents the 
change in A categorized as the change from water to non-water 
which has caused a positive change to the non-water area. 
 
Change area of the shoreline as a margin 

Figure 2.4 illustrates the procedure to estimate the total changed 
area in the second approach. The net changed area was determined 
as: 

ܪܥ
భ், మ் ൌ 	 ௞ܲሺ݄ܥ஺ሻ ൅ ௞ܲሺ݄ܥ஻ሻ ൅ ௞ܲሺ݄ܥ஼ሻ െ ௞ܲሺ݄ܥ஽ሻ െ ௞ܲሺ݄ܥாሻ െ ௞ܲሺ݄ܥிሻ	 (2.17) 
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where A, B, C, D, E, and F represent the area described in Figure 2.4, 
and ௞ܲሺ݄ܥ஺ሻ, ௞ܲሺ݄ܥ஻ሻ, ௞ܲሺ݄ܥ஼ሻ, ௞ܲሺ݄ܥ஽ሻ, 	 ௞ܲሺ݄ܥாሻ	and ௞ܲሺ݄ܥிሻ are the 
number of pixels belonging to changed areas A,…,F, respectively. 
 

 
Figure 2.4 (a) Shoreline margin at time ݐଵ; (b) Shoreline margin at time ݐଶ; 
(c) Shoreline change estimation considering six changed areas, namely: (A) 
shoreline to non-water, (B) water to shoreline, (C) water to non-water, (D) 
non-water to shoreline, (E) shoreline to water, and (F) non-water to water. 
Solid lines represent shoreline margins at ݐଵ whereas dashed lines refer to 
shoreline margins at ݐଶ 

 
The positive sign (+) indicates that the changes in A, B and C have 
caused a positive change to the shoreline margin and non-water 
areas. On the other hand, the negative sign (−) shows that the 
changes in D, E, and F have induced a negative change to the 
shoreline margin and non-water areas. 
 
 

2.3. Shoreline results and the uncertainty 
estimation 

 
2.3.1 Parameter estimation 

Figure 2.5 provides the results of the κ value for parameter 
estimation of the fuzzy weight (݉) conducted on seven images with ݀ 
values ranging from 0.1 to 0.9. From the results, we found that the 
highest κ value was obtained for ݀=0.5. The variation in fuzzy weight 
had little influence on the classification results when the ݀ was set at 
0.5. High κ values were obtained for ݀ values between 0.3 and 0.7, 
and ݉ values between 1.5 and 3.0. Best results in terms of κ values 
were obtained for ݉=1.7. Furthermore, we selected ݀ values of 0.3, 
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0.5, and 0.7 as the lower, the middle, and the upper ݀ respectively, 
as the optimal ݀ values to handle the uncertainty of the water class. 

 
2.3.2 FCM classification, thresholding and accuracy 

assessment 

Table 2.3 presents the κ values of FCM implemented with ݉=1.7 and 
݀=0.3,0.5 and 0.7, respectively. Unsupervised FCM achieved the 
highest κ value when ݀=0.5. The value of κ was slightly lower for 
݀=0.7, and the lowest κ for ݀=0.3. When comparing images, the 
lower κ values were observed for the images of 2000 and 2002. Such 
lower accuracies could be due to the use of QuickBird image 2003 as 
reference data. The acquisition time of the 2003 QuickBird and 
Landsat images (2000 and 2002) differs more than a year. Therefore, 
changes of some locations due to village development, seasonal and 
tide condition could affect the selection of an appropriate sample 
point. 
 
Table 2.3  The accuracy of unsupervised FCM classification applied at selected 
parameter 1.7=࢓ and 0.3,0.5=ࢊ and 0.7. For all images, 0.5=ࢊ obtained the 
highest ૂ values,	0.7=ࢊ produced slightly lower ૂ values, and 0.3=ࢊ resulted 
in the lowest ૂ values 

Classified 
images 

κ coefficient for selected ࢊ values 

0.3 0.5 0.7 
1994 0.95 0.96 0.96 
2000 0.81 0.86 0.81 
2002 0.85 0.90 0.85 
2003 0.87 0.93 0.89 
2013 0.86 0.95 0.90 
2014 0.83 0.95 0.90 
2015 0.90 0.95 0.92 
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Figure 2.5 The accuracy assessment results of water class images, generated 
by applying FCM classification followed by thresholding on the water 
membership image. The highest κ values were obtained from 	݀=0.5 for all 
images, and ݀=0.3 and 0.7 gave a nearly constant κ value 
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Figure 2.6 (a–n) FCM results show the membership of water class 
(a,c,e,g,i,k,m), and classified images of water class by setting ݀=0.5 
(b,d,f,h,j,l,n). The shrinking of non-water sub-areas over two decades can be 
identified by the change of the shape of the non-water class from wide strips 
to the thin elongated shapes over the series of images (see (a–n); e.g., grid 
cells C3). Whereas non-water sub-areas emerged when mangroves were 
planted (see (i) grid cells C2), and in coastal reclamation areas (see (a,c) grid 
cells A5) 

 
Figure 2.6 shows FCM results for ݉=1.7 presenting the membership 
to the water class ranging from 0 to 1, together with classified 
images for ݀=0.5. Areas with a high membership to the water class 
include marine areas; e.g., Figure 2.6b grid cell A2, fishponds; e.g., 
Figure 2.6n grid cell D3, and water-covered agricultural areas; e.g., 
Figure 2.6j grid cell E5. Muddy areas are located on the border of 
water and non-water; e.g., Figure 2.6k grid cell A4. Further, the 
shrinking of non-water areas over two decades could also be 
distinguished. This can be seen by the change of the shape of the 
non-water class from wide strips to the thin elongated shapes over 
the series of images in Figure 2.6a–n; e.g., grid cells C3. On the 
other hand, non-water sub-areas emerged in several locations, such 
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as when mangroves were planted; e.g., see Figure 2.6i grid cells C2, 
and in reclamation areas; e.g., see Figure 2.6a,c grid cells A5. 
 
 

2.3.3 Shoreline and uncertainty estimation 

The results of shoreline as a single line 

Figure 2.7a presents the shoreline positions derived for ݀=0.5. This ݀ 
value was selected because it yielded the best κ result when applying 
the threshold to derive the water class images from membership 
images. Shoreline was thus assessed through the uncertainty value 
of water and non-water sub-areas (see Figure 2.7b). The uncertainty 
values represent the uncertainty that the pixel belongs to water, 
determined following Equation 2.12. A dark blue colour indicates a 
higher uncertainty that the pixels to belong to the water class, 
whereas a light blue colour denotes pixels having a lower uncertainty 
to be classified as water. Generally, pixels which are closer to 
shoreline have a higher uncertainty of belonging to the water class; 
e.g., see Figure 2.7d grid cells C2 and D2. 
 

 
Figure 2.7 (a–d) The illustration of shoreline as a line; (a) Shorelines (in red 
colour) created by setting ݀=0.5; (b) the uncertainty of pixels classified as 
water at the uncertainty level ≤0.5. Generally, pixels closer to the shoreline 
have a higher uncertainty value (see (d) grid cells C2 and D2) 
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The results of shoreline as a margin 

Figure 2.8 presents the second method, an illustration of the 
shoreline margin generated by setting ݀=0.3 and ݀=0.7. Shoreline 
margin are represented by blue polygons and their width is 
determined by the shoreline condition. A wider margin shows the 
more gradual transition from water to non-water occurring for 
instance in a low-lying muddy area, or near a swamp area; see 
Figure 2.8c grid cells C3 and D3. Meanwhile, a narrow margin reflects 
a more abrupt transition, as for example at a steep coast or at a 
shoreline with embankment or shoreline protection; see Figure 2.8c 
grid cells B2, and B3. Shoreline margin was assessed through 
different levels of uncertainty (see Figure 2.8d–g). The uncertainty 
values represent the uncertainty that a pixel belongs to the water 
class estimated following Equation 2.12. A dark blue colour indicates 
a higher uncertainty of pixels to belong to the water class, whereas a 
light blue colour denotes pixels having lower uncertainty. Generally, 
pixels which are closer to water have a higher membership to the 
water class. Consequently, these pixels may have a higher certainty 
to be classified as water. 
 

 
Figure 2.8 The illustration of shoreline as a margin; (a) Shoreline margin 
(blue polygons) generated by giving ݀=0.3 and 0.7; (b) the uncertainty of 
shoreline margin from Equation 2.12; (c) zooming in sub-areas in yellow 
rectangle based on Figure 2.8a. Shoreline margin was assessed through 
different levels of uncertainty ሺܷ஼ሻ: (d) ≤0.1; (e) ≤0.2; (f) ≤0.3; and (g) 
≤0.4 
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2.3.4 Shoreline change detection results and change 
uncertainty 

The results of change for shoreline as a single line 

The results of the first method in shoreline change detection are 
presented in Figure 2.9. We distinguished two types of change, i.e., 
water to non-water (red colour), and non-water to water 
(blue colour). 
 

 
Figure 2.9 (a–f) Shoreline change analysis at ݀=0.5 Two changes were 
identified, namely non-water to water and water to non-water. Large areas 
changed from non-water to water such as due to inundation and erosion 
which were indicated between 1994 and 2000 (a). Whereas large areas 
changed from water to non-water and were distinguished between 2000 and 
2002 (b) 

 
The maps in Figure 2.10 demonstrate shorelines with their associated 
change uncertainties derived from Equation 2.14. Two categories of 
change uncertainty were identified: (1) change uncertainty to water 
(shades of blue); and (2) change uncertainty to non-water (shades of 
red). For both colours, darker shades indicate a higher change 
uncertainty than lighter shades. Table 2.4 summarizes the changes in 
a number of pixels between water and non-water at different levels of 
uncertainty for site in the yellow rectangle in Figure 2.10a. Number of 
pixels increase with the increase of change uncertainty values. 
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Figure 2.10 (a) Shoreline change uncertainty at ݀=0.5. (b–f) Change 
uncertainty is highlighted at different levels for the period 1994–2000 for the 
yellow rectangle site. The number of red pixels indicates that the change 
uncertainty from water to non-water increase with the increase of uncertainty 
values, as also can be seen for the blue pixels. 

 
Table 2.4 Changed area (in number of pixels) between water and non-water 
at different change uncertainty levels (see yellow rectangle site in Figure 
2.10a). The number of pixels increases with the increase of change 
uncertainty values. Obvious changes were observed by a change uncertainty  
value ≤0.1 

Change Area 
 level ࢁ࡯

0.1 0.2 0.3 0.4 0.5 
Water to non-water +9 +12 +15 +20 +27 
Non-water to water −190 −219 −235 −241 −250 

Note: + gain of non-water, − loss of non-water 
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Table 2.5 Changed area (in ha) between water and non-water at 0.5=ࢊ and 
 during the period 1994–2015. Inundation has been distinguished 0.1 ≥ ࢁ࡯
during four periods (1994–2000, 2002–2003, 2003–2013 and 2014–2015), 
while change to non-water has been identified for two periods (2000–2002 
and 2013–2014)  

Change 
area 

1994–
2000 

2000–
2002 

2002–
2003 

2003–
2013 

2013–
2014 

2014–
2015 

Water to 
non-water 

+20.0 +197.5 +23.2 +51.4 +64.5 +21.7 

Non-water 
to water 

−670.1 −32.0 −210.1 −182.8 −20.3 −26.8 

Net change  −650.2 +165.5 −186.8 −131.4 +44.3 −5.1 

Note: + gain of non-water, − loss of non-water 

 

 
Figure 2.11 (a–f) Shoreline change uncertainty at ݀=0.5 and 0.1≥ܷܥ for the 
period 1994–2015. The extensive inundation has been indicated from 1994 to 
2000 (a) and the largest change to non-water occurred in the period 2000–
2002 (b) 

 
The trend of shoreline changes was thus assessed in the period 
1994–2015 (Figure 2.11 and Table 2.5). The changes in water and 
non-water sub-areas have been observed by comparing values for 
two consecutive years. The results for changed areas are reported in 
Table 2.5. Table 2.5 shows that in the period 1994–2000 in which the 
largest inundation occurred, non-water areas were inundated on one 
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side (−670.1 ha), while a small change to non-water can be found on 
the other side (e.g., +20.0 ha). The net change was inundation 
(−650.2 ha), as shown in Figure 2.11a, e.g., grid cells C3, and D3. 
Another large change to water (−186.8 ha) was identified from 2002 
to 2003 (see Figure 2.11c; e.g., grid cells C3, and D3). Whereas 
extensive change to non-water (+165.5 ha) occurred over the period 
2000–2002 (Figure 2.11b; e.g., grid cells C3 and D3). 
 
The results of change for shoreline as a margin 

Figure 2.12 provides change maps of the shoreline margin and 
related sub-areas in the period 1994–2015, in which we identified six 
changes. A wider change area from non-water to water (blue colour) 
can be seen in e.g., Figure 2.12a grid cells C3 and D3. On the other 
hand, narrow change areas from shoreline to water are present in 
e.g., Figure 2.12f grid cells C2. Between 2000 and 2002, large areas 
changed from water and shoreline to non-water, e.g., Figure 2.12b 
grid cells C2, C3 and D3. Some of those areas changed again to 
water between 2002 and 2003. Those changes could be due to a 
different growing phase of crops since this location has an extensive 
agricultural area such as paddy field (Hartini, 2015). Meanwhile, 
some areas changed from water and shoreline to non-water in the 
period 2003–2013 (see Figure 2.12c grid cell B2) which was caused 
by a successful mangrove planting program in Bedono village. 
 
Change uncertainty of shoreline margin, water and non-water are 
presented in Figure 2.13. Meanwhile, Table 2.6 shows the changes in 
the number of pixels between shoreline margin, water and non-water 
at different levels of uncertainty for the yellow rectangle site in Figure 
2.13a. The number of pixels in the change area decreases with a 
decrease in the level of uncertainty. Obvious changes from shoreline 
margin to water due to inundation were 88 pixels (see Table 2.6 
column 1 and Figure 2.13a). Obvious changes from shoreline margin 
to non-water due to reclamation or deposition were indicated for one 
pixel (see Table 2.6 column 1 and Figure 2.13a). 
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Figure 2.12 (a–f) The changes of shoreline margin, water and non-water. Six 
changes were identified including abrupt and gradual changes. An extensive 
inundation has been indicated from 1994 to 2000 (a), while the large change 
to non-water occurred in the period 2000–2002 (b). 

 

 
Figure 2.13 (a) Shoreline change uncertainty for the period 1994–2000; (b–
f) Change uncertainty was measured at different levels for yellow rectangle 
site. A number of pixels (red, green, and blue) increases with the increase in 
the level of uncertainty. Changes from non-water to shoreline and from water 
to shoreline were grouped under one label and are presented in shades of 
green, while changes from shoreline and water to non-water are presented in 
shades of red. Changes from non-water and shoreline to water are 
represented as shades of blue 
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Table 2.6 Changed area (in the number of pixels) between shoreline margin, 
water and non-water at different uncertainty levels (see yellow rectangle site 
in Figure 2.13a). Obvious changes were observed for a level of uncertainty 
≤0.1 

Change Area 
 Level ࢁ࡯

0.1 0.2 0.3 0.4 0.5 
Shoreline to non-water +1 +2 +3 +6 +10 
Water to shoreline +17 +14 +12 +21 +23 
Non-water to shoreline −11 −20 −21 −26 −34 
Shoreline to water  −88 −94 −101 −101 −103 
Non-water to water −149 −175 −189 −189 −190 
Water to non-water +6 +8 +10 +11 +11 

Note: + gain of non-water, − loss of non-water 

 

 
Figure 2.14 (a–f) Change uncertainty of shoreline margins and their 
associated sub-areas at ܷܥ level ≤0.1 in the period 1994–2015. (a) The 
largest coastal inundation occurred in the period 1994–2000. It was 
dominated by light blue pixels indicated low change uncertainty values to 
water. (b) The largest increase in non-water occurred in the period 2000–
2002 represented by light red pixels indicated low change uncertainty to non-
water 
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The changes of shoreline margin, water and non-water sub-area were 
analyzed over the period 1994–2015. Figure 2.14 and Table 2.7 
present the results of shoreline change analysis at the uncertainty 
level ≤0.1. Table 2.7 shows that the largest coastal inundations in 
terms of area occurred between 1994 and 2000, when 739.4 ha 
changed from non-water and shoreline to water (see Figure 2.14a, 
e.g., grid cells C3, and D3), and in 2003–2013 for 199.7 ha (see 
Figure 2.14d, e.g., grid cells B3 and C3). Between 2000 and 2002, 
186.3 ha changed from water and shoreline to non-water (see Figure 
2.14b, e.g., grid cells C3 and D3), and another 64.6 ha in 2013–2014 
(Figure 2.14e, e.g., grid cell C1). In general, we can conclude that 
there was a considerable change of shoreline margin and its 
associated sub-areas over these two decades. 
 
Table 2.7 Changed area (in ha) at 0.1≥ࢁ࡯ in the period 1994–2015. The 
largest change from non-water to water due to coastal inundation occurred in 
the period 1994–2000, and the largest change from water to non-water due 
to different planting periods in an agricultural area occurred in the period 
2000–2002 

Change Area 1994–
2000 

2000–
2002 

2002–
2003 

2003–
2013 

2013–
2014 

2014–
2015 

Shoreline to 
non-water 

+0.3 +2.4 +3.4 +4.1 +5.6 +10.4 

Water to 
shoreline 

+8.3 +94.9 +48.5 +36.8 +63.7 +32.8 

Water to non- 
water 

+5.5 +167.7 +8.6 +38.5 +39.9 +11.0 

Non-water to 
shoreline 

−3.0 −4.1 −6.2 −7.3 −7.5 −3.1 

Shoreline to 
water 

−115.1 −61.5 −105.4 −135.9 −27.1 −41.3 

Non-water to 
water 

−635.3 −13.1 −178.3 −136.0 −10.0 −9.7 

Net change −739.4 +186.3 −229.3 −199.7 +64.6 +0.1 

Note: + gain of non-water, − loss of non-water 

 
 

2.4. Discussion 

 
In this chapter, we have demonstrated two change detection 
methods for shoreline considering its complex and fuzzy nature 
including its uncertainty. Both methods were successful in identifying 
abrupt and gradual changes of shoreline at an object level and in 
estimating the spatial distribution of uncertainty at the pixel level. 
The first method derived the shoreline by applying a threshold ݀=0.5 
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on the water membership images. Shoreline was then considered as 
a single line; its position was influenced by the spatial extent of its 
associated sub-areas. The uncertainty in the shoreline position could 
be assessed by means of the uncertainty of its associated sub-areas. 
The second method derived shoreline margin as an area in which 
water moves to and fro as tides rise and fall. This margin was 
presented as a crisp object with a boundary determined by ݀ values 
resulting from parameter estimation. Comparing these showed that 
the second method allowed us to assess the spatial extent of the 
shoreline and measure its change in uncertainty at different levels. 
This method provided more insight into the spatial distribution of 
changes and their uncertainty and more spatial detail of the process 
of change from non-water via shoreline margin to water and vice 
versa. In estimating the net change category, both methods gave 
similar results. Net changes identified by the second method covered 
a larger area both for negative changes (1994–2000, 2002–2003 and 
2003–2013) as well as for positive changes (2000–2002 and 2013–
2014), with the exception of 2014–2015 (see Tables 2.5 and 2.7). 
The different results were mainly due to differences in threshold 
values when generating the shoreline. Shoreline and its changes have 
been presented as crisp sub-areas. The changed areas were thus 
associated with the distribution of change uncertainty. 
 
In deriving shorelines as a fuzzy object, we used FCM to calculate the 
membership. Membership values obtained by applying FCM were 
used to deal with uncertain information on the position of objects, 
such as the location of fuzzy shorelines. In this research, we 
implemented FCM for two classes, since shoreline is the set of 
locations where water and non-water have physical interactions. In 
addition, the difference between water and non-water provided the 
largest spectral differences in images, as was confirmed in Bijker et 
al. (2011). For similar situations, a suitable number of clusters need 
to be specified either by users based on their a priori knowledge or 
estimated from the images. In the literature, several methods exist 
to measure the cluster validity index for finding a suitable number of 
clusters, as for example exponential cluster validity index, non-
fuzziness index, fuzziness performance index, and entropy measure 
(Fisher and Pathirana, 1990; Roubens, 1982; Tso and Mather, 2009; 
Zarandi et al., 2010). 
 
Reference data were collected in the field in 2015. In this research, 
images were selected based on the same low tide condition, and 
therefore, reference points were also selected under similar low tide 
conditions. Due to limited availability of high resolution images, 
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however, the 2003 QuickBird image was used for accuracy 
assessment of images in 2000, 2002 and 2003, even though it was 
collected during rising tide. Differences in tides between images and 
these reference data have led to a low accuracy of classified images 
for 2000, 2002 and 2003, as compared to 2013 and 2015. Moreover, 
because of limited availability of Landsat images and severe cloud 
cover problems in the study area, other criteria such as availability of 
images with the same seasonal condition have not been applied yet. 
For images captured during rainy seasons, the rain increased the 
wetness of soil surfaces, which led to a false impression of more 
flooded conditions in the classified images, and increased the 
uncertainty in the shoreline position. Landsat images captured in 
2000 and 2002 were recorded during the rainy seasons, while the 
2003 QuickBird image, used as reference data, was captured during 
the dry season. Therefore, differences in seasons and tides could 
have contributed to the misclassification of water and non-water 
leading to lower classification accuracy. Considering the larger 
availability of new satellite images in the future, we recommend to 
select images recorded under similar, preferably dry, seasonal 
conditions to reduce the uncertainty due to seasonal influence. 
 
The shoreline change detection methods developed and applied in 
this research involved the generation of a shoreline and its 
uncertainty using selected ݉ and ݀ values, and produced a hard 
classification by means of thresholding. A variation in ݉ values had 
little influence on the results of the classification. An important 
reason was the small changes in membership values obtained when 
݉ values were set between 1.5 and 3.0. Within that range, the 
change in membership value was generally less than 0.1. However, ݀ 
variation strongly influenced the results. Small variations in ݀	causing 
large variation in area indicate the presence of gradual boundaries, 
as for example in a muddy area. Meanwhile, sharp or sudden 
boundaries caused little change in area with varying ݀, such as at a 
steep coast or at the shoreline with embankment. 
 
The change uncertainty value expresses how sure we are that a 
change really occurred. Therefore, the uncertainty addressed in this 
research corresponds to the existential uncertainty of the identified 
changes. A complete model of uncertainty, however, should also 
include an extensional uncertainty which considers the spatial extent 
of the change (Molenaar and Cheng, 2000). This would involve 
modelling shoreline as a fuzzy object as proposed by Cheng (1999). 
In fact, the membership and	݀ values of the water class in this work 
may be used to represent shoreline as a conditional boundary since 
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spatial extents of water (and non-water) depend on the choice of	 ݀ 
value. In this case, points where μ=1 are the interior of fuzzy sub-
areas (cores), whereas points with 0<μ<1 would belong to transition 
zones and points with μ=0 belong to non-water objects. 
 
Analysis of shoreline changes in the study area in Sayung sub-district 
revealed an extensive change of shoreline with the largest change 
between 1994 and 2000. Land subsidence was indicated as one of 
the causes of this permanent submergence. Chaussard et al. (2013) 
mentioned that the rate of the land subsidence in this location 
reaches approximately 6.0 cm·yr−1. Subsidence was accelerated by 
an extreme ground water extraction for industrial purposes and as 
the consequence of a rapid population growth, classified as an 
anthropogenic subsidence. Putranto and Rüde (2011) cited the 
Directorate of Environmental Geology and Mining Regions of 
Indonesia, stating the number of registered deep wells in Semarang 
Demak in the early 1900s was only 16. The number of deep wells 
increased significantly up to 1,194 in 2002. Besides, land subsidence 
was also triggered by a natural compaction of clayey sediment and 
settlement loading (Chaussard et al., 2013; Lubis et al., 2011; Marfai 
and King, 2007). Furthermore, the threat of flooding comes from sea 
level rise as well. As mentioned by Sofian (2010), the rise of sea level 
in Indonesia is approximately 0.2–1.0 cm·yr−1 with an average of 0.6 
cm·yr−1. 
 
Different planting periods in agricultural areas could be a major cause 
of the changes from water and shoreline to non-water in the period 
2000–2002 followed by a large reverse change in the period 2002–
2003 (see Table 2.5 and 2.7). In addition, we identified coastal land 
reclamation activities to install an industrial area and a settlement in 
Sriwulan village. After the period 2003–2013, more agricultural areas 
were converted into fishponds as a result of expanding saltwater 
infiltration. On the other hand, some changes from water to non-
water occurred as a result of a successful mangrove planting program 
which started in 2003. 
 
The study area was located in a river delta formed from deposits 
carried by many rivers discharging into the Java Sea. The remarkable 
coastal inundation and erosion, which Sayung sub-district has faced 
for more than two decades, was probably also due to a change in 
sediment-carrying capacity of the longshore current (Anonymous, 
2014; Astra et al., 2014). This longshore current, generated by 
waves, exceeded the quantity of sediment supplied to the beach. 
Further, land use change in upstream areas resulted in an increase of 
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erosion and water discharge in particular during rainy seasons, 
yielding more sediment to the downstream area. In fact, not all of 
this sediment could be discharged into the sea; some was deposited 
along the river bottom, irrigation canals, estuaries and other water 
bodies in its path. This led not only to the narrowing and to silting up 
of the canals and rivers, but also to the reduction of sediment supply 
to the littoral zone inducing coastal erosion. Moreover, massive 
coastal reclamation in a neighbouring area such as Terboyo industrial 
complex extended seaward after 1994, and Tanjung Emas Harbour 
first developed in 1985 could have changed currents and material 
transport along the coast in the study area as well. To prove that 
there were some influences of harbour development and beach 
reclamation to the severe inundation impact, however, is beyond the 
scope of this study. 
 
 

2.5. Conclusions 

 
This research presents two methods to identify shoreline positions: as 
a line and as a margin, including a measure of change uncertainty at 
different epochs. Both methods used FCM classification to determine 
partial membership of water and non-water. While shoreline changes 
can be detected by both methods, the shoreline as a margin provides 
a more detailed estimation of change area than the shoreline as a 
line. Moreover, by having shoreline as a margin, we can assess its 
spatial extent and measure its change uncertainty at different levels. 
Abrupt and gradual changes of shoreline were identified at an object 
level and the spatial distribution of uncertainty estimated at a pixel 
level. 
 
Some challenges for the improvement of the method consist of: (1) 
including an extensional uncertainty and represent shoreline as a 
conditional boundary; (2) including seasonal condition in the selection 
of images; and (3) integrating the results with a digital elevation 
model. In addition, the integration with other datasets such as land 
use and land cover pattern, hydrological data and other information 
associated with the study area is important as well to have a better 
understanding of processes which influence the shoreline change. 
 
Both methods have been successfully implemented in a coastal area 
in the Sayung sub-district in Java using a series of Landsat images. 
The change area estimation and its change uncertainty may support 
local government and other stakeholders in monitoring shoreline 
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changes. Integrating the results with the distribution of elements at 
risk such as settlements and other important facilities can help to 
analyze which location needs to be prioritized in disaster response. 
For example, priority could be given to a change area from shoreline 
to water which has low change uncertainty value as it was obvious 
that shoreline has changed due to inundation or erosion. Priority 
could also be given, however, to the area with higher change 
uncertainty, for example if the location is a densely populated area. 
Continuous monitoring of shoreline changes in order to understand 
risks and to anticipate the potential impacts is highly important. 
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Monitoring Shorelines with Change Vector 
Analysis2 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
A method to identify shoreline positions and their changes as a fuzzy area is 
presented including a measure of change confusion. The method provided 
information regarding the change magnitude and the trend of water 
membership in each pixel. This information represents specific type of change 
processes showing multi-year patterns of water membership changes over 
time. 

   

                                          
2 This chapter is based on the published paper: Dewi, R.S., Bijker, W., Stein, A. 
Change Vector Analysis to Monitor the Changes in Fuzzy Shorelines. Remote 
Sensing. 2017, 9, 147 
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Abstract 
 
Mapping of shorelines and monitoring of their changes is challenging 
due to the large variation in shoreline position related to seasonal 
and tidal patterns. This study focused on a flood-prone area in the 
north of Java. We show the possibility of using fuzzy-crisp objects to 
derive shoreline positions as the transition zone between the classes 
water and non-water. Fuzzy c-means classification was used to 
estimate the membership of pixels to these classes. A transition zone 
between the classes represents the shoreline, and its spatial extent 
was estimated using fuzzy-crisp objects. In change vector analysis 
(CVA) applied to water membership of successive shorelines, a 
change category was defined if the change magnitude between two 
years, tଵ and tଶ, differed from zero, while zero magnitude 
corresponded to no-change category. Over several years, overall 
change magnitude and change directions of the shoreline allowed us 
to identify the trend of the fluctuating shoreline and the uncertainty 
distribution. The fuzzy error matrix (FERM) showed overall accuracies 
between 0.84 and 0.91. Multi-year patterns of water membership 
changes could indicate coastal processes such as: (a) high change 
direction and high change magnitude with a consistent positive 
direction probably corresponding to land subsidence and coastal 
inundation, while a consistent negative direction probably indicates a 
success in a shoreline protection scheme; (b) low change direction 
and high change magnitude indicating an abrupt change which may 
result from spring tides, extreme waves and winds; (c) high change 
direction and low change magnitude which could be due to cyclical 
tides and coastal processes; and (d) low change direction and low 
change magnitude probably indicating an undisturbed environment, 
such as changes in water turbidity or changes in soil moisture. The 
proposed method provided a way to analyze changes of shorelines as 
fuzzy objects and could be well-suited to apply to coastal areas 
around the globe. 
 
Keywords: shoreline change; change vector; confusion index; 
coastal inundation; Indonesia 
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3.1. Introduction 

 
The study of changing shorelines is essential to assist in the design of 
effective coastal protection (Jin et al., 2015; Zanuttigh et al., 2005), 
verifying numerical models (Baldassarre et al., 2009; Kaergaard and 
Fredsoe, 2013), developing hazard maps (Snoussi et al., 2009), 
formulating policies regarding coastal development (O’Connor et al., 
2010), and for coastal research and monitoring (Tamassoki et al., 
2014). A shoreline is defined as the intersection of coastal land and 
water surface indicating the water edge movements of which the 
position is changing through time due to different water levels during 
high tide and low tide (Bird, 1985; Boak and Turner, 2005; Davidson-
Arnott, 2010). Oertel (2005) referred to a shoreline as the line 
associated with sea level rather than with high and low tides. When 
considering only the tide, many shorelines are due to the shifting of 
water with tidal differences. Tidal differences vary and are influenced 
by the changes in the magnitude of gravitational attractions on the 
water body of the Earth, winds and waves. Furthermore, shorelines 
have changed their dynamics at varying rates as a response to 
coastal processes such as sediment erosion, transportation and 
deposition along the shore. Rapid changes occur during an extreme 
event such as storms, whereas gradual changes occur during an 
intervening period (Bird, 2000). Shoreline changes can be estimated 
over various time scales and result into long-term, cyclic and local 
random variation. Long-term variation includes variation due to the 
land subsidence, relative sea level rise and sediment storage. Cyclic 
variation is related to the tide cycles or seasons, whereas waves and 
storms cause random variation of a local character. 
 
As the shoreline positions vary over time, shoreline indicators are 
used as proxies to represent shoreline positions, including: (a) 
distinguishable coastal features, for example, a previous high-tide 
line; (b) the intersection of coastal profile with specific vertical water 
elevation, e.g., the mean sea level; and (c) shoreline features 
observable from remote sensing images. An example of the latter is 
the boundary between water and non-water pixels (Dewi et al., 
2016; Ghosh et al., 2015; Liu et al., 2014; Moore et al., 2006). The 
shoreline boundary between coastal land and water is fuzzy since 
there is a gradual transition from coastal land to water. Given the 
nature of the fuzzy shoreline and its changing position, detection of 
shoreline requires dealing with uncertainty. Fisher (1999) mentioned 
three types of uncertainty: (a) errors: if a shoreline is clearly 
identified, the uncertainty may arise from error, for example in data 
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processing, spatial generalization, and measurement; (b) vagueness: 
if it is not possible to define the spatial extent of coastal land, water, 
and the transition zone (Williamson (1994) after Fisher (1999)); and 
(c) ambiguity: relating to the confusion of land and water definition 
considering a different classification system or a different perception. 
 
Previous studies have proposed several ways of generating shoreline 
positions. Shoreline survey and photogrammetry have been primary 
technology for shoreline mapping, yet both methods are time 
consuming and expensive (Li et al., 2002). Therefore, image 
classification is used widely nowadays to detect shoreline positions. 
Most studies regarding shoreline detection have used hard 
classification such as thresholding, water indices, iterative self-
organizing data analysis (ISODATA), binary slicing, maximum 
likelihood classification (MLC) and manual digitizing (Ghosh et al., 
2015; Marfai et al., 2008a; Senthilnatha et al., 2012; Shenbagaraj et 
al., 2014; Tamassoki et al., 2014), whereas only a few applied soft 
classifications (Dewi et al., 2016; Muslim et al., 2006; Taha and 
Elbeih, 2010). 
 
Due to the fuzziness of shoreline positions, using hard classification 
for shoreline mapping could produce errors on the classification 
results, since hard classification assigns a single label to a pixel, 
based on its highest membership. To overcome this limitation, this 
chapter explores fuzzy classification to detect shoreline positions from 
a remote sensing image. In our previous work, we proposed two 
procedures to derive fuzzy shorelines: (a) we derived shorelines by 
applying a threshold equal to 0.5 to the membership and depicted 
shorelines as a single line; and (b) we derived shorelines as a margin 
determined by the choice of thresholds on the membership function 
(Dewi et al., 2016). In the current paper, we proposed a third 
procedure to distinguish shoreline proxies from digital images. A 
shoreline is represented as the transition zone between water and 
land. In this case, pixels at which the membership value (μ) exceed 
0.99 are the core of a class, whereas pixels with 0.01<μ<0.09 belong 
to transition zones and pixels with μ<0.01 do not belong to objects. 
In this way, we can account for the gradual transition between water 
and land (vagueness of the boundary). Moreover, in change 
detection, use of transition zones instead of crisp shorelines allows us 
to account for the influence of ambiguity resulting from comparing 
images recorded under different circumstances, such as weather, and 
have a more detailed description, of not only the magnitude and 
direction of the changes, but also of the related uncertainty. 
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Various change detection techniques have been developed. They can 
be divided into two groups, namely bi-temporal change detection and 
temporal trajectory analysis (Jianya et al., 2008; Lambin and 
Strahler, 1994). The former measures changes based on two 
separate time periods, for example image differencing and post 
classification comparison. Image differencing does not provide a 
detailed change matrix while post classification comparison does not 
allow the detection of subtle changes within a class. The latter, 
temporal trajectory analysis is based on the temporal development 
curve or trajectory for successive times. It focuses both on what has 
changed between dates, as well as on the trend of the change over 
the period (Jianya et al., 2008; Lambin and Strahler, 1994; Lu et al., 
2014; Singh, 1989). Change detection in this research utilizes the 
second method. To measure the change of the fuzzy shoreline, 
change vector analysis (CVA) based upon pixel-wise comparison was 
used to estimate the changes of successive shorelines. CVA identifies 
changes of features which were acquired at different times. In 
previous studies, CVA was applied to the brightness and greenness 
indices (Kauth and Thomas, 1976; Malila, 1980), normalized 
difference vegetation index (Lambin and Ehrlich, 1997; Lambin and 
Strahler, 1994), near infrared band and vegetation index (Landmann 
et al., 2013), wetness and bare soil index (Vorovencii, 2014), and 
spectral bands and textural images (He et al., 2011; Singh and 
Talwar, 2015). In this study, CVA was applied to the water 
membership values of shoreline images. Furthermore, in the earlier 
studies CVA has been applied in the multi-spectral space (Malila, 
1980; Özyavuz et al., 2011), and then extended to be applied in 
multi-temporal observation vectors of an indicator variable measured 
at different times (Lambin and Strahler, 1994). CVA provides an 
overall change magnitude and change direction showing the trend of 
the fluctuating shoreline. 
 
The objective of this study was to develop a method that is useful for 
monitoring the changes of a fuzzy shoreline. The method is based on 
fuzzy classification and CVA. A series of Landsat images is used to 
detect shoreline positions as a transition zone while taking tides into 
account. For this study, the uncertainty of shoreline positions was 
estimated by means of confusion indices. We focus on inherent 
uncertainty caused by continuous variation of a shoreline over time, 
and on uncertainty as it propagates from extraction and 
implementation of the shoreline change detection method. The 
method is applied to an area in Java, in the northern coastal area of 
the Central Java Province, Indonesia, where extensive shoreline 
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changes associated with coastal inundation have increased in term of 
frequency and duration. 
 
 

3.2. Shoreline monitoring using fuzzy-crisp object 
model and CVA 

 
3.2.1 Satellite images, data pre-processing and reference 

data generation 

Satellite images and data pre-processing 

Multi-temporal images from the Landsat 8 OLI/TIRS (Operational 
Land Imager/Thermal Infrared Sensor) with 30 m spatial resolution 
were used to monitor the shoreline change between 2013 and 2015 
(Table 3.1). We obtained terrain corrected Landsat images (L1T 
product) from USGS EarthExplorer (USGS, 2015). Those images were 
acquired at the low tide. Tidal data relating to the time of acquisition 
of the images were collected from the Indonesian Geospatial 
Information Agency. 
 
Table 3.1 Landsat 8 OLI/TIRS images captured in the low tides supplemented 
by tide level and reference images used in the accuracy assessment purpose 
for each period 

Acquisition Date Astronomical Tide Level (m) Reference Data 
23 May 2013 −0.1 

Pleiades  
(27 February 2013) 

12 September 2013 −0.1 
14 October 2013 −0.3 
1 December 2013 −0.3 

10 May 2014 −0.01 

SPOT 6  
(5 October 2014) 

15 September 2014 −0.2 
1 October 2014 −0.2 

18 November 2014 −0.3 

29 May 2015 +0.04 
Sentinel 2  

(26 December 
2015) 

18 September 2015 −0.1 
20 October 2015 −0.3 

21 November 2015 −0.3 

 
Pre-processing of Landsat 8 OLI/TIRS comprises two steps: (a) 
histogram minimum adjustment; it was applied to remove the 
influence of atmospheric path radiance (Hadjimitsis et al., 2010; 
Mather, 2004); and (b) geo-referencing; it was implemented using 
>100 ground control points (GCP) collected from road intersections, 
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rivers and other prominent features. The root mean square error 
(RMSE) values were less than 0.1 pixels. Geo-registration of Landsat 
images was conducted using geometrically corrected reference 
images: (1) a Pleiades image at a 2 m spatial resolution; (2) a SPOT 
6 (Satellite Pour l’Observation de la Terre) image at a 6 m spatial 
resolution; and (3) a Sentinel 2 image at a 10 m spatial resolution. 
The spectral band information for each reference image including 
Landsat 8 OLI/TIRS is available in Table 3.2. 
 
Table 3.2 The spectral band information of Landsat 8 OLI/TIRS used in image 
classifications, Pleiades, SPOT 6 and Sentinel 2 used as reference images 

Satellite Bands Wavelength (μm) 

Landsat 8 OLI/TIRS 

Coastal and Aerosol 0.43–0.45 

Blue 0.45–0.51 

Green 0.53–0.59 

Red 0.64–0.67 

NIR 0.85–0.88 

SWIR 1 1.57–1.65 

SWIR 2 2.11–2.29 

Pleiades 

Blue 0.43–0.55 

Green 0.50–0.62 

Red 0.59–0.71 

NIR 0.74–0.94 

SPOT 6 

Blue 0.45–0.52 

Green 0.53–0.59 

Red 0.625–0.695 

NIR 0.76–0.89 

Sentinel 2 

Blue 0.49 

Green 0.56 

Red 0.665 

SWIR 0.842 

 
Reference data generation 

To evaluate the accuracy of a fuzzy classification, it is necessary to 
use soft reference data (Congalton and Green, 2009; Lu and Weng, 
2007). We generated soft reference data from available fine 
resolution datasets (Harikumar et al., 2015; Pontius and Cheuk, 
2006). These datasets (Pleiades, SPOT 6 and Sentinel 2) were 
rectified using a 2015 orthoimage. To reduce the variance of the 
Pleiades image, smoothing was performed using the average filter 
applied to a 3 × 3 window size. Afterwards, we applied fuzzy c-means  



Monitoring Shorelines with Change Vector Analysis 

 58

with the number of classes ܿ=2 and the fuzzy weight ݉=1.7 (Dewi et 
al., 2016). Further, membership images generated using FCM 
classification from these high resolution datasets were used as 
reference images. 
 
For accuracy assessment purpose, the pixel size of SPOT 6 image was 
resampled to 10 m using nearest neighbour resampling, so that the 
spatial resolution of Pleiades, SPOT 6, Sentinel 2 and Landsat images 
were in the ratio 15:3:3:1. Hence, 225 pixels (15 × 15) of Pleiades, 9 
pixels (3 × 3) of SPOT 6, and 9 pixels (3 × 3) of Sentinel 2 were 
combined (pixel values averaged) to achieve the pixel dimension of 
Landsat images. Furthermore, an effective comparison could be made 
between images of different resolutions. 
 
For the alternative methods, MLC and hardened classification, we 
visually interpreted Pleiades and SPOT 6 images as hard reference 
data for the year 2013 and 2014 respectively, whereas ground data 
were used as the 2015 reference data. 
 

3.2.2 FCM classification 

To discriminate water classes from non-water, we applied a fuzzy c-
means classification (Bezdek et al., 1984). FCM iteratively separates 
data clusters with fuzzy means and fuzzy boundaries and the results 
assign each pixel to a partial membership of land cover classes. The 
membership values (μ) range from 0 to 1, and add up to 1 for each 
pixel. In this work, the membership values of the classification follow 
the trapezoidal membership function. In the literature, there are two 
possible ways of generating the membership function: Similarity 
Relation Model (SRM) and Semantic Import Model (SIM) (Burrough, 
1989; Cheng, 2002; Zhu et al., 2010). The former derives the 
membership function using classifiers like for example fuzzy k-
means, fuzzy c-means, and neural networks (Chuang et al., 2006; 
Zhu et al., 2010). The first two are data driven, partitioning the 
observations based on multivariate attributes. The latter, SIM, 
generates membership based on expert knowledge (Burrough, 1989; 
Medasani et al., 1998). 
 
The FCM results assign each pixel to membership of the two classes. 
The value of ݉ determines the level of fuzziness in FCM classification. 
If ݉	=1, FCM is hard classifier. FCM was carried out by labeling two 
membership images resulting from each FCM classification as the 
water and non-water images. To do so, the combination of near 
infrared (NIR) and shortwave infrared (SWIR) of Landsat bands were 
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used. The water label was given to the class which has the minimum 
value of the sum of the cluster means in the infrared bands. Detailed 
descriptions regarding the FCM algorithm are available in Bezdek et 
al. (1984), whereas detailed explanations regarding membership 
function, pixel labeling, and parameter estimation for FCM 
classification can be found in Dewi et al. (2016). 
 

3.2.3 Validation 

To quantify the accuracy of the FCM classifier, a conventional error 
matrix cannot be used. In this study, we used a fuzzy error matrix 
which has non-negative real numbers (Binaghi et al., 1999; Pontius 
and Cheuk, 2006; Silván-Cárdenas and Wang, 2008), since pixels 
have a partial membership to two classes. 
 
For accuracy assessment, soft reference images were generated by 
applying an FCM classification to Pleiades, SPOT 6, and Sentinel 2 
images which were all captured during low tides. Let the value of μ௜௞ 
and μ௝௟ represent membership values of the ݇th pixel for class ݅ in the 
classified image and ݈th pixel for class ݆ in the reference images. It 
was assumed that the rows of the matrix are classes of the classified 
image and the columns are classes of the reference image. The fuzzy 
error matrix (FERM) is obtained using minimum operator showing the 
maximum possible overlap between the classified and reference 
images and indicating the agreement between classes in both images 
(Harikumar et al., 2015; Pontius and Cheuk, 2006; Silván-Cárdenas 
and Wang, 2008): 

௜ୀ௝ܣ ൌ ,ሺμ௜௞ܰܫܯ μ௝௟ሻ (3.1) 

To calculate the agreement in FERM, a group of 225 Pleiades pixels 
(15 × 15), 9 SPOT 6 pixels (3 × 3) and 9 Sentinel 2 pixels (3 × 3) 
were averaged to achieve pixel dimension of Landsat images. Using 
this reference data, membership of 200 pixels randomly selected 
from both classified and reference images were computed to obtain 
the overall accuracies (OA) of the FCM classifications: 

ܣܱ ൌ
∑ ௜ୀ௝ܣ
௖
௜ୀଵ

݇௦
(3.2) 

where ݇௦ represents the number of pixels used to generate the FERM. 
Moreover, we compared the quality of the FCM results with respect to 
alternative pixel-based classification methods. Firstly, we classified 
the multi-spectral bands of Landsat using the MLC classifier being the 
most commonly used supervised classification technique for remote 
sensing images (Richards, 2013). Secondly, we classified the multi-
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spectral bands of Landsat images using FCM and then labelled each 
pixel to the class to which it has the highest membership. It was 
assumed that hard output is the highest membership value which is 
actually computed from the soft output (Dutta, 2009; Tso and 
Mather, 2009; Wang, 1990; Zhang and Foody, 1998b). We called this 
the hardened classification. After classification, post classification 
comparisons were applied to detect the changes of the shorelines by 
superimposing the classification results in GIS. 
 

3.2.4 Deriving fuzzy shoreline 

FCM classification derives two raster layers, namely: water and non-
water membership images. Each layer consists of fuzzy regions with 
fuzzy boundaries. Estimation of the spatial extent of objects i.e., 
water, non-water and shoreline, and their representations is related 
to the interpretation of the fuzziness of objects (Cheng, 2002). To 
derive shorelines at the locations where water and non-water objects 
meet, we modified the fuzzy-crisp object model based upon Cheng 
(2002). The two classes (water and non-water) are spatially disjoint, 
but their boundary is vaguely defined, whereas their interiors are 
crisp. Given this concept, we consider the boundary between water 
and non-water as fuzzy and form a transition zone that we call 
shoreline. To determine the spatial extent of water, non-water and 
shoreline, it is necessary to combine class objects from different 
layers into a single layer. The decision function ݀௪௞ assigns pixel ݇ 
with water membership value μ௪௞ to a sub-area of water class based 
upon the following conditions: 

If ሺμ௪௞ ൐ 0.99ሻ then ሺ݀௪௞ ൌ 1ሻ (3.3) 

which means that the pixels belong to sub-areas water. Threshold 
0.99 was set to represent the highest water membership values 
indicating the core of water. 

If	ሺ0.01 ൏ μ௪௞ ൏ 0.99ሻ then ሺ݀௪௞ ൌ μ௪௞ሻ (3.4) 

This equation classifies pixels as shoreline. 

If ሺμ௪௞ ൏ 0.01ሻ then ሺ݀௪௞ ൌ 0ሻ (3.5) 

Pixels not belonging to water or shoreline constitute non-water. A 
threshold of 0.01 represents the lowest water membership values. 
This indicates pixels with membership below that threshold not 
belong to water or shoreline areas. The results after deriving fuzzy 
shorelines by applying Equations (3.3)–(3.5) were called as shoreline 
images. 
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3.2.5 Uncertainty estimation 

The uncertainty in class assignment was estimated by a measure of 
the confusion index ܫܥ for each pixel resulting from FCM classification 
as follows (Burrough et al., 1997; Cheng et al., 2001; Zhang and 
Kirby, 1999): 

ܫܥ ൌ 1 െ ሺμ௜௞
ଵ െ μ௜௞

ଶ ሻ (3.6) 

If ܫܥ approaches 1 then the difference in membership values between 
the first and the second highest membership values are small 
meaning that both membership values are almost equal. Thus, it is 
more likely that the pixel defines a fuzzy boundary and the 
uncertainty of the pixel to belong to the class with the largest 
membership is high. If ܫܥ approaches 0, however, then the difference 
in membership values between the first and the second highest 
membership values are high and the uncertainty of the pixel to 
belong to the class with the largest membership is low. 
 

3.2.6 Shoreline change detection 

For establishing the changes over time, shoreline images obtained 
using Equations (3.3)–(3.5) of the same year were stacked and 
compared with the stack of shoreline images of the next year with 
corresponding seasons. If membership values to water (μ௪௞) of 
shoreline images within year ݐଵ and ݐଶ are given by ܩ ൌ ሺ݃ଵ, ݃ଶ, . . … , ݃௭ሻ௧భ 
and ܪ ൌ ሺ݄ଵ, ݄ଶ, . . … , ݄௭ሻ௧మ, respectively, and ݖ is the number of shoreline 
images, a change vector is defined as: 

ܸܥ∆ ൌ ܪ െ ܩ ൌ

ۉ

ۈ
ଵ݄ۇ െ ଵ݃
݄ଶ െ	݃ଶ
… . .

݄௭ െ ݃௭ی

ۋ
ۊ
	 (3.7) 

Here, ∆ܸܥ includes all the change information between two years for 
a given pixel. The final result of CVA is an image of vector changes. 
The shoreline change is defined as the vector difference between 
successive time periods and is represented by a vector in a multi-
dimensional space. The length of the change vector indicates the 
magnitude of change and its direction indicates the nature of the 
change (Lambin and Strahler, 1994; Lunetta and Elvidge, 1999). 
 
Change magnitude 

The change magnitude ‖∆ܸܥ‖ was derived by determining the 
Euclidean distance between shoreline images as: 
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‖ܸܥ∆‖ ൌ ඥሺ݄ଵ െ ݃ଵሻଶ ൅ ሺ݄ଶ െ ݃ଶሻଶ൅. . . …൅ ሺ݄௭ െ ݃௭ሻଶ	 (3.8) 

 represents the total membership differences between two ‖ܸܥ∆‖
years and measures the intensity of the shoreline change. Two 
categories of change were identified, namely change and no-change. 
A change category was defined when the water membership 
difference between ݐଵ and ݐଶ is larger than zero, whereas a no-change 
category is related to a magnitude equal to zero. A higher change 
magnitude corresponds with a large water membership difference 
between shoreline images in ݐଵ and ݐଶ. When the change magnitude is 
low, the water membership difference between shoreline images in ݐଵ 
and ݐଶ is small. 
 
Change direction 

For all pixels classified as change, we estimated the change 
directions. Change direction was determined by evaluating the water 
membership difference between shoreline images in two successive 
years. It quantifies the variation of water membership in each pixel 
and shows how frequent the changes have occurred. Change 
direction estimation started by calculating the number of change 
combinations (ܥܥ) as: 

ܥܥ ൌ ௣ܦ (3.9) 

where ܦ refers to the types of change direction which can be 
distinguished when comparing the stack of shoreline images from 
both years for corresponding seasons and ݌ refers to the number of 
shoreline image pairs. We identified three types of change direction 
to water: positive change direction (or in short positive direction), 
negative change direction (negative direction) and unclear change 
direction (unclear direction). 
 
The change vector (ܸܥ) showing water membership difference 
between a pair of shoreline images in ݐଵ and ݐଶ from corresponding 
seasons needs to be estimated: (a) if the water membership 
difference between pair of shoreline images within years ݐଵ and ݐଶ is 
less than zero then 1-=ܸܥ showing a decrease of water membership 
in ݐଶ; (b) if the water membership difference is larger than zero then 
 ଶ; (c) if theݐ showing an increase of water membership in 1+=ܸܥ
water membership difference is equal to zero then 0=ܸܥ showing that 
the water membership in ݐଵ and ݐଶ were the same. The total change 
vector (ܸܶܥ) values are defined as: 

ܸܥܶ ൌ 1ܸܥ ൅ .2൅ܸܥ . . …൅ ݖܸܥ (3.10) 
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refers to ሺ݄ଵ 1ܸܥ െ	݃ଵሻ, 2ܸܥ refers to ሺ݄ଶ െ	݃ଶሻ, and ݖܸܥ refers to ሺ݄௭ െ
	݃௭ሻ. Finally, the change direction (݄݃ܥ.  categories showing the (ݎ݅݀
degree of change direction to water membership were obtained by 
grouping the direction values: (a) ܸܶܥ values from +1 up to ൅ݖ were 
grouped as positive direction; (b) ܸܶܥ values from −1 up to െݖ were 
grouped as negative direction; (c) ܸܶܥ values equal to 0 showing 
unclear change directions were classified as unclear direction; and (d) 
 values equal to 0 having water membership differences equal to ܸܥܶ
0 at all time periods were classified as no-change. Table 3.3 shows 
the procedure to determine the change direction categories by using 
four pairs of image used in this study. 
 
Based upon these results, the change area of a specific change 
direction category (positive direction, negative direction, and unclear 
direction) and the no-change area were defined as: 

ሻ݄݃ܥሺܣ ൌ ௞ܲሺ݄݃ܥሻ ൈ ሺ݇ሻܣ (3.11) 

where ௞ܲሺ݄݃ܥሻ is the number of pixels belonging to the area of change 
and no-change, and ܣሺ݇ሻ is area of pixel ݇ (30 × 30 m2). 
 

3.2.7 Change uncertainty 

Based upon the change detection results, the change uncertainty of 
related areas was estimated by the confusion index ܫܥ. If ܫܥ of two 
images for ݐଵ and ݐଶ are given by ܳ ൌ ሺݍଵ, ,ଶݍ … . . , ܴ ௭ሻ௧భ andݍ ൌ
ሺݎଵ, ,ଶݎ … . ,  :௭ሻ௧మ, respectively, then the change confusion is derived asݎ

‖ܷܥ∆‖ ൌ ඥሺݍଵ െ ଵሻଶݎ ൅ ሺݍଶ െ .ଶሻଶ൅ݎ . …൅ ሺݍ௭ െ 	௭ሻଶݎ (3.12) 

A high ‖∆ܷܥ‖ value is related to a large difference of confusion indices 
between images for ݐଵ and ݐଶ, whereas a low change confusion 
corresponds to a small difference of confusion indices between 
images for ݐଵ and ݐଶ. 
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Table 3.3 The procedure to estimate change directions of shoreline. It quantifies the 
variation of water membership in each pixel and shows how frequent the changes have 
occurred 

CC 
CV 

TCV Chg.Dir CC 
CV 

TCV Chg.Dir 
CV1 CV2 CV3 CV4 

CV
1 

CV2 CV3 CV4 

1 0 0 0 0 0 
No-
change 

21 0 +1 −1 +1 +1 
Positive 
direction 

2 +1 +1 +1 +1 +4 
Positive 
direction 

22 0 −1 +1 +1 +1 
Positive 
direction 

3 +1 0 +1 +1 +3 
Positive 
direction 

23 −1 +1 0 +1 +1 
Positive 
direction 

4 0 +1 +1 +1 +3 
Positive 
direction 

24 −1 0 +1 +1 +1 
Positive 
direction 

5 +1 +1 0 +1 +3 
Positive 
direction 

25 +1 0 −1 +1 +1 
Positive 
direction 

6 +1 +1 +1 0 +3 
Positive 
direction 

26 +1 −1 0 +1 +1 
Positive 
direction 

7 +1 −1 +1 +1 +2 
Positive 
direction 

27 +1 0 +1 −1 +1 
Positive 
direction 

8 −1 +1 +1 +1 +2 
Positive 
direction 

28 +1 −1 +1 0 +1 
Positive 
direction 

9 +1 +1 −1 +1 +2 
Positive 
direction 

29 +1 +1 0 −1 +1 
Positive 
direction 

10 +1 +1 +1 −1 +2 
Positive 
direction 

30 +1 +1 −1 0 +1 
Positive 
direction 

11 0 +1 +1 0 +2 
Positive 
direction 

31 0 +1 +1 −1 +1 
Positive 
direction 

12 +1 0 +1 0 +2 
Positive 
direction 

32 −1 +1 +1 0 +1 
Positive 
direction 

13 +1 0 0 +1 +2 
Positive 
direction 

33 0 +1 −1 0 0 
Unclear 
direction 

14 0 +1 0 +1 +2 
Positive 
direction 

34 0 −1 +1 0 0 
Unclear 
direction 

15 +1 +1 0 0 +2 
Positive 
direction 

35 −1 +1 0 0 0 
Unclear 
direction 

16 0 0 +1 +1 +2 
Positive 
direction 

36 −1 0 +1 0 0 
Unclear 
direction 

17 +1 0 0 0 +1 
Positive 
direction 

37 +1 0 −1 0 0 
Unclear 
direction 

18 0 +1 0 0 +1 
Positive 
direction 

38 +1 −1 0 0 0 
Unclear 
direction 

19 0 0 0 +1 +1 
Positive 
direction 

39 0 0 +1 −1 0 
Unclear 
direction 

20 0 0 +1 0 +1 
Positive 
direction 

40 −1 0 0 +1 0 
Unclear 
direction 
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Table 3.3 (Continued) 
CC 

CV 
TCV Chg.Dir CC 

CV 
TCV Chg.Dir 

CV1 CV2 CV3 CV4 CV1 CV2 CV3 CV4 

41 0 +1 0 −1 0 
Unclear 
direction 

61 0 −1 −1 +1 −1 
Negative 
direction 

42 +1 0 0 −1 0 
Unclear 
direction 

62 −1 −1 +1 0 −1 
Negative 
direction 

43 0 0 −1 +1 0 
Unclear 
direction 

63 +1 −1 −1 0 −1 
Negative 
direction 

44 0 −1 0 +1 0 
Unclear 
direction 

64 −1 +1 −1 0 −1 
Negative 
direction 

45 −1 +1 +1 −1 0 
Unclear 
direction 

65 −1 −1 0 +1 −1 
Negative 
direction 

46 +1 −1 +1 −1 0 
Unclear 
direction 

66 −1 0 −1 +1 −1 
Negative 
direction 

47 +1 −1 −1 +1 0 
Unclear 
direction 

67 0 0 −1 −1 −2 
Negative 
direction 

48 −1 +1 −1 +1 0 
Unclear 
direction 

68 −1 0 −1 0 −2 
Negative 
direction 

49 +1 +1 −1 −1 0 
Unclear 
direction 

69 0 −1 −1 0 −2 
Negative 
direction 

50 −1 −1 +1 +1 0 
Unclear 
direction 

70 −1 −1 0 0 −2 
Negative 
direction 

51 0 −1 0 0 −1 
Negative 
direction 

71 0 −1 0 −1 −2 
Negative 
direction 

52 −1 0 0 0 −1 
Negative 
direction 

72 −1 0 0 −1 −2 
Negative 
direction 

53 0 0 −1 0 −1 
Negative 
direction 

73 +1 −1 −1 −1 −2 
Negative 
direction 

54 0 0 0 −1 −1 
Negative 
direction 

74 −1 +1 −1 −1 −2 
Negative 
direction 

55 0 +1 −1 −1 −1 
Negative 
direction 

75 −1 −1 −1 +1 −2 
Negative 
direction 

56 0 −1 +1 −1 −1 
Negative 
direction 

76 −1 −1 +1 −1 −2 
Negative 
direction 

57 −1 +1 0 −1 −1 
Negative 
direction 

77 0 −1 −1 −1 −3 
Negative 
direction 

58 −1 0 +1 −1 −1 
Negative 
direction 

78 −1 0 −1 −1 −3 
Negative 
direction 

59 +1 0 −1 −1 −1 
Negative 
direction 

79 −1 −1 −1 0 −3 
Negative 
direction 

60 +1 −1 0 −1 −1 
Negative 
direction 

80 −1 −1 0 −1 −3 
Negative 
direction 

       
81 −1 −1 −1 −1 −4 

Negative 
direction 

Notes: ࢂ࡯: Change vector (based on Equation (3.7); ࡯࡯: Change combinations number 
(based on Equation (3.9)); ࢂ࡯ࢀ: Total change vector (based on Equation (3.10)); and 
 Change direction :࢘࢏ࡰ.ࢍࢎ࡯
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3.3. Change detection results and the estimation of 
uncertainty 

 
3.3.1 FCM classification and accuracy assessment 

Table 3.4 presents the accuracy assessment of classification results 
using FCM and alternative classification methods. The FCM classifier 
outperformed MLC and the accuracy values of FCM are generally 
higher than the hardened classification. 
 
Table 3.4 Summary of the overall classification accuracy using FCM, MLC and 
hardened classification 

Classified Images 
Overall Accuracy 

FCM MLC 
Hardened 

Classification 

23 May 2013 0.87 0.72 0.86 
12 September 2013 0.85 0.76 0.85 

14 October 2013 0.86 0.73 0.86 
1 December 2013 0.86 0.73 0.84 

10 May 2014 0.89 0.78 0.87 
15 September 2014 0.90 0.76 0.88 

1 October 2014 0.90 0.78 0.88 
18 November 2014 0.91 0.79 0.90 

29 May 2015 0.84 0.75 0.84 
18 September 2015 0.88 0.79 0.87 

20 October 2015 0.89 0.79 0.86 
21 November 2015 0.89 0.80 0.88 

 
Figure 3.1 presents an example of FCM outputs, together with MLC 
and hardened classification. In the image, MLC overestimated the 
non-water area shown by the larger area of non-water (see Figure 
3.1d,e,f, e.g., grid cells B1 and B2), whereas the hardened 
classification underestimated the non-water area (see Figure 3.1g,h,i, 
e.g., grid cells B1 and B2). Both methods failed to distinguish the 
gradual transition between water and non-water. 
 
The results of FCM classification are presented in Figure 3.2 with the 
values ranging from 0 to 1 for both membership images of water 
(Figure 3.2a,b,c) and non-water (Figure 3.2d,e,f). Areas with higher 
water membership values were located for example in marine areas, 
fishponds, and water-covered agricultural areas (Figure 3.2a, e.g., 
grid cell A2). In Figure 3.2d, higher non-water membership pixels are 
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located near settlements adjacent to the shorelines, and mangrove 
forests (Figure 3.2d, e.g., grid cells B2 and C3). 
 

 
Figure 3.1 Example of classification results using: FCM (a,b,c); MLC classifier 
(d,e,f); and hardened classification (g,h,i). (a–i) are the detail presentations 
of yellow rectangle site in the insert map. Hard classification resulted from 
alternative methods are of limited use in identifying the transition zone 
between water and non-water, for example, see grid cells, e.g., B1 and B2. 

 
3.3.2 Fuzzy shoreline and uncertainty estimation 

Figures 3.2g-i and 3.3a,d show the results of the fuzzy-crisp objects 
model to derive shorelines. Figures 3.3b,e presents the ܫܥ. Dark 
pixels with ܫܥ close to 0 indicate the areas classified as lower 
uncertainty (Figure 3.3e, e.g., grid cell A1), whereas brighter pixels 
with confusion index close to 1 indicate areas classified as the fuzzy 
boundary with higher uncertainty (Figure 3.3e, e.g., grid cell B2). 
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Figures 3.3c,f shows shorelines images with fuzziness represented by 
 values. These ambiguous areas indicate shoreline positions ܫܥ
represented by pixels in grey shades (Figure 3.3f, grid cells e.g., A2 
and B2). The width of these shorelines is determined by natural 
conditions of the coastal areas, for example, a wider shoreline is 
more likely to be found in a muddy coastal area or at a gently sloping 
beach, whereas a narrow shoreline is usually found along a steeper 
slope beach and coastal area with embankment and other man-made 
structures. 
 

 
Figure 3.2 FCM results show the membership of: water (a,b,c); and non-
water (d,e,f). To derive shoreline position, we combined both membership 
images using fuzzy-crisp object model (g,h,i). Blue pixels indicate core of 
water, orange pixels represent the core of non-water and shoreline is 
represented by light green pixels. 
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Figure 3.3  The representation of fuzzy-crisp object model: (a) the core of 
water and non-water objects, and shorelines; (b) confusion index values 
considered for the quantification of classification uncertainty; and (c) shoreline 
image with fuzziness represented by confusion index. Detailed presentation of 
shorelines in red rectangle sites are displayed in (d–f). 

 
3.3.3 Shoreline change detection 

Change magnitude and change uncertainty 

The change magnitude and the change and no-change categories of 
shoreline are displayed in Figure 3.4. Low change magnitude values 
correspond to a small water membership difference between 
shoreline images at ݐଵ and ݐଶ. They cover marine areas (Figure 3.4a, 
e.g., grid cells A2 and B3) and a relatively undisturbed coastal land 
(Figure 3.4c e.g., grid cells D1 and D2). In addition, high change 
magnitude values correspond to a large water membership 
difference. Those pixels cover muddy areas (Figures 3.4a,c, e.g., grid 
cells C1 and D1) and coastal land which was highly-influenced by 
tidal floods (Figures 3.4b,d, e.g., grid cells B2 and B3). 
 
The fuzziness of shoreline changes is presented in Figure 3.5. Low 
change confusion correspond to small ܫܥ differences between images 
in ݐଵ and ݐଶ. This indicates a low uncertainty that the changes have 
occurred as can be seen in Figures 3.5a,c, e.g., grid cells A1, A2 and 
B1. High values are associated with large ܫܥ differences and indicate 
a high uncertainty that the changes have occurred (Figures 3.5b,d, 
e.g., grid cells B1, B2 and B3). 
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Figure 3.4 The magnitude of shoreline change during: 2013–2014 (a,b); and 
2014–2015 (c,d). The magnitude values vary from high magnitude 
represented by dark blue pixels up to low magnitude represented by light blue 
pixels, whereas light yellow pixels show the no-change areas  

 

 
Figure 3.5  The fuzziness of the shoreline is represented by change confusion 
values in the periods: 2013–2014 (a,b); and 2014–2015 (c,d). The change 
confusion values vary from high values represented by dark orange pixels up 
to low values represented by light orange pixels, whereas light yellow pixels 
show the no-change areas 
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Change direction 

The representation of change direction of shoreline showing the 
variation of water membership in each pixel can be seen in Figure 
3.6. Positive directions to water membership correspond to the 
increase of water membership at time ݐଶ (Figure 3.6a, e.g., grid cells 
A2, B1, and C1). On the contrary, negative directions to water 
membership were associated with the decrease of water membership 
values at time ݐଶ (see Figure 3.6d, e.g., grid cells A2 and B1). The 
no-change category indicates an undisturbed environment (see 
Figure 3.6a, e.g., grid cell B1), whereas the unclear direction 
category indicates an ambiguous condition since the changes 
occurred without an obvious trend (see Figure 3.6b, e.g., grid cells 
A2 and C1). 
 

 
Figure 3.6 The representation of shoreline change direction: in the period 
2013–2014 (a,b); and in the period 2014–2015 (c,d). Darker colour pixels 
show a higher frequency of change to a certain direction. Shades of violet 
pixels depict a positive direction to water membership while shades of green 
pixels illustrate a negative direction to water membership. Figures in the 
second row show the magnitude of each change direction category in the 
period 2013–2014 (e,f); and in the period 2014–2015 (g,h). Darker colour 
pixels represent a higher change magnitude while lighter colour pixels show a 
lower change magnitude 

 
The change areas for each category are presented in Table 3.5. A 
positive direction to water covers an area of approximately 1828 ha 
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in the period 2013–2014 and 1120 ha in the period 2014–2015. A 
negative direction has occurred for 920 ha and 1635 ha in the period 
2013–2014 and in the period 2014–2015, respectively. Unclear 
direction category presented as pink pixels can be seen in Figure 
3.6c, e.g., grid cells A2 and C1 covering an area of 616 and 528 ha in 
2013–2014 and in 2014–2015, respectively. No-change direction 
shows a stable area which is mostly located at the sea or inundated 
fishponds represented by light yellow colour (see Figures 3.6a,d, e.g., 
grid cells A1 and B1) covering an area of 1319 and 1403 ha in the 
period 2013–2014 and in the period 2014–2015, respectively. 
 
Table 3.5 Change area (in ha) for each change category in the period of 
2013–2014 and 2014–2015. 

Change Category 2013–2014 2014–2015 

Positive direction 1828 1120 
Negative direction 920 1635 
Unclear direction 616 528 

No-change 1319 1403 

 

Change confusion 

The intensity of the change confusion was identified for each change 
direction category in the period 2013–2014 and in the period 2014–
2015, respectively (Figures 3.7a,c). Three change confusion values 
were identified including positive direction, negative direction and 
unclear direction. 
 
Comparison with alternative change detection methods 

Figures 3.8 and 3.9 show the change detection of shoreline using 
post classification comparison of MLC and hardened classification, 
respectively. Both MLC and hardened classification present shoreline 
as a single line. The changes of this single shoreline have occurred 
due to the changes of water and non-water area. Binary images from 
two dates ݐଵ and ݐଶ were superimposed in GIS and four types of 
change were identified, namely: non-water to water, water to non-
water, water to water and non-water to non-water. Figures 3.8a–c 
and 3.9a–c show the changes of shoreline in three consecutive dates 
in 2013, whereas Figures 3.8d,e and 3.9d,e present two examples of 
shoreline changes from 2013 to 2014 (Figures 3.8d and 3.9d) and 
from 2014 to 2015 (Figures 3.8e and 3.9e). 
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Figure 3.7 Total intensity of confusion indices for each change direction 
category: in the period 2013–2014 (a,b); and in the period 2014–2015 (c,d). 
Shades of orange pixels represent change confusion values for the area with 
positive direction, and shades of grey pixels show change confusion values for 
the area with negative direction. The change confusion values for the unclear 
direction category are represented by shades of green, whereas no-change 
category is depicted by light yellow colour 

 
Figure 3.10 shows the comparison between the proposed method and 
the alternative method at the selected study area. In this example, 
both methods agree on the results of change detection as can be 
seen in Figure 3.10, e.g., grid cells B3 and C2. From CVA results 
(Figures 3.10c,d), the area in yellow polygons shows a negative 
change to water membership with high change magnitudes as shown 
in Figures 3.10e,f. The negative change to water membership means 
a change towards non-water. Similarly, post classification results also 
denote that these yellow polygon sites experienced a change from 
water to non-water without further information on the intensity of the 
change (Figures 3.10a,b). 
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Figure 3.8 Change detection of shorelines using post classification 
comparison of MLC results; (a-c) the change of shorelines in three consecutive 
dates in 2013; (d) shoreline changes from 2013 to 2014; and (e) shoreline 
changes from 2014 to 2015. Blue polygons show the changes of non-water to 
water and red polygons display the changes from water to non-water. No-
change areas of water and non-water are represented by white and black 
polygons, respectively 

 

 
Figure 3.9 Post classification comparison of shoreline as the results of 
hardened classification: (a–c) the changes of shoreline in three consecutive 
dates in 2013; (d) shoreline changes from 2013 to 2014; and (e) from 2014 
to 2015 
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Figure 3.10 An example of comparison results between post classification 
comparison and CVA method. Both methods agree on change results of the 
area in yellow polygons that show a change from water to non-water (a,b) 
which equal to negative direction (c,d) with high change magnitude (e,f) 

 
Multi-year pattern of water membership changes 

Each pixel from the resulting change vectors provides information 
regarding its change direction and magnitude. Each combination 
represents specific types of change processes that may occur in the 
field and shows a multi-year pattern of water membership changes 
over the observation periods. Four combinations of change and their 
related processes are interpreted as follows: 
 
a) High change direction and high change magnitude 

The areas with high change direction and high change magnitude 
values are observed for both positive and negative directions. Both 
conditions indicate a continuous change of an area to a certain 
direction with a relatively large intensity. A consistency to positive 
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direction indicates a persistence of enhanced water influence as those 
pixels show an increase of water membership in multi-temporal 
images (see Figures 3.11a–d). This probably corresponds to the land 
subsidence and coastal inundation. As the land subsides and the 
water level increases, some mangrove trees located closely to the sea 
are falling down. The RGB 542 of Landsat images in Figures 3.11e,g 
depict these changes indicated by the decrease of vegetation cover 
between 2013 and 2015. 
 

 
Figure 3.11 Multi-year pattern of water membership changes showing a high 
change direction to positive direction (see dark violet pixels in black-dashed 
polygons in (a,b)) and high change magnitude (see dark blue pixels in black-
dashed polygons in (c,d)). RGB 542 of Landsat images show a decrease of 
vegetation coverage from 2013 to 2015 (see white-dashed ellipses in (e–g)) 

 
Figure 3.12 presents areas characterized by continuously decreasing 
water membership in multi-temporal images categorized as negative 
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direction (Figures 3.12a,b) with high change magnitude (Figures 
3.12c,d). This may indicate a success in shoreline protection scheme 
that caused sediment accretion to occur allowing mangroves to grow 
as can be seen from the RGB 542 of Landsat images in white-dashed 
ellipses in Figures 3.12e–g. 
 

 
Figure 3.12 Water membership changes showing a continuous change to 
negative direction (see dark green pixels in black-dashed circles in (a,b)) with 
high change magnitude (see dark red pixels in black-dashed circle in (c,d)). 
RGB 542 of Landsat images show an increase of sediment and mangrove 
coverage from 2013 to 2015 (see white-dashed circle in (e–g))  
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Figure 3.13 The location shows an unclear direction (see pink pixels in black-
dashed circle in (a)), while in the period 2014-2015 the location shows a low 
change to positive direction (light violet pixels in black-dashed circle in (b)). 
The change magnitude values were low in the period 2013-2014 (c), while in 
the period of 2014-2015 the values were high (see dark blue pixels in black-
dashed circle in (d)). Images made available by Google Earth (e–g) show the 
decrease of mangrove coverage 

 
b) Low change direction and high change magnitude 

This category indicates an abrupt change which may be influenced by 
random events. Figure 3.13b shows a low positive direction with high 
change magnitude (Figure 3.13d) which may result from coastal 
flooding triggered by spring tides, extreme waves and winds. Since 
the magnitude of the changes is high and the change is sudden, this 
type of change may indicate a higher risk. Images made available by 
Google Earth from 2013 to 2015 in Figures 3.13e–g show the 
decrease of mangrove coverage. In fact, mangroves can act as 
sediment trap and can reduce the energy of the high waves, 
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therefore, when the mangroves disappear, the threat from tidal 
floods increases. Figures 3.14a,b shows the embankment which 
protects settlements from high tide; however, during an extreme 
event for example when a higher tide combines with an extreme 
wind, the water level may increase and overflow this embankment. 
 

 
Figure 3.14 The embankment (shown by red arrows) for protecting the 
settlements (a–c). (c) shows the river and settlements built on the river banks 
prone to high tides from both the sea and the river 

 
c) High change direction and low change magnitude 

A gradual, continuous increase of wet conditions was observed by an 
increase in water membership with low magnitude values. This type 
of change was categorized as positive direction which could be due to 
cyclical tides and coastal processes, for example flooded land 
(Figures 3.15a,c), and water turbidity (Figures 3.15b,d). Even though 
the magnitude of the change is low, the changes occur frequently. 
Hence, this type of change may give a higher risk. In a longer 
observation, if the areas persistently become wetter, this location 
may have a risk of coastal inundation as well. 
 
d) Low change direction and low change magnitude 

This type of change probably indicates an undisturbed environment 
with a low change magnitude (see black-dashed circle sites in Figures 
3.16c,d). This category mainly occurs in water areas, probably due to 
the changes in water turbidity (see black-dashed circle sites in 
Figures 3.16a,b). In addition, this type of change was observed in 
small patches of the coastal land probably resulting from changes in 
soil moisture (see black rectangle sites in Figures 3.16b,d). 
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Figure 3.15 Water membership changes showing a higher change to positive 
direction (see dark violet pixels in black rectangle sites in (a,b)) with low 
change magnitude values (see dark blue pixels in black rectangle sites in 
(c,d)) 
 

 
Figure 3.16 Water membership changes show a low change direction to 
positive direction in the period 2013-2014 (a); and to negative direction in the 
period 2014-2015 (b). The change magnitude values were low in both periods 
(c,d). This type of change was also observed as small patches of the coastal 
land (see black rectangle sites in (b,d)) 
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3.4. Discussion 

 
In this study, the dynamics of fuzzy shorelines have been assessed 
using fuzzy classification and a raster-based change detection 
technique. FCM classification was used to discriminate the land and 
water classes and to estimate their memberships. FCM is a well-
known clustering method which is less dependent on the initial state 
of clustering (Tso and Mather, 2009) and capable of describing 
phenomena such as water and non-water which is changing 
gradually. Instead of FCM, there are various ways to derive a fuzzy 
classification for example from fuzzy maximum likelihood 
classification (Wang, 1990), and artificial neural network fuzzy 
classification (Zhang and Foody, 2001). Membership values obtained 
by applying FCM are used to deal with the uncertain information on 
the position of fuzzy shorelines. In FCM classification, we set ܿ=2 
since we were interested in identifying the boundary between water 
and non-water and because both classes give the largest spectral 
differences in image (Bijker et al., 2011; Dewi et al., 2016). Finding 
the suitable number of clusters in the beginning of the classification 
could be difficult. A priori knowledge regarding the study area, for 
example by observing an aerial photo, can be used to define the 
suitable number of clusters (Fisher and Pathirana, 1990; Wang and 
Shi, 2013). For other situations, by assessing the homogeneity 
measure using a posteriori indicators, the number of clusters could be 
determined using entropy and non-fuzziness index (Fisher and 
Pathirana, 1990), exponential cluster validity (Zarandi et al., 2010), 
and spatial fuzzy clustering (Delinom et al., 2008). 
 
Shorelines and their changes were presented as fuzzy areas. The 
fuzzy-crisp object model in this study was successful in identifying 
the extent of shoreline positions as the transition zone between water 
and non-water. Setting the threshold to the highest (0.99) and the 
lowest (0.01) memberships are intended to find the core of water and 
non-water, respectively. The uncertainty addressed in this research 
corresponds to the existential and extensional uncertainty of 
shoreline objects as has been mentioned by Molenaar and Cheng 
(2000) and Cheng (2002). Existential uncertainty expresses the 
uncertainty of the existence of shoreline in reality. It refers to the 
possibility of existence of a shoreline to be detected on an image. 
Extensional uncertainty implies that the area indicated as shoreline 
can be determined with limited certainty, for example with 
boundaries that reflect the transition zone between water and non-
water. Moreover, when the values of an adjacent grid are very 
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similar, the zones of confusion divide regions indicating the presence 
of gradual transitions. The extensional uncertainty in shoreline 
identification includes differences in applied threshold values when 
defining the core of water and non-water, the applied shoreline 
definition, tides condition during image acquisition, time series of 
observation, and the nature of the beaches (such as flat or steep 
slope beaches, and muddy or rocky beaches). In addition, the 
changed areas of the fuzzy shoreline are thus associated with the 
distribution of changed confusion indices. The change uncertainty 
represented by changed confusion indices shows the degree of 
uncertainty of the changes that have occurred. It can be seen from 
the results that a location having a higher change magnitude, has a 
higher change confusion value as well. It corresponds to the higher 
differences of both water memberships and confusion indices 
between corresponding images in ݐଵ and ݐଶ. Explicit handling of 
uncertainty by addressing the shoreline as a transition zone allows 
decision makers and planners to include this uncertainty in spatial 
planning. Moreover, it visualizes not only the changes in shoreline, 
but also the uncertainty of these changes for every location, thereby 
providing a better base for a debate on the combined effects of land 
subsidence and sea level rise in this area. 
 
The change of shoreline was explained in terms of change magnitude 
and change direction using CVA. Information provided by CVA allows 
us to see the trend of the fluctuating shoreline over time, whereas 
the change detection results of the alternative method could provide 
only “from-to” change information and the detail of subtle within-
class changes was lost because it only compared images from two 
dates (Jianya et al., 2008; Lambin and Strahler, 1994). In our 
previous study, we used post classification comparison because we 
were interested in observing the changes of shoreline over a longer 
period from 1994 up to 2015 (Dewi et al., 2016). Given different 
methods have been implemented in monitoring the change position 
of shoreline, both studies confirmed that shoreline changes 
associated with coastal inundation have occurred in this study area. 
 
The analysis of information provided by the change magnitude and 
direction reveals that each change combination represents one 
specific change process type. The processes could vary depending on 
the characteristic of the coastal areas. For example, shorelines could 
change due to floods triggered by land subsidence, and floods caused 
by seasonal variation, abrupt shoreline changes due to extreme tides 
and waves, and the changes of water turbidity and soil moisture 
triggered by daily weather events. These specific type processes were 
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explained on the basis of the analysis of four images for each 
observation period. In fact, the number of images could easily be 
extended to more than four images. The seasonal variation of 
shorelines and other information regarding whether the changes 
would lead to a permanent coastal inundation could not fully be 
assessed in this study because only four observations each year were 
compared. This shows that the change vector analysis is sensitive to 
the length of the stacked period and the number of images stacked 
over that period, as is also confirmed by Lambin and Strahler (1994). 
 
To have images captured during similar tides and with corresponding 
seasons for each pair is important, hence shorelines can be compared 
equally. Images captured during wet seasons gave more uncertainty 
to the classification results since the rain affected the wetness of soil 
surfaces, thus the classified images produced false impression of 
higher flooding. Therefore, to reduce the uncertainty due to seasonal 
influence, images captured during dry season should be preferred. 
Furthermore, the uncertainty of the results was also influenced by 
tide differences. Images captured during high tides and low tides 
produced different positions of the boundary between water and non-
water. Hence, this increased the uncertainty of shoreline position as 
well, because shoreline by its definition is an intersection of coastal 
land and water surface. To have images acquired at exactly the same 
tide level is hardly possible. Therefore, all images were acquired at 
the low tides with negligible differences. We only considered 
astronomical tide level assuming it was more influential than 
meteorological factors, as confirmed by Pugh (1987). Astronomical 
and meteorological factors have different influences on different slope 
conditions and the magnitude of the influences may become larger if 
the slope is gentler. However, if there would be any remaining small 
influence of meteorological factors, it would be accounted for by the 
use of fuzzy classification in deriving fuzzy shoreline. 
 
In the accuracy assessment, soft reference data were generated from 
various higher resolution images. To obtain the required image 
resolution, resampling and aggregating have been implemented. 
Resampling of image and aggregation of pixel values were potential 
sources of error but were ignored in this work since the error was 
likely to be very small (Chawla, 2010; Harikumar et al., 2015). 
Furthermore, using a soft classifier to generate soft reference data is 
more likely to reduce the uncertainty due to the vagueness in class 
definition and mixed pixel problems. Hence, the finer resolution 
dataset was not assumed to be pure and no information was lost due 
to the hardening of the soft classification (Dutta, 2009; Foody, 2002; 
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Zhang and Foody, 1998b). This could be an explanation for the 
higher accuracies obtained by using the proposed classification in 
comparison with alternative methods, as confirmed by Zhang and 
Foody (Zhang and Foody, 1998b) and Chawla (Chawla, 2010). 
Furthermore, although the differences of the accuracy results were 
only small, the advantage of a fuzzy approach is not only in the 
improved accuracy of the shoreline, but also in the fact that it makes 
clear what the margins of uncertainty around the shoreline are, which 
provides a better basis for decision. 
 
Analysis of the shoreline changes in the northern coastal area of 
Central Java shows the changes of shoreline positions from 2013 to 
2015. This could be related to the processes that shape shorelines 
determined by the interaction of several factors, including: (a) the 
change of sea-level; (b) the amount of sediment supplied to the 
beach by rivers; (c) the movement of the sediment by marine 
processes; and (d) the role of waves, currents, tides and winds in 
moving the sediment (Dean and Dalrymple, 2002). Furthermore, 
sediment transport is not constant, and it is constantly subject to 
change. The alteration of sediment transport can come from changes 
in water flow, water level, weather events and human influence. In 
addition, previous studies have mentioned that this location has 
suffered from the changing of shorelines for more than 20 years due 
to coastal inundation accelerated by, for example, land subsidence, 
sea level rise, seaport development, and ground water extraction 
(Dewi et al., 2016; Harwitasari and van Ast, 2011; Marfai et al., 
2008a). Many attempts have been made to combat coastal 
inundation and erosion along the 1.3 km coast in Demak. Elevated 
roads, raised floor of the houses, breakwater, and mangrove planting 
have been applied. In 2013, a Dutch–Indonesian consortium agreed 
to start a pilot project “Building with Nature” building a permeable 
dam of natural material called “hybrid engineering” (Netherlands-
Water-Partnership, 2016; Winterwerp et al., 2014). This development 
could be one reason for the increase of negative changes to water 
membership in the period of 2014–2015. Hybrid engineering is one 
type of coastal protection combining technical and ecosystem-based 
solutions referred to as sediment traps (Winterwerp et al., 2014). 
Netherlands-Water-Partnership (2016) reported that after a year, 
new sediment layers were deposited at the surrounding areas. 
 
 
 



Chapter 3 

 85

3.5. Conclusions 

 
In this article, we present a method to identify shoreline positions 
and their changes as a fuzzy area including a measure of change 
confusion. Shoreline changes could be detected, and the method 
provided information regarding the change magnitude and the trend 
of water membership in each pixel. Our results reveal that this 
information represents specific type of change processes showing 
multi-year patterns of water membership changes over time. These 
include: (a) high change direction and high change magnitude with a 
consistent positive change direction, which probably corresponds to 
land subsidence and coastal inundation, while a consistent negative 
direction may indicate a success in shoreline protection scheme; (b) 
low change direction and high change magnitude indicates an abrupt 
change which may be influenced by random events, such as flooding 
triggered by spring tides, extreme waves and winds; (c) high change 
direction and low change magnitude, which, if in positive direction, 
could be due to cyclical tides and coastal processes, for example 
flooded land; and (d) low change direction and low change magnitude 
probably indicates an undisturbed environment, such as water areas 
with changes in water turbidity and coastal land with changes in soil 
moisture. Finally, we conclude that the proposed method can assess 
changes in a shoreline by taking into account that it is a fuzzy 
boundary. 
 
The change area estimation, change magnitude and direction of the 
shorelines may support local government and stakeholders in 
monitoring the change of fuzzy shorelines. Combining information 
given by this research with other information such as distribution of 
population could help to determine priority locations prioritized in 
disaster preparedness and response. To include digital elevation 
model in the processing phase is important for further research, 
because it allows the change analysis to focus more on the area 
affected by tidal floods. We further realized that astronomical and 
meteorological factors have different influences on different slope 
conditions. Observation data regarding the wave run-up and other 
incident wave conditions in the study area were not available for each 
observation period. This information may be collected and used in a 
near-shore wave model. This might be included in future studies as 
well. 
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Modeling the Uncertainty of Fuzzy Shorelines3 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 

 
 
This chapter presents a comparison of two methods to model the uncertainty 
of fuzzy shorelines. Fuzzy sets and random sets performed well in modelling 
the uncertainty of shorelines and had similar results when using either 
Pleiades or Pleiades + DTM. The integration of DTM data improved 
classification accuracy. Considerable improvements were achieved for 
objects, e.g., roofs, inundated houses and yards. 
 
 
 
 
 
 
 
  

                                          
3 This chapter is based on the published paper: Dewi, R.S., Bijker, W., Stein, A. 
Comparing Fuzzy Sets and Random Sets to Model the Uncertainty of Fuzzy 
Shorelines. Remote Sensing. 2017, 9, 885 

4 
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Abstract 
 
This chapter addresses uncertainty modelling of shorelines by 
comparing fuzzy sets and random sets. Both methods quantify 
extensional uncertainty of shorelines extracted from remote sensing 
images. Two datasets were tested: pan-sharpened Pleiades with four 
bands (Pleiades) and pan-sharpened Pleiades stacked with elevation 
data as the fifth band (Pleiades + DTM). Both fuzzy sets and random 
sets model the spatial extent of shoreline including its uncertainty. 
Fuzzy sets represent shorelines as a margin determined by upper and 
lower thresholds and their uncertainty as confusion indices. They do 
not consider randomness. Random sets fit the mixed Gaussian model 
to the image histogram. It represents shorelines as a transition zone 
between water and non-water. Their extensional uncertainty is 
assessed by the covering function. The results show that fuzzy sets 
and random sets resulted in shorelines that were closely similar. κ 
values were slightly different and McNemar’s test showed high p-
values indicating a similar accuracy. Inclusion of the DTM (digital 
terrain model) improved the classification results, especially for roofs, 
inundated houses and inundated land. The shoreline model using 
Pleiades + DTM performed better than that of using Pleiades only, 
when using either fuzzy sets or random sets. It achieved κ values 
above 80%. 

 
Keywords: fuzzy sets; random sets; possibility; probability; 
shorelines; uncertainty 
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4.1. Introduction 

 
Remote sensing offers a practical and economical means for coastal 
research. A series of remote sensing images can be used, for 
example, for mapping the dynamics of wet grassland and vegetation 
patches (Zhao et al., 2011a), mapping depth and water quality (Jay 
and Guillaume, 2014), coastal erosion (Hereher, 2011), and in 
particular shoreline mapping (Dewi et al., 2017a; Dewi et al., 2016; 
Sukcharoenpong et al., 2016). Instantaneous shoreline locations 
extracted from remote sensing images have become popular since 
mapping shorelines using ground survey and photogrammetry is 
costly. Several methods have been proposed, for example, using 
manual digitization (Dewan et al., 2017), spectral indices extraction 
such as water and vegetation indices (Ouma and Tateishi, 2007), 
active contour segmentation (Sukcharoenpong et al., 2016), band 
ratios (Kuleli, 2010), and image classification (García-Rubio et al., 
2015; Taha and Elbeih, 2010). Most of these methods are based on 
hard classifications, and only a few considered soft classifications in 
the context of shoreline mapping (Dewi et al., 2017a; Dewi et al., 
2016; Muslim et al., 2006). A hard classifier allocates a pixel to one 
class only based on the highest similarity. Therefore, applying hard 
classification for shoreline mapping could be misleading, since a 
shoreline is defined as the interface between land and water surfaces 
with its position changing over time. As images only capture a 
shoreline at a particular instant, they convey various kinds of 
uncertainties. Riesch (2013) mentioned that uncertainties may be 
inherent in the system or can arise from incomplete knowledge. This 
first type of uncertainty is classified as errors (Fisher, 1999) or as 
indeterminate boundaries (Burrough et al., 1997; Schneider, 1998). 
When a shoreline is clearly identified, the errors or the kind of 
indeterminate boundaries may arise, for example, during data 
processing and measurements. Meanwhile, the second type of 
uncertainty is divided into vagueness and ambiguity (Fisher, 1999). A 
vague boundary inherently belongs to the nature of the shorelines, 
i.e., it is hardly possible to define the extent of shoreline objects such 
as coast land, water and their gradual transition. The ambiguity may 
arise owing to the difference in classification system and perception 
of shorelines. 
  
A common approach to model the uncertainty of objects is based 
upon probability theory (Goodman and Nguyen, 1985). For example, 
the epsilon band (Skidmore and Turner, 1992) is applied to model 
positional uncertainties of geographical objects. In addition, random 
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sets theory is applied to handle the uncertainty in spatial information, 
for example for the definition of geographical areas, in mathematical 
morphology and in geostatistics (Couso et al., 2014). Fuzzy sets 
theory introduced by Zadeh provides a conceptual framework for 
solving representation and classification problems in an ambiguous 
environment by means of membership functions (Zadeh, 1965).  
 
In this study, we focused on the similarity of fuzzy sets and random 
sets in modelling the uncertainty in shoreline locations. Fuzzy sets 
are sets or classes that allow partial memberships (Tso and Mather, 
2009; Zadeh, 1978). A fuzzy set is characterized by a membership 
function which assigns to each object a grade of membership in the 
range [0,1], with 0 representing the “non-membership” and 1 
representing the “full-membership” of the set. Two ways are 
commonly distinguished to develop this membership function: the 
semantic import model (SIM) derived from expert knowledge, and 
the fuzzy c-means classifier. SIM is subjective in nature (Robinson, 
2003) since it is based on subjective perceptions of vague categories 
rather than on data in the given problem, i.e., by extending the crisp 
boundaries into a transition zone (Cheng, 2002). In contrast, FCM is 
obtained from a set of attribute data and results in an objective 
approach. It is a commonly used method to estimate the membership 
values. FCM was developed by Dunn (Dunn, 1973) and generalized 
by Bezdek et al. (1984). Fuzzy sets theory has been widely used in 
remote sensing i.e., for image classification (Cheng et al., 2001; 
Dewi et al., 2016; Vlag and Stein, 2007; Zhang and Foody, 1998a). 
Fuzzy sets were applied also in GIS, e.g., for developing spatial data 
models for vague objects and their topological relation (Dilo et al., 
2007; Liu et al., 2011b; Robinson, 2003; Schneider, 2001).  
 
A random set is a generalization of a random variable taking subsets 
as values. Random sets theory is an inherent part of probability 
theory (Matheron, 1975; Molchanov, 2005; Nguyen, 2006). We can 
estimate the probabilities whether a random set is included in a given 
set, i.e., core, support and α-level sets or not (Couso et al., 2014). 
Random sets theory has been employed to develop image 
segmentation methods (Epifanio and Soille, 2007), to characterize 
varying geometrical shapes (Stoyan and Stoyan, 1994) and to 
quantify the extensional uncertainty of spatial objects such as road 
polygons (Zhou and Stein, 2013) and wetlands (Zhao et al., 2011a).  
 
The connection between fuzzy sets and random sets has been 
discussed in the past (Goodman et al., 1997; Nguyen and BerlinWu, 
2006; Singpurwalla and Booker, 2004; Zadeh, 1995). Random sets 
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theory is a methodology to deal with the uncertainty of outcomes of 
random phenomena. Fuzzy sets theory describes the uncertainty 
associated with classification or the placement of an outcome in a 
given class due to imprecision (Singpurwalla and Booker, 2004). 
Goodman and Nguyen (1985) stated that fuzzy sets are equivalent to 
a weak specification of random sets. Moreover, Zadeh argued that 
probability theory must be used together with fuzzy logic to enhance 
its effectiveness and both theories are complimentary rather than 
competitive (Zadeh, 1995). Fuzzy sets and random sets can be 
related via the one-point covering function of random sets, defined as 
the probability that an element is covered by a random set. The 
membership function of fuzzy sets is then considered as the 
probability of a random set covering a point (Goodman, 1984; 
Goodman and Nguyen, 1985; Mahler, 2007).  
 
The objective of this research is to compare the performance of fuzzy 
sets and random sets in shoreline mapping. In this case, water and 
non-water pixels were used as proxies to determine the shoreline 
features extracted from remote sensing images. The comparison 
between both methods is implemented using two types of images: 
original Pleiades and the combination of Pleiades with an airborne 
LIDAR altimetry data. 
 
 

4.2. Modeling shoreline using fuzzy sets and 
random sets  

 
4.2.1 Dataset  

We used a high resolution Pleiades image and elevation data. Water 
level observed from a nearby tide station at the time of image 
acquisition was also used. Those three data sources were provided by 
the Indonesia Geospatial Information Agency (BIG). 
 
The image was acquired on 27 February 2013 at the lowest tides (the 
water level was 0.17 m below MSL). Table 4.1 shows the 
characteristics of the Pleiades image used. The image is a pan-
sharpened ortho product obtained in standard processing level at 
which pan-sharpening, radiometric and geometric corrections were 
applied by the image provider.  
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Table 4.1 The characteristics of Pleiades image used 

Acquisition date 27th February 2013 
Acquisition time 03:04 UTC 
Incidence angle (deg) 13.66 
Sun elevation (deg) 62.51 
Resolution (m) 0.5 (pan-sharpened product)  
Bands (μm) blue (0.43–0.55), green (0.50–0.62), 

red (0.59–0.71), NIR (0.74–0.94) 
Map projection UTM WGS84 

 
 
The DTM was created from LIDAR data recorded in August 2014. The 
data are in UTM projection and elevations are in meters referenced to 
the Earth Gravitational Model 2008 (EGM 2008). The mission report 
(Anonymous, 2014) states that the DTM data have a pixel size of 1.0 
m, a vertical accuracy of ±0.17 m (linear error at 90% confidence, 
LE90), and a horizontal accuracy of ±0.22 m (circular error at 90% 
confidence, CE90).  
 

4.2.2 Pre-processing 

The DTM was combined with the Pleiades imagery to improve the 
quality of the classification. The DTM data and Pleiades image must 
be pre-processed before they can be combined. First, the Geoid-
based DTM data needed to be adjusted, so that it coincided with local 
MSL. In the study area, the Geoid and MSL differ as much as 1.34 m 
(Pangastuti and Sofian, 2015). Second, the DTM data were linearly 
stretched to map its original elevation range (−1.34 to 4.0 m) to the 
16-bit range of Pleiades image. Third, the histogram minimum 
method (Hadjimitsis et al., 2010) was applied to the image and the 
average filter was applied in 3 × 3 window size to reduce the image 
variance. Fourth, the Pleiades image was co-registered and 
resampled to match the DTM data. 
 
For comparison of the methods, we prepared two types of datasets: 
(a) pan-sharpened Pleiades with four bands (referred to as Pleiades); 
and (b) pan-sharpened Pleiades with four bands that were stacked 
with the DTM as the fifth band (referred to as Pleiades + DTM). We 
created 13 subsets and grouped them into four groups (Figure 4.1), 
denoted as ܵ௔–௕ as the name of subsets; ܽ is the group number 
ሺܽ ൌ 1, . . ,4ሻ, and ܾ is the subset number ሺܾ ൌ 1,…13ሻ. Each subset 
consists of 423 × 282 pixels, except ܵଶ–ଷ, which consists of 374 × 381 
pixels and ܵଶ–ଵଷ, which has 317 × 478 pixels. We grouped the subsets 
based on land cover similarities; 
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a) ଵܵ is a mix of settlements and vegetation. This group consists of 
six subsets. They have a similar land orientation, stretching from 
northwest to southeast direction indicating rural settlements with 
a strip land surrounded by inundated fishponds. Rivers with 
various widths divide each island into two sides and small roads 
are found on either sides of the river. Rural settlements are 
mostly concentrated alongside the roads with sparse vegetation 
coverage. 

b) ܵଶ is a mix of settlement and vegetation with more complex 
composition. Small rivers are clearly seen in ܵଶ–ଷ and ܵଶ–ଵଶ. 
Fishponds with irregular shapes are visible at the northern part of 
ܵଶ–ଵଶ	 and Sଶ–ଵଷ.  

c) ܵଷ is dominated by vegetation coverage. Rural settlements are 
visible in Sଷ–ହ along the river side and a wide muddy area can be 
found in the northern part of the subset close to the mangrove 
area.  

d) ܵସ shows rural settlements surrounded by inundated fishponds. 
The settlements are protected by concrete embankment. 

 
4.2.3 Modelling shoreline using fuzzy sets  

FCM classification 

Unsupervised FCM was applied as the clustering algorithm (Bezdek et 
al., 1984) to estimate membership values. It separates the datasets 
into two classes allowing each pixel to have a membership value to 
multiple classes. The membership values (μ) range from 0 to 1, and 
add up to 1 for each pixel. In this work, the membership values of 
the classification follow the trapezoidal membership function (Dewi et 
al., 2016).  
 
FCM classification has a parameter ܿ specifying the number of 
classes, and ݉ specifying fuzziness. Bezdek et al. (1984) stated that 
values of ݉ between 1.5 and 3.0 produced good results while Deer 
and Eklund (2003) used ݉=1.6. In our previous study using Landsat 
images, we found that ݉=1.7 produced an accurate fuzzy 
classification. In this study, we investigated values of ݉ from 1.1 to 
3.0 in steps of 0.1 in to identify the optimal value. We also 
investigated a ܿ value from 2 to 4 in order to find the optimal number 
of classes. In addition, we determined the cluster validity index from 
Xie and Beni (1991) as: 

ܫܸܥ ൌ
∑ ∑ μ௜௞௠‖ ௜ܸ െ ܺ௞‖ଶ

ே
௞ୀଵ

௖
௜ୀଵ

ܰ ݉݅݊௜,௞‖ ௜ܸ െ ௞ܸ‖ଶ
(4.1) 
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Figure 4.1 Study area is presented here as a false colour composite of a 
Pleiades image with red colour representing the vegetation, bluish green 
showing water area, and greyish and white pixels showing the built-up area. 
Yellow rectangles represent several the selected sites for this work, and black-
dashed rectangles show four groups of subsets. 

 

 refers to the compactness and separation validity function of ܫܸܥ
fuzzy partition of the set of digital number ܺ ൌ ሼܺ݇; ݇ ൌ 1,2,… ,ܰሽ, where 
௜ܸሺ݅ ൌ 1,2,… , ܿሻ is the mean of class ݅, ܰ is the number of pixels, μ௜௞ is 
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the membership of pixel ݇ to class ݅, and ݉݅݊௜,௞‖ ௜ܸ െ ௞ܸ‖ is the 
minimum distance between the mean of the classes. 
 
After clustering, membership images were compiled for each class. 
We labelled one of the two membership images as belonging to the 
water class by using the near infrared (NIR) band of Pleiades. The 
water label was given to the class which has the minimum value of 
the class mean in the near infrared band (Dewi et al., 2016). 
 
Image segmentation 

The possible shoreline location was determined by generating a 
margin or transition zone between classes water and non-water. We 
applied a similar approach (Dewi et al., 2016), by defining a 
threshold range obtained from parameter estimation in the subsets. 
We applied thresholding to create crisp boundaries of the transition 
zone determined by lower ሺ݀ଵሻ and upper thresholds ሺ݀ଶሻ. The class 
water ܥ௪ was defined as: 

௪ܥ ൌ ൜
1 ݂݅ μ௪௞ ൒ ݀
0 ݁ݏ݅ݓݎ݄݁ݐ݋

(4.2) 

where μ௪௞ is the membership to water, and ݀ is threshold value. We 
investigated values of	݀ from 0.1 to 0.9 in steps of 0.1 to estimate 
the optimal threshold value.  
 
Uncertainty estimation 

The uncertainty of deriving fuzzy shoreline was estimated by a 
measure of confusion index ܫܥ for each pixel as follows (Burrough et 
al., 1997): 

ܫܥ ൌ 1 െ ሺμ௜௞ଵ െ μ௜௞ଶ ሻ (4.3) 

where μ௜௞ଵ  refers to the first highest membership and μ௜௞ଶ  denotes the 

second highest membership. The ܫܥ values range from 0 to 1. If the 
value approaches 1, it means the difference in membership value 
between the first and the second highest membership is small. The 
uncertainty of the pixel to belong to the class with the largest 
membership is high. 
 

4.2.4 Modelling shoreline by random sets 

Parameter estimation of random sets 

Let the intensity of an image ܫ within a window ܹ be denoted as 
݂:ܹ → ሾ0,1ሿ. Each pixel ݇ ∈ ܹ has an intensity value ݂ሺ݇ሻ ∈ ሾ0,1ሿ. The 
intensity function ݂ can be interpreted as a collection of sets ൌ ሼ݇ ∈
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ܹ,࣬ ∈ ሾ0,1ሿ: ݂ሺ݇ሻ ൒ ࣬ሽ. ܨ becomes a random set when ࣬ is a random 
variable. The distribution of a random set is determined by ݂ and the 
random variable ࣬ (Zhao et al., 2011a). 
 
The thresholding was chosen to model the shoreline from the water 
membership image. Thresholding is a process to separate pixels from 
an image into regions (or clusters) based on their intensity. Usually 
this segmentation process is based on the image histogram (Tobias 
and Seara, 2002). If the image is composed of regions with clear 
separation in its histogram, the histogram is usually bimodal with a 
deep valley. In that case, the bottom of the valley is taken as the 
threshold for foreground and background separation. However, the 
choice of threshold is not an easy task due to the existence of 
uncertain area in between the two peaks of the histogram. There are 
various methods to find the optimal threshold between the 
foreground and the background (Shi et al., 2010; Zhao et al., 
2011a). In this study, we consider the uncertain area, the transition 
zone between the foreground and background as the third class, 
shoreline, with intensity values in the interval [݀ଵ,	݀ଶ], where 0≤݀ଵ ൑
݀ଶ≤1 (Figure 4.2). We consider shoreline as the transition zone 
between water as the foreground and the coastal land as the 
background. We aim to extract the extent of shoreline and model it 
as a random set to quantify its extensional uncertainty. 
 

 
Figure 4.2 Density functions of shoreline object and related mixed Gaussian 
model 

The critical part of creating the random sets model is to generate 
realizations that characterize its distribution. To obtain these 
realizations, the probability distribution of ࣬ was determined and 
random numbers in the transition zone [݀ଵ,	݀ଶ] were generated as 
multiple thresholds. We chose the Gaussian distribution (Shi et al., 
2010; Zhao et al., 2011a), based on the assumption that pixel values 
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close to the object boundary have a higher probability to be labelled 
as the boundary than pixels at a distance. 
  
A mixed Gaussian model was used to fit a density distribution to the 
image histogram and to determine the transition zone [݀ଵ,	݀ଶ] (Figure 
4.2). When using multi-temporal images for shoreline mapping, each 
image has a different histogram reflecting a different proportion of 
transition zones. An image recorded during a low tide has a broader 
transition zone than an image recorded at a high tide. Hence, we 
chose the mixed Gaussian model with three components: the 
distributions of water, non-water, and shoreline as the transition 
zone.  
 
Let the three classes be denoted as non-water (ܥଵ), shoreline (ܥଶ) 
and water (ܥଷ). We assumed that the intensity of pixels which belong 
to class ܥ௜, ݅ ∈ ሼ1,2,3ሽ follows the Gaussian distribution. ܥ௜ has the 
Gaussian distribution ܥ௜~Νሺߊ௜, Σ௜ሻ with mean ߊ௜, standard deviation Σ௜ 
and density function ሺඥ2πΣ௜ሻିଵ݁݌ݔ ቂെ ଵ

ଶ
ሺݖ െ -௜ሻଶ/Σ௜ଶቃ in a oneߊ

dimensional model. The density function of ܫ is the mixed density 
distribution of ܥ௜: 

݀ሺܼሻ ൌ ݀ሺܼ;Θ୧, ,௜ߊ Σ௜ሻ ൌ෍Θ௜Νሺߊ௜, Σ௜ሻሺܼሻ
ଷ

௜ୀଵ

(4.4) 

where  ܼ ൌ ݂ሺ݇ሻ, Θ୧  is the weight coefficient for  ܥ௜  and  ∑ Θ୧ ൌ 1ଷ
௜ୀଵ . It 

is assumed that  ߊଵ ൏ ଶߊ ൏  ଷ. The lower limit of the shoreline is toߊ
be determined at ݀ଵ where ΘଵΝሺߊଵ, Σଵሻሺ݀ଵሻ ൌ ΘଶΝሺߊଶ, Σଶሻሺ݀ଵሻ, and the 
upper limit at ݀ଶ where ΘଶΝሺߊଶ, Σଶሻሺ݀ଶሻ ൌ ΘଷΝሺߊଷ, Σଷሻሺ݀ଶሻ. In this way, 
we identify three classes as presented in Figure 4.2: non-water 
ሺܥଵሻ: ݂ሺ݇ሻ ൏ ݀ଵ, shoreline ሺܥଶሻ:	݀ଵ ൑ ݂ሺ݇ሻ ൑ ݀ଶ, and water ሺܥଷሻ:	݂ሺ݇ሻ ൐ ݀ଶ. 
The transition interval [݀ଵ,	݀ଶ] is determined by tuning the weight of 
the shoreline component. For example, suppose that the thresholds 
0.4, 0.5, and 0.6 were adopted for shoreline hard classification, and 
then we investigated an interval around these values, to find the 
optimal threshold interval for random sets. 
 
Modelling the extent of shoreline by random sets 

We generated ߮ random numbers from the distribution ࣬~Νሺߊଶ, Σଶሻ in 
ሾ݀ଵ, ݀ଶሿ. This results into different realizations of a random set 
௜ܱ , … , ఝܱ by thresholding the water membership image using ࣬௜,… , ࣬ఝ 

as the multiple thresholds: ௜ܱ ൌ ሼ݇ ∈ ܹ, ݅ ∈ ሼ1,… , ߮ሽ, ࣬௜ ∈ ሾ݀ଵ, ݀ଶሿ: ݂ሺ݇ሻ ൒
࣬௜ሽ. We investigated the optimal value of ߮ (߮=10,…,300) in steps of 
10. Intuitively, a value closer to the optimal ߮ should be more 
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reliable and the variance of random sets Γ becomes stable as ߮ 
increases. For each ߮, the covering function ܲݎΓሺ݇ሻ can then be 
determined including the core, median, support and level sets. We 
provided a curve for the core area as a function of ߮ values. If the 
difference of two standardized core area between two successive ߮ 
(denoted as ߜ௜) is small (e.g., in the range −1 to +1), we accepted 
this ߮ as the optimal ߮.  
 
The idea of the generation of random sets is that the extent of 
segmented shoreline objects should be sensitive to the variance of 
the parameter in the threshold when we extracted objects with a 
large extensional uncertainty. By slightly changing the threshold 
values ࣬௜,… , ࣬ఝ, we obtained a set of objects ௜ܱ , … , ఝܱ and construct a 
random set Γ. For example, for ߮ ൌ 100 and threshold interval [0.3, 
0.7], this means that we generate 100 thresholds to slice the 
membership image and make samples as binary maps. Each sample 
is a realization of focal element ௜ܱ of random sets Γ. The focal 
elements are regions which are subsets of ܹ: ௜ܱ ∈ 	࣪ሺܹሻ. If the 
random set is constructed by ߮ focal elements with equal probability, 
then ݑ௜ ൌ 1/߮. We need to estimate the covering function ܲݎΓሺ݇ሻ to 
measure the probability of pixel ݇ being covered by random sets. The 
covering function characterizes the distribution of random sets Γ. The 
covering function ܲݎΓሺ݇ሻ at point ݇ equals ܲሺΓ ∩ ሼ݇ሽ ് 0ሻ ൌ ܲሺ݇ ∈ Γሻ. It 
can be described by focal elements ௜ܱ with corresponding uncertainty 
assignments ݑ௜, indicated as a collection of pairs ሼ ௜ܱ , ݅ ,௜ሽݑ ∈ ሺ1, … , ߮ሻ 
(Zhou and Stein, 2013). The covering function of random sets can be 
estimated by (Zhao et al., 2011a; Zhou and Stein, 2013): 

Γሺ݇ሻݎܲ ൌ
1
߮
෍ܫை೔ሺ݇ሻ

ఝ

௜ୀଵ

, ݇ ∈ ܹ (4.5) 

where ܫை೔ is the indicator function of ௜ܱ, ݅ ∈ ሺ1, … , ߮ሻ: ܫை೔ ൌ ቄ
1,
0,	

௞∈ை೔
௞∉ை೔

.  

 
Figure 4.3a illustrates a simple example for covering function 
estimations of random sets with equal uncertainty assignments 
reflected by equal interval ݑ௜. Figure 4.3b shows the covering function 
values at six pixels derived by Equation (4.5). Table 4.2 provides the 
statistical parameters of random sets (Zhao et al., 2010).  
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Figure 4.3 Focal elements with their equal uncertainty assignments ݑଵ ൌ
ଶݑ	 ൌ  ଷ to construct a realization of random sets (a); and covering function ofݑ
the random sets (b). These figures are adapted from Zhao et al. (2010).  

 
Table 4.2 The statistical parameter of random sets 

Definition Equation 
The α-level set: to describe the 
spatial distribution of the varying 
sizes of Γ  

Γఈ ൌ ሼ݇ ∈ ࣬ଶ, 0 ൑ ߙ ൑ 1: Γሺ݇ሻݎܲ ൒ 	ሽߙ

The core set: to describe the certain 
part of Γ 

Γଵ ൌ ሼ݇ ∈ ࣬ଶ: Γሺ݇ሻݎܲ ൌ 1ሽ

The median set: to describe the 
0.5-level set 

Γ଴.ହ ൌ ሼ݇ ∈ ࣬ଶ: Γሺ݇ሻݎܲ ൌ 0.5ሽ	

The support set: to describe the 
possible part of Γ 

Γ଴ ൌ ሼ݇ ∈ ࣬ଶ: Γሺ݇ሻݎܲ ൐ 0ሽ

The mean area of Γ 
ሺΓሻܣܧ ൌ න Γሺ݇ሻ݀݇ݎܲ

࣬మ

The mean set of Γ Γ௠ ൌ ሼ݇ ∈ ࣬ଶ, 0 ൑ ௠ߙ ൑ 1 ∶ Γሺ݇ሻݎܲ ൒ 	௠ሽߙ

The set-theoretic variance 
Γ௩ሺ݇ሻ ൌ

1
߮
෍ቀܫை೔ሺ݇ሻ െ Γሺ݇ሻቁݎܲ

ଶ
ఝ

௜ୀଵ

	

The sum of variance ܸܵ  
ܸܵ ൌ න Γ௩ሺ݇ሻ݀݇

Γబ
The coefficient of variation ܸܥ 

ܸܥ ൌ
׬ ඥΓ௩ሺ݇ሻ݀݇Γబ

׬ Γሺ݇ሻ݀݇Γబݎܲ
 
 

4.2.5 Validation and comparing classification performance 

To quantify the accuracy of each model, we used the error matrix to 
estimate the κ values. In this case, we produced a hardened FCM 
using ݀ ൌ 0.5 and the median set Γ଴.ହ. We compared the performance 
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of both approaches using two input images (Pleiades and Pleiades + 
DTM). 
 
Reference data were derived from the 0.5 m Pleiades image acquired 
in 2013. Using stratified random sampling, approximately 138 points 
were randomly selected for each subset. A visual interpretation 
approach was performed to distinguish a land cover class for each 
selected point.  
 
To test the significance of the difference between: a) fuzzy sets and 
random sets; b) Pleiades and Pleiades + DTM, we performed 
McNemar’s test (Foody, 2004; Leeuw et al., 2006; Manandhar et al., 
2009). McNemar’s test is based on confusion matrices that are 2 by 2 
in dimension. The null hypothesis stated that both input images 
produced similar accuracy. The test is based on chi-square statistics 
at the 95% level of confidence, and computed as follows: 

߯ଶ ൌ
ሺ ଵ݂ଶ െ ଶ݂ଵሻଶ

ሺ ଵ݂ଶ ൅ ଶ݂ଵሻ
  (4.6) 

where ଵ݂ଶ denotes number of samples that are incorrectly classified 
by the first method or the first image but correctly classified by the 
second method or the second image, and ଶ݂ଵ denotes number of 
samples that are correctly classified by the first method or the first 
image but incorrectly classified by the second method or the second 
image. 
 
 

4.3. Results and classification comparison 

 
4.3.1 Modelling shoreline using fuzzy sets 

Parameter estimation of FCM classification 

Figure 4A.1 shows the κ values when we estimated ܿ and ݉ values for 
all subsets of the Pleiades + DTM image. For low ݉ (e.g., ݉=1.1-
1.6), classifications show a comparable κ for all thresholds, and the 
highest κ was obtained for ܿ=2, while by setting a high ݉ (݉=2.0-
3.0), high κ values were obtained only for certain	݀ values. For 
example, when we set ݉=1.5 and ܿ=2, high κ were obtained for 
݀=0.2-0.8 while for ݉=3 and ܿ=3, high κ were only obtained for 
݀=0.2. In this case, for a high ݉ value, the choice of ݀ becomes more 
sensitive. In addition, Table 4A.1 shows the cluster validity measures 
as an alternative approach to determine the number of classes for 
FCM classification. From the results, ܿ=2 obtained the minimum 
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values for all ݉ which indicates a partition in which all clusters are 
overall compact, and separate from each other. Based on both 
approaches in estimating the suitable number of classes for FCM 
classification, we decided ܿ=2 was the optimal number of classes for 
further image processing steps.  
 
Figure 4A.2 shows the results of threshold range estimation when we 
set a constant ܿ (ܿ=2) for various ݉. We can see that ݀=0.5 gave a 
highest κ value for all subsets while the threshold range 0.3–0.7 
provided high κ values. High values of ݉ resulted in a low κ value, 
especially at a low ݀ (݀<0.3) and a high ݀ value (݀>0.6). Given the 
fact that the threshold range 0.3–0.7 produced high κ values, we 
selected those values as the threshold range at which the boundary 
between water and land can probably be distinguished. 
 
In Figure 4A.2, we can also see that ݉=1.5 and ݉=1.6 are 
comparable as indicated by the stability of κ value, whereas, for 
݉>1.6, the choice of ݀ becomes more sensitive. Given the results, we 
chose ݉=1.6 as the optimal ݉ value for FCM. 
 
Hardened FCM and Accuracy Comparison 

Figures 4.4 and 4.5 show the comparison of thresholding results for 
hardened FCM at ݀=0.5 for both input images. The inclusion of DTM 
data has improved the classification results. In Figure 4.4, an 
example is presented at which roofs (non-water) were correctly 
classified by Pleiades + DTM, but were classified incorrectly by 
Pleiades. The classification improvement also can be seen from Figure 
4.5 provides an example in which inundated land was clearly 
identified by Pleiades + DTM. 
 
Table 4.3 shows the comparison of the accuracy between Pleiades 
and Pleiades + DTM. For all subsets, Pleiades + DTM outperformed 
Pleiades. Table 4A.2 presents the significance of the different 
accuracies given by both images. Seven of the tests show significant 
improvement of the Pleiades + DTM over the Pleiades, as shown by 
very low ݌-values, whereas, few results have similar accuracies, as 
shown by ݌-values ≥ 0.05.  
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Figure 4.4 Comparison of the fuzzy classification results between: Pleiades 
(a,c); and Pleiades + DTM (b,d). Pleiades 0.5 m (e); and elevation data (f) 
are displayed to interpret the attribute of yellow points. In (c,d), we can see 
that Pleiades misclassified pixels as water instead of roofs (non-water), as can 
be seen in (e) 

 

 
Figure 4.5 An example of inundated land that was: incorrectly classified by 
Pleiades (a,c); and  classified successfully by Pleiades + DTM (b,d). Pleiades 
0.5 m (e); and elevation data (f) are presented to interpret the yellow points 
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Table 4.3 The accuracy comparison between Pleiades and Pleiades + DTM 
using FCM classification with thresholding (0.5=ࢊ ,1.6=࢓ ,2=ࢉ). The inclusion 
of DTM in classifications clearly improved the classification results. ࢈ିࢇࡿ: the 
name of subsets, ࢇ is the group number (4,…,1= ࢇ) and ࢈ is the subset 
number (13,…,1=࢈)  

Subset Pleiades Pleaides + DTM 

ଵܵ–ଵ 0.77 0.86 

ଵܵ–ଶ 0.62 0.86 

ଵܵ–଺ 0.76 0.88 

ଵܵ–଻ 0.48 0.84 

ଵܵ–ଽ 0.56 0.87 

ଵܵ–ଵ଴ 0.74 0.88 
ܵଶ–ଷ 0.74 0.91 
ܵଶ–ଵଶ 0.74 0.87 
ܵଶ–ଵଷ 0.78 0.87 
ܵଷ–ହ 0.50 0.82 
ܵଷ–ଵଵ 0.74 0.89 
ܵସ–ସ 0.65 0.88 
ܵସ–଼ 0.67 0.81 

 
Fuzzy Shoreline and Uncertainty Estimation 

Figure 4.6 shows an illustration of shoreline margin with fuzziness 
generated by setting ݀=0.3 as the lower ݀ and ݀=0.7 as the upper ݀ 
by using Pleiades + DTM (for other results, see Figure 4A.3). In this 
figure, the shoreline (in light green colour) represents the transition 
zone between water (in blue colour) and non-water (in black colour). 
The combination of the shoreline image and the confusion index is 
provided in Figure 4.6d. In this figure, a wider shoreline indicates a 
wider gradual transition between water and non-water representing a 
more gently sloping beach or muddy coastal area, while a narrow 
shoreline indicates a steeper sloping beach. 
 

4.3.2 Modelling Shoreline by Random Sets 

Parameter Estimation Results 

Table 4A.3 show the results of parameter ߮ and threshold interval 
estimation of random sets with the related κ values estimated from 
the Γ଴.ହ. In Table 4A.3 and Figure 4.7, it can be seen that threshold 
interval =0.3–0.7 generally produced the highest κ value. We plotted 
the curves of the Γଵ area for four subsets by setting the selected 
threshold interval =0.3–0.7 (see Figures 4.8 and 4A.4). From these 
curves, we can assess the optimal ߮ at which we obtained a stabile Γଵ 



Modeling the Uncertainty of Fuzzy Shorelines 

 104 

area. Each subset has a different ߮ to reach a stabile Γଵ area, which 
might be influenced by the land cover characteristics of the study 
area. In Figure 4.8, the curve of ܵସ–ସ reached the highest ߮ value to 
achieve the stability of the Γଵ area, whereas ܵଶ–ଵଶ reached the lowest 
߮.  
  

 
Figure 4.6 The shoreline as the transition zone between water and non-water 
(a); the fuzziness of the shoreline is represented by the confusion index 
denoting the uncertainty of pixels to be classified to the largest membership 
(b); zooming into the white-dashed rectangle sites (c); and shoreline image 
with fuzziness represented by the confusion index (d). 

 
Figure 4.7 Estimation of threshold interval for random sets based on the 
optimal ݊ selected for each subset. Threshold interval =0.3–0.7 generally 
produced the highest κ value. ܵ௔–௕: the name of subsets, ܽ is the group 
number (ܽ =1,…,4) and ܾ is the subset number (ܾ =1,…,13) 
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Figure 4.8 The curve of differences between two successive standardized 
core sets ߜ௜. When ߜ௜ is in the range −1 to +1, we determined this ߮ value for 
performing random sets (see notations in Figure 4.7 for the name of subsets). 

 
Uncertainty modelling of shoreline objects 

Figure 4.9 shows some examples of binary images and the related 
covering functions that resulted from slicing water membership 
images determined by the optimal ߮ (the other results can be seen in 
Figure 4A.5). By slightly changing the threshold for μ௪௞, we obtained 
binary maps as a realization of focal element ௜ܱ with various extents. 
From these focal elements, we constructed random sets by 
estimating the covering function, as can be seen in Figure 4.9f. 
 
We plotted the area of focal elements to explore information on the 
extent of random sets (see Figure 4.10). From the plot in Figure 
4.10, we can see that ܵଶ–ଵଶ, ܵଶ–ଵଷ, and ܵଷ–ହ have the largest variance, 
whereas ܵସ–ସ, ଵܵ–ଵ଴ and ଵܵ–ଽ have the smallest variance. 
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Figure 4.9 Samples of the random sets with various extents and their 
covering function. (a–e) Samples are at μ௪௞	 =0.3–0.7. Pixels in white indicate 
the water area and pixels in black indicate the non-water area. (f) The related 
covering functions, where 0 indicates a low probability and 1 indicates a high 
probability to be covered by the random sets. Various extents of focal 
elements at each binary map can be seen when zooming into the yellow 
rectangle site. 

 

 
Figure 4.10 Statistical distribution of area of focal elements sampled from 13 
random sets (see notations in Figure 4.7 for the name of subsets) 
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In Table 4.4, we can see that subset ܵସ–ସ has the lowest ܸܥ value. A 
lower ܸܥ indicates that the random sets have small Γ௩, reflecting a 
lower uncertainty. By checking the Pleiades image in Figure 4.1, it is 
obvious that ܵସ–ସ comprises a rural settlement with concrete roads. 
The settlement was protected by embankment from its surrounding 
open water. For an object with little uncertainty, the membership 
values are homogenous. Therefore, the resulting samples ଵܱ, … , ఝܱ 
have similar extents (see Figure 4.10 subset ܵସ–ସሻ. On the contrary, 
ܵଶ–ଵଶ has the highest ܸܥ value, which obviously indicates the highest 
uncertainty. For an object with a high uncertainty, the membership 
values are heterogeneous. Hence, the resulting samples ଵܱ, … , ఝܱ 
have various extents and are very sensitive to small variations in ݀ 
value (see Figure 4.10 subset ܵଶ–ଵଶ).  
 
In Figure 4.11a, the set-theoretic variance Γ௩ is presented in grey 
scale values with light colour denoting high variations in uncertain 
transition zones and dark colour denoting low variations of water and 
non-water (the other results can be seen in Figure 4A.6). For pixels 
inside Γଵ or outside Γ଴, Γ௩ equals 0, whereas pixels close to the 
contours of Γଵ or Γ଴ have Γ௩ values in the range [0,1]. Figure 4.11b 
shows the contours of Γଵ, Γ௠ and Γ଴ of random sets. The yellow 
rectangle sites (1) in Figures 4.11a,b have a different extent implying 
that these sites have a wider, more gradual transition (see Figure 
4.11c), mainly caused by the location close to the mangrove forest in 
a muddy area. For the yellow sites (2), however, the contours of Γଵ, 
Γ௠ and Γ଴ are similar and the segmentation boundaries show small 
variation (see Figure 4.11d).  
 
Table 4.4 The quantification of the extensional uncertainty of the all subsets 
(the ࢂࡿ is the sum of variance, and ࢂ࡯ denotes the coefficient of variance). 
See notations in Table 4.3 for the name of subsets 

Subset ࢂ࡯ ࢂࡿ Subset ࢂ࡯ ࢂࡿ 

ଵܵ–ଵ 657 0.007 ܵଶ–ଵଶ 1525 0.032 

ଵܵ–ଶ 811 0.009 ܵଶ–ଵଷ 1710 0.017 

ଵܵ–଺ 915 0.010 ܵଷ–ହ 1490 0.025 

ଵܵ–଻ 901 0.010 ܵଷ–ଵଵ 883 0.014 

ଵܵ–ଽ 466 0.005 ܵସ–ସ 441 0.005 

ଵܵ–ଵ଴ 574 0.008 ܵସ–଼ 580 0.006 
ܵଶ–ଷ 953 0.009    
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Figure 4.11 The set-theoretic variance (a); some examples of the contour of 
Γଵ, Γ଴.ହ and Γ଴ (b); and a detail representing the yellow rectangle sites as an 
example of contours with a broad variation (c); and contours with a small 
variation indicating a narrow shoreline (d). 

 
More pixels with a non-zero Γ௩ in the objects indicate a large 
uncertainty area. ܸܵ values are the largest for ܵଶ–ଵଶ, ܵଶ–ଵଷ, and ܵଷ–ହ 
(see Table 4.4) because the number of pixels with non-zero Γ௩ values 
in those subsets are the largest (see Figure 4A.6). Subsets ଵܵ–ଽ, ܵସ–ସ 
and ܵସ–଼ have the smallest ܸܥ, which can be observed well in Figure 
4A.6 indicating a small number of pixels with a non-zero Γ௩.  
 
The extent of the shoreline is represented by a random sets model in 
Figure 4.12 as an example of the representations of the core set Γଵ, 
the support set Γ଴, and the covering function ܲݎΓሺ݇ሻ of random sets 
(see Figure 4A.7 for other results). Figure 4.12a shows the Γଵ (in blue 
pixels) representing the area that obviously belongs to water. Figures 
4.12b displays the Γ଴ (in blue colour) indicating the possible part of 
the area that belongs to water, whereas the area outside this Γ଴ 
belongs to non-water (see black pixels in Figure 4.12d). The gradual 
changes in the transition zone representing the shoreline are 
represented by the set-theoretic variance Γ௩. Pixels with value close 
to 1 have a high variation indicating a high uncertainty, whereas, 
pixels with value close to 0 have a low variation indicating a low 
uncertainty (Figures 4.12d,e). A clear distinction exists between a 
narrow transition zone, for example, which separates settlements and 
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open water (Figure 4.12e, e.g., grid cells A2 and B2), and broad 
transition zones between open water and vegetation (Figure 4.12e, 
e.g., grid cells B3).  
 

 
Figure 4.12 An example of a random set: the core set Γଵ and its contour (a); 
the support set Γ଴ and its contour (b); the set-theoretic variance image (c); 
the transition zone between water and non-water represented by the set-
theoretic variance values (d); and zoom-in to the yellow rectangle site (e). 

 

Accuracy assessment of random sets results 

Table 4.5 shows the comparison of accuracy between Pleiades and 
Pleiades + DTM by using random sets. Similar to fuzzy sets, using 
random sets, Pleiades + DTM outperformed Pleiades. McNemar’s test 
results of random sets using Pleiades and Pleiades + DTM are shown 
in Table 4A.4. Seven of the subsets show significant improvement of 
the Pleiades + DTM over the Pleiades image, as shown by their very 
low ݌-values (see Table 4A.4 subsets ଵܵ–ଵ, ଵܵ–ଶ, ଵܵ–଻, ଵܵ–ଽ, ଵܵ–ଵ଴, ܵଷ–ହ, 
and ܵସ–ସ), whereas the rest of the results show that similar accuracies 
were obtained from both of them. 
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Table 4.5 The accuracy comparison between Pleiades and Pleiades + DTM by 
random sets (see notations in Table 4.3 for the name of subsets) 

Subset Pleiades 
Pleiades 
+ DTM 

Subset Pleiades 
Pleiades 
+ DTM 

ଵܵ–ଵ 0.76 0.89 ܵଶ–ଵଶ 0.74 0.87 

ଵܵ–ଶ 0.58 0.86 ܵଶ–ଵଷ 0.79 0.81 

ଵܵ–଺ 0.76 0.88 ܵଷ–ହ 0.56 0.90 

ଵܵ–଻ 0.48 0.84 ܵଷ–ଵଵ 0.77 0.90 

ଵܵ–ଽ 0.56 0.87 ܵସ–ସ 0.66 0.88 

ଵܵ–ଵ଴ 0.74 0.88 ܵସ–଼ 0.67 0.81 
ܵଶ–ଷ 0.75 0.87    

 

4.3.3 Comparing Classification Performance 

Table 4A.5 presents the McNemar’s test results by fuzzy sets and 
random sets using Pleiades image. The table indicates that the 
methods agree on ଶ݂ଶ and ଵ݂ଵ but disagree on ଵ݂ଶ and ଶ݂ଵ samples. 
From the test results, we can see that ݌-values are relatively high 
(≥0.05) implying that both methods obtained a similar accuracy 
when using Pleiades. 
 
Table 4A.6 presents the McNemar’s test results by fuzzy sets and 
random sets using Pleiades + DTM image as input data. From the test 
results, we can see that ݌-values are relatively high (≥0.05) implying 
that both methods obtained a similar accuracy when using Pleiades + 
DTM. 
 
 

4.4. Discussion 

 
This research compared two methods for handling the uncertainty of 
shorelines: fuzzy sets and random sets. Shoreline is a spatial object 
with inherent uncertainty that cannot be extracted effectively from 
satellite images by means of a crisp-based classification, since these 
methods ignore uncertain areas or gradual transition zones. This 
chapter demonstrates that fuzzy sets and random sets produced 
comparable results for modelling the uncertainty of fuzzy shorelines. 
When using fuzzy sets, the same results can be achieved without 
taking randomness into account, as confirmed by Zadeh (1995).  
 
The κ accuracies from both fuzzy sets and random sets are slightly 
different (see Tables 4.3 and 4.5). In addition, the McNemar’s test 
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failed to reject the null hypothesis of equal performance of both 
methods by using either Pleiades or Pleiades + DTM (see Tables 4A.5 
and 4A.6). Although fuzzy sets and random sets were not identical, 
shorelines resulted from both methods were close to each other (see 
Figures 4.6d and 4.12e) and neither could be considered more 
accurate, as confirmed by the literature (Goodman, 1984; Mahler, 
2007). This is probably related to the fact that each segmentation of 
random sets can be interpreted as a different interpretation of a fuzzy 
concept, since the multiple thresholds to generate the segments are 
selected among the possible interpretations (Mahler, 2007). 
Furthermore, Goodman (1984) argued that any given fuzzy sets is 
equal to one nested random set.  
 
Both methods were successful in identifying the spatial extent of 
shorelines including their extensional uncertainties. Fuzzy sets 
present a shoreline as a margin derived from a crisp boundary 
determined by ݀ values. Here, the extensional uncertainty of 
shoreline represented by a confusion index values implies that the 
shoreline can be detected with limited certainty. Through the 
confusion index, the presence of a gradual transition was 
distinguished when the values of an adjacent grid are very similar. 
When using random sets, a shoreline is presented as the third class, 
the transition zone between water and non-water. The extensional 
uncertainty of a shoreline was assessed by using the covering 
function of random sets and its statistical parameters (Γଵ,	Γ௠,	Γ଴ and 
Γ௩). By using these parameters, we demonstrated that the 
randomness of segmentation parameters, i.e., multiple thresholds, 
has a different effect on extracted features when objects have 
different extensional uncertainties (see Figure 4.9). Moreover, there 
are other indicators such as ܸܵ and ܸܥ to summarize the size of 
extensional uncertainties. A high ܸܵ and ܸܥ indicate a high 
extensional uncertainty.  
 
Fuzzy sets were applied by first estimating the membership function. 
In this study, we computed the membership value by performing FCM 
classification. On the one hand, this method is less subjective as 
compared to the semantic import model (Burrough, 1996; Cheng, 
2002), while, on the other hand, the choice of values for ܿ and ݉ 
influence the results of the classification. In contrast, random sets as 
a probabilistic approach avoid user interference (Nguyen, 2006; Zhao 
et al., 2011b) in generating random sets.  
 
The random sets model was combined with thresholding to model 
shorelines from water membership images. Here, the choice of ߮ as 
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the number of focal elements was critical. Improper threshold values 
࣬௜,… ,࣬ఝ, from the worst ߮ values in segmentation will result in errant 
segments. At low ߮, the Γଵ area changed abruptly, and by the 
increasing of ߮ values, the Γଵ area reached its stability. In fact, by 
increasing ߮, we increase the chance to have optimal threshold 
values for segmentation of random sets. Performing random sets 
modelling with such large ߮ values was computationally expensive. 
Comparing random sets to fuzzy sets, fuzzy sets were relatively 
computationally less expensive. However, the choice of optimal ܿ, ݉, 
and ݀ values for classification influences the results and requires a 
thorough investigation. 
 
To model a shoreline using fuzzy sets, we need to adopt other 
concepts to quantify the extensional uncertainty of the shoreline, 
such as α-cut, shoreline as a margin, and fuzzy-crisp object (Cheng 
et al., 2001; Dewi et al., 2017a; Dewi et al., 2016), whereas a 
random sets approach through its covering function and statistical 
parameters directly quantifies the extensional uncertainty of 
shoreline without resorting to other concepts.  
 
The integration of DTM data improved the results of both fuzzy sets 
and random sets. The integration of Pleiades and elevation has higher 
accuracy than Pleiades only. The additional DTM band leads to an 
improvement in the classification accuracy for roofs, inundated 
houses and inundated land. After this integration, roofs were clearly 
distinguished and separated from their surroundings (i.e., water and 
inundated soil). Usually, the ground close to the building location is 
slightly higher than its surroundings while water area or an inundated 
land clearly has a lower elevation. By using only Pleiades, it was 
difficult to discriminate dark roofs and water or inundated soil, since 
they are often have similar spectral characteristics. The ability to 
discriminate two similar characteristics is influenced by the number of 
spectral bands available. The other objects that were successfully 
classified from the addition of DTM were inundated houses and land. 
In this case, the elevation data help to identify the water area. In 
addition to the benefit given by addition of the DTM in the 
classification, a downside could be found as well, especially for tree 
objects. This is due to the time difference between Pleiades and DTM 
data of one and half years. In several locations, trees were 
submerged and finally no longer exist in newer data and these 
changes caused loss of accuracy. In this case, the use of DTM data 
that have the same date of acquisition as the remote sensing image 
is preferable. 
 



Chapter 4 

 113

4.5. Conclusions 

 
In this chapter, fuzzy sets and random sets are compared for 
shoreline detection. Both methods performed well in modelling the 
uncertainty of shorelines and had similar results when using either 
Pleiades or Pleiades + DTM.  
 
Application of fuzzy sets produced higher classification accuracy for 
Pleiades + DTM than for Pleiades. Similarly, for random sets, Pleiades 
+ DTM gained a significant improvement over Pleiades. Considerable 
improvements were achieved for objects, e.g., roofs, inundated 
houses and yards. Pleiades + DTM achieved accuracy above 80%, 
demonstrating that it provides a valuable data source for shoreline 
mapping. In the absence of elevation data, we may overestimate in 
particular the water area. The research further confirmed the need of 
DTM integration to remote sensing images to provide reliable and 
accurate shoreline mapping that may give benefit to coastal planners 
and managers. The proposed methods are to be further applied in 
other areas for future study. This will help to better understand how 
different condition of the area can influence the results and to upscale 
the methods to larger areas of land. 
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Transferability and Upscaling of Fuzzy 
Classification4 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

This chapter provides methods to test the transferability and upscaling 
potential of fuzzy classification to other areas and towards larger area. FCM 
parameters (level of fuzziness, ݉ and number of classes, ܿ) are optimized 
based on predominant land use/cover. The value of the class means and 
number of classes of the reference subset are be used to initialize target 
subsets. The optimal level of fuzziness (݉=1.8) provided in this research can 
be adopted for similar coastal areas. 
 
 
 
 
 
  

                                          
4 This chapter is based on the published paper: Dewi, R.S., Bijker, W., Stein, A., 
Marfai, M.A., 2018. Transferability and Upscaling of Fuzzy Classification for Shoreline 
Change over 30 years. Remote Sensing. 2018. 10, 1377  

5 
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Abstract 
 

 
Local authorities require information on shoreline change for land use 
decision making. This study investigated the transferability of a fuzzy 
classification of shoreline changes and to upscale towards a larger 
area. Using six sub areas, we conducted three strategies: (i) 
optimizing two FCM parameters based on the predominant land 
use/cover of the reference subset; (ii) adopting the class mean and 
number of classes resulting from the classification of reference subset 
to perform FCM on target subsets; and iii) estimating the optimal 
level of fuzziness of target subsets. This approach is applied on a 
series of images to identify shoreline positions in a part of the 
northern Central Java Province, Indonesia which experienced a 
severe change of shoreline position in three decades. From the 
experimental results, we obtained m values in the range from 1.3 to 
1.9 for seven land use/cover classes that have been analysed. 
Furthermore, for ten images used in this research, we obtained the 
optimal m=1.8. For a similar coastal characteristic, this m value can 
be adopted and the relation between land use/cover and two FCM 
parameters can help to shorten the time needed to optimize the 
parameters. The proposed method for upscaling and transferring the 
classification method to a larger and to different areas is promising 
showing κ values >0.80 and agreement of water membership values 
>0.82 between the reference and target subsets. We conclude that 
the method is applicable to the current study area. The relation 
between land use/cover classes and the value of FCM parameters 
produced in this study can be adopted. 
 
Keywords: fuzzy classification, transferability, upscaling, shoreline 
change 
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5.1. Introduction 

 
A shoreline represents the boundary where the land meets the sea. It 
does not form a permanent line, but is a dynamic environment as the 
land and sea are changing in response to both natural and 
anthropogenic factors (French, 2001). Natural factors include erosion, 
accretion, storm, wave, tide, whereas anthropogenic factors include 
coastal development. The position of the shorelines can change due 
to: (i) variation in sea level that is influenced by either meteorological 
or astronomical factors (Pugh, 1987); and (ii) alteration in the shape 
and volume of sediments along the shore (Pardo-Pascual et al., 
2012).   
 
Previous methods to extract shorelines can be divided into two broad 
categories (Sukcharoenpong et al., 2016). In the first category are 
model-based methods which generate shoreline by intersecting a 
digital elevation model (DEM) with a water level at a desired tidal 
datum, for example shoreline mapping from LiDAR-based DEM and 
ground survey (Kim et al., 2017; White et al., 2011). The second 
category consist of image-based methods which extract 
instantaneous shoreline as it appears on images of which its 
acquisition time is correlated with tidal data, for instance shoreline 
mapping from digital photogrammetry (Yao et al., 2015a) and remote 
sensing imagery (Choung and Jo, 2016). 
 
Since remotely sensed images record a shoreline at a particular 
instant, modelling shoreline with remote sensing images should 
include estimation of its uncertainty (Dewi et al., 2017b; Zhao et al., 
2011b). The uncertainty in shoreline modelling can arise due to an 
inherent variability in nature, for example due to a variation of a 
shoreline over time and the presence of gradual transition between 
land and water (Fisher, 1999; Riesch, 2013). When a shoreline is 
clearly identified, however, the uncertainty in shoreline modelling can 
originate from errors during image processing and taking 
measurements (Fisher, 1999). Given that the shoreline is imprecise 
(Atkinson and Foody, 2002), it is best handled by soft classification 
(Foody, 1996). Few studies exist on modelling shoreline using soft 
classification e.g. fuzzy c-means classification and the linear spectral 
mixture model (Dewi et al., 2016; Huang et al., 2017; Muslim et al., 
2006; Taha and Elbeih, 2010). In our previous study, we used FCM 
classification to estimate the water memberships and then generate 
shoreline margin by using a choice of thresholds (Dewi et al., 2016). 
To estimate membership values by using FCM, we need to specify 
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parameters ܿ as the number of classes, and ݉ as the level of 
fuzziness. The choice of these parameters is not always an easy task, 
especially when the user does not have any knowledge about the 
number of information classes. As an alternative, we can estimate 
specific indices to measure clustering performance with a range of 
cluster numbers and a range of fuzziness values. The transferability 
and the upscaling potential of the shoreline model to larger areas 
than those where it has been developed have only rarely been 
checked. Better knowledge about the transferability and the upscaling 
potential would lead to the development of more robust shoreline 
models which eventually would advance our understanding of 
changes in the coastal environment. 
 
In this study, we aim to test the transferability of the method 
developed in Dewi et al. (2016) to another area and to upscale it 
towards a larger area. Both transferability and upscaling were 
assessed by the optimization of the ݉ and ܿ parameters. The method 
was implemented on a series of images in the northern part of 
Central Java. 
 
 

5.2. Transferability and upscaling methods 

 
5.2.1 Satellite images, reference data and pre-processing  

Landsat and ASTER images available from USGS EarthExplorer 
(USGS, 2017) were used in this study (Table 5.1). In total, we used 
10 images dating from 1988 to 2017 denoted as ܫஒ, where β is the 
image number (β=1,…,10). These images were recorded at the low 
tide. Tidal data relating to the time of image acquisition were 
collected from Indonesia Geospatial Information Agency (BIG, 2017).  
 
All images were transformed to the Universal Transverse Mercator 
(UTM), World Geodetic System (WGS 84) projection. Landsat 8 
OLI/TIRS were rescaled to the same 8-bit format as Landsat TM, 
Landsat ETM+ and ASTER images. Histogram minimum adjustment 
was applied to all images (Hadjimitsis et al., 2010) to reduce the 
effect of atmospheric path radiance. Landsat 8 OLI/TIRS of 19 June 
2017 was rectified using a 2015 orthoimage. This Landsat image was 
then used as the base image to which all other images were geo-
rectified using ground control points (GCPs) of permanent features in 
the images. The root mean square error (RMSE) values were less 
than 0.5 pixel. Reference data from several images including 
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Sentinel-2, ASTER, Landsat TM (USGS, 2017) and images obtained 
via Google Earth were used for accuracy assessment purposes.  
 
Table 5.1 Images used in this study and their related reference data  

Images 
Acquisition 

Date 
Sensors 

Astronomic
al Tide 

Level (m) 

Reference 
Data 

Acquisition 
Date 

 ଵ 23 Sep 1988 TM -0.03 Landsat TM  23 Sep 1988ܫ

 ଶ 31 Aug 1991 TM 0.01 Landsat TM 31 Aug 1991ܫ

 ଷ 08 Sep 1994 TM 0.19 Landsat TM 08 Sep 1994ܫ

 ସ 15 Aug 1997 TM 0.05 Landsat TM 15 Aug 1997ܫ

 ହ 06 Jul 2000 TM 0.19 ASTER 16 Feb 2001ܫ

 ଺ 20 May 2003 ETM+ 0.01 ASTER 26 Feb 2002ܫ

 ଻ 12 May 2006 ASTER 0.08 ASTER 12 May 2006ܫ

ܫ଼  07 Jul 2009 ASTER 0.3 ASTER 07 Jul 2009 

 ଽ 27 Aug 2013ܫ
OLI/TIRS 

-0.09 
Image via 

Google 
31 Dec 2013 

 ଵ଴ 19 Jun 2017 OLI/TIRS 0.04 Sentinel-2 28 Jun 2017ܫ

 
5.2.2 FCM parameter estimation for land use/cover types 

Optimization of parameters ݉ and ܿ was performed for various land 
use/cover types in order to see the relation between land use/cover 
composition and the value of ݉ and ܿ. For this purpose, we estimated 
the cluster validity index (CVI) based on Xie and Beni (1991) by 
using a range of combinations of ݉ and ܿ. We tested values 1.1 to 
3.0 in the steps of 0.1 for ݉ and values 2 to 7 in the steps of 1 for ܿ. 
This CVI has been used to evaluate the validity of partitions produced 
by FCM clustering algorithm (Pal and Bezdek, 1995; Wu and Yang, 
2005). The lowest values produced by the CVI indicate a partition in 
which all the clusters are overall compact and separate from each 
other (Xie and Beni, 1991). The CVI is estimated as: 

 
ܫܸܥ ൌ

∑ ∑ μ௜௞௠‖ ௜ܸ െ ܺ௞‖ଶ
ே
௞ୀଵ

௖
௜ୀଵ

ܰ ݉݅݊௜,௞‖ ௜ܸ െ ௞ܸ‖ଶ
(5.1) 

where ܺ ൌ ሼܺ௞; ݇ ൌ 1,2, … ,ܰሽ is the set of digital number; ௜ܸሺ݅ ൌ 1,2, … , ܿሻ 
is the mean of the classes; ܰ is the number of pixels; ܿ is the number 
of classes; μ௜௞ is the membership of pixel ݇ belonging to class ݅; ݉ is 
the level of fuzziness, and ݉݅݊௜,௞‖ ௜ܸ െ ௞ܸ‖ is the minimum distance 
between the mean of the classes.  
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Figure 5.1 Location of subsets for each land use/cover class in the city of 
Semarang, Kendal and Demak 

 
We created small subsets consisting of approximately 30 x 30 pixels 
for seven land use/cover classes (i.e., water, fishpond, wet paddy, 
dry paddy, other crops, built-up, and bare soil) that can be identified 
in the study area. We collected 55 subsets over the full extent of 
images based on the dominated land use/cover of the subset area. 
We considered these 55 subsets sufficient to describe the relation 
between land use/cover and the ݉ and ܿ values required for 
classification. It is unlikely that increasing the number of subsets for 
the estimation will achieve different results. Figure 5.1 shows the 
spatial distribution of the collected subsets over the city of Semarang, 
Kendal and Demak. 
 

5.2.3 Shoreline model 

The shoreline model as developed in Dewi et al. (2016) was applied 
by performing FCM classification and deriving shoreline margins by 
the choice of threshold interval (݀). To assess the transferability of 
the shoreline model and to upscale it towards a larger area, we 
conducted three strategies: (i) optimizing ݉ and ܿ based on the 
predominant land use/cover of the reference subset by utilizing 
information provided in Section 5.2.2; (ii) adopting the values of ௜ܸ 
and ܿ which resulted from the classification of the reference subset to 
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perform FCM on the target subset; and (iii) estimating the optimal ݉ 
of the target subsets. 
 
FCM classification was performed to estimate the membership value 
that separates the data cluster into sets so that each pixel has a 
membership value to multiple classes. The clustering used in the FCM 
is based on minimizing the within-groups sum of squared error 
function ܬ௠ (Bezdek et al., 1984): 

 
௠ܬ ൌ෍෍ሺμ௜௞ሻ௠‖ܺ௞ െ ௜ܸ‖ଶ, 1 ൑ ݉ ൑ ∞

௖

௜ୀଵ

ே

௞ୀଵ

(5.2) 

After choosing the number of classes ܿ and the level of fuzziness ݉, 
FCM adds initial value to ௜ܸ of each class in order to initialize 
clustering membership matrix. Instead of taking random values as 
the initial ௜ܸ, we used the value of ௜ܸ of the reference subset. The FCM 
classification is thus performed by iteratively estimating and updating 
the membership value μ௜௞ and the mean cluster ௜ܸ (Bezdek et al., 
1984; Tso and Mather, 2009). After completing the clustering, 
membership images were compiled for each class. One of the 
membership images was labelled as belonging to water class by using 
the infrared bands of the images. The water label was given to the 
class which has the minimum value of ௜ܸ in the infrared bands (Dewi 
et al., 2016). The final ௜ܸ and the optimal ݉ values were then 
evaluated by assuming that a large deviation of ݉ and ௜ܸ from the 
reference subset indicates that a new choice of ܿ is required. 
   
Afterwards, the possible shoreline location was determined by 
generating a margin or transition zone between classes water and 
non-water. We defined a threshold interval based on κ estimation to 
create hard boundaries of the transition zone determined by lower 
ሺ݀ଵሻ and upper thresholds ሺ݀ଶሻ. We tested threshold values from 0.1 
to 0.9 in steps of 0.05 to estimate the optimal threshold value and 
then decided a threshold interval ݀ଵ and ݀ଶ to generate a shoreline 
margin. 
 

5.2.4 Subsetting 

We created subsets for upscaling towards a larger area and to test 
the transferability to a different area. Subsets were denoted as ݏ௕, 
where ܾ is the subset numbers (ܾ=1,…,6). We selected subset ݏଵ as a 
reference subset. The reference subset is a subset whose parameters 
are used to initialize other subsets (target subsets). We considered ݏଵ 
at the corner of the study area (Figure 5.2a), thus obtaining a 
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maximum distance between reference and target subsets for the 
purpose of upscaling.  
 

 
Figure 5.2 Four subsets with various sizes were used to upscale the method 
to a larger study area. Subset ࢙૚ (a) is a reference subset while the others are 
target subsets (b-d). False natural colour composite of 2017 Landsat image is 
used for visualisation. Dark blue represents water area, green refers to 
vegetation, and shades of pink refer to built-up. 

 
Subset ݏଵ is dominated by water and fishponds with mangroves 
planted along their dykes. In addition, it can be seen that bare soil 
was a dominant land cover in older images (ܫଵ up to ܫସ). Meanwhile, in 
more recent images, this area was dominated by dry paddy (ܫହ up to 
 ଵ଴). From all images, this area has shown very little environmentalܫ
changes reflected in a relatively steady shoreline position. For 
upscaling, we created three target subsets (Figures 5.2b-d). We 
gradually increased the size to see how various land use/cover 
influences the values of ݉ and ௜ܸ. In general, water was a dominant 
land use/cover in the area, while other types of land use/cover are 
described as follows: 
a) Subset sଶ: the presence of agricultural area (paddy and other 

crops) was mainly influenced by the seasonal condition when the 
images were recorded. Bare soil was a dominant land use/cover 
in image ܫଵ up to ܫସ, while image ܫହ up to ܫଵ଴ were dominated by 
vegetation e.g., paddy and other crops. In addition, in the later 
subsets, we found an increase of built-up as the city has 
expanded to the north-east direction.  

b) Subsets ݏଷ and ݏସ obviously have a large coverage of water, 
especially clear water which contributes to a low spectral 
reflectance of water class. The city of Semarang was also located 
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in these subsets. Therefore, these subsets have more built-up 
contributing to a high spectral reflectance of non-water class. 

 
To test the transferability of FCM to a different area, we created two 
more subsets (i.e., ݏହ and ݏ଺) with similar size as ݏଵ (see Figure 5.4). 
Subset ݏହ is similar to ݏଵ, however ݏହ has more built-up. Meanwhile, ݏ଺ 
is dominated by urban area located close to the sea side. In the 
earlier images, fishponds were visible in the north-eastern and 
western part of the site. Agriculture areas could be identified at the 
south-eastern part of the city. In the later images, the city has been 
expanding and transformed fishponds and agriculture areas into 
settlements and commercial areas. A national sea-port and airport 
were built extending sea-ward and the concrete embankment was 
made as a protection along the shore. 

 

 
Figure 5.3 Three subsets to test the transferability of the method to different 
areas. ࢙૚ and ࢙૞ are dominated by water and agriculture area while ࢙૟ is 
dominated by water and urban area. 

 
We estimated the optimal FCM parameter at the reference subsets by 
utilizing knowledge provided in Section 5.2.2. Afterwards, we applied 
the values of ܿ and ௜ܸ of the reference subsets for FCM classification 
of the target subsets. For upscaling, we used parameters of smaller 
subsets to be applied to larger subsets. For example, first, we 
estimated the optimal parameters for ݏଵ. Second, we used the value 
of ௜ܸ and the same ܿ from classification to estimate ݏଶ. Likewise, we 
used the resulting class means of ݏଶ as the initial ௜ܸ to estimate ݏଷ. 
Finally, we compared the initial ௜ܸ and ݉ values with the final ௜ܸ and 
the final ݉ values. For the transferability, we similarly used the 
values of ܿ and ௜ܸ resulting from classification on the reference subset 
i.e., ݏଵ to estimate the target subsets ݏହ and ݏ଺. To evaluate the 
classification performance, we performed classifications on two 
different reference subsets and compared the results. As a result, we 
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have six shoreline images consisting of two reference subsets and 
four target subsets.  
 
Each time we applied the method to either a larger area or another 
area with different land use/cover composition, FCM updated the 
initial ௜ܸ by considering the existing land use/cover composition. 
Large deviation of both ௜ܸ and ݉ from their initial values indicates 
that the target subset requires a new choice of ܿ for FCM. To check 
the variation of ௜ܸ from their initial values, we used the infrared bands 
of the remote sensing images because the infrared bands exhibit a 
strong contrast between water and land features. In these infrared 
bands, the vegetation and soil show a high reflectance, but water has 
a low reflectance. 
 

5.2.5 Analyzing shoreline changes  

For the shoreline changes analysis, we used shoreline images 
developed for the whole study area (subset ݏସ). We performed post 
classification change detection by comparing information extracted 
from independently-produced classifications (Jianya et al., 2008; 
Lambin and Strahler, 1994). ‘From-to’ change information is 
provided, as well as the area and type of changes. Six types of 
changes are identified, namely shoreline to water, non-water to 
water, water to shoreline, non-water to shoreline, shoreline to non-
water and water to non-water. These changes were identified both 
as: i) abrupt changes when an area emerges at date ݐଶ without a 
corresponding area at date ݐଵ or vice versa; and ii) gradual changes 
when there is an expansion or shrinking of areas that were both exist 
at two dates ݐଵ and ݐଶ.  
 
Based on the results of shoreline change detection, the area of a 
specific change category was estimated by multiplying the number of 
pixels belonging to that specific change category and the area of a 
pixel. Three sections of the coastal area were selected for analysing 
the change of shoreline margin at time ݐଵ and ݐଶ, namely east, 
middle, and west sections. The first two sections experienced an 
extensive change of shoreline while the third section can be 
considered as a moderate shoreline change. 
 

5.2.6 Change uncertainty estimation  

By considering the vagueness of the shoreline position and the 
uncertainty inherent in image processing, the confidence of the 
changed area is then estimated. The area change is associated with a 
value that reflects the change certainty of the shorelines. In this 
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study, we modified the method proposed by Ardila et al. (2012), and 
we used differences in membership values estimated at ݐଵ and ݐଶ as 
proxy to the certainty in shoreline change. Six types of change 
certainties were identified namely change certainty of: shoreline to 
water, non-water to water, water to shoreline, non-water to 
shoreline, shoreline to non-water and water to non-water. Further for 
visualisation, we regrouped them into three types of change 
certainties namely change certainty to water, change certainty to 
shoreline and change certainty to non-water. For these change 
certainties, a high value corresponds to a high certainty of the 
change of the associated class in the shoreline image.   
 

5.2.7 Accuracy assessment 

For accuracy assessment purposes, we generated two error matrices: 
the conventional and the fuzzy error matrices. The conventional error 
matrix was used to assess the accuracy of shoreline models in the 
reference subset (ݏଵ), the accuracy of the transferability model (ݏହ 
and ݏ଺), and the accuracy of the upscaling model (ݏସ). For this 
purpose, we produced a hardened FCM at the selected threshold 
݀=0.5. We collected randomly 150 points (for ݏଵ, ݏହ and ݏ଺) and 400 
points (for ݏସ) from each reference image. Subsequently, a visual 
interpretation approach was performed for a binary classification into 
water or non-water for each selected point. Afterwards, we estimated 
kappa (κ) values by generating the confusion error matrix (Congalton 
and Green, 2009).  
 
The fuzzy error matrix was developed to asses the agreement in 
water membership values between classes in both reference (ݏଵ) and 
target subsets when we upscaled the method to a larger area (sଶ, sଷ 
and ݏସ). For this purpose, we collected 150 points randomly from 
water membership images of both reference and target subsets. 
These points were collected over the extent of subset sଵ by assuming 
that the agreement obtained can represent the accuracy of the 
classification for the entire target subset with respect to the reference 
subset. The fuzzy error matrix is obtained by finding the maximum 
possible overlap between the target and the reference subsets (Dewi 
et al., 2017a; Pontius and Cheuk, 2006). Then, we estimated the 
overall accuracy of the classifications. 
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5.3. Results and assessment of accuracy 

 
5.3.1 FCM parameter and threshold values estimation  

From FCM parameter estimation on seven land use/cover types, we 
found that bare soil and wet paddy have a similar optimal value of 
c=2 over the range between 2 and 7 for ܿ, while the ݉ value varied 
between 1.5 and 1.9. Water, fishpond, dry paddy and built-up 
obtained optimal values of ܿ between 2 and 3 with ݉ values range 
from 1.3 to 1.9. Other crops produced ݉ values between 1.5 and 1.7 
and this class selects an optimal ݉ if ܿ lies in between 2 and 6. Figure 
5A.1 shows histograms of the optimal ݉ and ܿ chosen by each CVI for 
seven land use/cover types in the study area.  
 

 
Figure 5.4 ૂ values to estimate threshold interval for generating the 
shoreline margin. The curves show that values of ࢊ larger than 0.7 and lower 
than 0.3 produced more erratic curves indicating low ૂ values. Threshold 
interval [0.3, 0.7] generally provides high ૂ values. Similar curves were 
obtained when estimated the ૂ for all images (ࡵ૚ up to ࡵ૚૙) 

 
Figure 5.4 shows κ values that were used to estimate an optimal 
threshold interval when generating shoreline margin. The highest κ 
values are given when setting ݀ values between 0.3 and 0.7, whereas 
݀=0.25 and ݀=0.75 also produced good results with κ values larger 
than 0.7 except for ܫ଻. It can be clearly seen that ݀ values lower than 
0.25 and larger than 0.75 obtained an erratic curve. The selected 
threshold interval produced similar curves when we estimated κ 
values over time from 1988 up to 2017 (image ܫଵ up to ܫଵ଴). Further, 
before proceeding to generate shoreline margins for the whole 
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images, we visually evaluated shoreline margins by varying 
thresholds around the selected values. In this case, we set values 
0.25 and 0.35 as ݀ଵ and values 0.65 and 0.75 as ݀ଶ. We kept one 
threshold value (e.g., ݀ଵ) and varied the other threshold value (݀ଶ) to 
check whether extending the interval would give a large variation of 
margins. Changing ݀ଵ and ݀ଶ produced differences in the area of the 
shoreline margin. Based on the κ values and visual analysis when 
varying thresholds around the selected interval, we decided to choose 
interval 0.3 to 0.7 as a suitable interval to generate the shoreline 
margins. 

 
5.3.2 Upscaling the shoreline model  

Optimization of the ݉ and ܿ value was performed for ݏଵ as the 
reference subset for all images (see Figure 5A.2). We applied FCM by 
setting ݉=1.3 to 1.9 and ܿ=2 to 3 based on information provided in 
Figure 5A.1. For all these images, we obtained ݉=1.8 as the median 
value of the optimal ݉ and ܿ=2 as the optimal ܿ chosen by each CVI. 
  
Figure 5.5 shows the results of upscaling towards a larger area for ܫଵ଴ 
and their related ݉ and ܿ values. For this image, the reference and 
target subsets required similar ݉ and ܿ values (݉=1.8 and ܿ=2). 
Meanwhile, a complete result of optimization of target subsets is 
available in Figure 5A.3. In Figure 5.5, we compare shoreline images 
and zoom in at red rectangle sites to see the detailed visualisation of 
the area (see Figures 5.5e-h). The shoreline margin of target subset 
differed little from its reference when we upscaled the method to 
larger areas. This is also supported by information provided in Figure 
5.6. The class means of water decreased when we compared smaller 
subsets to the larger subsets both in NIR and SWIR bands. This may 
be related to the increase of water area especially clear water which 
has a low spectral reflectance value (see Figure 5.2). On the 
contrary, an increase of the class mean of non-water can be 
identified from subset ݏଵ up to ݏଷ. This may be due to the increase of 
built-up in both images as a result of city expansion. The small 
variation of shoreline margin (in Figures 5.5e-h) and small shift of ௜ܸ 
value (in Figure 5.6) indicates that the differences between the 
smaller and the larger area were small. However, we notice that the 
more we upscaled the method to a larger area, the larger the 
deviation of shoreline margin from subset ݏଵ.   
 
Table 5.2 shows the overall accuracy values when we upscaled the 
method towards larger areas for images ܫଵ, ܫ଺ and ܫଵ଴. The overall 
accuracies were larger than 0.82 for all subsets showing a high 
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agreement in water memberships between the reference subset and 
the target subsets. However, the overall accuracy is slightly 
decreasing by the increase of the area of the subsets. A complete 
accuracy assessment result can be seen in Table 5A.1. 
 

 
Figure 5.5 Image ࡵ૚૙ is used to show the comparison of shoreline images 
developed at the reference subset (a) and the target subsets (b-d). We zoom 
into an area in the red rectangle site (e-h) to see a variation of shoreline 
margins (in turquoise) each time we upscaled the method to a larger area. 
The larger the area, the larger the deviation of shoreline margin from its 
reference subset   

 
Figure 5.6 The comparison of the resulting class means of subsets ࢙૚ up ࢙૝ 
to for image ࡵ૚૙. The mean values of water class are slightly decreasing when 
we upscaled the method to larger areas both in NIR and SWIR bands. 
Whereas, mean values of non-water class are decreasing in NIR band and 
increasing in SWIR band for subsets ࢙૚ up to ࢙૜ 
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Table 5.2 The overall accuracy indicating the water membership agreement 
between the reference subset ࢙૚ and the target subsets (࢙૛ up to ࢙૝) 
estimated using fuzzy error matrix for images ࡵ૚, ࡵ૟, and ࡵ૚૙ 

Classified 
images 

 Overall accuracy  

 ૝࢙ ૜࢙ ૛࢙
 ଵ 0.97 0.91 0.88ܫ

 ଺ 0.92 0.83 0.82ܫ

 ଵ଴ 0.97 0.92 0.91ܫ

 

5.3.3 Transferability of the method to other areas 

Figure 5.7 shows the results when we transfer the method to a 
different area with different land use/cover composition. In Figure 
5.7, we used ݏଵ as the reference subset and the resulting ܿ and ௜ܸ 
were used to estimate two target subsets ݏହ and	ݏ଺. The reference and 
target subsets of image ܫଵ଴ required similar ݉ and ܿ values (݉=1.8 
and	ܿ=2). A complete result of optimization of target subsets for 
other images is available in Figure 5A.4.  
 

 
Figure 5.7 Shoreline margin generated by transferring the shoreline model to 
target subsets for image ࡵ૚૙. Subset ࢙૚ (a) as the reference subset is used to 
estimate FCM parameter at target subsets (b-c). We zoom into an area in the 
red rectangle site (d-f) to see a variation of shoreline margin 

 
The comparison of the initial and final ௜ܸ is provided in Figure 5.8. The 
mean of the water class is increasing from subset ݏଵ to ݏହ in NIR band 
which is influenced by the increase of turbid water. The mean of the 
non-water class is increasing from subset ݏହ to ݏ଺ in SWIR band due 
to the increase of built-up area.  
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Figure 5.8 The comparison of the initial and final ࢏ࢂ when we transfer the 
method from subset ࢙૚ to subsets ࢙૞ and ࢙૟. FCM update the initial ࢏ࢂ 
considering the existing land use/cover of the area. The decrease of ࢏ࢂ of 
water class in NIR band is related to the increase of clear water and the 
increase of ࢏ࢂ of non-water class in SWIR band might be due to the increase 
of built-up area in subset ࢙૟  

 

 
Figure 5.9 Subset ࢙૟ (a) is used as the reference subset to estimate FCM 
parameter of subsets ࢙૚ and ࢙૞ (b-c). We zoom into red rectangle sites to see 
detailed representation of the area (d-f). The applied method failed to identify 
water area in subset ࢙૚ (e) for e.g., grid cells A2, A3, and B2 and also failed to 
identify shoreline margin in subset ࢙૞ (f) near vegetation areas for e.g., grid 
cells A1 and B1 

 
As comparison, Figure 5.9 shows the results of shoreline images 
when we used subset ݏ଺ as reference subset to estimate FCM 
parameters of subset ݏଵ and	ݏହ. We obtained different shoreline 
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images compared to those in Figure 5.7. The applied method 
overestimated the non-water area in subset ݏଵ (see Figure 5.9e grid 
cells A2 and A3). Furthermore, there is a large deviation of ݉ from its 
initial value (from 1.1 to 1.7) and also a large shift of the non-water 
class mean as can be seen in Figure 5.10, indicating that we need a 
new choice of ܿ when applying the method.  
 

 
Figure 5.10 The comparison of the initial and final ࢏ࢂ when we transfer the 
method from subset ࢙૟ to subsets ࢙૚ and ࢙૞. There is a small variation of the 
water class means both in NIR and SWIR band from the reference subset to 
both target subsets. Meanwhile, there is a large variation of the non-water 
class specifically the non-water 2 in NIR band from subset ࢙૟ to subsets	࢙૚ 

 
Table 5.3 shows the κ values when we performed thresholding at 
݀=0.5 to the six shoreline images provided in Figures 5.7 and 5.9. 
The value of κ was in the range of 0.80 to 0.85 except for subset  
 ଵ which obtained κ value of 0.51. This low κ value reflects the lowݏ
quality of shoreline images produced by using ݏ଺ as the reference 
subset. Considering this low κ value, a large shift of ݉ from its initial 
value and a large deviation of ௜ܸ, we conclude that using subset s଺ to 
estimate subset ݏଵ may not be a good option. However, we may use 
s଺ to estimate sହ considering a good κ value and low variation in the 
value of ݉ and ௜ܸ. 
 
Table 5.3 The accuracy assessment results of shoreline images at threshold 
  (૟࢙ ૚ and࢙) generated from two reference subsets 0.5=ࢊ

Classified Images κ value  Classified Images κ value 

Reference sଵ 0.85  Reference ݏ଺ 0.85 

Target 
  ହ 0.80ݏ

Target 
sଵ 0.51 

s଺ 0.83  ݏହ 0.81 
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5.3.4 Shoreline change analysis and its uncertainty 

For the purpose of shoreline change analysis, we used ten shoreline 
images as a result of upscaling the shoreline model for the entire 
study area (see Figures 5A.5-7). Table 5.4 shows the κ values 
generated from a conventional error matrix when we performed 
thresholding at ݀=0.5. We obtained κ values larger than 0.80. 
 
Table 5.4 The accuracy assessment results after thresholding at thresholds 
 for the whole study area 0.5=ࢊ

Classified 
Images 

κ value Classified 
Images 

κ value 

 ଺ 0.85ܫ ଵ 0.83ܫ
 ଻ 0.83ܫ ଶ 0.80ܫ
ܫ଼ ଷ 0.82ܫ  0.85 
 ଽ 0.83ܫ ସ 0.83ܫ
 ଵ଴ 0.83ܫ ହ 0.80ܫ

 
The spatial distribution of shoreline changes in the east section for 
each consecutive date is provided in Figure 5.11. We can see that 
large changes into water were clearly seen from the periods 1997-
2000 and 2009-2013 and large changes into shoreline margin 
occurred in the periods 2000-2003 and 2003-2006. Meanwhile for the 
middle section (see Figure 5A.8), a small gain of non-water areas 
occurred in the periods 1988-1991 and 1994-1997, in particular in 
the west part of the site, while a subtle change into water was shown 
in the periods 1997-2000 and 2009-2013. Compared to the east and 
middle sections, the west section (see Figure 5A.9) showed a 
relatively constant condition, indicated by a small change of shoreline 
positions over three decades. A small change into water occurred 
over the periods 1997-2000 and 2009-2013 which indicates erosion. 
While a small gain of non-water can be seen in the periods 1988-
1991 and 2013-2017 at the eastern part of the site indicating land 
reclamation projects.  
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Figure 5.11 The spatial distribution of shoreline changes in the east section 
of the study area for consecutive dates. The changed area was getting larger 
in the recent images from 2000 up to 2017 reflecting the severity of 
inundation in the area.  

 
Overall change certainty of shoreline margin, water and non-water 
are presented in Figure 5.12. We provide the change certainty in 
different levels of certainty for the black-dashed rectangle site. The 
area of each class is changing with the change in the certainty level. 
Table 5.5 shows the changed area in different levels of certainty for 
the period of 1988 up to 2017. 
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Table 5.5 Changed area (in number of pixels) between shoreline margin, 
water and non-water at different levels of certainty for the east section 

Changed area 
Certainty level 

≥ 0.5 ≥ 0.6 ≥ 0.7 ≥ 0.8 ≥ 0.9 
Change certainty to 

non-water 
2,174 1,740 1,185 602 69 

Change certainty to 
shoreline  

4,178 1,564 46 15 1 

Change certainty to 
water 

26,052 25,008 22,449 16,405 7,222 

 
Figure 5.13 shows an example of shoreline change analysis and its 
associated change certainty for the period of 1988 up to 2017 in the 
east section. Changes from non-water to water (in turquoise) are 
mostly related to high certainty of change into water (in dark green) 
(in Figures 5.13b and 5.13d e.g. grid cells B2 and C2). This indicates 
the area which was inundated permanently. Changes from water to 
non-water (in dark green) are mostly related to high certainty of 
change into non-water (in black) and indicated a reclamation area or 
the area at which mangroves were planted as protection (see Figures 
5.13b and 5.13d grid cells A1). Meanwhile, changes of non-water to 
shoreline (in dark red) are mostly with high certainty of change into 
shoreline (in dark purple) and indicating an inundation influenced by 
tides (as in Figure 5.13b and 5.13d for e.g. grid cells A3 and B3). In 
addition, changes of water to shoreline (in light red) are mostly with 
low certainty of change into shoreline (in light purple) which might 
indicate sedimentation near mangrove areas (Figures 5.13b and 
5.13d e.g., grid cell A1). 
 
Table 5.6 shows the overall changes of the three sections in 30 years. 
The largest shoreline changes occurred in the east section followed 
by the middle section, both showing large changes from non-water to 
water for 22.7 and 17.9 km2, respectively. Furthermore, the second 
largest changes were the change from non-water to shoreline which 
on the long term indicates a coastal inundation. This occurred for 8.5, 
6.3 and 5.4 km2 in the east, west and middle sections, respectively. 
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Figure 5.12 Change certainty of non-water, shoreline margin and water for 
the period 1988 up to 2017 in east section. The change area is decreasing by 
the increase of certainty level. 
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Table 5.6  Change area in km2 in the period 1988 up to 2017 with change 
certainty level ≥ 0.1. Changes to water indicate erosion and changes to non-
water show accumulation. The coastal area in the east section experienced the 
largest lost of land in three decades 

Change type 
Change area (km2) 

East Middle West 
Shoreline to non-water 1.3 0.53 0.5 
Water to non-water 1.6 4.2 6.4 
Non-water to shoreline 8.5 5.4 6.3 
Water to shoreline 2.6 0.9 1.4 
Shoreline to water 4.1 1.7 0.8 
Non-water to water 22.7 17.9 10.6 

 

 
Figure 5.13 Shoreline change (a-b) and its related change certainty (c-d) 
between 1988 and 2017. Large changes from non-water into water 
(turquoise) indicating a permanent inundation of the area are mostly related 
to the high certainty of change into water (dark green), whereas large 
changes of non-water into shoreline (red) might indicate the area which was 
inundated gradually. 

 
 
5.4. Discussion 

 
In this chapter, we explored the possibility of both transferability and 
upscaling of fuzzy classification adopting the method that we 
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developed in Dewi et al. (2016). To derive fuzzy shorelines, we used 
FCM to calculate the membership of water. To perform FCM, a 
suitable number of classes and level of fuzziness need to be specified 
either by users based on their a priori knowledge or estimated from 
images. This research provides information that can be used as the a 
priori knowledge to specify FCM parameters. Our results revealed 
that there is a relation between land use/cover composition and the 
values of ݉ and ܿ. Seven land use/cover classes have been analysed 
in this study and they required ݉ values in the range of 1.3 to 1.9. 
Wet paddy and bare soil require ܿ=2 as the optimal ܿ, whereas water, 
fishpond, dry paddy and built-up require ܿ=2 to 3. The number of 
classes can vary up to 6 for other crops. When performing FCM for all 
images (ܫଵ up to ܫଵ଴) used in this study, we obtained ݉=1.8 as the 
median value of the optimal ݉. This value is close to the ݉ value that 
we used in our previous study ݉=1.7 (Dewi et al., 2016).  
 
We proposed to use ௜ܸ and ܿ values of the reference subset as the 
initial ௜ܸ and ܿ values of the target subsets to upscale towards a 
larger area and to test the transferability of the method to another 
area with different land use/cover composition. From the results, it 
can be seen that the variation in spectral reflectance of the input 
image has a large influence on the number of classes needed for the 
FCM. The presence of water and moisture content on objects such as 
wet vegetation and wet soil decreases the reflectance in the infrared 
bands, thus it requires a lower number of classes in FCM. On the 
contrary, dry vegetation, dry soil and concrete such as in urban area 
have a higher variation in spectral reflectance in the infrared bands. 
Therefore, they require a larger number of classes for the 
classification.  
 
Adopting the same ܿ value to transfer and to upscale the model may 
cause a generalization of the classification that reduces the detail of 
land use/cover pattern of the initial data. Thereby, we might miss 
specific detailed, but relevant information. On the contrary, it is also 
possible that we set an unnecessary high number of classes that 
causes a longer time for parameter estimation yet a poor quality of 
shoreline images (see Figure 5.9e). In fact, for shoreline estimation, 
further detail in non-water and water classes is not needed while 
non-water and water show the largest spectral differences, especially 
in a natural coastal area with less urban area, embankment or other 
coastal structures. Having only two classes in a coastal area will 
usually result in a split between water-related and land-related 
pixels. However, if the differences in area between sea and land are 
very large, having two classes for classification may not be a good 
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choice since the available classes will be distributed for e.g., in the 
land area. In this work, we evaluated the resulting ௜ܸ of the target 
subsets. FCM updated the initial ௜ܸ by considering the land use/cover 
condition of the target subset. The small differences of the resulting 
݉ and ௜ܸ indicate that the selected subsets differ little and tend to 
have a similar land use/cover. On the other hand, if there is a large 
shift of the two V୧ values, it could indicate that the two subsets have 
large differences, and thus may require a new choice of ܿ value.  
 
The proposed method was successful in performing FCM to estimate 
the water membership proven by high κ values larger than 0.80. 
However, due to limited availability of high resolution images, we 
performed the conventional error matrix for the accuracy assessment 
purposes after performing thresholding. In other situations, when 
high resolution images are available, we would suggest to use soft 
reference data and generate a fuzzy error matrix. Using a soft 
classifier to generate soft reference data is more likely to reduce the 
uncertainty due to the vagueness of shoreline positions (Dewi et al., 
2017a; Harikumar et al., 2015). In addition, no information was lost 
due to the hardening of the soft classification (Foody, 2002). 
However, a thorough investigation is needed to estimate the FCM 
parameters of the higher resolution images.  
 
To choose FCM parameters based on information provided in sub-
section 5.3.1, we considered the predominant land use/cover classes 
present in the area. The optimal m values (݉=1.8) when performing 
FCM for all images can be adopted, especially for similar coastal area 
characteristics which helps to shorten the time needed to optimize 
the parameters. However, the task is still difficult for the coastal area 
with a completely different characteristic, for example a rocky cliff 
coast, a coast with sand and gravel, and a swampy coast with 
mangroves. An urban coastal area with more buildings, impervious 
surfaces and coastal structures requires a higher ܿ value because 
those features have a higher variation in spectral reflectance. 
Whereas, a natural coastal area with less hard structures requires a 
lower ܿ value since water bodies, wet soils, and dark building roofs 
have a low spectral reflectance. Meanwhile, for upscaling, gradually 
enlarge the area of target subsets results in small shifts in ௜ܸ, thus 
FCM is able to keep up with the changes. However, there is a 
limitation to upscale towards a larger area as the larger the area, the 
larger the shift of shoreline margin from its reference subset (see 
Figure 5.5). 
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In this study, we assessed shoreline changes and estimated change 
uncertainty for pixel locations. Two perspectives of changes were 
addressed: i) the spectral and spatial uncertainty inherent to 
shoreline in remote sensing image arising from their spatial 
characteristics and vagueness, and ii) the uncertainty in the changes 
propagating from the implementation of the developed change 
detection method. The first was addressed by applying a fuzzy 
classification to estimate the water membership, and the second was 
obtained by independent comparison of the changes with the 
variation of water memberships for the consecutive periods. An 
abrupt change produces strong variations of water memberships 
while a gradual change produces smaller water membership 
differences. 
 
Our analysis of shoreline in the northern coastal area of Central Java 
reveals a general trend of continuous shoreline changes as a result of 
extensive coastal inundation. This process takes place as a 
progressive change from non-water to water. From the results, the 
change of shoreline was indicated by coastal land reclamation in the 
middle section (Semarang city) in the period 1988-1991. In fact, the 
land reclamation started already in the 1980s (Miladan, 2016). 
Coastal reclamation occurred on a large scale due to a high demand 
for space for housing and economic activity. Fishpond and marshes 
turned into urban areas including settlements, commercial and 
business areas, recreational areas and industrial zones, thereby 
anticipating urban growth. Despite the fact that land reclamation 
expands the space available for economic purposes, this activity 
comes at a price in terms of its negative impact on environment. The 
construction of urban areas increases the surface runoff and reduces 
the ability of the ground to absorb rainfall. Furthermore, when there 
are major land use changes in the coastal area, for example 
fishponds, swamps and paddy fields turned into built-up areas, as a 
consequence floods (Miladan, 2016; Pratiwi, 2012), land subsidence 
(Chaussard et al., 2013), and erosion (Damaywanti, 2013) leading to 
coastal inundation occur not only in the urban zones that were 
developed on the marsh areas but also in adjacent areas.   
 
The land subsidence is believed to be caused by the combination of 
natural consolidation of alluvium soil, ground water extraction and 
load of buildings (Abidin et al., 2013; Marfai and King, 2007).  
Ground water extraction occurs for industrial purposes and for the 
household’s needs as the consequences of the population growth. 
Furthermore, an excessive ground water extraction not only triggers 
land subsidence but also salt water intrusion. Even though the 
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inundation as a result of subsidence is much larger than that caused 
by sea level rise, a combination of land subsidence and sea level rise 
makes the shoreline also more vulnerable to erosion by increasing 
wave height, in particular in a muddy coastal environment 
(Wesenbeeck et al., 2015). Once erosion is initiated, the water and 
salinity levels start to rise in remaining fishponds and further affect 
the agricultural area (Marfai, 2011). Furthermore, the inundated 
fishpond not only causes a decline in fish productivity but also leads 
to the abandonment of the fishpond area as mentioned by 
Wesenbeeck et al. (2015), who stated that when fishponds get 
inundated, people revert to small-scale off-shore fishery practises. 
Despite the fact that the substantial erosion which occurred in the 
study area leads to a massive retreat of the shoreline position, a 
gradual accretion leading to a seaward advancing of the shoreline can 
also be identified in a few places. Replanting mangroves trees as a 
response to coastal erosion is one of the causes of this accretion, 
starting from the period 2003-2006 up till 2013-2017 (see Figure E1 
in the east site of the images), for example in Bedono (Fikriyani and 
Mussadun, 2014) and Timbulsloko villages (Astra et al., 2014), in the 
middle section.   
 
 

5.5. Conclusion 

 
This study investigates transferability of shoreline classification to 
other areas and upscaling to a larger study area. The experimental 
results concluded that: i) Parameters ݉ and ܿ can be optimized based 
on predominant land use/cover and the optimal m value (݉=1.8) 
provided in this research can be adopted for similar coastal areas; 
and ii) the value of ௜ܸ and ܿ of the reference subset can be used to 
initialize target subsets. We conclude that the classification method in 
this study can be transferred to other areas and can be upscaled 
towards a larger study area. 
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Synthesis 
 

 
 
 
 
 
 
 
 
 
 

 
 
This chapter provides the conclusions to the objectives and research 
questions outlined in Chapter 1 based on findings of Chapters 2 to 5.  It also 
provides a reflection on the contribution of this thesis to sustainable 
development goals, disaster risk reduction, shoreline monitoring and 
estimation of data quality and uncertainty. It finishes with recommendations 
for further research.   

6 
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6.1. Research findings and conclusions 

 
In this thesis, shoreline was modelled as an object with vague 
boundaries using multi-temporal remote sensing images in an area in 
Java which experienced a severe change of shoreline position. The 
thesis focuses on three components: 1) how to develop a model that 
considers the uncertainty in shoreline positions; 2) how to assess the 
changes of the fuzzy shoreline; 3) how to estimate the uncertainty of 
spatial and temporal information on shorelines derived from image 
analysis methods; and 4) how to transfer and upscale the model 
developed in objective 1 and 2 to a different area and to a larger 
area. The remainder of this chapter describes how the objectives and 
research questions of the thesis were achieved and answered. 
Detailed conclusions and the key findings for the individual objective 
are presented. 

a) Objective 1: Develop a method for detecting shorelines by 
taking the gradual transition between water and land into 
account 

Research question 1: Can fuzzy sets-based theory be applied 
effectively to extract a fuzzy shoreline? 
 
In Chapter 2, FCM classification to estimate water membership 
was applied. The FCM is a clustering method that separates data 
clusters with class means and fuzzy boundaries allowing for 
partial membership. Two methods to generate shorelines were 
proposed. The first method derived the shoreline as a single line 
by applying a threshold of 0.5 on the water membership images. 
The second method derived shorelines as an area or margin 
presented as a crisp object with a boundary determined by 
threshold values resulting from parameter estimation. While 
shorelines can be detected by both methods, the shoreline as a 
margin provides more insight into the spatial distribution of 
changes and their uncertainty and more spatial detail of the 
process of change from non-water via shoreline margin to water 
and vice versa. Moreover, by having shoreline as a margin, we 
can assess its spatial extent and measure its change uncertainty 
at different levels of uncertainty. The proposed methods provided 
an effective way to present shoreline as a line and as a margin 
with fuzzy boundary and its associated change uncertainty. 
 
In Chapter 3, a third approach by using fuzzy-crisp objects to 
derive a shoreline as the transition zone between water and non-
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water classes was proposed. In this case, pixels at which the 
membership value (μ) exceeds 0.99 are the core of a class, for 
example water class, whereas pixels with 0.01൏ μ ൏0.99 belong 
to transition zones or shoreline class, and pixels with μ ൏0.01 do 
not belong to objects (water or shoreline). Setting the threshold 
to the highest (0.99) and the lowest (0.01) memberships 
intended to find the core of water and non-water, respectively. 
Deriving shoreline margin by using a fuzzy-crisp object allowed 
us to address the uncertainty corresponding to the existential and 
extensional uncertainty of shorelines. Moreover, the overall 
change magnitude and change directions, when change vector 
analysis was applied, provide information with respect to the 
trend of the fluctuating shoreline, e.g. the multi-year patterns of 
water membership changes that indicate coastal processes 
related to coastal inundation, erosion and accretion. 
 
Research question 2: Can random sets be applied effectively to 
extract a fuzzy shoreline? 
 
In Chapter 4, a shoreline model derived from a fuzzy 
classification was compared with one derived from random sets. 
Random sets theory is a methodology to deal with the 
uncertainty of outcomes of random phenomena. Meanwhile, fuzzy 
sets theory describes the uncertainty associated with 
classification due to imprecision and does not consider 
randomness. Random sets fit the mixed Gaussian model to the 
image histogram. When using random sets, a shoreline is 
presented as the third class, the transition zone between water 
and non-water. The extensional uncertainty of a shoreline was 
assessed by using the covering function of random sets and its 
statistical parameters. From the results, it was proven that 
random sets performed well in modelling the uncertainty of 
shorelines. Furthermore, the shoreline model derived from fuzzy 
sets and random sets were closely similar.  
 
Research question 3: Can a digital elevation model be used 
effectively to improve shoreline extraction? 
 
In Chapter 4, a digital elevation model (DTM) was combined with 
the Pleiades imagery to improve the quality of the shoreline 
extraction. The pan-sharpened Pleiades with four bands were 
stacked with the DTM as the fifth band. The integration of DTM 
data improved the results of both fuzzy sets and random sets. 
Considerable improvements were achieved for objects, e.g. roofs, 
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inundated houses and yards. Pleiades + DTM achieved accuracy 
above 80%, demonstrating that it provides a valuable data 
source for shoreline mapping. In the absence of elevation data, 
the classification may overestimate in particular the water area. 
By using only Pleiades data, it is difficult to discriminate dark 
roofs and water or inundated land since those features have 
similar spectral characteristics. The research further confirmed 
the need of DTM integration to remote sensing images to provide 
reliable and accurate shoreline mapping. 
 

b) Objective 2: Develop a method for spatio-temporal change 
detection and monitoring of fuzzy shorelines  

Research question: How can fuzzy approaches be used for 
spatio-temporal change detection and monitoring fuzzy 
shorelines? 
 
In Chapters 2 and 5, crisp and fuzzy methods were combined for 
change detection. The post-classification comparison method was 
implemented to distinguish abrupt and gradual changes at the 
object level and provide the change uncertainty at the pixel level. 
Shoreline and its changes have been presented as crisp sub-
areas. The changed areas were thus associated with the spatial 
distribution of change uncertainty. The method was successfully 
implemented for monitoring the change of shoreline associated 
with inundations from 1994 to 2015 in the northern coastal area 
of Java, Indonesia. 
 
In Chapter 3, a change detection method for shorelines which 
account for their fuzzy character in remote sensing images was 
proposed and implemented. The change of shoreline was 
explained in terms of change magnitude and change direction 
using change vector analysis (CVA). Information provided by CVA 
allows us to see the trend of the fluctuating shoreline over time, 
whereas the change detection resulting from the post-
classification comparison method could provide only “from-to” 
change information and could not provide information regarding 
the detail of subtle within-class changes. The analysis of 
information provided by the change magnitude and direction 
reveals that each change combination represents one specific 
change process type that may occur in the field and shows a 
multi-year pattern of water membership changes over the 
observation periods. Based on these results, it can be concluded 
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that the proposed method can assess changes in a shoreline by 
taking into account that it is a fuzzy boundary. 

c) Objective 3: Determine the uncertainty of spatial and 
temporal information on shoreline positions in objectives 1 
and 2   

Research question 1: How can the uncertainty of the developed 
and implemented methods be estimated? 
 
This study focuses on uncertainty concerning the fuzziness 
character of shorelines and the uncertainty arising from image 
classification and change detection methods. In this work, 
attribute, existential and extensional uncertainties of shoreline 
objects were considered.  
 
In Chapter 2, the imprecise position of the shoreline in remote 
sensing images and the uncertainty propagated through the 
change detection method were associated with values reflecting 
the uncertainty of pixels belonging to any of the classes. For this 
purpose, the possibility and necessity measures were quantified. 
The possibility measure corresponds to the element that has the 
highest possibility according to the degree of membership. The 
uncertainty values represent the uncertainty that a pixel belongs 
to the water class. Pixels which are spectrally closer to water 
have a higher membership to the water class. Consequently, 
these pixels may have a higher certainty to be classified as 
water. The change uncertainty value expresses how sure we are 
that a change really occurred. The change uncertainty was 
estimated by using the MIN operator which measures the 
maximum possible overlap between the uncertainty values of 
images at two different time (ݐଵ and ݐଶ). A high value of change 
uncertainty indicates a high uncertainty that change has 
occurred. Change uncertainty for the observed objects was 
measured at the pixel level. 
 
In Chapter 3, the uncertainty in class assignment was estimated 
by a measure of the confusion index for each pixel resulting from 
FCM classification. In this case, shoreline can be determined with 
limited certainty, for example with boundaries that reflect the 
transition zone between water and non-water. Moreover, when 
the values of an adjacent grid are very similar, the zones of 
confusion divide regions indicating the presence of gradual 
transitions. In addition, the changed areas of the fuzzy shoreline 
are thus associated with the spatial distribution of differences 
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between the confusion indices calculated by the Euclidean 
distance between the pixel positions. This change confusion value 
shows the degree of uncertainty of the changes that have 
occurred. A high value of change confusion indicates a large 
difference between confusion indices. It can be seen from the 
results that a location having a higher change magnitude, has a 
higher change confusion value as well. It corresponds to the 
larger differences of both water memberships and confusion 
indices between corresponding images in ݐଵ and ݐଶ.  
 
In Chapter 4, when shoreline using random set was generated, 
the extensional uncertainty of a shoreline was assessed by using 
the covering function of random sets and the statistical 
parameters (support, core, and mean sets). By using these 
parameters, it was demonstrated that the randomness of 
segmentation parameters, i.e., multiple thresholds, has a 
different effect on extracted features when objects have different 
extensional uncertainties. 
 
Research question 2: How can the spatial accuracy of the 
developed and implemented methods be assessed? 
 
In Chapter 2, 4 and 5, the spatial accuracy of shorelines derived 
from a hardened FCM was presented at the selected threshold 
value, e.g. 0,7 ,0,5 ,0.3=ݐ. A conventional error matrix was 
generated and kappa values were estimated for each shoreline 
images. In Chapter 3 and 5, a method that considered the 
vagueness of shoreline in satellite images was developed. The 
soft reference data were generated from a higher resolution 
image. The method integrated water membership values derived 
from FCM classification. A soft error matrix was then generated 
and overall accuracy of fuzzy shoreline was estimated. The use of 
soft reference data was more likely to reduce the uncertainty due 
to the vagueness in class definition and mixed pixel problems. In 
addition, by using soft reference data, no information was lost 
due to the hardening of the soft classification.  
 

d) Objective 4: Test the transferability and upscaling of the 
methods developed in objective 1 and 2 to a different area 
and to a larger area of land 

Research question: Can the method developed in objective 1 
and 2 be transferred and upscaled to another area and towards a 
larger area? 
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In Chapter 5, the application of a fuzzy classification to different 
areas and to upscale it towards a larger area was investigated. 
Three strategies were applied: (1) optimizing ݉ and ܿ based on 
the pre-dominant land use/cover of the reference subset; (2) 
adopting the class mean and the ܿ values resulting from the 
classification on the reference subset to perform FCM (fuzzy c-
means classification) on the target subset, and (3) estimating the 
optimal level of fuzziness of target subsets. 
 
Each time the model was applied to either a larger area or 
another area with different land use/cover composition, FCM 
updated the initial class means by considering the existing land 
use/cover composition. Large deviation of both class means and 
m from their initial values indicates that the target subsets 
require a new choice of ܿ for FCM. 
 
From the experimental results, ݉ values in the range 1.3 up to 
1.9 were obtained for seven land use/cover classes which have 
been analysed. Meanwhile, from ten images used in the study, 
the optimal 	݉=1.8 and ܿ=2 were obtained. For a coast with 
similar characteristics, these values can be adopted for FCM 
classification, while for the area with slightly different land cover 
composition, the relation between land use/cover classes and the 
value of ݉ and ܿ for FCM used in this study can be adopted to 
shorten the time needed to optimize the parameters. 
Furthermore, the proposed method for upscaling and transferring 
the method to a larger area and to different areas is also 
promising, as shown by the high κ values of more than 0.80 and 
a high agreement achieved between the reference and target 
subsets of more than 0.82. From the results, it can be concluded 
that the method is applicable to the current study area. The 
relation between land use/cover classes and the values of ݉ and 
ܿ produced in this study can be used as initial values for more 
rapid optimisation. 
 
 

6.2. Reflections 

 
6.2.1 On sustainable development goals (SDGs) 

Sustainable development is defined as “…development that meets the 
needs of the present without compromising the ability of future 
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generations to meet their own needs” (WCED, 1987).  The SDGs 
replaced the Millennium Development Goals (MDGs) which ended in 
2015 and the SDGs became official since 2016. The SDGs seek to 
harmonize all three pillars of sustainable development: the economic, 
social and environmental (UN, 2015). The results presented in this 
dissertation support the environmental quality aspect of sustainable 
development in particular considering coastal area in two of its 
targets (targets 14.2 and 14.5) in SDG 14: conserve and sustainably 
use of the oceans, seas and marine resources for sustainable 
development (UN, 2015).  
 
Economic development always brings risk of environmental damage. 
Environmental protection is thus inherent to the concept of 
sustainable development. In this context, there should be equilibrium 
between development and environmental protection. As shoreline 
position is one of the primary geoindicators for environmental 
change, monitoring the changes of shoreline plays an important role 
in achieving this equilibrium state. Shoreline changes can have a 
wide range of impacts on residential and commercial investment. 
Erosion of the beach damages settlements and business. Erosion and 
permanent inundation of agricultural areas result in destruction of 
crops. On the contrary, accretion in a shipping channel can prevent 
boats from reaching harbours. Therefore, knowledge of where and 
how much the coastal area changed and which part of the shoreline is 
more vulnerable to erosion and accretion are critical for local 
authorities or coastal planners to prioritize activities such as coastal 
protection, environmental restoration, and economic investment. This 
knowledge is also important for property owners and coastal 
communities to protect their properties and undertake strategies to 
mitigate the identified hazards, such as coastal erosion. Monitoring 
the changes of shoreline may contribute to make coastal cities and 
communities safer and more resilient, and in the same time, to 
protect and conserve the use of coastal and marine resources for a 
sustainable coastal development. In this case, the results of this 
dissertation aim to provide such information to measure and monitor 
the gains and losses in the land area through the development and 
the implementation of image analysis methods in monitoring the 
changes of the shoreline position.  

 

6.2.2 On disaster risk reduction (DRR) 

The shoreline position is an important indicator for coastal hazard- 
and risk assessment, as most of the hazards i.e. beach erosion, 
landslides, tsunami and coastal inundation are related directly to the 
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stability of the shore (Morton, 2002). Methods developed in this 
thesis support disaster risk reduction by addressing specific 
questions: 

a) Which parts of the shoreline are more vulnerable to erosion and 
accretion? 

b) Which areas of the shoreline need to be prioritized in disaster risk 
management? 

c) How frequent have the changes occurred for instance due to 
seasonal influence? 

d) What are the uncertainties of the identified shorelines and what is 
the change uncertainty of the shoreline changes? 

Disaster risk reduction is a comprehensive approach to reduce 
disaster risk, covering several phases before, during and after a 
disaster and aiming to achieve the related sustainable development 
goal. The results of this dissertation support the prevention and 
preparedness phase of disaster risk reduction. Prevention and 
preparedness is a phase occurring before a disaster event (Greve, 
2016). By knowing areas that are likely to be affected severely by the 
changes of shoreline positions, local authorities may adjust land use 
planning to move development away from prone areas including 
relocating exposed people and assets away from those hazard areas. 
Furthermore, local authorities can focus on constructing flood 
defences, and planting mangroves to stabilize shoreline areas. 
Assessing this coastal risk, such as that of coastal inundation and 
erosion, is challenging since it requires a long series of historical data 
for a comprehensive assessment. Methods proposed in this 
dissertation can contribute to fulfil this need.  

 

6.2.3 On the multi-temporal dimension of shoreline 
monitoring 

This thesis aims to contribute to monitoring of shoreline changes 
trough the development and the implementation of image analysis 
methods to quantify and monitor the changes of shoreline using 
remote sensing images. The spatial and temporal scale of analysis 
ranges from a fine scale to a medium scale at local government level. 
Shoreline position can be identified using a range of methods. An 
expensive method includes shoreline monitoring by using kinematic 
differential GPS and airborne LIDAR technology that define shoreline 
on the basis of an elevation and tidal datum (Morton et al., 2004). 
The availability of LIDAR data is limited especially for Asian countries 
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such as Indonesia; however, there is an increasing demand for 
shoreline information. When these data are not available, other more 
low-cost methods would be helpful to understand an eroding or 
flooded beach. A low-cost method includes manual interpretation of 
shoreline indicator such as high water line (HWL) from aerial 
photography or through available imagery for instance via Google 
Earth. However, this method is a tedious, subjective and labour 
intensive process as it relies on the individual skills of the interpreter. 
As an alternative, deriving shoreline information from remote sensing 
images as suggested in this thesis is more objective and faster, 
compared to the manual interpretation of shoreline from the aerial 
photography. Furthermore, by using free satellite images, e.g. 
Landsat and Sentinel 2, the methods can be considered low-cost. 
Using long series of images in this study enable long-term monitoring 
of shoreline change to address questions such as: 

a) Where and how far has the shoreline retreated or advanced? 

b) Where and how much has the coastal area changed? 

Shoreline monitoring is performed on a variety of spatial and 
temporal levels. The frequency of observation can be determined 
using a risk-based approach by which those areas with a greater 
threat from coastal erosion or inundation are monitored more 
frequently than those areas with a smaller threat. The frequency of 
observation can also depend on the context of investigation and the 
need to update information and technology advances that allow rapid 
acquisition of shoreline positions.  
 
In Chapter 5, shoreline monitoring is intended to compare the 
historical and current shoreline positions as the key information to 
understand coastal processes over almost three decades. The results 
reported in this study are expected to give an insight regarding the 
preliminary state of shorelines and their changes before conducting 
more detailed measurements for the areas that have a greater risk. 
In this case, identifying shoreline changes within a three-year interval 
was assumed to be sufficient. Meanwhile in Chapter 3, the primary 
interest was to see the seasonal-annual nature of the shorelines. For 
this purpose, four images of the same year were stacked and 
compared with the stack of shoreline images of subsequent years 
with corresponding seasons. It would be better if there are more 
images to be included in the classification for each year so that the 
seasonal variation of shorelines can be fully assessed.  
 
In this study, both the spatial and the temporal dimension in the 
study of shoreline changes were considered. In Chapter 3, the multi-
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year patterns of water membership changes are the prime interest of 
the proposed monitoring methods. The multi-year pattern of water 
membership resulting from combination of change direction and 
magnitude indicate coastal processes that may occur in the field over 
the observation periods. A consistency to positive direction (change 
into water) reported in this work may correspond to costal inundation 
and land subsidence. On the other hand, a continuous decreasing of 
water membership categorized as negative direction (change into 
non-water) may indicate accretion or sedimentation. Abrupt changes 
reported in this work informed a higher risk of shoreline changes 
resulting from coastal flooding triggered by spring tides or extreme 
waves. In Chapter 2 and 5, ‘from-to’ change information reported in 
this study permitted us to inform on gains and losses of water, non-
water and shoreline margin. Changes of shoreline to non-water, 
water to shoreline, and water to non-water might indicate accretion 
or land reclamation. Whereas the changes of an area where coastal 
inundation or erosion has taken place resulted in changes of non-
water to shoreline, shoreline to water, and non-water to water.   

 

6.2.4 On data quality and the uncertainty in remote sensing  

Along with the identification of shoreline positions and the estimation 
of their changes, this dissertation focused on the importance of the 
quality and the associated uncertainty of obtained results. To deal 
with uncertainty by addressing the shoreline as a transition zone 
allows decision makers and planners to include this uncertainty in 
spatial planning. Moreover, it visualizes not only the changes in 
shoreline, but also the uncertainty of these changes for every 
location, thereby providing a better base for a debate on the 
combined effects of land subsidence and sea level rise in this area. 
 
To characterize the uncertainty derived from remote sensing 
imagery, the methods that were adopted in this dissertation consider 
the uncertainty on shoreline positions arising from attribute, 
existential and extensional uncertainties. In Chapter 2, the 
uncertainty of shoreline margin area was explored by means of 
possibility and necessity measures. The water membership value was 
used to estimate the uncertainty of pixels to be classified as water. 
Pixels close to water may have a higher certainty to be classified as 
water. In Chapter 3, the confusion index was used. The uncertainty 
of shoreline positions and their changes were explored and visualized 
at different levels of uncertainty. If the confusion value approaches 1 
then the differences in membership between the first and the second 
highest membership values are small indicating that both 
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membership values are almost equal. Therefore, it is more likely that 
the pixel defines a fuzzy boundary and the uncertainty of the pixel to 
belong to the class with the largest membership is high. Whereas, if 
 approaches 0, however, then the difference in membership values ܫܥ
between the first and the second highest membership values are high 
and the uncertainty of the pixel to belong to the class with the largest 
membership is low. Meanwhile, for change uncertainty estimation, 
three types of change uncertainty measures were introduced based 
on:  

a) Maximum possible overlap of the uncertainty values (the 
intersection of two fuzzy sets); a high value of change 
uncertainty indicates a high uncertainty that change has 
occurred. 

b) Euclidean distance of confusion indices of pixel position; a high 
value of change uncertainty corresponds to a large difference of 
confusion indices between images at different dates.  

c) Differences in water membership values of different dates; a high 
value corresponds to a high certainty of the change of the 
associated class in the shoreline image.  

 

 

6.3. Recommendations 
 

This dissertation has explored the use of remote sensing images for 
shoreline monitoring; the following recommendations are made for 
future research: 

a) The relation between land use/cover classes and values of ݉ and 
ܿ in this study can be adopted to estimate FCM parameters. For 
the purpose of automation, one may explore the use of CVI with 
range of ݉ and ܿ values to find the optimal parameters, or one 
may explore for instance histogram quantization to estimate the 
possible number of classes.   

b) The clustering in the FCM is implemented by calculating the 
distance between a pixel and a cluster centre by using the 
Euclidean distance measures. The use of other distance measures 
such as the Mahalanobis distance could be explored. 

c) Threshold interval estimation for generating shorelines is critical. 
Images from different sensors may produce shoreline margins by 
setting different thresholds. Therefore, threshold interval should 
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be further investigated, for example by using grey-level 
histograms that extract objects from their background.  

d) The automation of the methods proposed in this dissertation 
should be sought in order to enable the shoreline monitoring to 
be more effective. This can be done by exploring more different 
study areas and various images from different sensors. 
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Figure 4A.1 The estimation results of ܿ and ݉ for FCM classification  

 
Table 4A.1 The cluster validity index showing the compactness and the 
separateness among all clusters (applied using 1.6=࢓) 

Subset 
Cluster validity index (ࡵࢂ࡯) 

ࢉ ൌ ૛ ࢉ ൌ ૜ ࢉ ൌ ૝ 

ଵܵିଵ 0.013 0.023 0.020 

ଵܵିଶ 0.019 0.030 0.044 

ଵܵି଺ 0.016 0.021 0.033 

ଵܵି଻ 0.016 0.027 0.026 

ଵܵିଽ 0.008 0.034 0.027 

ଵܵିଵ଴ 0.015 0.039 0.033 

ܵଶିଷ 0.017 0.028 0.027 

ܵଶିଵଶ 0.035 0.068 0.037 

ܵଶିଵଷ 0.023 0.027 0.031 

ܵଷିହ 0.019 0.038 0.052 

ܵଷିଵଵ 0.010 0.019 0.023 

ܵସିସ 0.010 0.011 0.084 

ܵସି଼ 0.013 0.039 0.040 
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Figure 4A.2 The estimation of threshold interval for ܿ=2 and various ݉ 
values for FCM classification 
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Table 4A.2 The results of McNemar’s test showing the significance of the 
different accuracies given by Pleiades and Pleiades + DTM (0.05=ࢻ) in FCM 
classification with thresholding 

Subset 
McNemar’s Test 

 value-࢖
 ૛૛ࢌ ૛૚ࢌ ૚૛ࢌ ૚૚ࢌ

Chi-squared 
 (૛ࢄ)

ଵܵିଵ	 10 9 0 156 7.1 0.01 

ଵܵିଶ	 3 24 7 109 8.3 0.00 

ଵܵି଺	 6 23 4 119 12.0 0.00 

ଵܵି଻	 4 34 8 101 14.9 0.00 

ଵܵିଽ	 3 23 9 78 5.3 0.02 

ଵܵିଵ଴	 3 13 4 101 3.8 0.05 

ܵଶିଷ	 7 15 2 128 8.5 0.00 

ܵଶିଵଶ	 1 15 5 100 4.1 0.04 

ܵଶିଵଷ	 7 4 0 107 2.3 0.13 

ܵଷିହ	 2 38 8 116 18.3 0.00 

ܵଷିଵଵ	 3 11 3 104 3.5 0.06 

ܵସିସ	 4 23 5 116 10.3 0.00 

ܵସି଼	 1 19 10 91 2.2 0.14 
  ;૚૚ :  number of samples with incorrect classification using both  imagesࢌ
  ;૛૛ :  number of samples with correct classification using both imagesࢌ
 ૚૛ : number of samples that are incorrectly classified by Pleiades butࢌ

correctly classified by Pleiades + DTM;  
 ૛૚ : number of samples that are correctly classified by Pleiades butࢌ

incorrectly classified by Pleiades + DTM 
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Figure 4A.3 The shoreline as the transition zone between water and non-
water (Column 1); confusion index images (Column 2); zooming into the 
white-dashed rectangle sites (Column 3); shoreline images with fuzziness 
represented by the confusion index (Column 4) 
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Table 4A.3 The optimal ࣐ selected for each threshold interval and the related 
ૂ values for generation of random sets  

Subset 

Number of focal elements (࣐) 
for each threshold interval 

κ value for each threshold 
interval 

0.2–0.6 0.3–0.7 0.4–0.8 0.2–0.6 0.3–0.7 0.4–
0.8 

ଵܵିଵ	 40 80 130 0.84 0.89 0.84 

ଵܵିଶ	 40 20 80 0.87 0.86 0.86 

ଵܵି଺	 40 90 30 0.81 0.88 0.82 

ଵܵି଻	 40 60 70 0.70 0.84 0.81 

ଵܵିଽ	 40 140 20 0.85 0.87 0.87 

ଵܵିଵ଴	 60 60 30 0.85 0.88 0.87 
ܵଶିଷ	 70 80 100 0.79 0.87 0.88 
ܵଶିଵଶ	 20 50 40 0.79 0.87 0.80 

ܵଶିଵଷ	 180 30 60 0.78 0.81 0.83 

ܵଷିହ	 30 60 100 0.83 0.90 0.80 
ܵଷିଵଵ	 70 60 80 0.85 0.90 0.85 
ܵସିସ	 140 120 30 0.87 0.88 0.85 
ܵସି଼	 150 40 20 0.75 0.81 0.75 

 
 

 
Figure 4A.4 The curve of differences between two successive standardized 
core sets 	࢏ࢾ 
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Figure 4A.5 Samples of the random sets with various extents and their 
covering functions 
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Figure 4A.6 The set-theoretic variance and the contour of random sets 
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Figure 4A.7 An example of random sets; the core set Γଵ and its contour 
(column 1); the support set Γ଴ and its contour (column 2); the transition zone 
between water and non-water represented by the set-theoretic variance 
(column 3); zooming into the yellow rectangle sites (column 4) 
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Table 4A.4 The results of McNemar’s test showing the significance of the 
different accuracies given by Pleiades and Pleiades + DTM (0.05=ࢻ) in random 
sets (see notations in Table 4A.2 for ࢌ૚૚, ࢌ૛૛, ࢌ૚૛, and ࢌ૛૚) 

Subset 
McNemar’s Test 

 value-࢖
 ૛૛ࢌ ૛૚ࢌ ૚૛ࢌ ૚૚ࢌ

Chi-squared 
 (૛ࢄ)

ଵܵିଵ	 13 8 0 154 6.1 0.013 

ଵܵିଶ	 2 26 7 108 9.8 0.002 

ଵܵି଺	 0 17 8 127 2.6 0.110 

ଵܵି଻	 4 34 8 101 14.9 0.000 

ଵܵିଽ	 4 22 3 84 13.0 0.000 

ଵܵିଵ଴	 1 12 2 82 5.8 0.016 

ܵଶିଷ	 7 11 4 130 2.4 0.121 

ܵଶିଵଶ	 1 15 5 100 4.05 0.044 

ܵଶିଵଷ	 13 3 3 100 0.0 1.000 

ܵଷିହ	 2 37 6 119 20.9 0.000 

ܵଷିଵଵ	 3 11 3 104 3.5 0.061 

ܵସିସ	 4 22 4 121 11.1 0.001 

ܵସି଼	 2 18 10 91 1.8 0.186 
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Table 4A.5 The results of McNemar’s test showing the significance of the 
difference given by fuzzy sets and random sets (0.05=ࢻ) by using Pleiades 

Subset 
McNemar Test 

 ૛૛ࢌ ૛૚ࢌ ૚૛ࢌ ૚૚ࢌ
Chi-squared 

 (૛ࢄ)
 value-࢖

ଵܵିଵ 18 1 2 154 0.0 1.000 

ଵܵିଶ 25 2 5 111 0.6 0.450 

ଵܵି଺ 11 18 6 117 5.0 0.025 

ଵܵି଻ 37 0 1 109 0.0 1.000 

ଵܵିଽ 26 1 0 86 0.0 1.000 

ଵܵିଵ଴ 15 0 1 105 0.0 1.000 

ܵଶିଷ 19 3 0 130 1.3 0.248 

ܵଶିଵଶ 16 1 0 104 0.0 1.000 

ܵଶିଵଷ 12 1 0 106 0.0 1.000 

ܵଷିହ 39 1 0 124 0.0 1.000 

ܵଷିଵଵ 13 0 1 107 0.0 1.000 

ܵସିସ 26 1 0 124 0.5 0.480 

ܵସି଼ 19 0 1 101 0.0 1.000 

  ;૚૚ :  number of samples with incorrect classification using both methodsࢌ
  ;૛૛ :  number of samples with correct classification using both methodsࢌ
 ૚૛ :  number of samples that are incorrectly classified by fuzzy sets butࢌ

correctly classified by random sets;  
 ૛૚ :  number of samples that are correctly classified by fuzzy sets butࢌ

incorrectly classified by random sets; 
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Table 4A.6 The results of McNemar’s test showing the significance of the 
difference given by fuzzy sets and random sets (0.05=ࢻ) using Pleiades + 
DTM data (see notations in Table 4A.5 for ࢌ૚૚, ࢌ૛૛, ࢌ૚૛, and ࢌ૛૚) 

Subset 
McNemar Test 

 ૛૛ࢌ ૛૚ࢌ ૚૛ࢌ ૚૚ࢌ
Chi-squared 

 (૛ࢄ)
 value-࢖

ଵܵିଵ 11 0 2 162 0.5 0.480 

ଵܵିଶ 9 0 1 133 0.0 1.000 

ଵܵି଺ 4 6 4 138 0.1 0.752 

ଵܵି଻ 12 0 1 134 0.0 1.000 

ଵܵିଽ 5 7 3 98 0.9 0.343 

ଵܵିଵ଴ 7 1 0 113 0.0 1.000 

ܵଶିଷ 8 2 2 140 0.0 1.000 

ܵଶିଵଶ 8 0 1 112 0.0 1.000 

ܵଶିଵଷ 8 0 3 108 1.3 0.248 

ܵଷିହ 6 2 1 155 0.0 1.000 

ܵଷିଵଵ 5 0 1 115 0.0 1.000 

ܵସିସ 9 0 1 141 0.0 1.000 

ܵସି଼ 11 1 0 109 0.0 1.000 
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Figure 5A.1 Histograms of optimal values of ࢓ (left) and ࢉ (right) obtained 
after performing cluster validity measures on seven land use/cover classes 
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Figure 5A.2 The optimal ࢓ values of the reference subset (࢙૚) with	2=ࢉ as 
the optimal ࢉ chosen by CVI for all images 

 

 
Figure 5A.3 The optimal ࢓ values as a result of upscaling towards larger 
areas by using ࢙૚ as the reference subset and the optimal 2=ࢉ was obtained 
for all these target subsets 
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Figure 5A.4 The optimal ࢓ values as a result of transferability to other areas 
by using ࢙૚ as the reference subset. We obtained 2=ࢉ as the optimal ࢉ value 
for all images 

 
Table 5A.1 The overall accuracy indicating water membership agreement 
between the reference (࢙૚) and target subsets (࢙૛ up to ࢙૝) estimated using 
the fuzzy error matrix 

Classified 
images 

Overall accuracy 
 ૝ܛ ૜ܛ ૛ܛ

 ଵ 0.97 0.91 0.88ܫ

 ଶ 0.96 0.90 0.86ܫ

 ଷ 0.97 0.93 0.92ܫ

 ସ 0.94 0.90 0.88ܫ

 ହ 0.94 0.91 0.90ܫ

 ଺ 0.92 0.83 0.82ܫ

 ଻ 0.94 0.90 0.90ܫ

ܫ଼  0.94 0.89 0.85 

 ଽ 0.96 0.96 0.97ܫ

 ଵ଴ 0.97 0.92 0.91ܫ
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Figure 5A.5 Shoreline images of the east section. The extent of non-water 
area has decreased over three decades, while water area has expanded. In 
this section, coastal erosion and inundation has caused a substantial loss of 
coastal land 
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Figure 5A.6 Shoreline images of the middle section. An extensive change of 
shoreline is obvious due to reclamation activities for e.g. in the western part 
of the images while some other places gradually eroded started from 1994 
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Figure 5A.7 Shoreline images of the west section. The changes of shoreline 
position in this section are relatively small, however small gain of non-water 
area can be seen in the eastern part of the image due to land reclamation 
project 
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Figure 5A.8 The spatial distribution of shoreline changes in the middle 
section for consecutive dates. A large gain of non-water areas (in green) was 
obvious in the periods 1988-1991 and 1994-1997 (see the west part of the 
site), while a subtle change into water (in turquoise) was shown in the period 
1997-2000 and 2009-2013. 
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Figure 5A.9 The spatial distribution of shoreline changes in the west section 
for consecutive dates. A small gain of non-water can be seen in the periods 
1988-1991 and 2013-2017 at the eastern part of the site while erosion due to 
the changes into water are visible in the periods 1997-2000 and 2009-2013. 
In general, the areas show small changes of non-water, water and shoreline 
margin indicating a steady condition of the coastal environment 
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