
Harm-Jan Benninga

ISBN: 978-90-365-5338-4

DOI: 10.3990/1.9789036553384

ITC dissertation nr: 412

H
arm

-Jan
 B

en
n

in
g
a

INVITATION

I have the pleasure of 

inviting you to attend 

the public defence of 

my dissertation entitled:

Estimation of field-scale 

soil moisture content and 

its uncertainties using 

Sentinel-1 satellite imagery

which will take place on

Thursday, 24 March 2022 

De Waaier, room 4,

University of Twente,

Enschede

14.30 Layman’s talk

14.45 PhD defence

16.00 Reception

Harm-Jan Benninga

Estim
atio

n
 o

f field
-scale so

il m
o
istu

re co
n

ten
t an

d
 its 

u
n

certain
ties u

sin
g
 Sen

tin
el-1

 satellite im
ag

ery

Estimation of field-scale soil moisture 
content and its uncertainties using 

Sentinel-1 satellite imagery



ESTIMATION OF FIELD-SCALE SOIL
MOISTURE CONTENT AND ITS

UNCERTAINTIES USING
SENTINEL-1 SATELLITE IMAGERY

Harm-Jan Frederik Benninga





ESTIMATION OF FIELD-SCALE SOIL MOISTURE
CONTENT AND ITS UNCERTAINTIES USING

SENTINEL-1 SATELLITE IMAGERY

D I S S E R T A T I O N

to obtain
the degree of doctor at the University of Twente,

on the authority of the rector magnificus,
prof. dr. ir. A. Veldkamp,

on account of the decision of the Doctorate Board,
to be publicly defended

on Thursday the 24th of March 2022 at 14.45 hours

by

Harm-Jan Frederik Benninga
born on the 15th of February 1992

in Aalsmeer, The Netherlands



This dissertation has been approved by:

Supervisor:
prof. dr. Z. Su

Co-supervisor:
dr. ir. R. van der Velde

This publication is part of the project OWAS1S (Op-
timizing Water Availability with Sentinel-1 Satellites)
with project number 13871 of the research programme
Water2014 which is partly financed by the Dutch Re-
search Council (NWO). All OWAS1S project partners
are thanked for their contributions.

© Cover design: Job Duim and Harm-Jan Benninga,
contains modified Copernicus Sentinel data [2015]

Printed by: CTRL-P, Hengelo, The Netherlands
Lay-out: UT-ITC PhD thesis LATEX template
ISBN: 978–90–365–5338–4
DOI: 10.3990/1.9789036553384

©2022 Harm-Jan Frederik Benninga, The Netherlands. All rights reserved. No
parts of this thesis may be reproduced, stored in a retrieval system or transmit-
ted in any form or by any means without permission of the author. Alle rechten
voorbehouden. Niets uit deze uitgave mag worden vermenigvuldigd, in enige
vorm of op enige wijze, zonder voorafgaande schriftelijke toestemming van de
auteur.



GRADUATION COMMITTEE

Chair/secretary
prof. dr. F. D. van der Meer University of Twente

Supervisor
prof. dr. Z. Su University of Twente

Co-supervisor
dr. ir. R. van der Velde University of Twente

Members
prof. dr. D. van der Wal University of Twente
prof. dr. A. D. Nelson University of Twente
prof. dr. M. Zribi Centre d’Etudes Spatiales

de la Biosphère
prof. dr. N. Pierdicca Sapienza University

of Rome
dr. C. Notarnicola Eurac Research - Institute

for Earth Observation





Acknowledgements

These pages may be the first you read in this thesis, they are the last
ones I add. After more than six years of work, it is now time for a little
retrospective and, especially, to thank a number of people both within
the university and outside.

In het najaar van 2015, vlak na mijn afstuderen, kreeg ik de moge-
lijkheid om promotieonderzoek te doen aan de faculteit Geo-Informatie
Wetenschappen en Aardobservatie (ITC). Daarmee kon ik mij helemaal
gaan verdiepen in bodemvocht, satellietdata en het doen van metingen.
Tijdens de eerste vier jaar van mijn promotieonderzoek kon ik mij vol-
ledig op het onderzoek richten, samen met alle betrokkenen van het
OWAS1S-project en binnen het ITC. Hierna mocht ik doorgaan met mijn
onderzoek terwijl ik werkzaam was als docent. Ik heb me met veel plezier
verdiept in de verschillende vakken en projecten, lessen verzorgd en stu-
denten begeleid. Gedurende deze laatste periode moesten we echter ook
veel thuiswerken en miste ik het sociale contact en het laagdrempelige
inhoudelijke overleg op het ITC. Tenslotte prijs ik me gelukkig dat ik
Gemma leerde kennen. Het geheel is een mooie tijd geweest.

De eersten die ik wil bedanken zijn mijn promotor Bob en copromotor
Rogier. Met zijn drieën hebben we goede discussies gehad over de grote
lijnen en wetenschappelijke richting van het onderzoek. Rogier, jij was
van begin tot eind zeer betrokken en had waardevolle commentaren op
manuscripten. Je was altijd bereid om even mee te denken, bijvoorbeeld
over een lastig commentaar van een reviewer. We hadden het niet alleen
maar over wetenschappelijke onderwerpen. Bij het koffieapparaat hebben
we heel wat afgepraat over wielrennen, voetbal, politiek, economie, de
faculteit, enzovoort; momenten die ik zeer gewaardeerd heb. Je hebt je
op meerdere momenten ingezet om een vorm voor mij te vinden om bij
de afdeling werkzaam te blijven toen mijn proefschrift nog niet helemaal
af was. Bob, je organiseerde workshops en had motiverende woorden
voor alle promovendi van de afdeling. Dankjewel voor de betrokkenheid
die je toonde als we elkaar tegenkwamen en het vertrouwen dat je in mij
hebt gesteld.

Binnen het OWAS1S-project kon ik veel samenwerken met twee an-
dere promovendi – Coleen Carranza en Michiel Pezij – en hun begeleiders
– Martine van der Ploeg en Denie Augustijn. Ik wil jullie allemaal hartelijk
bedanken voor de leuke samenwerking. Coleen, we hebben samen heel

i



Acknowledgements

wat bezoeken door het land afgelegd en hebben op de EGU-conferentie
in Wenen gestaan. Michiel, het was heel leuk om na onze studie bij
elkaars promotieonderzoek betrokken te zijn. We blijven zeker af en
toe lunchwandelen, mountainbiken of poolen. Alle projectpartners van
het OWAS1S-project – Deltares, HKV, HydroLogic, provincie Overijssel,
Rijkswaterstaat, STOWA, ZLTO, en waterschappen Aa en Maas, Drents
Overijsselse Delta en Vechtstromen – wil ik bedanken voor de steun
en inspiratie. We werden altijd gastvrij ontvangen bij jullie. De pro-
jectvergaderingen en de bezoeken gaven veel inzicht in de Nederlandse
waterwereld en in mogelijke toepassingen van mijn onderzoek. Aan het
einde van het project hebben we samen met jullie interviews gemaakt
over het project en toepassingen van bodemvochtinformatie, waarvan de
filmpjes, heel toepasselijk, online kwamen in de eerste coronamaanden.

My time at the ITC faculty was made by the people there. I would like
to thank all the PhD candidates and colleagues of Water Resources (WRS)
throughout the years. In particular, I would like to thank Bagher, César,
Chandra, Egor, Hong, Jan, Moiteela, Mostafa, Peiqi, Sammy and Tebogo
Larry Soxapapantriaos. We had a great time in ITC, and with participating
in the football competition at the ITC sports day, visiting the stadium and
the city centre, and the lunch walks. Chris, you helped me a lot during
the last two and a half years and have given me many opportunities.
You always showed interest in my ideas and in my personal life. We are
practically neighbours, so we will probably meet in Hengelo. Gabriel,
we were a good team in finding out how to organize the education
online. I enjoyed your funny stories, for example about your experiences
in the Netherlands, openness and creativity. Anke, Ceciel, Lindy and
Tina, thank you for the nice atmosphere you created at the department
and the kind support. Benno and Job, thank you for the assistance
with digital designs and fieldwork equipment, Carla, Grietha, Katinka
and Marga for the assistance with data management and open access
journals, Caroline for the lab assistance, and Annelies for the help with
the organization towards the defence. Students of ITC, thank you for
your international perspectives and ambition. It was very nice to work
with you on several topics. Lastly, the assistance in collecting field
measurements by students and colleagues from the WRS department
was obviously very much appreciated.

Natuurlijk mama, papa en Wouter, Anita en Kees, mijn hele familie,
Dennis en Kevin, Hemco, BWO Zaterdag 3, Integralis en het tennisgroepje.
Bedankt voor de afleiding en gezellige momenten. Tenslotte Gemma, je
bent super belangrijk voor mij (en voor de afronding van dit proefschrift).
Wat ben ik blij dat we elkaar hebben leren kennen toen je in Deventer
woonde en contact hebben gehouden toen je een paar maanden niet in
Nederland was. Door jou was de coronatijd ook heel mooi, met heel veel
tijd samen en waarin we elkaar heel goed hebben leren kennen. Nu gaan
we samen op weg naar een mooie en spannende toekomst.

Harm-Jan
Hengelo, February 2022

ii



Summary

The soil moisture content (SMC) expresses the amount of water in the
unsaturated zone. The variable is essential for vegetation growth and
hydrological processes. SMC can be estimated from satellite microwave
observations across spatial domains. This thesis focuses on the field-
scale, at which more direct relations between the ground conditions
(SMC, surface roughness and vegetation) and satellite microwave obser-
vations are expected. The uncertainties in the field-scale SMC retrievals
were studied and decomposed in uncertainties originating from in situ
references (Usp and Us,S1), satellite observations (US1) and model para-
meters (Up).

Two regional networks were employed for the in situ monitoring of
SMC, namely the Twente network in the east and the Raam network in
the south of the Netherlands. Both networks have stations with sensors
at depths of 5 cm, 10 cm, 20 cm, 40 cm and 80 cm. From soil-specific
calibrations follow station probe measurement uncertainties (Usp) of
0.018 m3 m−3 to 0.023 m3 m−3 for the Raam network and 0.028 m3 m−3

for the Twente network. The sensor’s influence zone, determined in
Raam soil, is 3 cm–4 cm. A vertical mismatch and a horizontal mismatch
between SMC retrievals from satellites and the station measurements
cause a spatial mismatch uncertainty (Us,S1). Using measurements inside
four agricultural fields, the Us,S1 estimate is 0.051 m3 m−3.

The Sentinel-1 satellites provide microwave backscatter (σ 0) obser-
vations, which can be used for field-scale SMC retrieval. The σ 0 obser-
vations are found to be disturbed by frozen conditions below an air
temperature of 1 ◦C, snow during Sentinel-1’s morning overpasses on
meadows and cultivated fields, and interception after more than 1.8 mm
of rain in the 12 h preceding a Sentinel-1 overpass. Dew was not found
to be of influence. After masking based on these rules, the Sentinel-1
σ 0 observations still contain radiometric uncertainty (sS1) originating
from calibration uncertainties, sensor instabilities and speckle. σ 0 over
forests is assumed time-invariant; the observed deviations were used
to estimate the sS1. The sS1 improves from 0.85 dB (for a surface area
of 0.25 ha) to 0.30 dB (10 ha) for the VV polarization and from 0.89 dB
(0.25 ha) to 0.36 dB (10 ha) for the VH polarization, following approx-
imately an inverse square root dependency on the surface area over
which the σ 0 observations are averaged. The retrieval uncertainty due to
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Summary

sS1 (US1) is low (−0.01 m3 m−3 to +0.01 m3 m−3) for dry soils and large
surface areas and high (−0.10 m3 m−3 to +0.17 m3 m−3) for wet soils and
small surface areas.

The uncertainties involved in surface scattering simulations and SMC
retrievals were investigated. The surface roughness parameters that are
input to the integral equation method (IEM) surface scattering model were
calibrated for two sparsely vegetated meadows and two fallow maize
fields. A Bayesian framework was used for the calibration as well as
for deriving the model parameter uncertainty (Up) and total uncertainty
(Utotal-B). The resulting Utotal-B successfully reproduces the uncertainty
estimated empirically against the in situ references. The combination
of the derived Up with Usp, Us,S1 and US1 also constitute the total SMC
retrieval uncertainty. The main uncertainty originates from the in situ
references (Usp and Us,S1) and the Sentinel-1 observations (US1), whereas
the contribution from the surface roughness parameters (Up) is small.

For the two meadows the surface roughness parameter distributions
are similar, time-invariant and independent of Sentinel-1’s ascending/
descending orbits. These are promising results for the operational re-
trieval of SMC over meadows across a larger region because they suggest
that using a single set of surface roughness parameters is permitted.
The IEM surface scattering model and the Tor Vergata (TV) vegetation
scattering and absorption model were parameterised for grass-covered
soil surfaces. A Sentinel-2 leaf area index (LAI) product provides field-
scale vegetation information, as was demonstrated by validation against
in situ measurements on two meadows and four maize fields. However,
uncertainty propagation shows that the Sentinel-2 LAI uncertainty of
0.71 m2 m−2 has a large impact on SMC retrievals. The SMC retrievals
for 21 meadows in the Twente region, validated against adjacent in situ
station references, have mean Pearson correlation coefficients of 0.55
for IEM and 0.64 for TV-IEM, root mean square deviations (RMSD) of
0.14 m3 m−3 for IEM and 0.13 m3 m−3 for TV-IEM, and RMSDs relative
to the range of the SMC references (RRMSD) of 24 % for both IEM and
TV-IEM. The performance metrics for IEM and TV-IEM, i.e. without and
with a vegetation correction, are similar if the same retrieval-reference
pairs are considered.

In conclusion, the quantification of uncertainty contributions helps
to comprehend SMC retrieval accuracy. A large part of the uncertainty
originates from the in situ references and the Sentinel-1 σ 0 observations.
The uncertainty in the Sentinel-2 LAI estimates also has a large impact.
The thesis’ methods and findings lead to several directions for future
research. Future research could focus on the uncertainty sources with the
largest contributions to effectively improve the SMC retrievals, assessing
the general applicability and improvement of the SMC retrieval scheme,
functionally evaluating the SMC retrievals in potential applications, and
representing field-scale SMC as an ensemble of SMC products.
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Samenvatting

Het bodemvochtgehalte (soil moisture content of SMC) drukt de hoeveel-
heid vocht in de onverzadigde zone uit. Deze variabele is essentieel
voor vegetatiegroei en hydrologische processen. SMC kan over grote
gebieden bepaald worden met microgolfobservaties vanuit satellieten.
Dit proefschrift richt zich op de veldschaal, waarop directere relaties
tussen grondomstandigheden (SMC, oppervlakteruwheid en vegetatie)
en de microgolfobservaties worden verwacht. De onzekerheden in de
SMC-bepalingen zijn onderzocht en onderverdeeld in onzekerheden af-
komstig van in situ referenties (Usp en Us,S1), satellietobservaties (US1)
en modelparameters (Up).

Voor de in situ monitoring van SMC zijn twee regionale netwerken ge-
bruikt, namelijk het Twente netwerk in het oosten en het Raam netwerk
in het zuiden van Nederland. Beide netwerken bestaan uit stations met
sensoren op 5 cm, 10 cm, 20 cm, 40 cm en 80 cm diepte. Vanuit grond-
specifieke calibraties volgen onzekerheden van de sensoren (Usp) van
0,018 m3 m−3 tot 0,023 m3 m−3 voor het Raam netwerk en 0,028 m3 m−3

voor het Twente netwerk. De zone die van invloed is op de sensormetin-
gen, zoals bepaald met grond uit de Raam, is 3 cm-4 cm. Een verticale
ongelijkheid en een horizontale ongelijkheid tussen de SMC-satellietbepa-
lingen en de stationsmetingen zorgen voor een onzekerheid (Us,S1). Met
behulp van metingen binnen vier agrarische velden, is de Us,S1 geschat
op 0,051 m3 m−3.

De Sentinel-1-satellieten leveren observaties van microgolfterugkaat-
sing (σ 0), die gebruikt kunnen worden voor SMC-bepaling op veldschaal.
De σ 0-observaties worden verstoord door bevroren omstandigheden
onder een luchttemperatuur van 1 ◦C, sneeuw tijdens ochtendobserva-
ties op grasland en akkers, en interceptie na meer dan 1,8 mm regen in
de 12 uur voorafgaand aan een Sentinel-1-observatie. Dauw heeft geen
verstorend effect. Met maskering op basis van deze regels, bevatten
de Sentinel-1-observaties nog steeds radiometrische onzekerheid (sS1)
als gevolg van calibratie-onzekerheden, sensorinstabiliteiten en speckle.
Aangenomen is dat σ 0 over bos constant is over tijd; de geobserveerde
afwijkingen zijn gebruikt om de sS1 te schatten. De sS1 verbetert van
0,85 dB (voor een oppervlakte van 0,25 ha) naar 0,30 dB (10 ha) voor de
VV-polarisatie en van 0,89 dB (0,25 ha) naar 0,36 dB (10 ha) voor de VH-po-
larisatie, waarbij sS1 bij benadering een omgekeerd wortelverband heeft
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Samenvatting

met het oppervlakte waarover de σ 0-observaties zijn gemiddeld. De
SMC-bepalingsonzekerheid als gevolg van sS1 (US1) is laag (−0,01 m3 m−3

tot +0,01 m3 m−3) voor droge gronden en grote oppervlaktes en hoog
(−0,10 m3 m−3 tot +0,17 m3 m−3) voor natte gronden en kleine opper-
vlaktes.

De onzekerheden in oppervlakteverstrooiingssimulaties en SMC-be-
palingen zijn onderzocht. De oppervlakteruwheidsparameters in het
integral equation method (IEM) oppervlakteverstrooiingsmodel zijn ge-
kalibreerd voor twee dun begroeide graspercelen en twee braakliggende
maïspercelen. Een Bayesiaanse methode is gebruikt voor zowel de ka-
libratie als voor het afleiden van de modelparameteronzekerheid (Up)
en de totale onzekerheid (Utotal-B). De Utotal-B reproduceert met succes
de empirische onzekerheid die is geschat ten opzichte van de in situ
referenties. Ook de combinatie van de Up met Usp , Us,S1 en US1 vormt de
totale onzekerheid van de SMC-bepalingen. De grootste onzekerheid is
afkomstig van de in situ referenties (Usp en Us,S1) en de Sentinel-1-obser-
vaties (US1), terwijl de bijdrage van de oppervlakteruwheidsparameters
(Up) klein is.

Voor de twee graspercelen zijn de oppervlakteruwheidsparameter-
verdelingen vergelijkbaar, constant over tijd en onafhankelijk van de
Sentinel-1-observatierichting. Dit zijn veelbelovende resultaten voor de
operationele bepaling van SMC op graspercelen over een groter gebied,
omdat ze suggereren dat één set van oppervlakteruwheidsparameters
gebruikt kan worden. Het IEM oppervlakteverstrooiingsmodel en het Tor
Vergata (TV) vegetatie verstrooiings- en absorptiemodel zijn geparame-
triseerd voor bodemoppervlaktes met gras. Een Sentinel-2-product van
bladoppervlakte-index (leaf area index of LAI) geeft vegetatie-informatie
op veldschaal, hetgeen is aangetoond door validatie ten opzichte van in
situ metingen op twee graspercelen en vier maïspercelen. Uit een pro-
pagatie van de Sentinel-2 LAI-onzekerheid van 0,71 m2 m−2 blijkt echter
dat deze onzekerheid een grote invloed op de SMC-bepalingen heeft. De
SMC-bepalingen voor 21 graspercelen in de regio Twente, gevalideerd ten
opzichte van in situ stationsreferenties, hebben gemiddelde Pearsons cor-
relatiecoëffiënten van 0,55 voor IEM en 0,64 voor TV-IEM, kwadratische
gemiddeldes van de afwijkingen (root mean square deviations of RMSD)
van 0,14 m3 m−3 voor IEM en 0,13 m3 m−3 voor TV-IEM en RMSDs relatief
aan het bereik van de SMC-referenties (RRMSD) van 24 % voor zowel IEM
als TV-IEM. De prestatiestatistieken voor IEM en TV-IEM, oftewel zonder
en met een vegetatiecorrectie, zijn vergelijkbaar als dezelfde paren van
SMC-bepalingen en -referenties worden gebruikt.

Concluderend kan worden gesteld dat de kwantificering van onze-
kerheidsbijdragen helpt om de nauwkeurigheid van SMC-bepalingen te
interpreteren. Een groot deel van de onzekerheid is afkomstig van de in
situ referenties en de Sentinel-1-observaties. Ook de onzekerheid van
de Sentinel-2 LAI-bepalingen heeft een grote invloed. Uit de methodes
en bevindingen van dit proefschrift volgen verscheidene mogelijkheden
voor toekomstig onderzoek. Toekomstig onderzoek zou zich kunnen
richten op de onzekerheidsbronnen met de grootste bijdragen om de
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SMC-bepalingen op een effectieve manier te verbeteren, het beoordelen
van de algemene toepasbaarheid en het verbeteren van de SMC-bepalings-
methode, het functioneel evalueren van de SMC-bepalingen in potentiële
toepassingen, en het weergeven van SMC op veldschaal als een ensemble
van SMC-producten.
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1Introduction

This section outlines what soil moisture content (SMC) is, how it can
be measured, its role in understanding and coping with hydrological
conditions, as well as the lack of SMC information up to the desired scale
and with the associated uncertainties.

1.1 Background

1.1.1 Soil moisture content and its variability

Soil can be considered a three-phase system consisting of a matrix of
mineral and organic solid grains between which are pores that can con-
tain air or water. This is schematised in Figure 1.1a. SMC expresses the
amount of water in the unsaturated zone of the soil, often defined as the
ratio of the volume of water (Vw , in m3, see Figure 1.1a) to the total soil
volume (Vt , in m3, see Figure 1.1a):

SMC = Vw
Vt
. (1.1)

Figure 1.1b shows characteristic SMC levels. Under saturated con-
ditions all the soil pores are filled by water, i.e. the maximum SMC is
equal to a soil’s porosity (Dingman, 2015; Seneviratne et al., 2010). The
porosity ranges from approximately 0.35 m3 m−3, associated with coarse-
grained sandy soils, to 0.55 m3 m−3 for fine-grained clayey soils and even
up to 0.80 m3 m−3 for highly organic soils (Dingman, 2015). The capacity
of a soil to store additional (rain or snowmelt) water is the difference
between current SMC and the saturated SMC. In the first days after a
soil has been saturated, for example after an intense rain or snowmelt
event, the water drains by gravity. At ‘field capacity’ the soil matric
potential is in equilibrium with gravity. The SMC at field capacity relates
to soil properties. Below field capacity, the water can be further removed
from a soil by surface evaporation and plant transpiration. The ‘wilting
point’, which depends on soil properties and vegetation type, refers to
the SMC below which the water is held so tightly by the soil matrix that
the vegetation cannot extract any more water and wilts (Dingman, 2015;
Seneviratne et al., 2010). Dingman (2015) and Seneviratne et al. (2010)
define a soil’s plant available water capacity as the field capacity minus
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1. Introduction

the wilting point. The actual plant available water is the difference of
current SMC with the wilting point SMC.

Soil matrix Air content Soil moisture 
content

In
cr

ea
si

ng

In
cr
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si

ng

Saturation

Field capacity

Wilting point

Gravitational 
water

Plant available 
water

Unavailable 
water

(a) (b)
Vt

Vw

Figure 1.1 (a) Schematisation of soil as a three-phase system. The pores in
the soil matrix can contain variable volumes of air and water. The volume of
water (Vw , in m3) and total soil volume (Vt, in m3) are used to calculate the SMC
with Equation 1.1. (b) SMC levels characteristic for drainage, evaporation and
transpiration processes.

SMC varies over space and time due to hydrometeorological factors,
such as rainfall, evapotranspiration and interactions with the groundwa-
ter. The typical temporal scale of SMC in response to wetting and drying
events is in the order of days to weeks (Brutsaert, 2005); in a climate
with distinct seasons this is on top of seasonal SMC dynamics. Spatial
SMC variability is also controlled by landscape factors, such as soil type,
topography, vegetation and groundwater table depth, which can be very
local (Karthikeyan et al., 2017b; Montzka et al., 2020; Famiglietti et al.,
2008; Vereecken et al., 2014).

1.1.2 Measuring soil moisture content

1.1.2.1 Direct estimation

SMC can be estimated in a direct manner by (i) collecting a soil sample
(ring) of known volume, (ii) weighing the wet sample, (iii) oven-drying
the sample, and (iv) weighing the dried sample. The volumetric SMC (in
m3 m−3) can then be calculated from the definition of SMC in Equation 1.1,
whereby the difference between the wet mass and the dry mass can be
used to calculate Vw and the volume of the ring is Vt . This method is
known as the gravimetric method.

The gravimetric method is considered relatively accurate (Topp and
Ferré, 2002b; Dobriyal et al., 2012) and often used as the reference for
other measurement methods (e.g. Vaz et al., 2013; Cosh et al., 2005).
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1.1. Background

However, this method is also time-consuming, local and destructive,
which disables repetition at the exact same location.

1.1.2.2 Indirect estimation through the relative permittivity

To fulfil the need for repeated SMC measurements over time and space,
several alternative, indirect measurement methods have been developed.
These methods are based on measuring a soil property that relates
to SMC, such as the relative permittivity, electrical conductivity, heat
capacity or soil water pressure. Estimating SMC from the relation with
relative permittivity is most conventional, both in situ (Robinson et al.,
2008) and from satellites (Petropoulos et al., 2015).

‘Relative permittivity’ (εr ) is also known as ‘dielectric constant’. The
term ‘dielectric constant’ has been deprecated because εr is frequency-
dependent and thus is not a constant (Thiel, 2010; IEEE Standards Board,
2018, 1997). Moreover, in the context of this study, a soil’s bulk εr
varies as a function of the SMC. This originates from the large contrast
between the εr of water (εr ≈ 80 for frequencies below 1 GHz), versus
soil minerals (εr ≈ 3 to εr ≈ 7), air (εr = 1) and organic material (εr ≈ 2
to εr ≈ 5) (Topp and Ferré, 2002c; Robinson et al., 2008). Accordingly,
the soil’s bulk εr increases with increasing SMC.

The εr of water depends on the frequency of the incident electromag-
netic waves, temperature and salinity (Ulaby and Long, 2014; Dobson
et al., 1985; Mironov et al., 2009). Furthermore, with regard to Figure 1.1,
‘free water’ and ‘bound water’ should be distinguished. The water mo-
lecules close to soil particles are bound to the soil matrix, disabling the
interaction with the electromagnetic waves that yields the high εr of free
water (Dobson et al., 1985; Mironov et al., 2009; Jackson and Schmugge,
1989; Wang and Schmugge, 1980). The amount of bound water is con-
trolled by soil properties. As such, the relation between the bulk εr and
SMC is affected by soil texture, mineralogy, bulk density, organic matter
content and salinity (Starr and Paltineanu, 2002; Ulaby and Long, 2014).
Topp et al. (1980) determined a general relation between εr and SMC,
which gives reasonable SMC measurement accuracy for a wide range of
soils (Vaz et al., 2013; Ferré and Topp, 2002). Figure 1.2 shows the Topp
function, illustrating that εr increases with increasing SMC.

The estimation of SMC from satellites imagery, based on the rela-
tion with εr , operate in the microwave spectrum. For microwaves with
frequencies less than about 10 GHz, the impact of the atmosphere, i.a.
clouds, is considered negligible (Woodhouse, 2006). This includes the
most common microwave bands; L-band (0.39 GHz–1.55 GHz), C-band
(3.9 GHz–5.75 GHz) and X-band (5.75 GHz–10.9 GHz), making them well
suited for observing the Earth’s surface (Kornelsen and Coulibaly, 2013).
However, in the L- to X-band, the water’s dielectric loss, represented by
the imaginary part of εr (ε′′r ), cannot be neglected and the εr is frequency-
dependent (Topp and Ferré, 2002c; Ulaby and Long, 2014; Robinson et al.,
2008). For a frequency of 5.405 GHz (Sentinel-1), for example, water’s
ε′r ≈ 73 and ε′′r ≈ 22 (Ulaby and Long, 2014). This is in contrast with
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Figure 1.2 Relative permittivity - with the real (ε′r ) and imaginary (ε′′r ) part - as
a function of SMC, using three different dielectric mixing models. The Mironov
et al. (2009) model was run for a frequency of 5.405 GHz (Sentinel-1). The
Dobson et al. (1985) model was run for a temperature of 10 ◦C and also for a
frequency of 5.405 GHz.

the frequencies at which in situ devices operate, and the Topp equation
is not suited for the microwave frequencies. Figure 1.2 shows εr as a
function of SMC for two models commonly used at microwave frequen-
cies, namely the Dobson et al. (1985) model and the Mironov et al. (2009)
model.

1.2 Development of SMC products

Monitoring SMC is crucial for agricultural productivity, forestry and
ecosystem health, and for climate change mitigation and adaptation
measures (Global Climate Observing System (GCOS), 2016). GCOS (1995)
recognized SMC as a key variable already in its first reports, but at that
time no method for monitoring SMC at the required time and space
scales existed. SMC products are now available at coarse scale (e.g.
3 km–50 km resolutions) and fine scale (e.g. 0.1 km–1 km resolutions).
Section 1.2.1 discusses the available products. A field-scale product is
not yet available. Section 1.2.2 outlines the importance of field-scale
information for hydrological and agricultural applications.
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1.2.1 Available products

1.2.1.1 Coarse scale products

After the first papers that were published on mapping SMC from passive
(e.g. Schmugge et al., 1974; Poe, 1972) and active microwave observations
(e.g. Macdonald and Waite, 1971; Ulaby, 1974) in the 1970s, algorithms
for retrieving SMC globally were reported around the 2000s (e.g. Wagner
et al., 1999; Owe et al., 2001). Furthermore, the dedicated satellite
missions Soil Moisture and Ocean Salinity (SMOS; Kerr et al., 2001) and
Hydrosphere State (Hydros; Entekhabi et al., 2004) were planned. GCOS
(2004) then formulated the following challenge:

Action T37
Develop an experimental soil-moisture product from existing
networks and satellite observations. (p. 106)

The development of an experimental product was foreseen for 2009
and a quasi-operational global product was expected in 2011 (GCOS,
2004). Hydros was cancelled in 2005, but the Soil Moisture Active Passive
(SMAP) mission builds on its early work (Entekhabi et al., 2014). The
most publicly visible SMC products available nowadays are derived from
the microwave observations of the Advanced Scatterometer (ASCAT) at
25 km and 50 km (Wagner et al., 2013; Bartalis et al., 2007), Advanced
Microwave Scanning Radiometer 2 (AMSR2) at 0.1◦ and 0.25◦ (Zhang
et al., 2017; Kim et al., 2015), SMOS at on average 43 km (Kerr et al., 2010,
2016) and SMAP products at 3 km, 9 km and 36 km resolution (Chan
et al., 2016, 2018; Das et al., 2019). The European Space Agency’s Climate
Change Initiative for Soil Moisture (ESA CCI SM) harmonizes and merges
SMC retrievals from various satellites, which have finite lifetimes and
different instrument algorithms, resulting in a consistent global SMC
time series from 1978 (Gruber et al., 2019). Regarding the currently
available products, GCOS (2016) emphasizes as main tasks to ensure
their sustainability and improve them step-by-step.

1.2.1.2 Fine scale products

A new challenge GCOS (2016) proposed is:

Action T18: Regional high-resolution soil-moisture data
record
Develop high-resolution soil-moisture data records for climate
change adaptation and mitigation by exploiting microwave
and thermal remote-sensing data. (p. 186)

GCOS (2016) foresaw Action T18 for 2017–2020. Indeed, in 2019
the 1 km resolution Surface Soil Moisture product became operationally
available over Europe (Copernicus Global Land Service, 2021). This
product utilizes Sentinel-1 observations and applies a change detection
algorithm to retrieve SMC (Bauer-Marschallinger et al., 2019). Three other
operational SMC products downscale coarse SMC products or microwave
observations, namely the ASCAT/Sentinel-1 product available at 1 km
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resolution over Europe (Bauer-Marschallinger et al., 2018), the 100 m
resolution - commercially available - product of VanderSat (VanderSat,
2021) and the 1 km resolution SMAP/Sentinel-1 product that is available
with a research status (Das et al., 2019).

1.2.2 Relevance of field-scale information

Throughout the years GCOS has expanded the challenges for the monit-
oring of SMC, based on technological developments and feasibility. This
resulted in at least four coarse scale and four fine scale products. Within
the grids of the available products, however, SMC conditions can vary
because of the high spatial variability (see Section 1.1.1). In the case of ag-
ricultural fields, this is enhanced by differences in e.g. soil management,
groundwater tables and vegetation between fields. Although no specific
challenge has yet been formulated, several applications would benefit
from distributed information on SMC states at finer resolutions than yet
available. The paragraphs below illustrate operational applications in
water management and agricultural management.

SMC information can improve predictions of catchment discharges
and river water levels (Cenci et al., 2017; Pauwels et al., 2001; Mahanama
et al., 2008; Crow et al., 2017), which is important in mitigating the con-
sequences of events by reliable warnings. Recently, this has been relevant
during the river floods that hit Limburg (the Netherlands), Belgium and
Germany in July 2021. Developing models with spatial resolutions of
1 km at global scale and 100 m at continental scale has been considered
the ‘grand challenge for hydrology’ by Wood et al. (2011). Pezij et al.
(2019b) expect that fine resolution surface SMC products will improve
the SMC simulations at field scales. Besides predicting river levels, water
managers can operate on wet and dry conditions by controlling weirs and
pumps. Optimal management requires fine resolution information about
current water system conditions, including SMC conditions (Pezij, 2020;
Pezij et al., 2019a). Developments in local and operable controlling sys-
tems are small weirs (e.g. Bloemberg-Van der Hulst, 2021) and (pressure)
drainage (e.g. Jansen et al., 2017; Hoving et al., 2018).

Agriculture depends on sufficient root zone soil water availability
for crop growth, while excess of soil water also leads to a reduction in
root water uptake (Feddes et al., 1976). During 2018 a summer drought
impacted large parts of Europe (Bakke et al., 2020). The 2019 and
2020 summers were also drier than normal. Figures 1.3a–b illustrate the
severe water stress that agricultural crops experienced during these sum-
mers. SMC information could improve irrigation management in terms
of crop yield, water use efficiency and net income (Vereecken et al., 2014;
Srivastava, 2017; Lei et al., 2020). An example is the ‘irrigation signal’ tool
(‘Beregeningssignaal’ in Dutch), developed by ZLTO (ZLTO, n.d.; Nieuwe
Oogst, 2015), which gives farmers advice on when and how much to
irrigate at field scale. Wet soil conditions, besides limiting plant growth,
are unfavourable for the trafficability of farmlands (Figures 1.3c–d). This
may jeopardize the timely execution of essential agricultural practices
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a A meadow experiencing water
stress (photo was taken by Rogier van
der Velde on 17 July 2019).

b A maize field experiencing water
stress (photo was taken by the author
on 22 August 2018). At the end of
August 2016 the maize was 285 cm,
here it is about chest height and the
development of cobs is limited.

c Standing water on a meadow (photo
was taken by the author on
5 April 2018).

d Issue of field trafficability, part of
the maize was not harvested (photo
was taken by the author on
16 October 2017).

Figure 1.3 Dry (a and b) and wet (c and d) conditions on agricultural fields in
the Netherlands.

and cause structural damage of land (Batey, 2009; Hamza and Anderson,
2005). Carranza et al. (2019) developed a framework for monitoring field
trafficability, using SMC information from satellite imagery.

The examples in the two paragraphs above illustrate that several
applications in water management and agricultural management would
benefit from SMC information, both in wet and in dry conditions. Fur-
thermore, there is a trend towards field-scale solutions. Especially over
heterogeneous landscapes with relative small agricultural fields, such as
in western Europe, new applications may be anticipated with the SMC
information at field scale because of larger spatial variability within the
grids of the currently available products.
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1.3 Estimating soil moisture content at field scale

SMC can be estimated at field scale with synthetic aperture radar (SAR)
observations. This section explains the retrieval of SMC from SAR ob-
servations (Section 1.3.1.1), such as acquired by the Sentinel-1 satellites
(Section 1.3.1.2), and compares its characteristics against those of in situ
measurements (Section 1.3.2).

1.3.1 Satellite SAR retrieval

1.3.1.1 Theory and models

SARs are ‘active’ instruments, meaning that a satellite’s SAR instrument
sends microwaves to the Earth and measures the scattering that returns
(‘backscatter’). The measured backscatter intensity, expressed in terms
of the area of an isotropic scatterer that would give the same level of
reflection and normalised per unit area on the ground surface is termed
the backscatter coefficient (σ 0, in m2 m−2 or dB; Woodhouse, 2006). The
σ 0 from natural surfaces constitutes of three contributions, which are
visualized in Figure 1.4 and sum up as follows:

σ 0 = γ2σ 0
s + σ 0

v + σ 0
sv , (1.2)

where γ2 is the two-way transmissivity of the vegetation, σ 0
s is the σ 0

from the soil surface, σ 0
v is the direct vegetation σ 0 and σ 0

sv is the σ 0

from soil-vegetation pathways.

(1) (2) (3a) (3b) (3c)

Topsoil
Soil surface

Vegetation

Figure 1.4 Backscattering (σ 0) contributions from a vegetated soil surface.
(1) σ 0 from the soil, thereby considering two-way transmission through the
vegetation (γ2σ 0

s ), (2) direct σ 0 from the vegetation (σ 0
v ), and (3a) σ 0 from

soil-vegetation, (3b) vegetation-soil and (3c) soil-vegetation-soil and vegetation-
soil-vegetation pathways, together σ 0

sv . The figure is adapted from Ulaby and
Long (2014) and Van der Velde (2010).

The relation between a soil’s εr and SMC, explained in Section 1.1.2.2,
governs the ability to estimate SMC in the topsoil with SAR instruments
via σ 0

s . A soil medium reflects, for increasing εr , more of the incident
microwaves’ energy. Consequently, wet soils (high εr ) produce a higher
σ 0
s than dry soils (low εr ). Next to εr , the roughness of the soil surface
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plays an essential role: a smooth surface produces specular reflection,
i.e. away from the instrument, whereas a rougher surface produces
more diffuse scattering (Woodhouse, 2006; Ulaby and Long, 2014). This
diffuse scattering includes the direction of the satellite, which links soil
properties to intensity received by the SAR instrument (Ulaby et al., 1996).
Previous studies (Vereecken et al., 2014; Satalino et al., 2002; Altese et al.,
1996) suggested that σ 0

s is more sensitive to roughness than to SMC
and that information on the surface roughness is, thus, indispensable
for SMC retrieval from σ 0. The σ 0

s as a function of the εr and surface
roughness can be simulated with surface scattering models, such as the
‘integral equation method’ (IEM; Fung et al., 1992), Oh model (Oh et al.,
1992, 2002) and Dubois model (Dubois et al., 1995).

Interactions of the microwaves with vegetation result in attenuation
(transmission loss) of the σ 0

s , which reduces the sensitivity of σ 0 to SMC
variations. Furthermore, the vegetation produces σ 0

v and σ 0
sv (Ulaby and

Long, 2014). Because the σ 0
v and σ 0

sv are part of the total σ 0, for the
accuracy of SMC retrievals it is important to account for these terms
as well. The σ 0

sv may contribute to σ 0 to SMC sensitivity under dense
vegetation conditions (Joseph et al., 2010; Stiles et al., 2000; Chiu and
Sarabandi, 2000). As the vegetation structure and water content typically
develop throughout a year, for example on agricultural fields, vegetation
effects on the σ 0 would be confused with changes in SMC if they are not
incorporated in a SMC retrieval algorithm.

The estimation of SMC from σ 0 observations is an ill-posed problem
because several combinations of SMC, surface roughness and vegeta-
tion would produce the same σ 0 (Vereecken et al., 2014; Satalino et al.,
2002; Verhoest et al., 2008). Information on the surface roughness and
vegetation status is, thus, indispensable. Data-driven, semi-empirical
or physically based models can be used for incorporating the effects of
surface roughness and vegetation on the relation between σ 0 and SMC.
A wide range of applications with these three types of models have been
studied and described in a number of review papers, such as Barrett et al.
(2009), Kornelsen and Coulibaly (2013), Ali et al. (2015), Petropoulos et al.
(2015), Das and Paul (2015) and Karthikeyan et al. (2017a).

1.3.1.2 Sentinel-1 SAR mission

Satellite missions since 1978 that were equipped with a SAR instrument
are listed in Table 1 in Kornelsen and Coulibaly (2013). The Sentinel-1
SAR satellite constellation (Sentinel-1A and Sentinel-1B) provides images
of σ 0 with fine spatial and temporal resolutions and a high radiometric
accuracy. Furthermore, the images become systematically and freely
available within 24 h after acquisition, and Sentinel-1C and Sentinel-1D,
planned for launches in 2022 and 2023, ensure continuation of the
Sentinel-1 programme until 2030 (World Meteorological Organization,
2021).

The technical details of the satellites and the operation modes are
extensively described in Torres et al. (2012) and Bourbigot et al. (2016).
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Sentinel-1A and Sentinel-1B provide images since October 2014 and
September 2016. The technical characteristics and operational configur-
ations have drawn already much interest for scientific and operational
purposes, and many studies recognized the potential of the Sentinel-1
imagery for studying microwave scattering processes and fine-scale SMC
monitoring (e.g. Baghdadi et al., 2017; Bai et al., 2017; Bousbih et al.,
2017; Van Doninck et al., 2012; Attema et al., 2007; Doubková et al., 2012;
Gao et al., 2017; El Hajj et al., 2017; Hornacek et al., 2012; Kornelsen and
Coulibaly, 2013; Liu et al., 2017; Petropoulos et al., 2015; Wagner et al.,
2009; Bauer-Marschallinger et al., 2019; Amazirh et al., 2018; Pulvirenti
et al., 2018; Paloscia et al., 2013; Nguyen et al., 2021; Pandit et al., 2020;
Lee and Walker, 2020; Balenzano et al., 2012, 2021).

1.3.2 SAR retrievals and in situ measurements

Next to SMC retrieved from satellite observations, it can be measured
with in situ SMC sensors. SMC monitoring stations are usually a collection
of sensors installed at various depths.

Table 1.1 lists the characteristics of in situ measurements and satellite
retrievals. Dobriyal et al. (2012) explain that in situ measurements can
be accurately calibrated, may be used at various depths and can take
measurements at any time. However, the in situ measurements are only
point measurements and this makes spatial application complicated
(Dobriyal et al., 2012; Western et al., 2002). SMC estimates from satellite
imagery provide an integral value for an entire footprint (Vereecken et al.,
2014) and a large spatial coverage. It can be concluded, as is also argued
by Western et al. (2002), that in situ measurements and satellite retrievals
are complementary to each other.

Table 1.1 Characteristics of SMC information obtained from in situ sensors
and from satellite retrievals.

In situ measurements Satellite retrievals

Relatively accurate Unknown accuracy
Possible at selected depths Soil surface
High temporal resolution Low temporal resolution

Small spatial coverage Large spatial coverage

Figure 1.5 illustrates the spatial scales of SMC estimates by in situ
stations and two fine scale products. Agricultural fields are represented
by outlines from a crop parcel registry (Ministry of Economic Affairs and
Climate Policy, 2020). The regular grids of the existing SMC products do
not match the fields of varying sizes and orientations. Figure 1.5 also
shows a Sentinel-1 image on a 10 m grid, which allows to distinguish
individual fields. This thesis utilizes Sentinel-1 SAR imagery and in situ
measurements to address the desired field scale as well as to investigate
the uncertainties involved in the SMC retrievals.
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Figure 1.5 Spatial scales of SMC estimates. (a) Example of Sentinel-1 backscat-
ter image (from 5 July 2016), with two SMC monitoring stations in this region
and the grid of the Sentinel-1 Surface Soil Moisture product. (b) Zoom-in on
one SMC monitoring station, which is surrounded by agricultural fields. The
outlines of the agricultural fields originate from the crop parcel registry 2016
(‘Basisregistratie Gewaspercelen 2016’; Ministry of Economic Affairs and Climate
Policy, 2020). Also a 100 m× 100 m grid is shown, which is adopted in the
VanderSat SMC product. (c) A typical SMC monitoring station, at the border of an
agricultural field (photo was taken by Rogier van der Velde on 16 March 2018).
(d) An installation pit with SMC sensors installed at five depths (photo was taken
by the author on 2 May 2017).
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1.4 Scientific challenges

The step to field-scale SMC information, using SAR satellite imagery, is
necessary for agricultural and water management applications. Further-
more, Kornelsen and Coulibaly (2013) consider the field scale as optimal
for SMC retrieval. This is coarse enough to reduce the radiometric uncer-
tainty in SAR σ 0 observations and, in the context of comparison against
in situ references, fine enough to not introduce uncertainty in the ref-
erences due to structural (heavy-tailed and multimodal) effects on SMC
distributions that play a role on catchment scales, such as topography,
vegetation, precipitation and soil characteristics. In the relation between
σ 0 and SMC, the agricultural field is the more natural scale because
SMC, surface roughness and vegetation conditions are field-dependent.
For example, the change detection algorithm underlying the Copernicus
Surface Soil Moisture product assumes static surface roughness and
vegetation conditions. Bauer-Marschallinger et al. (2019) and Wagner
et al. (2009) noted that at the field scale this assumption is unlikely
to hold because the effects of temporally varying surface roughness
and vegetation on the σ 0 are not averaged out spatially. As a result,
the variability of the surface roughness and vegetation conditions be-
comes more pronounced (Wagner et al., 2009) and more direct relations
between the ground conditions (SMC, surface roughness and vegetation)
and σ 0 are expected. SAR σ 0 observations can be used to retrieve SMC
information up to agricultural field scale (e.g. Amazirh et al., 2018; El
Hajj et al., 2017; Lievens and Verhoest, 2012; Su et al., 1997; Vereecken
et al., 2014). As more direct relations between the field conditions and
the σ 0 observations are expected, this scale supports the investigation
of σ 0-SMC relations and the uncertainties involved in these.

Due to uncertainty contributions, SMC retrievals from σ 0 observa-
tions will not exactly match the references. Information on the uncer-
tainty of SMC retrievals is essential to assess their reliability and for their
applicability. Firstly, this helps valuing and understanding the informa-
tion content of SMC retrievals. Potential users, such as water managers
and farmers, are not always aware of the complexities involved in the
SMC retrieval from σ 0 observations and may think of SMC retrievals as
‘SMC observations’. As such, uncertainty information is important to
communicate to potential users. Secondly, combining SMC products can
only be done properly when their uncertainties have been characterized
(Su et al., 2014; Yilmaz et al., 2012). The assimilation of SMC retrievals
into land surface models requires an estimate of the SMC retrievals’
uncertainty (Pierdicca et al., 2014; Quets et al., 2019). Verhoest et al.
(2007) explain that SMC retrievals with a high uncertainty will be given a
low weight in changing model states, whereas SMC retrievals with a low
uncertainty may be given a high weight. A specific uncertainty estimate
for each SMC retrieval is preferred above a general uncertainty estimate
(Pierdicca et al., 2014; Quets et al., 2019). Lei et al. (2020) found that
the assimilation of Sentinel-1 SMC can be improved via the application
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of a realistic time-varying uncertainty. However, data assimilation stud-
ies often rely on user-defined uncertainty assumptions (Yilmaz et al.,
2012). Thirdly, uncertainty contribution from references may be misun-
derstood as SMC retrieval uncertainty (Crow et al., 2012), and, fourthly,
information on the relative contributions of uncertainty sources directs
towards the potentially (most) contributing improvements of SMC retriev-
als (Karthikeyan et al., 2017a). Several authors (e.g. Karthikeyan et al.,
2017a; Lievens et al., 2011; Kornelsen and Coulibaly, 2013), therefore,
noted that further research is required on identifying the sources and
impacts of uncertainties. Uncertainties between SMC retrievals and
references result from the in situ references (Cosh et al., 2005, 2006;
Western et al., 2002), the σ 0 observations (Pathe et al., 2009; Karthikeyan
et al., 2017a) and the retrieval algorithm and parameters (De Lannoy
et al., 2014; Pathe et al., 2009; Karthikeyan et al., 2017a). No studies are
known that identify these uncertainty contributions and their effects on
SMC retrievals.

1.5 Research objective

The main objective of this study is to develop a method for retrieving
SMC at field scale from Sentinel-1 satellite imagery and to obtain a better
understanding of the uncertainties involved in such retrievals.

1.6 Research questions

To meet the research objective, four research questions and approaches
were formulated:

Research question 1: What is the uncertainty of in situ SMC measure-
ments as reference for field-scale SMC retrievals?
SMC monitoring networks, consisting of several stations, provide the
references that are used to calibrate and validate the SMC retrievals
from satellite imagery on a range of surface and hydrometeorological
conditions. SMC differences occur naturally as a result of a region’s
topography, vegetation, soil type and groundwater depth distributions.
This is illustrated for two regional SMC networks: the Twente network
in the east and the Raam network in the south of the Netherlands. The
SMC sensors are calibrated on the regions’ soils and their influence zone
is measured.

The sensors’ measurement uncertainty affects the in situ measure-
ments. Furthermore, in the context of this study, station’s SMC measure-
ments are to be compared with field-scale SMC retrievals from satellite
observations. The spatial mismatch uncertainty between the two is es-
timated by comparison of station measurements against measurements
inside four study fields with a handheld device.

13



1. Introduction

Research question 2: What is the impact of Sentinel-1 σ 0 uncertainty
and weather-related surface conditions on SMC retrievals?

The SAR σ 0 observations contain calibration uncertainties, sensor in-
stabilities and speckle effects. Together these are referred to as radiomet-
ric uncertainty. The radiometric uncertainty is estimated by analysing
the temporal deviations in long time series of σ 0 observations from
targets which are assumed time-invariant. Besides the radiometric un-
certainty, several weather-related surface conditions, such as frozen
conditions, snow, intercepted rain and dew, may disturb σ 0 observations.
In order to develop a masking procedure for Sentinel-1 σ 0 observa-
tions, meteorological measurements are used to investigate the effect
of these weather-related surface conditions on σ 0 observations. Then,
the impacts on SMC retrievals of the radiometric uncertainty and of not
masking for weather-related surface conditions are quantified. This is
achieved by applying a physically based surface scattering model for
various surface roughness and soil wetness scenarios.

Research question 3: What are the relative uncertainty contributions
to SMC retrievals under sparsely vegetated conditions?

The total SMC retrieval uncertainty constitute of the measurement un-
certainty of the station sensors that provide the references, the spatial
mismatch uncertainty of the references with Sentinel-1 observed SMC,
Sentinel-1’s radiometric uncertainty, and the retrieval algorithm and
parameter uncertainty. From Section 1.3.1.1, it can be inferred that the
roughness of a soil surface essentially governs the sensitivity of σ 0 to
SMC. Studying sparsely vegetated conditions, namely on two sparsely
vegetated meadows and two fallow maize fields, enables to focus on the
surface roughness parameters. A Bayesian framework is used for calib-
rating the surface roughness parameters that are input to a physically
based surface scattering model, and for deriving the model parameter
uncertainty and total uncertainty. Subsequently, the quantifications of
the references’ uncertainties from research question 1 and Sentinel-1’s
radiometric uncertainty from research question 2 are applied to decom-
pose the total uncertainty in its four constituents.

Research question 4: Can Sentinel-1 SMC retrievals be improved by
accounting for vegetation in an operationally applicable scheme for
SMC retrieval over meadows?

Based on the microwave scattering theory that is described in Sec-
tion 1.3.1.1, it is expected that correcting Sentinel-1 σ 0 observations for
vegetation effects contributes to more accurate SMC retrievals. However,
deficiencies in the vegetation scattering model, its parameterisation, and
uncertainty in the input variables influence the accuracy. A field-scale
leaf area index (LAI) product, derived from Sentinel-2 optical imagery, is
used as input to a physically based vegetation and surface σ 0 model that
is parameterised for grass-covered soil surfaces. First, the Sentinel-2 LAI
estimates were validated at field scale against in situ LAI measurements
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collected on six study fields. Then, the operationally applicable retrieval
scheme is demonstrated with and without applying the vegetation correc-
tion, by retrieving the SMC for 21 meadows and validating them against
the measurements from adjacent in situ monitoring stations.

1.7 Thesis outline

Figure 1.6 schematizes the different parts of this thesis. Chapter 2
and 3 each describe a SMC monitoring network, the regions they were
imbedded in, and SMC sensor attributes. Chapter 4 quantifies the uncer-
tainty of SMC monitoring station measurements as a reference for the
field-scale SMC which can be observed by Sentinel-1. Chapter 5 focuses
on Sentinel-1, and presents masking rules for weather-related surface
conditions and the radiometric uncertainty of its observations. Chapter 6
decomposes the uncertainty of SMC retrievals over sparsely vegetated
fields, with a specific focus on the uncertainty of the soil surface rough-
ness, and applies the quantifications of the references’ uncertainty and
the radiometric uncertainty from Chapters 2–5. Chapter 7 presents an
operationally applicable scheme for SMC retrieval over meadows and eval-
uates whether a vegetation correction improves the retrievals. Chapter 8
summarizes the answers to the research questions and presents recom-
mendations for future research.

RQ2 (Ch. 5): Sentinel-1 uncertainty in σ0 observations 
and effects of weather-related surface conditions

RQ1: Uncertainty in field-scale 
SMC references

Ch. 3: 
Raam
network

Ch. 4: Spatial 
mismatch unc.

RQ3 (Ch. 6): 
Relative unc. 
contributions 

under sparsely 
vegetated 
conditions

Ch. 2: 
Twente
network

Figure 1.6 The structure of this thesis.
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2. Soil moisture content and temperature measurements in Twente

Abstract

Spread across the Twente region and neighbouring regions in the
east of the Netherlands, a network of 20 profile soil moisture content
(SMC) and temperature monitoring stations has been operational
since 2009. In addition, field campaigns have been conducted cover-
ing the growing seasons of 2009, 2015, 2016 and 2017 during which
soil sampling rings and handheld probes were used to measure the
SMC of in total 28 fields near 12 different monitoring stations. In
this chapter, we describe the design of the monitoring network and
the field campaigns, adopted instrumentation, experimental setup,
field sampling strategies, and the development of sensor calibration
functions. The maintenance and quality control procedures, known
issues specific to the Twente network, and time series of profile
SMC (5 cm, 10 cm, 20 cm, 40 cm and 80 cm) and groundwater level
for three stations are discussed. Further, an overview is provided
of open third-party datasets (i.e. land cover/use, soil information,
elevation, groundwater and meteorological observations) that can
support the use and analysis of the Twente SMC and soil temperat-
ure datasets beyond the scope of this contribution.

Keywords: Soil moisture content, monitoring network, long-term measurements,
measurement accuracy
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2.1. Introduction

2.1 Introduction

In almost every hydrology textbook (e.g. Maidment, 1993; Dingman, 2015;
Brutsaert, 2005) one can read that water in the unsaturated soil, hereafter
soil moisture, is needed for plants to grow, for groundwater to recharge,
and for determining whether rain infiltrates or runs off laterally and
contributes to the production of streamflow. Moreover, the conversion
of water into vapour via evapotranspiration at the expense of solar
radiation links soil moisture to the atmosphere impacting weather and
climate (Seneviratne et al., 2010). Since its foundation in 1992, the Global
Climate Observing System (GCOS) acknowledges the crucial role soil
moisture content (SMC) plays in the Earth’s climate system, supports the
development of long term global monitoring programmes (GCOS, 2004)
and has recognized SMC as an essential climate variable (GCOS, 2010).
Considerable developments have taken place in global SMC monitoring
with the launch of dedicated microwave satellites, e.g. Soil Moisture and
Ocean Salinity (SMOS; Mecklenburg et al., 2016), Soil Moisture Active
Passive (SMAP; Entekhabi et al., 2010a) and long-term satellite based data
products have become available (Gruber et al., 2019). In addition, an
International Soil Moisture Network has been established that host in
situ SMC measurements from across the globe (Dorigo et al., 2011, 2021).

The number of in situ SMC monitoring programmes, dating back to
the 1930s, have been small and often relied on gravimetric soil sampling
(Robock et al., 2000). Gravimetrically determined SMC measurements
are, however, labour intensive and have become unfeasible for long-term
monitoring as the cost of labour increased. Therefore, indirect estimation
of the soil water content has been widely investigated (e.g. Vereecken
et al., 2008), of which the devices that measure the soil’s relative per-
mittivity have become the more commonly used instruments to base
regional-scale SMC monitoring networks on (e.g. Martínez-Fernández and
Ceballos, 2005; Calvet et al., 2007; Su et al., 2011; Bircher et al., 2012;
Smith et al., 2012; Benninga et al., 2018c; Bogena et al., 2018; Caldwell
et al., 2019; Tetlock et al., 2019). Despite that technological advances
have facilitated a substantial increase in the in situ SMC monitoring
infrastructure, in situ monitoring networks providing long-term and
consistent SMC data records are still very scarce across the globe (GCOS,
2016).

In this chapter, we report on in situ profile SMC and soil temperature
datasets collected by a regional-scale monitoring network composed
of 20 measurement locations that has been operational in the Twente
region situated in the east of the Netherlands. Development of the
Twente network began in the fall of 2008 and was completed by the
summer of 2009, and has been operational ever since. Dente et al. (2011)
described the early development, and the first scientific use of the data
was the validation of SMOS SMC products (Dente et al., 2012). Other
studies performed with the datasets have focused on field-scale SMC
retrieval (Van der Velde et al., 2015; Benninga et al., 2020b), upscaling of
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2. Soil moisture content and temperature measurements in Twente

point measurements to coarse satellite footprints (Van der Velde et al.,
2021), agricultural and hydrological applications (Carranza et al., 2018,
2019; Pezij et al., 2019b; Buitink et al., 2020) and the Twente network
has been used as one of the core international validation sites for the
SMAP surface SMC products (Colliander et al., 2017; Chan et al., 2018;
Chaubell et al., 2020).

Over the years the design of the monitoring network has been im-
pacted by gradual changes, which have not been reported in a consistent
manner before. In this chapter we provide a complete description of
how the network developed by including the calibrated measurements,
the native data records, metadata on location and land cover, field pho-
tos and field notes. In addition to the measurements collected in an
automated and continuous manner, the dataset discloses the SMC re-
cords characterized with handheld probes and through gravimetric soil
sampling during field campaigns conducted in 2009, 2015, 2016 and
2017. Further, we describe open third-party datasets that can support
the use of the SMC data, which include maps of land cover and use, maps
of soil type, texture and physical properties, high resolution (0.5 m and
5.0 m) digital terrain models (DTM), groundwater level measurements,
and meteorological observations.

2.2 Study area and open datasets

2.2.1 Regional characteristics and water governance

Twente is a region in the Netherlands, about 1500 km2, directly bordering
Germany towards the east and bound in the west by a glacial ridge known
as the Sallandse Heuvelrug. The majority of the network is situated in
Twente, other parts are located in the neighbouring regions Salland and
Achterhoek with similar characteristics. Glacial ridges formed in the
second last glaciation period (Saalien) define the landscape. They have
maximum elevations of around 80 m a.s.l. and consist mostly of fluvial
sand deposits with glacial boulder clay sheets. This geomorphological
feature in combination with a temperate oceanic climate (Cfb Köppen-
Geiger climate classification; Beck et al., 2018) facilitated the development
of a drainage system composed of brooks and small unnavigable rivers
flowing via larger rivers into the IJssel lake. Although deeper groundwater
levels of 6 m up to 10 m below the surface can be found on the glacial
ridges, they are generally shallow and fluctuate from within the top
1 m of soil layer during winters up to maximum depths of 2 m–3 m in
summers.

In the Netherlands, Twente and surroundings are considered rural
areas with a few mid-sized and small cities, and a number of villages,
and are known for their characteristic bocage landscape with small
agricultural fields (1.63 ha on average) separated by tree lines and bushes
amidst gently rolling topography. The majority of the agriculture has
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2.2. Study area and open datasets

a focus on animal husbandry, whereby the available land is used to
produce food for livestock via grass meadows and the growing of maize.

Three types of public institutions are mandated with the regional
governance of water in the study area as described in the Water Act 2009
(‘Waterwet’ in Dutch) and the Regional Water Authorities Act 1991 (‘Wa-
terschapswet’ in Dutch). They are provinces, regional water authorities
(RWAs, ‘waterschap’ in Dutch) and municipalities. The provinces hold
responsibility over the regional groundwater systems. The RWAs are
accountable for the water quality and quantity in regional surface water
systems, and the municipalities are charged with the urban rainwater
collection and groundwater. Readers are referred to Havekes et al. (2017)
for more details. Twente is part of the province Overijssel and falls under
the RWA Vechtstromen. Figure 2.1 shows, however, that the network
also covers the northern part of the province Gelderland, and extends
towards the west to RWA Drents Overijsselse Delta and towards the
south to RWA Rijn and IJssel.

±

0 50 10025

km

Map is in the projected 
coordinate system for the 
Netherlands, RD New 
(EPSG: 28992).
 
Boundaries of regional 
water management 
authorities and provinces 
are from ESRI Nederland.

Countries are from 
GADM.org (version 
April 2018).

Legend
Study region

Provinces

Regional water 
management 
authorities

Figure 2.1 Coverage of the monitoring network (study area) within the Nether-
lands and the boundaries of the RWAs and provinces.

A large number of basic datasets are freely available for the Nether-
lands through various initiatives. In the following sections, we describe
datasets on topography, soil, groundwater, land cover and weather that
can support the use of the Twente SMC and soil temperature dataset.
Section 2.6 lists where these datasets can be accessed.
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2. Soil moisture content and temperature measurements in Twente

2.2.2 Topography, soils and groundwater

Detailed spatial elevation data is available from the AHN (‘Actueel Hoogte-
bestand Nederland’ in Dutch). AHN (2019) supplies accurate (maximum
0.05 m deviation for systematic errors and 0.05 m standard deviation for
random errors) and high-resolution DTMs obtained via airborne laser
altimetry. In 2019, the third version (AHN3) has been completed and
made available with spatial resolutions of 0.5 m and 5.0 m. The DTM
for the area covered by the monitoring stations is shown in Figure 2.2
along with the various locations of the monitoring stations throughout
the observation period.
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Figure 2.2 The topography of the study area (source: 5 m spatial resolution
AHN3; AHN, 2019) and the locations of the Twente SMC and soil temperature
monitoring stations, whereby the number refers to the station ID and the letter
to the specific location within the entire observation period.

Soil information up to a depth of 1.2 m can be obtained from the soil
physical units map of the Netherlands named BOFEK (‘bodemfysische
eenhedenkaart’ in Dutch). BOFEK combines the soil map of the Nether-
lands with the Dutch class pedotransfer function (Heinen et al., 2021). A
subset of the soil map for the study area is shown in Figure 2.3.

The Netherlands have a comprehensive network of groundwater mon-
itoring wells supported by various public organisations all contribut-
ing to a central database that is disseminated via DINOloket (Data and
Information on the Dutch Subsurface, or ‘Data en Informatie van de
Nederlandse Ondergrond’ in Dutch). The database is managed by the
Geological Survey of the Netherlands (‘Geologische Dienst Nederland’
in Dutch, or GDN; GDN, 2021). Not all monitoring wells in the database
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2.2. Study area and open datasets
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Figure 2.3 The major soil types of the study area (source: BOFEK2020; Heinen
et al., 2021) and the groundwater monitoring wells near the Twente monitoring
stations (source: DINOloket; GDN, 2021).

have records that cover the observation period of the Twente network.
We have, therefore, selected wells nearest to our monitoring stations
with matching data coverage and shown them as points in Figure 2.3.
The well ID, coordinates, and distance to the associated SMC stations are
listed in Supplement Table S1 (see Chapter 9).

The DTM of Figure 2.2 shows that the study area has little relief
sloping gently from about 5 m a.s.l. in the west to 30 m a.s.l. in the east,
with some glacial ridges up to 80 m a.s.l. The soil map in Figure 2.3 shows
that sand is the major soil type in the region. On the eastern glacial ridge
also wind-blown loamy deposits can be found near the surface. Organic
and peaty soils are present in the parts where water naturally stagnates,
which has been the case for a major area in the north and along streams
where also clayey soils exist.

2.2.3 Land cover

Land use information is publicly available from Statistics Netherlands
(‘Centraal Bureau voor de Statistiek’ in Dutch, or CBS; Statistics Neth-
erlands, 2015) and from the Ministry of Economic Affairs and Climate
Policy (2020). Statistics Netherlands provides the main land use classes
based on an interpretation of a 1:10 000 topographic map of the Nether-
lands and is published every two to four years since 1989. The Ministry
of Economic Affairs and Climate Policy is responsible for the crop parcel
registry (‘Basisregistratie Gewaspercelen’ in Dutch). Since 2009, every
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2. Soil moisture content and temperature measurements in Twente

land owner in the Netherlands has to report each year the crop on each
parcel in their possession.

Figure 2.4 shows the 2015 land use file from Statistics Netherlands
(2015) for the study area, from which can be deduced that 70.2 % of
the land is used for agricultural activities, 13 % is woodland, 11.3 % is
built-up and the remaining 5.5 % is classified as water, recreational, dry
and wet nature. The map illustrates that the larger forested areas are
mainly found on the elevated glacial ridges and the agricultural activities
take mostly place on the post-glacial soils covering the glacial pelvis.
From the crop parcel registry in 2015 (Ministry of Economic Affairs and
Climate Policy, 2020), we can find that the agricultural land is covered
for 70.8 % by grass meadows, 22.4 % by maize and the remaining 6.8 %
is used for potato, cereals, other crops and forest and heath. The grass
growing season is generally from March till November during which
the meadows are either being grazed by cattle or cut four to six times
per year (Benninga et al., submitted, in Chapter 7). Maize is planted
approximately in the month May and harvested in October depending on
the trafficability and growing conditions.
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Figure 2.4 The major land use types and the meteorological measurement
stations in the study area. Source of the land cover is the land use file 2015
(Statistics Netherlands, 2015).

2.2.4 Climate and weather

In Figure 2.4 the locations of the 3 automated weather and 29 precipita-
tion stations operated by the Royal Netherlands Meteorological Institute
(‘Koninklijk Nederlands Meteorologisch Instituut’ in Dutch, or KNMI;
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2.2. Study area and open datasets

KNMI, 2021) in the study area are shown. The precipitation stations are
part of a network of more than 300 voluntary observers in the Neth-
erlands. The observers record manually with a 0.1 mm resolution the
rainfall collected with a World Meteorological Organization (WMO) stand-
ard gauge around 9:00 CET in the morning and measure the snow depth
with ruler when applicable. The data sent to the KNMI are validated in
10 day blocks and made available as daily. The three automated weather
stations are situated near the villages Heino and Hupsel, and at Twenthe
airport nearby Enschede. They measure wind speed and direction, air
temperature at 1.5 m and 0.1 m above ground, sunshine duration, short-
wave incoming radiation, precipitation, air pressure, humidity, and cloud
cover. The adopted instrumentation and measurement protocols are
according to international standards, and the quality-controlled data
are available as hourly and daily values. The daily set also holds the
reference crop evapotranspiration (Eref) calculated through application
of the modified Makkink method described in De Bruin (1987).

Figure 2.5 shows for the period 2008–2020 the monthly average of
daily mean 1.5 m air temperature as well as monthly precipitation and
Eref sums, derived as mean values for the three automated weather
stations. The data in this figure confirms that the SMC monitoring
network is located in a temperate oceanic climate zone (Cfb). The coldest
and warmest months have been January and July with mean monthly
temperatures of 2.9 ◦C and 18.3 ◦C, respectively. Precipitation has been
evenly distributed throughout the year according to the Köppen-Geiger
classification, even though a difference of 53.3 mm exists in precipitation
sums between the driest (April, 33.5 mm) and wettest (August, 86.8 mm)
month.
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Figure 2.5 Monthly mean 1.5 m air temperature, and monthly precipitation and
Eref sums derived from the measurements collected at KNMI automated weather
stations Heino, Hupsel and Twenthe.

Between 2008 and 2020, the annual precipitation and Eref sums avail-
able for the three weather stations are 757.1 mm and 611.3 mm, respect-
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2. Soil moisture content and temperature measurements in Twente

ively, resulting in an annual precipitation surplus of 145.8 mm. In the
years 2018, 2019 and 2020 north-western Europe has been struck by
droughts (e.g. Buitink et al., 2020; Bakke et al., 2020; Buras et al., 2020)
with less than normal precipitation volumes and higher evaporative de-
mands. The most extreme precipitation day occurred on 26 August 2010,
with 49.6 mm, 142.3 mm and 106.4 mm collected at KNMI stations Heino,
Hupsel and Twenthe. The second and third heaviest precipitation days
took place on 10 September 2013 with 22.3 mm, 74.5 mm and 57.8 mm
and 3 August 2011 with 55.6 mm, 24.9 mm and 20.6 mm at Heino, Hupsel
and Twenthe stations, respectively, while on all the other days less than
50 mm was recorded.

2.3 Monitoring network

2.3.1 Sites

The development of the SMC and soil temperature monitoring network
started in November 2008 and was completed in November 2009, but
19 out of the 20 stations were installed already before July 2009. The
prime objective for the development of the measurement infrastructure
was to serve as reference for the validation and calibration of coarse resol-
ution SMC products derived from active and passive microwave satellite
observations (Dente et al., 2011). The measurement sites are spread
over approximately a 45 km× 40 km area and the individual stations are
typically 5 km to 13 km apart, see also Figure 2.2.

In the site selection, care was taken to evenly distribute across the
land covers and soil types. The majority of stations are found on sandy
soils, two stations have been installed in sandy soils with a higher organic
matter content, one in a loamy soil and one in a clayey soil according to
the BOFEK soil map. The land on which the monitoring took place is in all
cases privately owned and actively used for farming. The instrumentation
is, therefore, typically placed at the border of fields and preferably
several tens of metres away from disturbing features (i.e. trees, roads or
watercourses), as shown in Figure 2.6, to minimize nuisance for recurring
farming practices and optimize its representativeness for the adjacent
fields.

Since the completion of its development, the monitoring network has
been constantly subject to modifications, such as land cover changes
as a result of crop rotation, and re-installations due to changes in land
ownership or equipment failures. Table 2.1 lists for each station the
main soil type as indicated in the soil map, the land cover per year of the
adjacent fields and the maintenance operations carried out.

2.3.2 Instrumentation and measurement setup

The Twente SMC and soil temperature monitoring network is built around
instrumentation manufactured by METER Group (formerly: Decagon
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(a) (b)

(c) (d)

Figure 2.6 Photos taken of (a and b) the reinstallation of a SMC and soil
temperature monitoring station (ITC_SM03) on 2 May 2017, (c) ITC_SM18 on
17 July 2019 and (d) ITC_SM02 on 17 July 2019.

Devices). The standard and remote versions of Em50 data logger series
have been deployed to perform measurements every minute with ECH2O
EC-TM and 5TM probes, and were set to record readings at 15 min in-
tervals. Equipment of METER Group devices has previously been used
for the development of many monitoring networks, such as HOBE in
Denmark (Bircher et al., 2012), TERENO in Germany (Bogena et al., 2018)
and the Raam in the Netherlands (Benninga et al., 2018c, in Chapter 3),
and been evaluated in several intercomparison studies (e.g. Jackisch et al.,
2020; Vaz et al., 2013; Robinson et al., 2008).

The ECH2O TM probes have a total length of 10.9 cm, a width of 3.4 cm
and consist of a coated circuit board with an oscillator that applies a
70 MHz electromagnetic wave to three 5 cm long fiberglass enclosed
prongs. The prongs are 5 mm wide and 1 mm thick and are placed 5 mm
apart. A thermistor near one of the prongs measures the temperature
with an expected ±1 ◦C accuracy and 0.1 ◦C resolution. Probes estimate
the volumetric SMC by characterizing the apparent relative permittivity
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Table 2.1 Soil, land use and maintenance characteristics of the stations. The soil descriptions are from BOFEK2020 (Heinen et al., 2021).
The land uses for 2009–2020 apply to adjacent fields and are from the crop parcel registry (Ministry of Economic Affairs and Climate Policy,
2020). Table classification: green stands for grass, orange stands for maize, red stands for potato, yellow stands for cereal, purple stands
for other crops, brown stands for forest. Relocations of stations are noted by letters, which correspond to the locations in Figure 2.2. Other
maintenance practices are noted by asterisks and are specified in Supplement Table S2 (see Chapter 9).

1 
 

Station Soil type class Soil description translated from Dutch 
(BOFEK2020 classification code) 

2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 

01 Sandy 
Highly loamy sandy soil with clay 
cover (3002) 

a             *     b      

02 Sandy 
Highly loamy soil with man-made thick 
earth (3005) 

a          b      *        *   *  *    
            

        

03 Sandy 
Highly loamy sand with clay cover 
(3002) 

a        *        b    
            

04 Loamy Tertiary clay (5003) 
a          b*              *  
            

05 Sandy 
Highly loamy soil with man-made thick 
earth (3005) 

     a           *      b      c   
            

06 Partly organic 
Sandy cover on partly organic soil 
(2001) 

a           *       *      *      b     

07 Sandy 
Highly loamy sand with clay cover 
(3002) 

a        *            b      
            

08 Sandy Weakly loamy sand (3015) 
           *           *     
            
            

09 Sandy 
Weakly loamy soil with man-made 
thick earth (3012) 

         *     *              *              *   
            

10 Sandy 
a & b: Highly loamy sand (3004) 
c: Highly loamy sand (3021) 

a         *      b       c*     
            

 

Station Soil type class Soil description translated from Dutch 
(BOFEK2020 classification code) 

2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 

11 Sandy 
a & b: Weakly loamy soil with man-
made thick earth (3012) 
c: Highly loamy sand (3004) 

a        *             b*       *   c     

            

12 Clayey Clay on sand (4022)          *      *       *     

13 Sandy Weakly loamy sand (3015) 
         *     *          *    
            

14 Sandy Highly loamy sand (3021) 
      a            *     b       *            *      c  *    
            

15 Sandy 
Highly loamy sand with clay cover 
(3002) 

a          b*              *  
            

16 Partly organic 
Sandy cover on partly organic soil 
(2001) 

       *         *      *            *            *   

17 Sandy Weakly loamy sand (3015)     a      b        *     c     

18 Sandy Highly loamy sand (3021) 
         *     *         * 
            
            

19 Sandy Highly loamy sand (3004) 
         *       
         
         

20 Sandy Coarse sandy sand (3003)           *       

Hupsel Sandy Highly loamy sand (3004) 
            

   
Twenthe 
airport 

Sandy Weakly loamy sand (3014) 
                    *            *  

 

2
8



2
.3

.
M

on
itorin

g
n
etw

ork

1 
 

Station Soil type class Soil description translated from Dutch 
(BOFEK2020 classification code) 

2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 

01 Sandy 
Highly loamy sandy soil with clay 
cover (3002) 

a             *     b      

02 Sandy 
Highly loamy soil with man-made thick 
earth (3005) 

a          b      *        *   *  *    
            

        

03 Sandy 
Highly loamy sand with clay cover 
(3002) 

a        *        b    
            

04 Loamy Tertiary clay (5003) 
a          b*              *  
            

05 Sandy 
Highly loamy soil with man-made thick 
earth (3005) 

     a           *      b      c   
            

06 Partly organic 
Sandy cover on partly organic soil 
(2001) 

a           *       *      *      b     

07 Sandy 
Highly loamy sand with clay cover 
(3002) 

a        *            b      
            

08 Sandy Weakly loamy sand (3015) 
           *           *     
            
            

09 Sandy 
Weakly loamy soil with man-made 
thick earth (3012) 

         *     *              *              *   
            

10 Sandy 
a & b: Highly loamy sand (3004) 
c: Highly loamy sand (3021) 

a         *      b       c*     
            

 

Station Soil type class Soil description translated from Dutch 
(BOFEK2020 classification code) 

2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 

11 Sandy 
a & b: Weakly loamy soil with man-
made thick earth (3012) 
c: Highly loamy sand (3004) 

a        *             b*       *   c     

            

12 Clayey Clay on sand (4022)          *      *       *     

13 Sandy Weakly loamy sand (3015) 
         *     *          *    
            

14 Sandy Highly loamy sand (3021) 
      a            *     b       *            *      c  *    
            

15 Sandy 
Highly loamy sand with clay cover 
(3002) 

a          b*              *  
            

16 Partly organic 
Sandy cover on partly organic soil 
(2001) 

       *         *      *            *            *   

17 Sandy Weakly loamy sand (3015)     a      b        *     c     

18 Sandy Highly loamy sand (3021) 
         *     *         * 
            
            

19 Sandy Highly loamy sand (3004) 
         *       
         
         

20 Sandy Coarse sandy sand (3003)           *       

Hupsel Sandy Highly loamy sand (3004) 
            

   
Twenthe 
airport 

Sandy Weakly loamy sand (3014) 
                    *            *  
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2. Soil moisture content and temperature measurements in Twente

via measurements of the capacitance, quantified as the charge needed to
polarise the dielectric (soil) surrounding the prongs (Decagon Devices,
2008; METER Group, 2019). Benninga et al. (2018c, in Chapter 3) found
under laboratory circumstances that the influence zone of a 5TM probe
in a sandy soil is around 3 cm–4 cm.

Figure 2.6 illustrates typical measurement setups used for the Twente
network with probes installed at nominal depths of 5 cm, 10 cm, 20 cm,
40 cm and 80 cm. However, due to budget constraints several stations
are limited to the upper two, three or four measurements depths. At
sites with a permanent grass cover, excavation of the installation pit
started with cutting the grass sod of an area of approximately 40 cm by
40 cm after which the top 10 cm to 15 cm (soil layer including grass) was
carefully removed and the pit was dug further until the required depth.
The probes were installed in a lateral direction with the narrow side
of the prongs pointing upward to avoid water ponding on the prongs,
and with the printed text on the prongs in the upright direction to
ensure consistency in the depth of the thermistor. After installation the
pit was back filled while compacting the soil several times during the
filling process, the grass sod was placed back and a trench was dug to
guide the cables to a pole on which the Em50 logger was mounted. The
excess cables were buried near the pole. Typically a few months after
installation the plot would have returned to its original land cover. A
similar installation procedure was adopted for cultivated land.

2.3.3 Capacitance probe calibration

Estimation of the SMC using the capacitance technique relies on the
contrast between the relative permittivities (εr ) of air (1), soil (2–7) and
water (80). Soil-specific calibrations are needed for two main reasons:
(i) to account for losses (imaginary component of εr ) due to the molecular
relaxation and electric conductivity that alter the εr as it appears to a
capacitance sensor (Robinson et al., 2008) and (ii) the soil-dependent
dielectric response to SMC. Hence, soil-specific calibration functions
have been developed for both EC-TM and 5TM probes in the laboratory
following the guidelines recommended by the manufacturer (Cobos and
Chambers, 2010). With this approach we assume that the sensor-to-
sensor variability is accounted for by the in house calibration performed
at the manufacturer against reference. This can be justified based on the
small variability (0.01 m3 m−3) among sensors evaluated by Kizito et al.
(2008) and Rosenbaum et al. (2010).

In Dente et al. (2011) the development of the calibration function for
the EC-TM probe is described. They performed the calibration on soil
collected from 10 sites and could identify 3 relations, but at the same
time could not attribute this to a specific soil feature. Therefore, the
recommendation was to use a generalized calibration function, expressed
by

θcp = a+ bθp, (2.1)
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2.3. Monitoring network

where θ stands for the SMC (m3 m−3), a and b are the intercept (m3 m−3)
and slope (−) of the linear regression function, and subscripts p and cp
indicate the native probe reading and calibrated probe value. The native
probe reading is a direct sensor output obtained by applying the mineral
soil calibration to the raw signal (Decagon Devices, 2008). Dente et al.
(2011) report an a of 0.0706 m3 m−3 and b of 0.7751, yielding a root
mean square deviation (RMSD, Equation A.1) of 0.023 m3 m−3.

The calibration for the 5TM probe was performed in 2015 for soil
taken from three sites each belonging to one of three groups earlier iden-
tified in Dente et al. (2011). The selected sites are ITC_SM03, ITC_SM07
and ITC_SM08. Similar as for the calibration of the EC-TM probe, soil
was taken from the field in an ordinary 12 L bucket and was air-dried.
The air-dried soil was gradually wetted by adding 50 mL–75 mL water at
a time and after careful mixing a 5TM reading and 100 cm3 soil sample
was taken. The soil sample was used to determine the SMC from the
difference in wet weight and dry weight of the sample after 24 h in the
oven at 105 ◦C, which is referred to as gravimetrically determined volu-
metric SMC (GVSMC). The entire process was done twice and resulted in
38 match-ups for ITC_SM03, 32 for ITC_SM07 and 29 for ITC_SM08.

Figure 2.7a shows the GVSMC against the 5TM SMC. Linear equations
of the same form as Equation 2.1 were fitted through the match-ups
for each soil individually and all together. Because of the small sample
size, the linear fits have been carried out for each combination of entire
collections minus one (N − 1). The match-up left out of the regression is
then used for validation and the calculation of the performance metrics.
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Figure 2.7 (a) Measurements of GVSMC against 5TM SMC on soil collected at
sites ITC_SM03, ITC_SM07 and ITC_SM08, and (b) 5TM SMC with application of
the ‘all soils’ calibration function against GVSMC measurements.

Table 2.2 lists the linear regression coefficients (a and b) obtained for
the four sets of match-ups along with the standard deviation (σ ) com-
puted from the collection of regression coefficients for each individual
set. The RMSD and bias (Equation A.4) calculated from the match-ups

31



2. Soil moisture content and temperature measurements in Twente

left for validation and the coefficient of determination (R2) obtained
with the mean regression coefficients are provided as well. The listed
metrics demonstrate that the performance of the 5TM sensor is in line
with that of the EC-TM given the negligible biases, RMSDs varying from
0.024 m3 m−3 to 0.031 m3 m−3 and R2s in the 0.79–0.93 range. Even
though the regression coefficients differ among the analysed soils, their
point clouds in Figure 2.7a have quite some overlap, which does not
justify using different calibration functions. This is further supported by
the fact that the σ is only a fraction of the magnitude of the regression
coefficients when including all match-ups. Notably, the obtained σs are
4.8 % of the intercept and less than 0.5 % of slope relative to the mag-
nitude, while it goes up to a respective 44 % and 2.4 % when using data
from a single site. This suggests that the reliability of the function fitted
through all match-ups is higher. Therefore, we have chosen to apply the
‘all soils’ calibration function to every site of the Twente network, which
is expected to provide an accuracy (RMSD) of 0.028 m3 m−3. Figure 2.7b
present the validation with the GVSMC plotted against the 5TM SMC
using the ‘all soils’ mean regression coefficients.

Table 2.2 Mean (µ) regression coefficients and their standard deviations (σ )
fitted through pairs of GVSMC and 5TM SMC measured in the laboratory on soil
collected at sites ITC_SM03, ITC_SM07 and ITC_SM08. Performance metrics—
RMSD, bias and R2 — follow from the validation. N stands for the number of
GVSMC-5TM SMC pairs.

Set N a [m3 m−3] b [−] RMSD Bias R2

µ σ µ σ [m3 m−3] [m3 m−3] [−]

ITC_SM03 38 0.00423 0.00186 1.87 0.0165 0.0237 0.000 0.927
ITC_SM07 32 0.0214 0.00307 1.77 0.0208 0.0303 0.000 0.883
ITC_SM08 29 0.0546 0.00510 1.52 0.0369 0.0315 0.000 0.786
All soils 99 0.0200 0.000958 1.76 0.00737 0.0277 0.000 0.884

2.4 Field campaigns

Field campaigns were conducted in 2009, 2015, 2016 and 2017, during
which SMC was measured in fields with handheld impedance probes and
via soil samples taken for GVSMC determination. The sampling took
place at a maximum of three fields owned by the same farmer adjacent
to or near the monitoring station. This resulted in a total of 28 sampled
fields near 12 monitoring stations.

The general concept of each field campaign was similar, yet the
execution differed annually. For instance, sampling days in 2009 and
2015 took place weekly from the end of summer in September until
the beginning of November. In 2016 and 2017, the sampling days were
held weekly or biweekly depending on weather and staff availability, and
covered the entire growing season from April/May till the end of fall
in November (Benninga et al., 2020b, in Chapter 4). An overview of the
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2.4. Field campaigns

field campaigns is provided in Table 2.3, which includes the time period,
the number of sampling days and the sampled stations. The following
sections describe the sampling strategy, the instrumentation and the
calibration of the probe readings.

Table 2.3 Overview of the SMC field campaigns conducted at fields adjacent to
monitoring stations. In the far right column, the number in parenthesis stands
for the number of sampled fields and the letter represents the land cover at the
start of the campaign (g = grassland, m = maize, f = forest, fw = fallow winter
wheat, w = winter wheat, p = potato).

Year Period Days Probe Stations (fields)

2009 22 Sept–28 Oct 5 ThetaProbe ITC_SM03 (1g), 05 (2g/1m),
07 (3m), 08 (1g/1m/1f), 11 (2g/1f),

12 (3g), 17 (3g), 18 (3g)
2015 11 Sept–3 Nov 11 ThetaProbe ITC_SM03 (1g), 04 (2g), 05 (3g),

07 (3m), 08 (1m/1g), 09 (fw2)
2016 25 May–11 Nov 15 HydraProbe &

ThetaProbe
ITC_SM02 (1g/1m), 07 (2m),

10 (1m/1p)
2017/2018* 7 April–16 Nov 14 HydraProbe ITC_SM02 (1g/1m), 03 (1g),

07 (2m), 10 (2m)

* In 2018 a limited number of fields were sampled on 2 February and 10 April.

2.4.1 Sampling strategy

The sampling strategy during campaigns aimed at characterizing the top
5 cm SMC of fields. Three to six locations within a field, about 50 m to
100 m apart, were selected to perform the measurements, depending on
the size of parcels. As an example, Figure 2.8 shows the scheme applied
for the fieldwork carried out in 2016 and 2017 around ITC_SM02.

Figure 2.9 illustrates the sampling strategy at sampling points. The
number of handheld impedance probe readings per sampling point
varied from nine in the 2009 field campaign to five readings in 2015
and four in 2016/2017. At grass-covered fields, SMC was measured
with the impedance probe at four to nine points within a 1 m2 plot and
next to one of the probe readings a soil sample was taken for GVSMC
determination. In maize fields, probe readings were taken along the
transect perpendicular to the crop rows, approximately 0.75 m apart,
with the soil sample taken in the centre of two rows. The collection of
soil samples for GVSMC determination was done to calibrate the probe
readings and stopped when the covered dynamic range and number of
match-ups were suitable to establish a calibration function. We have
noted in the provided data sheet which probe reading corresponds to
the GVSMC.

2.4.2 ThetaProbe and HydraProbe

The Delta-T ThetaProbe (Type ML2; Delta-T Devices, 1998) and Stevens
HydraProbe (analog version; Stevens Water Monitoring Systems, 2020)
are the two handheld probes that were used for rapid SMC data collection
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2. Soil moisture content and temperature measurements in Twente

Figure 2.8 Example (site: ITC_SM02) of the sampling strategy followed for
the fields adjacent to permanent monitoring locations during field campaigns.
Background is a 2 m resolution SuperView true colour composite of 25 April 2019
made available by Netherlands Space Office satellietdataportaal. Map is in the
RD New (EPSG: 28992) projected coordinate system.

during the field campaigns. Both instruments exploit the impedance mis-
match between a coaxial transmission and a stainless steel pin inserted
in the soil that acts as a waveguide and is electrically shielded by three
other similar pins (60 mm and 57 mm in length, respectively) placed in
an equilateral triangle with sides of 26.5 mm and 22 mm, respectively
(Seyfried and Murdock, 2004). The ThetaProbe measures the amplitude
difference of a standing sinusoidal wave between the start of a transmis-
sion line and the junction where the pins enter the soil as a result of the
applied 100 MHz signal. The amplitude difference is used to determine
the impedance from which the apparent relative permittivity is derived
(Gaskin and Miller, 1996). The HydraProbe measures the complex ratio of
the reflected and incident voltage of an applied 50 MHz signal to charac-
terize the impedance of the soil used to determine the complex relative
permittivity (Campbell, 1990; Kraft, 1987). Both the ThetaProbe and
HydraProbe data loggers have built-in software to convert the voltage
output to a SMC. In addition to SMC, the HydraProbe also provides bulk
electric conductivity and temperature. Because the relation between εr
and SMC is affected by the soil type, calibration of impedance probe
measurements is generally needed. In case of the ThetaProbe, the calib-
ration accounts also for conductive and molecular losses, which is less
of an issue with the HydraProbe as it measures the real and imaginary
components of the relative permittivity.
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Figure 2.9 Schematisation of the impedance probe and GVSMC sampling
strategy carried out at sampling points during the 2009, 2015, 2016 and
2017 field campaigns on grassland (a) and maize fields (b).

2.4.3 Impedance probe calibration

The measurements of the 2009 and 2015 field campaigns were collected
with the ThetaProbe, during which a total of 93 and 166 match-ups
with GVSMC were collected at fields near eight and six different stations,
respectively. Figure 2.10 presents plots of GVSMC against the ThetaProbe
SMC, with in the upper panels (Figures 2.10a and 2.10b) the 2009 data and
in the lower panels (Figures 2.10c and 2.10d) the 2015 data. The GVSMC
against the matching ThetaProbe reading is shown in Figures 2.10a and
2.10c, and the GVSMC against the mean of the readings at a sampling
point is shown in Figures 2.10b and 2.10d.

In general, it can be noted that all plots show positive relations
and that the scatter among the data points is clearly less in 2015 in
comparison to 2009. This is particularly the case for the matching
ThetaProbe readings. Explanation for this difference in performance
between the years is a combination of the larger number of stations
sampled in 2009, the lower number of match-ups available for 2009, and
also the operator’s skills could have played a role. Regardless of the
scatter noted in the data points of 2009, it is difficult to identify distinct
relations for individual stations. Among the 2015 data points clusters
belonging to a single station are observed, but this is primarily due to the
persistent SMC levels at specific stations. The attribution of a GVSMC-
ThetaProbe relation to a specific soil type or station remains unclear.
Therefore, we have chosen to develop the calibration functions for the

35



2. Soil moisture content and temperature measurements in Twente

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

ThetaProbe SMC [m
3
 m

3
]

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

G
VS

M
C

 [m
3  m

3 ]

(a)

ITC_SM03
ITC_SM05
ITC_SM07
ITC_SM08
ITC_SM11
ITC_SM12
ITC_SM17
ITC_SM18

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

ThetaProbe SMC [m
3
 m

3
]

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

G
VS

M
C

 [m
3  m

3 ]

(b)

ITC_SM03
ITC_SM05
ITC_SM07
ITC_SM08
ITC_SM11
ITC_SM12
ITC_SM17
ITC_SM18

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

ThetaProbe SMC [m
3
 m

3
]

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

G
VS

M
C

 [m
3  m

3 ]

(c)

ITC_SM03
ITC_SM04
ITC_SM05
ITC_SM07
ITC_SM08
ITC_SM09

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

ThetaProbe SMC [m
3
 m

3
]

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

G
VS

M
C

 [m
3  m

3 ]

(d)

ITC_SM03
ITC_SM04
ITC_SM05
ITC_SM07
ITC_SM08
ITC_SM09

Figure 2.10 Scatter plots of the ThetaProbe SMC against GVSMC collected
during the 2009 (a and b) and 2015 (c and d) field campaigns. (a and c) The
ThetaProbe SMC reading taken next to a GVSMC measurement. (b and d) The
mean of the ThetaProbe SMC readings taken at a sampling point.

ThetaProbe on a field campaign basis and not to make a distinction
between individual stations. This also ensures a sufficient number of
match-ups and a larger SMC range.

The data collection of the 2016 and 2017 field campaigns was per-
formed with the HydraProbe and took place near three stations (ITC_SM02,
ITC_SM07, and ITC_SM10) in 2016, to which ITC_SM03 was added in 2017.
A total of 285 pairs of GVSMC and HydraProbe readings were acquired,
with > 86 match-ups for each station at which the measurements started
in 2016 and 12 match-ups for ITC_SM03. Figure 2.11 shows the GVSMC
in (a) against the matching HydraProbe reading and in (b) against the
mean of the four readings collected at a sampling location.

From a comparison of Figure 2.11 with Figure 2.10, it is evident that
the agreement between the HydraProbe readings and GVSMC is equal or
better than the results obtained for the 2009 and 2015 ThetaProbe data.
Also noticeable in Figures 2.10–2.11 are the little differences among
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Figure 2.11 Scatter plots with the HydraProbe SMC against the GVSMC collected
during the 2016 and 2017 field campaigns. (a) The HydraProbe SMC reading
taken next to a soil sample. (b) The mean of the HydraProbe SMC readings taken
at a sampling point.

the distributions of the data points belonging to individual stations,
which again may question the added value of station-specific calibration
functions. Because of the larger number of GVSMC-HydraProbe pairs
(> 86) and larger SMC range for individual stations, we decided to develop
for the HydraProbe measurements station-specific calibration functions.
The users of the dataset have the choice to apply the calibration function
that suits their application best.

The development of calibration functions for the ThetaProbe and Hy-
draProbe measurements consists of fitting linear regression coefficients
(a and b), following the same procedure as described in Section 2.3.3 for
the 5TM measurements. Table 2.4 provides the µ and σ of the coefficients
for the ThetaProbe functions along with performance metrics. Table 2.5
lists the same information for the HydraProbe and in Figure 2.12 the
probe measurements calibrated with the field campaign-specific function
are plotted against the GVSMC.

The performance metrics presented in Tables 2.4 and 2.5 show that
the matching probe (‘site’) and GVSMC measurements generally led
to better performance except for the 2009 field campaign, for which
possible explanations have been given in the text above. Of the field
campaign calibrations, the calibration developed for the HydraProbe
(2016–2017) led to the best results in terms of RMSD of 0.032 m3 m−3

versus 0.041 m3 m−3 for 2015 and 0.048 m3 m−3 for 2009. A very good
match of the HydraProbe with the GVSMC is obtained for ITC_SM10 with
a RMSD of 0.022 m3 m−3. The explanation could be a combination of
sandy soil and yearly cultivated land, which reduces disturbances due
to soil clod and plant root, and is favourable for reliable soil sampling.
Under more difficult circumstances, such as the loamier soil with clods at
ITC_SM07, the metrics are closer to but still better than the ones obtained
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Table 2.4 Mean (µ) and standard deviation (σ ) of regression coefficients obtained for pairs of GVSMC and ThetaProbe SMC and associated
performance metrics (RMSD, bias, R2) for measurements taken during the 2009 and 2015 field campaigns. Two matching ThetaProbe
values are used: (i) a reading next to the soil sample (in the table: site), (ii) the mean of all readings taken at the sampling point (in the
table: mean). N stands for the number of GVSMC-ThetaProbe SMC pairs.

Set N Match-up
a [m3 m−3] b [−] RMSD Bias R2

µ σ µ σ [m3 m−3] [m3 m−3] [−]

2009 93
site 0.0686 0.00139 0.920 0.00532 0.0522 −0.001 0.732
mean 0.0498 0.00130 0.992 0.00484 0.0477 −0.001 0.780

2015 166
site −0.0128 0.000735 1.09 0.00267 0.0411 0.000 0.875
mean −0.00899 0.000733 1.09 0.00277 0.0417 0.000 0.871

Table 2.5 Similar to Table 2.4, but for calibrations of 2016–2017 HydraProbe measurements. In this case, calibration functions were also
developed for individual stations.

Set N Match-up
a [m3 m−3] b [−] RMSD Bias R2

µ σ µ σ [m3 m−3] [m3 m−3] [−]

ITC_SM02 92
site 0.0738 0.000980 0.849 0.00670 0.0324 0.000 0.877
mean 0.0550 0.000546 0.947 0.00352 0.0289 0.000 0.897

ITC_SM03 12
site 0.0875 0.00527 0.780 0.0196 0.0378 0.002 0.903
mean 0.0923 0.00833 0.836 0.0405 0.0425 0.003 0.903

ITC_SM07 86
site 0.0797 0.00214 0.788 0.00988 0.0384 0.000 0.805
mean 0.0865 0.00203 0.801 0.00956 0.0421 0.000 0.759

ITC_SM10 92
site 0.0420 0.000427 0.961 0.00388 0.0217 0.000 0.929
mean 0.0621 0.000620 0.927 0.00453 0.0329 0.000 0.833

2016–2017* 285
site 0.0637 0.000319 0.860 0.00196 0.0323 0.000 0.881
mean 0.0669 0.000311 0.890 0.00187 0.0351 0.000 0.858

* Three pairs collected on fields adjacent to ITC_SM05 were included in the regional calibration (2016–2017).
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Figure 2.12 Probe SMC with application of field campaign-specific calibration
functions plotted against GVSMC. (a) The calibrated probe SMC derived from the
reading taken next a soil sample. (b) The calibrated probe SMC derived from
the mean of the readings taken at a sampling point.

for the 2009 and 2015 field campaigns conducted with the ThetaProbe.

2.5 Data assessment

2.5.1 Maintenance and quality control

The monitoring stations were visited for maintenance operations and re-
trieving the recorded data twice a year from the inception of the network
till 2011. This reduced to yearly visits up to 2014 and returned back
to visits at least twice a year from 2015 till now. Visits are planned at
the start (April/May) and at the end (October/November) of the growing
season. The standard Em50 loggers are not connected to a telecommu-
nication network and recorded data is retrieved on-site. The internal
memory of the Em50 loggers is sufficient for 12.8 months of operations
in the default setup with five probes recording every 15 min, before the
oldest data starts to be overwritten.

Each site visit included the following standard activities: (i) retrieving
the recorded data, (ii) making a preliminary check of the data quality,
(iii) taking photographs of the measurement setup and its surroundings,
(iv) replacing silica gel bags as desiccant (in recent years) and (v) taking
notes of the undertaken maintenance operations and any specifics re-
lated to either the data quality or the measurement setup. Other typical
maintenance operations consist of replacing batteries, sensors and log-
gers, reconnecting probes, remounting loggers, and drying and cleaning
loggers. The notes, photographs and retrieved recordings are included
in the published dataset.

Even though the memory of the Em50 would allow for yearly field visit,
we deem a visit to each station every six months necessary to perform
small maintenance, to regularly document the local conditions and to
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assure continuity of operations. For instance, measurement setups may
become compromised by grazing animals or through accidents during
farming practices. In other situations, the stations needed to be moved
because of changes in land ownership or land use, but also instruments
may fail. Empty batteries, malfunctioning loggers and disconnected
probes result in data gaps, but are generally of no concern for the data
consistency. On the other hand, replacements of sensors or of the
location of a station may cause inconsistencies in the time series and
a complete overview of such interventions is given in Table 2.1 and
detailed in Supplement Table S2.

Over the course of operations, errors can enter in the data series due
to human failure, and malfunctioning loggers and probes. Human failure
may include, for example, incorrectly reconnecting probes, applying
incorrect calibration coefficients, or mistakes in the combination of
raw data files. Malfunctioning loggers and probes may cause erroneous
recordings. We have performed five automated checks on the consistency
of the SMC and soil temperature time series (in processed files organized
per station and per year), namely: (i) the first and last line of a data file
should be 1 January 00:00 and 31 December 23:45, (ii) the occurrence of
duplicate time stamps, (iii) the SMC and soil temperature recorded on
31 December 23:45 of year X and of 1 January 00:00 of year X + 1 should
be the same within ±0.005 m3 m−3 and ±0.2 ◦C, (iv) the SMC should
fall within the 0.00 m3 m−3–1.00 m3 m−3 range, and (v) soil temperature
should fall within the −15.0 ◦C–40.0 ◦C range. Each anomaly detected by
this procedure is checked manually and corrected.

2.5.2 Known issues

Long-term operation of in situ monitoring networks goes hand in hand
with measurement uncertainties. In this section, we would like to make
data users aware of issues specific for the Twente dataset, which can be
separated into items related to the instrumentation and to the measure-
ment setup.

EC-TM and 5TM probes have been used in the monitoring network,
and other than the points earlier described in Benninga et al. (2018c, in
Chapter 3), these probes are calibrated at the factory using standards
among which one with an εr of 40 as the highest. This implicates that
native EC-TM and 5TM probe readings of 0.587 m3 m−3 and 0.510 m3 m−3,
respectively, reach beyond the calibration domain of the sensors based
on the conversion equations supplied by the manufacturer. Another
issue that has come to our attention are inconsistencies in the internal
probe calibrations between the firmware of probes produced in 2013 and
the latest version 4.0 as well as the earlier ones. In 2013 the manufacturer
modified their calibration process to include two dielectric standards that
turned out to overestimate the εr between 10 and 20, which theoretically
leads to maximum 0.05 m3 m−3 SMC underestimation in the 0.12 m3 m−3–
0.25 m3 m−3 range (Chambers and Crawford, 2014).
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We have investigated the practical implications for our dataset by com-
paring the SMC produced by 5TM probes with the 2013 firmware and with
firmware v4.0. Monitoring stations with nearly complete SMC time series
at depths of at least 5 cm and 40 cm for the years 2018, 2019 and 2020,
and exclusively equipped with one version of the 5TM probe were selec-
ted for this analysis. The time series collected at ITC_SM01, ITC_SM07,
ITC_SM12, ITC_SM14 and ITC_SM18 were used to represent the 2013 firm-
ware, and the ones from ITC_SM05, ITC_SM08, ITC_SM10, Twenthe air-
port and Hupsel to represent firmware v4.0. Figure 2.13 presents the
time series of the mean SMC measured at 5 cm and 40 cm depth derived
from the 2013 and firmware v4.0 calibrated probes. Whereas an under-
estimation of the 2013 firmware is expected, these measurements are
higher than the firmware v4.0 measurements. As such, we suspect that
the reported inconsistency in the internal probe calibration will have
limited effect on the reported dataset and that other factors will have
larger impact on the magnitude of the SMC measurements. A complete
overview of the types of capacitance probes installed at each station and
depth is provided in Supplement Table S3 (see Chapter 9).
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Figure 2.13 Time series of mean SMC measured at 5 cm (a) and 40 cm (b) by
5TM probes with the 2013 firmware (stations: ITC_SM01, ITC_SM07, ITC_SM12,
ITC_SM14, ITC_SM18) and firmware v4.0 (stations: ITC_SM05, ITC_SM08,
ITC_SM10, Twenthe airport, Hupsel).

Specific for the measurement setup of the Twente monitoring network
is the placement of the instrumentation at the border of fields, which
inevitably has consequences for the representativeness for the field.
Large differences in the meteorological inputs, e.g. precipitation and
incoming solar radiation, are not expected, but small-scale topography,
spatially variable soil texture, differences in land cover and the local
drainage infrastructure may cause discrepancies between the SMC at
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the border and inside of the field. The field campaigns described in
Section 2.4 have been conducted to address this issue. Benninga et al.
(2020b, in Chapter 4) show that comparisons of 2016 and 2017 field
campaign data against the measurements collected at stations yield
RMSDs varying from 0.037 m3 m−3 to 0.068 m3 m−3 and R2s values of
0.56 up to 0.81. These levels of uncertainty are larger but yet of a
similar magnitude as the performance metrics reported for the probe
calibrations in Section 2.3.3 and Section 2.4.3.

2.5.3 Time series

Figure 2.14 shows the SMC measured at depths of 5 cm, 10 cm, 20 cm,
40 cm and 80 cm over the period from January 2016 till June 2020 for
monitoring stations ITC_SM10 (Figure 2.14b), ITC_SM14 (Figure 2.14c)
and ITC_SM17 (Figure 2.14d). The groundwater level measured at the
DINOloket well closest to the respective SMC monitoring station (see
Supplement Table S1) is shown in the same plots and the upper panel
presents daily precipitation and daily air temperature as averages of the
measurements collected at the three KNMI automated weather stations
in the region.

Overall the time series confirm the seasonal dynamics of wet soils
and high groundwater levels in winters, and dry circumstances with
low groundwater levels during summers. Also expected is the stronger
response to precipitation of the SMC measured closest to the surface,
whereas at 80 cm mainly seasonal variations are noted. Specifically in
the 80 cm SMC the effect of the 2018, 2019 and 2020 droughts is visible,
while the top soil (5 cm and 10 cm) dries out during the summer period
virtually every year.

At the same time, substantial spatial differences can be noted between
the three monitoring stations, which are situated 25 km–30 km apart at
elevations of 10 m to 15 m a.s.l. For instance, in Figure 2.14c (ITC_SM14)
the 80 cm SMC remained at a high level even during the peak of the
2018 drought, whereas deep drops are observed in Figures 2.14b
(ITC_SM10) and 2.14d (ITC_SM17). These measurements demonstrate
that the position within a catchment is an important factor for the impact
drought has locally, even though drought may be seen as a regional-scale
process.

Somewhat surprising in the plots is the response of the groundwater
level to precipitation. In all three groundwater measurement series
increments can be identified after precipitation events, whereas the SMC
at 80 cm primarily displays seasonal variations and individual events are
hardly noticeable. To take this a step further and explore the relationship
with SMC, Table 2.6 presents the R2 values computed between the SMC
measurements at specific depths and groundwater levels. Indeed, the
R2 values support the above observation. The shallower 40 cm SMC
yields the highest R2 and not the deeper 80 cm measurements. This is in
spite of the fact that the highest groundwater levels remain substantially
below the surface with −112 cm, −83 cm and −71 cm recorded as the
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Figure 2.14 (a) Daily precipitation sum and mean daily air temperature as aver-
ages of the three KNMI automated weather stations. (b–d) Profile SMC measured
at ITC_SM10, ITC_SM14 and ITC_SM17, and groundwater level measured at the
nearest well available in DINOloket (see Supplement Table S1).

highest levels near ITC_SM10 (Figure 2.14b), ITC_SM14 (Figure 2.14c) and
ITC_SM17 (Figure 2.14d), respectively.

Another interesting feature is that the SMC at 5 cm and 10 cm are
still reasonably correlated with the groundwater level. Hence, there
is a research opportunity to further investigate the potential of the
near-surface SMC, observable from space, for supplying information on
the groundwater level. Similar work has previously been conducted by
Sutanudjaja et al. (2013), who estimated groundwater level across the
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Table 2.6 R2 computed between SMC measured at specific depths and ground-
water level at the well nearest to the SMC monitoring station available in DINO-
loket (see Supplement Table S1). The time series are shown in Figure 2.14.

Station
Number
of pairs

Depth

5 cm 10 cm 20 cm 40 cm 80 cm

ITC_SM10 1490 0.515 0.499 0.714 0.779 0.758
ITC_SM14 1338 0.722 0.575* 0.709 0.782 0.527
ITC_SM17 1332 0.405 0.509 0.628 0.853 0.851

* Obtained for 1251 pairs.

Rhine-Meuse river basin using time series of soil water index retrieved
from coarse resolution scatterometer data. The present dataset allows
for more detailed investigations of the relationship between phreatic
groundwater and profile SMC. Moreover, the spatial measurement density
of the Twente network, the access to the other relevant data documented
in this chapter and the availability of higher resolution SMC products
(e.g. Bauer-Marschallinger et al., 2018, 2019; Das et al., 2019) makes it
possible to extend to sub-catchment scale applications.

2.6 Data availability

Chapter 9 describes the availability of the SMC and soil temperature
network data and the field campaign measurements. An updated version
of the dataset is expected. Table 2.7 lists the third-party datasets that are
available for the study region, which may support use of the published
SMC and soil temperature datasets.

2.7 Summary

Soil moisture content (SMC) and temperature profile measurements from
2008 till 2020 have been automatically collected at 15 min intervals by
a network of 20 monitoring stations spread across the Twente region
and neighbouring regions in the east of the Netherlands. The monitoring
stations are mostly placed at the border of privately owned parcels used
for agriculture with, in order of occurrence, grass, maize, cereals, potato
and natural vegetation as land covers. The experimental setup includes
METER Group (formerly: Decagon Devices) EC-TM and its successor
5TM capacitance probes installed at soil depths of 5 cm, 10 cm, 20 cm,
40 cm and 80 cm. Soil-specific calibration functions have been developed
under controlled laboratory conditions for both probe types, suggesting
accuracies of 0.023 m3 m−3 and 0.028 m3 m−3 for the EC-TM and 5TM
respectively. Quality-controlled and calibrated datasets as well as field
photos, notes and the native data records are made available.
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Table 2.7 Open third-party datasets available for the study region, which are
described in Section 2.2.

Name Responsible
institute(s)

Data address and instructions Available
formats

AHN (2019) RWAs, provinces,
Directorate-
General for Public
Works and Water
Management

https://www.pdok.nl/introduc
tie/-/article/actueel-hoogt
ebestand-nederland-ahn3-;
under the tab ‘Downloads’
individual tiles can be obtained and
under ‘Geo Services’ links to the
entire dataset are provided.

GeoTIFF
WMS
WFS
WMTS
WCS

BOFEK (Heinen
et al., 2021)

Wageningen
Environmental
Research

https://www.wur.nl/nl/show/B
odemfysische-Eenhedenkaart-B
OFEK2020.htm; the map and report
can be found under downloads both
for BOFEK2020 and BOFEK2012.

.gdb

.shp

Land use (Bestand
Bodemgebruik)

Statistics
Netherlands (2015)

https://www.pdok.nl/introduc
tie/-/article/cbs-bestand-b
odemgebruik; for the years 2010
and 2015 downloads as well as Geo
Services are available.

.shp
WMS
WFS

Crop parcel
registry
(Basisregistratie
Gewaspercelen)

Ministry of
Economic Affairs
and Climate Policy
(2020)

https://data.overheid.nl/dat
aset/10674-basisregistrati
e-gewaspercelen--brp-; for the
years 2009–2020 downloads are
available at the tab ‘Databronnen’
and under ‘INSPIRE Atom’ and from
2016 also view services are
available.

.gdb
WMS
WFS
WMTS

DINOloket Geological Survey
of the Netherlands
(GDN) (2021)

https://www.dinoloket.nl/en;
go to ‘Subsurface data’, apply a filter
in the menu on the left and select
one of the shapes in the menu on
the right to order data for
measurement locations.

.csv

Precipitation and
weather data

Royal Netherlands
Meteorological
Institute (KNMI)
(2021)

https://www.knmi.nl/nederlan
d-nu/klimatologie-metingen-e
n-waarnemingen; for daily
precipitation measurements select
‘Dagwaarden neerslagstations’ and
for hourly weather data select
‘Dagwaarden van weerstations’.

.txt

In addition, field campaign data covering the growing seasons of 2009,
2015, 2016 and 2017, during which the SMC was measured with hand-
held probes (Delta-T ThetaProbe, Type ML2, and Stevens HydraProbe) and
a gravimetric method on a total of 28 fields near 12 different monitoring
stations, are described and disclosed. Pairs of gravimetrically determined
SMC and probe readings were used to establish calibration functions for
both the ThetaProbe and HydraProbe. The accuracies obtained for the
probe calibrations varied from 0.048 m3 m−3 for the ThetaProbe meas-
urements in 2009 up to 0.032 m3 m−3 for the HydraProbe measurements
collected in 2016–2017.

Further, descriptions of open thirty-party datasets are provided to
support the use of the Twente SMC and soil temperature measurements
beyond the scope for which the network was originally established: the
validation of coarse resolution satellite data products. Scientists and
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professionals worldwide are invited to make free use of the datasets
disclosed with this contribution. We welcome any comments or sugges-
tions that can help improve the quality and usability of the datasets. The
data collection with the Twente network continues, but plans are under-
way to update the design of the network to the contemporary societal
and scientific needs. This may include flood and drought analyses, and
high-resolution satellite product validation.
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3The Raam regional soil moisture
content monitoring network in the
Netherlands

This chapter is based on:

Benninga, H. F., Carranza, C. D. U., Pezij, M., Van Santen, P., Van der Ploeg,
M. J., Augustijn, D. C. M., and Van der Velde, R.: The Raam regional soil
moisture monitoring network in the Netherlands, Earth Syst. Sci. Data,
10, 61–79, doi:10.5194/essd-10-61-2018, 2018.
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Abstract

A soil moisture content (SMC) profile monitoring network was es-
tablished in the Raam region in the Netherlands. This region faces
water shortages during summers and excess of water during win-
ters and after extreme precipitation events. Water management
can benefit from reliable information on the soil water availability
and water storing capacity in the unsaturated zone. In situ meas-
urements provide a direct source of information on which water
managers can base their decisions. Moreover, these measurements
are commonly used as a reference for the calibration and valida-
tion of SMC products derived from earth observations or obtained
by model simulations. Distributed over the Raam region, we have
equipped 14 agricultural fields and 1 natural grass field with SMC
and soil temperature monitoring instrumentation, consisting of 5TM
sensors installed at depths of 5 cm, 10 cm, 20 cm, 40 cm and 80 cm.
In total, 12 stations are located within the Raam catchment (catch-
ment area of 223 km2), and 5 of these stations are located within
the closed sub-catchment Hooge Raam (catchment area of 41 km2).
Soil-specific calibration functions that have been developed for the
5TM sensors under laboratory conditions lead to an accuracy of
0.02 m3 m−3. The first set of measurements has been retrieved for
the period 5 April 2016–4 April 2017. In this chapter, we describe
the Raam monitoring network and instrumentation, the soil-specific
calibration of the sensors, the first year of measurements, and addi-
tional measurements (soil temperature, phreatic groundwater levels
and meteorological data) and information (elevation, soil physical
characteristics, land cover and a geohydrological model) available
for performing scientific research.

Keywords: Soil moisture content, monitoring network, measurement accuracy,
sensor’s influence zone.
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3.1 Introduction

Soil moisture content (SMC) is a hydrological state variable that affects
various processes on global, regional and local scales. On the global
to regional scales, the control of SMC on the exchanges of water and
heat at the land surface plays an important role in the development of
weather and climate systems (Global Climate Observing System (GCOS),
2010; Seneviratne et al., 2010). GCOS (2010) has identified SMC as an
essential climate variable. However, SMC products from state-of-the-
art land surface models (LSMs) show large biases compared to in situ
observations (Xia et al., 2014; Zheng et al., 2015) and large variation
among different models (Dirmeyer et al., 2006; Xia et al., 2014). Xia et al.
(2014) pointed out that, in particular, the SMC outcomes from LSMs need
improvement. In situ observations help to identify the shortcomings of
LSMs and to improve model descriptions of related processes.

SMC also affects numerous hydrological and ecological processes that
are essential for a wide spectrum of applications on the regional to local
scales. Regional water management can benefit from timely and reliable
information about SMC: it can improve quantifications of flood risks by
its effect on rainfall estimations and streamflow predictions (Beck et al.,
2009; Massari et al., 2014; Wanders et al., 2014) and negative anomalies to
current plant water demands are an indicator of (the onset of) droughts
(Carrão et al., 2016; Wilhite and Glantz, 1985). The agricultural sector
depends on sufficient root zone soil water availability for crop growth,
while excess of soil water leads to severe losses (Feddes et al., 1978).
In addition, wet soil conditions are unfavourable for the trafficability
of farmlands, which can jeopardize the timely execution of essential
agricultural practices and cause structural damage of land (Batey, 2009;
Hamza and Anderson, 2005; Schwilch et al., 2016). Lastly, information
about SMC is relevant to assess the effects of groundwater extractions
(Ahmad et al., 2002), drainage systems and irrigation systems.

SMC conditions can be quantified using in situ instruments (Topp
and Ferré, 2002a; Vereecken et al., 2014), earth observations (Kornelsen
and Coulibaly, 2013; Petropoulos et al., 2015) and land process models
subject to atmospheric forcing terms (Albergel et al., 2012; De Lange
et al., 2014; Srivastava et al., 2015; Vereecken et al., 2008). Of these
methods, in situ instruments are the most accurate and can have a high
temporal resolution when automated, but they lack spatial support. In
contrast, earth observations and process models provide areal estimates
and enable the quantification of SMC across large spatial domains, but
uncertainties regarding their SMC estimates are still the subject of invest-
igation. The success of SMC estimation from earth observations depends
on the specifications of the sensor, the assumptions and parameter val-
ues adopted for the retrieval algorithms, and the soil and vegetation
cover conditions (e.g. Burgin et al., 2017; Chan et al., 2016; Das et al.,
2014; Kerr et al., 2016; Pathe et al., 2009). Earth observations in the
microwave spectrum, which are most often used for the estimation of
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SMC by earth observations (Kornelsen and Coulibaly, 2013; Petropoulos
et al., 2015), originate from the soil surface to generally 0.01 m–0.05 m
depth (Escorihuela et al., 2010; Kornelsen and Coulibaly, 2013; Nolan and
Fatland, 2003; Rondinelli et al., 2015; Ulaby et al., 1996). Sampling depth
is controlled by the microwave wavelength and moisture conditions
(Escorihuela et al., 2010; Nolan and Fatland, 2003; Rondinelli et al., 2015;
Ulaby et al., 1996; Woodhouse, 2006). However, the relation between
surface SMC and SMC at deeper layers is complicated. To relate surface
SMC to SMC at greater depths, the correct specification of hydraulic
parameters and modelling of the hydrological processes are required
(Chen et al., 2011; Das and Mohanty, 2006; Vereecken et al., 2008). Yet,
several studies have reported that surface SMC may provide information
about SMC at greater depths (Das and Mohanty, 2006; Ford et al., 2014;
Vereecken et al., 2008). Estimations of vegetation characteristics by mi-
crowave and optical sensors also have the potential to provide estimates
of root zone SMC (Van Emmerik et al., 2015; Petropoulos et al., 2015;
Steele-Dunne et al., 2012; Wang et al., 2010). Regarding land process
models, the implemented model physics, model structure, the quality
of parameterizations, and the imposed initial and boundary conditions
(including atmospheric forcing terms) determine the reliability of model
results (Xia et al., 2014). Combining observations of earth variables with
process models by data assimilation techniques is interesting in estimat-
ing initial model states, model state updating and parameter calibration,
thereby improving the model accuracy (Houser et al., 2012; Reichle, 2008;
Vereecken et al., 2008).

In situ SMC measurements provide a reference for validating earth
observation retrievals and land process models. The combination of in
situ measurements at various depths, earth observation products and
land process models is essential to obtaining reliable SMC information at
the temporal, horizontal and vertical resolutions required for the above-
mentioned applications. Several regional-scale SMC monitoring networks
have been established to fulfil (part of) this aim. The International Soil
Moisture Network (Dorigo et al., 2011) and the Soil Moisture Active Pass-
ive (SMAP) Cal/Val Partner Sites (Colliander et al., 2017) are two initiatives
that bring together the data collected by a number of networks. The
Natural Resources Conservation Service - Soil Climate Analysis Network,
consisting of 218 stations in agricultural areas across the United States
of America, is operationally used for monitoring drought development,
developing mitigation policies, predicting the long-term sustainability
of cropping systems and watershed health, predicting regional shifts
in irrigation water requirements, and predicting changes in runoff (U.S.
Department of Agriculture, 2016). Examples of regional-scale networks
in a temperate climate are the Little Washita (Cosh et al., 2006) and Little
River (Bosch et al., 2007) networks in North America, REMEDHUS in Spain
(Martínez-Fernández and Ceballos, 2005), Twente in the Netherlands
(Dente et al., 2011, 2012; Van der Velde et al., 2015), HOBE’s network
in Denmark (Bircher et al., 2012), SMOSMANIA in France (Albergel et al.,
2008; Calvet et al., 2007), TERENO in Germany (Zacharias et al., 2011),
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and Kyeamba (Smith et al., 2012) in Australia. This chapter presents
the SMC and soil temperature profile monitoring network in the Raam
region, in the southeast of the Netherlands, established in April 2016. By
Dutch standards and in comparison to the only existing long-term SMC
monitoring network in the Netherlands, in the Twente region (Dente et al.,
2011, 2012; Van der Velde et al., 2015), the Raam region faces substantial
water shortages during summers. Extreme precipitation events cause
an excess of water and inundation of fields. These extreme situations
present a challenge for the intensive agriculture in the region: the agri-
cultural yield largely depends on the applied water management. The
Raam monitoring network is established jointly with the regional water
authority (RWA, ‘waterschap’ in Dutch), Waterschap Aa en Maas. With
the network, we aim to collect data for the calibration and validation of
earth observation SMC products, the assessment of land process model
performance and the understanding of processes affected by SMC (e.g.
field trafficability, crop water availability). In addition, cooperation with
the RWA enables the exploration of the potential of SMC information for
optimizing operational regional water management. In this chapter, we
describe the characteristics of the Raam catchment (Section 3.2), the net-
work design and instrumentation (Section 3.3), the sensor’s propagation
distance (Section 3.4.1), the sensor calibration results (Section 3.4.2) and
the verification of the first year of measurements (Section 3.4.3).

3.2 Study area

The Raam River is situated in the southeast of the Netherlands (Fig-
ure 3.1a), has a catchment area of 223 km2 and is a tributary of the
Meuse River. The catchment has a temperate oceanic climate. For the
period 2000–2016, on average, the coldest month is January (3.3 ◦C) and
the warmest month is July (18.3 ◦C), based on measurements at Volkel
weather station (Royal Netherlands Meteorological Institute (KNMI), 2017).
Annual precipitation statistics are listed in Table 3.1. Figure 3.2a shows
the monthly precipitation measured at the Volkel weather station aver-
aged for the period 2000–2015 and for the hydrological year 2016. Fig-
ure 3.2b shows the cumulative precipitation deficit for the hydrological
year 2016 and the average for the period 2000–2015. The cumulative
precipitation deficit is calculated by subtracting daily reference evapo-
transpiration rates from the daily precipitation measured at the Volkel
weather station and summing the daily deficits. A number of heavy pre-
cipitation events characterized May 2016 to August 2016, which caused
the 2016 summer in the Raam area to be wetter than normal. In dry
years, the cumulative precipitation deficit can reach up to 100 mm in
summer. During these dry periods, farmers irrigate from deep groundwa-
ter reservoirs. The RWA operates a system of weirs and pumping stations
to minimize situations of excess water and droughts. In addition, the
RWA continuously discharges surface water into the southern part of
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the catchment to increase groundwater recharge. The average discharge
into the catchment for the summer of 2016 was 900 m3 h−1.
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Figure 3.1 (a) Location of the Raam study area (black box) in the Netherlands.
(b) Digital terrain model (Actueel Hoogtebestand Nederland, 2012a). (c) Major
soil types classes (BOFEK2012; Wösten et al., 2013).

Table 3.1 Precipitation statistics of the KNMI weather and precipitation stations
for the period 2000–2016 (KNMI, 2017).

Station Average annual
precipitation

[mm]

Minimum annual
precipitation

[mm]

Maximum annual
precipitation

[mm]

Volkel (hourly measurements) 767 681 862
Mill (daily measurements) 850 692 949
St. Anthonis (daily measurements) 830 689 954
Gemert (daily measurements) 826 688 940

The subsurface of the Raam catchment consists of unconsolidated
Pleistocene sandy and fluvial gravel sediments in two river terraces. The
higher terrace slopes gently from 21 m a.s.l. to 17 m a.s.l., and the lower
terrace slopes from 13 m a.s.l. to 8 m a.s.l., with the terrace edge lying in
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Figure 3.2 (a) Average monthly precipitation for the period 2000–2015 and the
monthly precipitation in the hydrological year 2016 measured at Volkel weather
station. (b) Daily and cumulative precipitation deficits for the period 2000–2015
and for the hydrological year 2016, based on precipitation measurements and
reference evapotranspiration calculations at Volkel weather station.

a northwest–southeast direction (Figure 3.1b). Remnants of peat and fine
sands, deposited by aeolian processes, are found on the higher terrace.
In parts of the study area, anthropogenic activities — the continuous
addition of straw-mixed cattle droppings— have elevated fields, resulting
in an approximately 1 m thick layer of brown earth with high organic
matter contents, called plaggen soils (Blume and Leinweber, 2004). The
soil map in Figure 3.1c shows that the soils in the catchment are mostly
sandy, with loam contents varying from 0 % to about 20 % (Wösten et al.,
2013). In the eastern part, loamy and clayey soils are present. The main
land cover types are grassland (30 %) and maize fields (20 %), another 14 %
is used for other crops, built-up and paved areas occupy 14 %, forests
cover about 10 %, and open water covers 3 %.

Several northwest–southeast-orientated dip-slip faults are present in
the subsurface, as shown in Figure 3.3. Movements along these faults
have caused the formation of sharp lateral transitions between highly
permeable and impermeable layers, as shown in Figure 3.4. On the
eastern part of the higher terrace (D–E in Figures 3.3 and 3.4) this has
resulted in the existence of a phreatic aquifer only 10 m thick, whereas for
the rest of the study area the phreatic aquifer is generally around 25 m to
50 m thick. The sharp transition in aquifer thickness leads to obstruction
of the northeast-directed groundwater flow and high groundwater levels
on the western part of the higher terrace (C–D), as shown in Figure 3.3.
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Figure 3.3 Mean highest groundwater depth (‘gemiddeld hoogste grondwa-
terstand’ in Dutch, or GHG) in the Raam catchment. The GHG is a long-term
average of highest groundwater depths, defined as the average of the three
highest groundwater depths per year over a period of 8 years. The groundwater
data originate from the national implementation of the Netherlands Hydrological
Instrument, NHI LHM (De Lange et al., 2014). The map also shows the location
of faults in the area. The dashed red line represents the cross section that is
shown in Figure 3.4.

3.3 Network design

3.3.1 Station locations

In April 2016, 15 stations were installed in the Raam region (Figure 3.1).
The locations capture the range of physical characteristics influencing
the area’s hydrological dynamics. The physical characteristics considered
are soil texture (Section 3.3.1.1), land cover (Section 3.3.1.2) and elevation
(Section 3.3.1.3). Stations 1 to 7, 10 and 12 to 15 are located within the
Raam catchment. Stations 1 to 5 are located in a closed sub-catchment
of the Raam catchment, called the Hooge Raam catchment (‘The High
Raam’). With 15 stations distributed over a 495 km2 area, the network’s
density is approximately 33 km2 per station. The density is 18.6 km2 per
station within the Raam catchment and 8.2 km2 per station within the
Hooge Raam catchment. The number of stations and the density of the
Raam network are comparable to SMC monitoring networks that are com-
parable in areal extent, such as the Little Washita network (20 stations,
30 km2 average spacing), the Fort Cobb network (15 stations, 23 km2

average spacing), the Reynolds Creek network (15 stations, 16 km2 av-
erage spacing), the Little River network (33 stations, 10 km2 average
spacing), the Kyeamba network (14 stations, 43 km2 average spacing) and
the Adelong Creek network (5 stations, 29 km2 average spacing) (Crow
et al., 2012). Crow et al. (2012) stated that these regional-scale networks
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3.3. Network design

Figure 3.4 West–east cross section of the Raam catchment showing the per-
meable and impermeable layers of the subsoil, based on the geohydrological
model REGIS II (Vernes and Van Doorn, 2005). The locations indicated by A, B,
C, D and E refer to the position of the faults and correspond to the letters in
Figure 3.3.

provide information over a range of land covers and on a scale that al-
lows the validation of operational SMC products from earth observations,
such as from the Advanced Scatterometer (ASCAT) at 25 km and 50 km
(Wagner et al., 2013), the Advanced Microwave Scanning Radiometer 2
(AMSR2) at 0.1◦ and 0.25◦ (Zhang et al., 2017), the Soil Moisture and
Ocean Salinity (SMOS) satellite at 43 km (Kerr et al., 2016) and the SMAP
satellite at 40 km resolution (Chan et al., 2016). Basin-scale aggregates
are expected to have root mean square deviation (RMSD, Equation A.1)
values of 0.01 m3 m−3 (Crow et al., 2012), which is small compared to
the RMSD goal of 0.04 m3 m−3 defined for the SMOS mission (Kerr et al.,
2010) and SMAP mission (Chan et al., 2016). Besides, in hydrological
research there is a trend towards hyperresolution land surface modelling
(Beven et al., 2015; Wood et al., 2011). Wood et al. (2011) proposed
developing LSMs on continental scales with a grid resolution of 100 m by
100 m. An example of a high-resolution model is the National Hydrolo-
gical Model (‘Landelijk Hydrologisch Model’ in Dutch, or LHM) application
of the Netherlands Hydrological Instrument (NHI), which is currently op-
erating at a spatial resolution of 250 m by 250 m (De Lange et al., 2014).
To facilitate the development of such high-resolution models, networks
with a high density are required.

3.3.1.1 Soil texture

The Raam catchment mainly holds sandy soils. Therefore, 13 stations
were positioned in coarse sandy soils. Two stations (stations 6 and 7)
were positioned in clayey sands and loamy sands respectively, at the
northeastern part of the study area. Table 3.2 lists the soil type descrip-
tions adopted from BOFEK2012 (‘bodemfysische eenhedenkaart 2012’ in
Dutch). BOFEK2012 provides the soil physical characteristics (e.g. soil
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Table 3.2 Characteristics of the SMC monitoring stations.

Station Soil descriptiona Soil orderb Sand fraction
(> 50 µm) [%]

Silt fraction
(50–2 µm) [%]

Clay fraction
(< 2 µm) [%]

Organic matter
fraction [%]

1 Weakly loamy sandy soil on subsoil
of coarse sand (305)

Podzols 91.3 1.9 3.5 3.3

2 Weakly loamy sandy soil on subsoil
of coarse sand (305)

Podzols 90.4 3.7 2.1 3.8

3 Weakly loamy Podzol soil (304) Podzols 93.3 2.4 1.9 2.4
4 Weakly loamy sandy soil on subsoil

of coarse sand (305)
Podzols 90.0 2.0 2.9 5.2

5 Weakly loamy sandy soil with thick
man-made earth soil (311)

Anthrosols 93.1 2.3 1.1 3.5

6 Clayey sand on sand (fluvial) (409) Anthrosols/
Vague soils

83.7 4.8 9.9 1.6

7 Loamy sandy soil with thick
man-made earth soil (317)

Anthrosols 82.1 10.5 5.2 2.2

8 Weakly loamy Podzol soil (304) Podzols 92.8 1.6 1.4 4.1
9 Weakly loamy Podzol soil (304) Podzols 95.4 1.1 0.8 2.6
10 Weakly loamy Podzol soil (304) Podzols 96.3 0.8 0.7 2.2
11 Weakly loamy Podzol soil (304) Podzols 94.8 1.7 1.6 1.9
12 Weakly loamy Podzol soil (304) Podzols 92.0 2.5 1.7 3.9
13 Weakly loamy soil partly on subsoil

of coarse sand (309)
Podzols 96.7 1.1 0.8 1.4

14 Loamy Podzol soil (312) Podzols 90.0 4.7 2.3 3.0
15 Weakly loamy sandy soil with thick

man-made earth soil (311)
Anthrosols 88.6 5.5 2.8 3.1

a Soil description and classification code from BOFEK2012 (Wösten et al., 2013).
b Approximate Soil Order Equivalent in the World Reference base (Hartemink and De Bakker, 2006).

5
6



3.3. Network design

texture, water retention curve and hydraulic conductivity curve) for the
soil units in the Netherlands, based on the Dutch class pedotransfer func-
tions known as the Staring series (Wösten et al., 2001, 2013). Table 3.2
also lists the corresponding World Reference base soil order (Hartemink
and De Bakker, 2006).

Complementing the available soil texture information, we performed
particle size analyses in a laboratory, following the pipette method
described by Van Reeuwijk (2002), on samples representing the upper
40 cm of the soil profile at each monitoring station. Organic matter
content was determined by the loss of ignition method (Davies, 1974;
Hoogsteen et al., 2015) at 500 ◦C. The results reveal very high sand
contents for most stations, and as expected, stations 6 and 7 have higher
volume fractions of silt and clay. The results are consistent with the
BOFEK2012 class descriptions.

3.3.1.2 Land cover

For practical reasons, the monitoring stations were installed at the border
of fields. Table 3.3 lists the land cover of the adjacent fields in 2016 as
well as the land cover at the exact location of the monitoring stations
in 2016. Positioning of stations on agricultural areas was preferred
over forest and natural areas. Microwave remote-sensing instruments
are typically unable to observe the soil under dense forest canopies, so
measurements at agricultural areas are the most valuable for validating
SMC retrievals from earth observations. Furthermore, agricultural areas
in particular are manageable regarding water-related processes. Station 6
was positioned in natural grassland.

Table 3.3 Land cover of adjacent fields and at the locations of the SMC monit-
oring stations.

Station Land cover of the adjacent
field(s) in 2016

Land cover at the location
of the station in 2016

1 Grass Grass
2 Sugar beets Grass
3 Grass Grass
4 Grass Grass
5 Onions Grass fallow
6 Natural grass Natural grass
7 Maize and Cichorium Grass fallow
8 Sugar beets Grass
9 Sugar beets Grass fallow
10 Grass Grass
11 Maize and grass Grass
12 Grass Grass
13 Maize Grass
14 Grass Grass
15 Grass Grass
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3. The Raam regional soil moisture content monitoring network

3.3.1.3 Elevation

The stations were distributed in such a way that they cover the elev-
ation gradient of the catchment. This will be valuable for observing
the influence of groundwater level and water-limited evapotranspiration
conditions on SMC.

3.3.2 Instrumentation

Common instruments to measure volumetric SMC are based on time-
domain reflectometry (TDR) or capacitance techniques. Capacitance
sensors are the most attractive choice for networks consisting of mul-
tiple SMC monitoring stations because of their relatively low costs, ease
of operation and applicability to a wide range of soil types (Bogena
et al., 2007; Kizito et al., 2008; Vereecken et al., 2014). We deploy the
METER Group (formerly: Decagon Devices) 5TM capacitance sensor in
the Raam network. The 5TM and other METER Group sensors that use
the same technique and frequency have been widely used for in situ
SMC networks and have proved to fulfil the performance requirements
(Bircher et al., 2012; Bogena et al., 2010; Dente et al., 2009, 2011; Kizito
et al., 2008; Matula et al., 2016; Varble and Chávez, 2011; Vaz et al.,
2013).

5TM sensors use an oscillator operating at 70 MHz to measure the
capacitance of the soil, which is affected by the soil’s relative permittivity.
The sensor prongs charge the surrounding soil, and the time needed
to fully charge the soil defines the capacitance and consequently the
relative permittivity of the soil. The relative permittivity of the soil
varies as a function of the volumetric SMC. METER Group (2019) reports
the following specifications for the 5TM: the resolution of the SMC
measurements is 0.0008 m3 m−3, and the accuracy is ±0.03 m3 m−3 for
mineral soils by applying the function established by Topp et al. (1980) to
convert relative permittivity to volumetric SMC. A thermistor on the same
probe measures soil temperature. The resolution of the temperature
measurements is 0.1 ◦C, and the accuracy is ±1 ◦C.

The sensors are installed horizontally, with the prongs in vertical
orientation to avoid ponding on the sensors due to water infiltration or
condensation of vapour (Figure 3.5). SMC and soil temperature are logged
every 15 min with METER Group Em50 data loggers. At each location we
installed 5TM sensors at depths of 5 cm, 10 cm, 20 cm, 40 cm and 80 cm
(Figure 3.5). Next to all monitoring stations, phreatic groundwater levels
are monitored by Waterschap Aa en Maas at an hourly time interval
or by the Province of Noord-Brabant at a daily time interval with a
MiniDiver DI501 (Van Essen Instruments, 2016).

3.3.3 Zone of influence of 5TM sensors

For practical reasons, the shallowest in situ sensors are typically in-
stalled at 5 cm depth (Rondinelli et al., 2015; Shellito et al., 2016). In air,
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MiniDiver DI501

5TM sensor

80 cm
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(a) (b)

Figure 3.5 (a) Schematic cross section of the SMC monitoring stations and
nearby phreatic groundwater level monitoring well. (b) Photo of an installation
pit with the SMC sensors installed at the five depths.

5TM sensors integrate a volume of 715 mL around the prongs, with a
maximum distance of 6 cm from the centre of the sensor (Cobos, 2015).
This means that open air above the soil surface would affect the sensor
readings at 5 cm. In soil, which has a higher relative permittivity, the
outer edge will be closer to the sensor (Cobos, 2015). Sakaki et al. (2008)
and Cobos (2015) investigated the measurement volume in air and Vaz
et al. (2013) in deionized water by moving the sensor towards/from a
front of water and air. We conducted the same kind of experiment with
a soil sample from station 1. A steel knife was inserted into a soil-filled
container with a 5TM sensor buried in the middle. The steel knife was
brought towards the 5TM sensor from the direction similar to where the
soil surface would be in the field. With this experiment we were able to
leave the 5TM sensor in the same position to eliminate effects other than
the steel knife. This procedure was performed five times for a range of
SMC conditions.

3.3.4 Calibration

To convert sensor readings to volumetric SMC we use a two-step cal-
ibration procedure (Bogena et al., 2007; Rosenbaum et al., 2010). The
first step is the conversion of the sensor reading to relative permittivity.
Kizito et al. (2008) concluded that there is no significant probe-to-probe
variability among METER Group ECH2O-TE sensors, and Rosenbaum
et al. (2010) found a RMSD of approximately 0.01 m3 m−3 as a result of
METER Group 5TE probe-to-probe variability. METER Group calibrates
each 5TM sensor to account for probe-to-probe variability and to provide
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3. The Raam regional soil moisture content monitoring network

a linear relation between the sensor’s response and the real part of the
relative permittivity (Rosenbaum et al., 2010):

εa =
5TMreading

50
, (3.1)

where 5TMreading (mV) is the raw output of the 5TM and εa (−) is the
relative permittivity.

The second step is converting relative permittivity to volumetric SMC.
The relation between relative permittivity and SMC is affected by soil
composition, bulk density, organic matter content and soil salinity (Starr
and Paltineanu, 2002). Relative permittivity can be converted to SMC
using a general calibration function or using a soil-specific calibration
function. By default the ECH2O Utility software applies the Topp function
(Topp et al., 1980). However, Vaz et al. (2013) stated that soil-specific
calibration is often recommended to address the various soil property
effects. According to METER Group (2019) the accuracy can be improved
from ±0.03 m3 m−3 to ±0.02 m3 m−3 by using a soil-specific calibration
function. Indeed, several studies concluded that soil-specific calibration
can significantly improve the accuracy (Section 3.4.2, Table 3.6).

We developed soil-specific calibration functions for the main soil
types present in the study area, by analysing soil samples taken from
stations 1, 7 and 10. The soil texture at these stations is considered
representative of the soils at other stations; see Table 3.4. The meas-
urements to establish the calibration function were collected following
the procedure described by Starr and Paltineanu (2002), as recommen-
ded by Cobos and Chambers (2010). The procedure employs pairs of
gravimetrically determined volumetric SMC (GVSMC) and sensor read-
ings of relative permittivity. The GVSMCs and 5TM measurements were
obtained under laboratory conditions in disturbed soil samples, while
gradually wetting the soil from air-dried conditions to saturated condi-
tions by adding 75 mL to 100 mL of water. In every session typically 15
to 18 pairs of measurements were collected. The described procedure
has been performed three times for each of the three soil samples.

The capability of the calibration functions to reproduce GVSMC with
5TM measurements is evaluated with Spearman’s rank correlation coeffi-
cient (rS ), the RMSD (Equation A.1) and the bias (Equation A.4).

3.4 Results and discussion

3.4.1 Zone of influence

The results in Figure 3.6 show that in soil, the zone of influence ranges
from 3 cm to 4 cm from the middle prong of the 5TM sensors. This is
smaller than the propagation distance of 6 cm in air found by Cobos
(2015) and larger than the propagation distance of 2.2 cm in deionized
water found by Vaz et al. (2013). Open air does not affect the 5TM
readings at the shallowest installation depth of 5 cm that is used in the
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Raam network. The results also indicate that SMC does not affect the
extent of the zone of influence.
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Figure 3.6 Relative permittivity readings of a 5TM sensor in a soil sample from
station 1, obtained by moving a steel knife towards the sensor. The lines are
the average of measurements obtained by performing the procedure described
in Section 3.3.3 five times for each of the SMC conditions.

3.4.2 Calibration 5TM sensors

The results of the calibration procedure in Figure 3.7 show that the 5TM
readings and gravimetric measurements correlate well. The relations
between the 5TM readings and GVSMCs can best be approximated by
two-term power functions. This is preferred over polynomial functions
because power functions keep increasing beyond the range of GVSMCs
obtained during the calibration procedure, which occurs in the field (fur-
ther explained in Section 3.4.3.2). The power function between relative
permittivity sensor readings and volumetric SMC reads

θcp = cA × εacB + cC , (3.2)

where θcp (m3 m−3) is the calibrated volumetric SMC probe measurement,
εa (−) is the measured relative permittivity, and cA, cB and cC are calibra-
tion coefficients. The optimum calibration coefficients, listed in Table 3.4,
are determined with the Matlab Curve Fitting Toolbox by non-linear least
squares fitting.

Lab calibration has reduced RMSD values from
0.03 m3 m−3–0.07 m3 m−3 to 0.02 m3 m−3 and has eliminated the bias
between the 5TM readings and GVSMCs (Table 3.5). The RMSD values
using the Topp function are comparable or slightly worse than the values
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Figure 3.7 5TM relative permittivity readings against GVSMCs, measured in
the laboratory in soil from a selection of fields. The power fits are used as
calibration functions for converting the relative permittivity measurements by
5TM sensors to volumetric SMC.

Table 3.4 Calibration coefficients for converting relative permittivity measure-
ments by 5TM sensors to volumetric SMC.

Station Representative of stations
Coefficients

cA cB cC

1 1, 2, 4, 5, 8, 12, 14, 15 1.276 0.1310 −1.466
7 6, 7 0.4853 0.2571 −0.6427
10 3, 9, 10, 11, 13 24.16 0.007038 −24.33

obtained by other studies using METER Group sensors. The RMSD values
after the soil-specific calibration are comparable to the values obtained
by other studies that performed a soil-specific calibration (Table 3.6).
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Table 3.5 Accuracy metrics between GVSMCs and 5TM readings converted to volumetric SMC with the Topp function and the soil-specific
calibration functions.

Station
Topp function

Number of pairs
Soil-specific calibration functions

rS [−] RMSD [m3 m−3] Bias [m3 m−3] rS [−] RMSD [m3 m−3] Bias [m3 m−3]

1 0.95 0.0721 −0.0643 42 0.95 0.0235 0.000
7 0.98 0.0448 −0.0357 53 0.98 0.0177 0.000
10 0.99 0.0343 −0.0237 56 0.99 0.0190 0.000

Table 3.6 Accuracy metrics between the GVSMCs and readings by various METER Group sensors reported in previous studies.

Study Study area and soil type Sensor RMSD with Topp
function [m3 m−3]

RMSD with soil-specific
calibration function [m3 m−3]

Bircher et al. (2012) Western Denmark: Podzol sandy and loamy
soils.

5TE Agricultural land: 0.030
Forest: 0.026
Heath: 0.022

Not reported

Dente et al. (2009), Su
et al. (2011)

Maqu, Tibetan Plateau: organic and silt loam
soils.

EC-TM 0.06 0.02

Dente et al. (2011,
2012)

Twente, the Netherlands: sand and loamy
sand.

EC-TM 0.054 0.023

Kizito et al. (2008) Oso Flaco, USA: sand.
Columbia, USA: silt loam.

TE Not reported Combined: 0.026
Sand: 0.015
Silt loam: 0.018

Matula et al. (2016) Prague, Czech Republic: Haplic chernozem
substrate loess.

EC-5
TE

EC-5: 0.031
TE: 0.029

EC-5: 0.018
TE: 0.023

Van der Velde et al.
(2012b)

Naqu, Tibetan Plateau: loamy sand with
gravel and high organic matter content.

EC-10 Not reported 0.029

Vaz et al. (2013) Arizona, USA: sandy to clayey soils. 5TE 0.040 0.026
Varble and Chávez
(2011)

Colorado, USA: see the fourth and fifth
column.

5TE Sandy clay loam: 0.022
Loamy sand: 0.025
Clay loam: 0.038

Sandy clay loam: 0.021
Loamy sand: 0.007
Clay loam: 0.028

6
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3. The Raam regional soil moisture content monitoring network

3.4.3 Data verification

3.4.3.1 Data series completeness

The Raam network has generated data since April 2016. After 12 months
of operations, the data series completeness is 96 %. Data gaps are caused
by probes not being properly connected for a time and by the malfunc-
tioning of sensors and loggers (specified in a readme file attached to the
measurement data).

3.4.3.2 Data series analysis

We performed an initial data analysis of the behaviour and trends of
SMC in the Raam. This includes an evaluation against the wilting point
and saturated SMC for the soils in which the stations are placed. The
wilting point and saturated SMC are estimated using the Staring series
(Wösten et al., 2001), which provide the Van Genuchten parameters for
soil water retention and soil hydraulic conductivity. These parameters
can be used to estimate the SMC for a specific pressure head using the
Van Genuchten (1980) equation:

θ(h) = θr +
θs − θr

[1+ (αG|h|)nG]1−1/nG , (3.3)

where h is the pressure head (cm of water), θ(h) is the SMC at h (m3 m−3),
θr is the residual SMC (m3 m−3), θs is the saturated SMC (m3 m−3), αG is
a scale parameter inversely proportional to the air entry value (cm−1) and
nG is a parameter related to the pore size distribution (−). BOFEK2012
provides the Staring series at the station locations (Wösten et al., 2013).

Figure 3.8 shows that, generally, the station measurements are within
the range expected based on BOFEK2012. However, the measurements of
stations 1, 8 and 13 slightly exceed the saturated SMC, and stations 12
and 15 exceed the saturated SMC to a larger extent. Furthermore, the
measurements at 80 cm depth at stations 1, 4, 6, 8 and 12 exceed the
saturated SMC for about 25 % (station 8) to 100 % (station 6) of the time.
This may be explained by local soil variability that is not captured by
BOFEK2012 and macroporosity that is not considered by BOFEK2012. As
BOFEK2012 only considers soil matrix porosity, deviations may occur
when additional cracks, biopores or other macropores exist.

SMC measurements recorded in the field (Figure 3.8) exceed the max-
imum GVSMC obtained at saturated conditions in the laboratory (Fig-
ure 3.7). Reasons may be the presence of roots and macropores in the
field, which can never be reproduced with the disturbed soil samples
used for the calibration. In the field, macropores may be present, which
increase the saturated SMC. Also the presence of large roots increases
recorded water contents.

Figure 3.9 shows a time series plot of SMC measurements at station 1
for all measured depths, along with daily precipitation data of the Volkel
weather station. The SMC series show a clear response to the precipita-
tion events. The SMC at the upper layers shows larger dynamics than the
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Figure 3.8 Box plots of the SMC measurements with theoretical wilting point
and saturated SMC from BOFEK2012 (red lines), for each depth measured
(5 April 2016–4 April 2017). Note that the box plot of 5 cm depth of station 6
is not shown: these data are removed from the dataset because of sensor
malfunctioning.

SMC at deeper layers. The SMC at 80 cm is stable because it is controlled
by the high phreatic groundwater level (GHG is 0.58 m below surface at
the location of station 1; see Figure 3.3).

Figure 3.10a shows that the average SMC increases with depth from
0.23 m3 m−3 at 5 cm to 0.30 m3 m−3 at 80 cm. Indeed, one can expect the
topsoil to be drier than the deeper parts due to infiltration and evapo-
transpiration. Figure 3.10b shows the relative standard deviation, which
is defined as the ratio of the standard deviation of the SMC measure-
ments to the average SMC, for each depth averaged over time and over
all stations. A higher relative standard deviation indicates a larger vari-
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Figure 3.9 (a) Daily precipitation measured at Volkel weather station during
the hydrological year 2016. (b) SMC measurements at station 1 during the
hydrological year 2016 at 5 cm, 10 cm, 20 cm, 40 cm and 80 cm depth.

ability in SMC. Figure 3.10b indicates a decreasing variability in SMC with
increasing depth, which was also visible for station 1 in Figure 3.9. The
upper layers are mainly controlled by precipitation and evapotranspira-
tion, which are variable in time. The deeper layers are mainly controlled
by the generally high phreatic groundwater levels (Figure 3.3), which
provide a continuous source of water by capillary rise.
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Figure 3.10 SMC average and relative standard deviation (ratio of the standard
deviation to the average SMC), averaged over time (5 April 2016–4 April 2017)
and over all stations for each depth measured.

We explored the influence of various factors on the dynamics of
SMC. Figure 3.11a confirms our expectation that sandy soils have lower
and more dynamic SMC than loamy/clayey soils. Figure 3.11b shows
that locations with deep groundwater levels (> 1 m) are drier than loca-
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tions with shallow groundwater levels (< 1 m). The situation of shallow
groundwater levels applies to the stations 1, 6, 8, 11, 12, 13 and 15,
based on groundwater level measurements by Waterschap Aa en Maas.
Figure 3.11c shows that, in general, the SMC of maize fields is largest.
Also, in the 2016/2017 winter period grasslands tended to be wetter
than fields with sugar beets and onions. The observed dynamics of SMC
on the catchment scale are as expected. However, local differences in sur-
face elevation, soil composition and land cover play an important role in
local-scale variation. Over time, changes in land cover and macroporosity,
and soil temperature effects (Section 3.4.3.3) introduce uncertainties.
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Figure 3.11 Influence of (a) soil type (Table 3.2), (b) groundwater depth
(based on groundwater level measurements by Waterschap Aa en Maas) and
(c) vegetation type (Table 3.3) on the SMC dynamics at 20 cm depth.

3.4.3.3 Effect of soil temperature

The SMC measurements at 5 cm, 10 cm and 20 cm depth show diurnal
variations at all stations. Potential hydrological causes are the pres-
ence of dew and adsorption of water vapour by the soil, which cause
an increase in SMC during the night and morning (Agam and Berliner,
2006; Kosmas et al., 1998). Alternatively, the SMC sensors might be
sensitive to temperature. A number of studies found that the relative
permittivity readings of SMC sensors are affected by soil temperature,
varying from −0.002 m3 m−3 ◦C−1 to 0.004 m3 m−3 ◦C−1 (Bogena et al.,
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2007; Kizito et al., 2008; Rosenbaum et al., 2011; Verhoef et al., 2006).
Figure 3.12 shows the largest SMC-to-temperature sensitivities measured
at 5 cm depth, between 08:00 CET at day 1 and 08:00 CET at day 2, under
the conditions of no precipitation on the day itself and the preceding
2 days, a maximum temperature difference between start and end time
of 1.0 ◦C, and a maximum SMC difference between start and end time of
0.005 m3 m−3. The SMC series are linearly detrended, assuming constant
drainage and evaporation over the period of investigation (Cobos and
Campbell, 2016). Then, we found the SMC-to-temperature sensitivities
by applying a linear fit between the detrended SMC series and the soil
temperature series. At station 7 in wet conditions (Figure 3.12a), there
is a lag between the trends of SMC and soil temperature. This suggests
that a soil hydrological process caused the diurnal variation in SMC,
such as the addition of water by dew. At station 13 in dry conditions
(Figure 3.12b), there is probably a direct effect of soil temperature on
the SMC signal. Over all stations and all diurnal cycles satisfying the
conditions introduced above, the average absolute sensitivity of SMC
to soil temperature is 0.0006 m3 m−3 ◦C−1. The difference between the
minimum and maximum daily average soil temperature at 5 cm over
the measurement period 5 April 2016 to 4 April 2017 is 19 ◦C to 28 ◦C.
This translates into an effect of 0.011 m3 m−3 to 0.017 m3 m−3 on the
SMC measurements by seasonal soil temperature variation. We consider
this a small effect compared to local variations and other measurement
uncertainties, and since there might also be a soil hydrological cause, we
do not correct for the effect of soil temperature variation.
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Figure 3.12 Largest sensitivities of SMC (blue line, left y-axis) to soil temperat-
ure variation (red line, right y-axis) in (a) wet conditions and (b) dry conditions.
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The freezing of soils has a distinct effect on SMC measurements.
When soils are frozen, the free water content decreases and this affects
the bulk relative permittivity. These measurements do, however, give
information about the free and frozen water contents. Together with
the simultaneous soil temperature measurements, this could support
research on the freezing of soils. However, the affected measurements
are not usable as SMC measurements, so users of the SMC data are
recommended to remove these from the measurement series.

3.5 Conclusions

The Raam SMC and soil temperature profile monitoring network contains
15 stations distributed over the Raam region. In total, 12 stations are
located within the Raam catchment (catchment area of 223 km2), and
5 of these stations are located within a closed sub-catchment of the
Raam catchment (catchment area of 41 km2). The stations consist of
5TM sensors installed at 5 cm, 10 cm, 20 cm, 40 cm and 80 cm depth.
The measurements at 5 cm depth provide a reference for surface SMC
estimations from earth observations, and the measurements at deeper
layers enable the investigation of soil hydrological processes throughout
the unsaturated zone. The experiment on the sensor’s zone of influence
shows that the sensor integrates a soil volume of 3 cm to 4 cm above
and below the sensor’s middle prong, so the installation depth of 5 cm is
required to avoid effects of the open air. Soil-specific calibration func-
tions for the 5TM sensors that have been developed under laboratory
conditions lead to an accuracy of 0.02 m3 m−3, which is lower than the
accuracy range of 0.03 m3 m−3–0.07 m3 m−3 when applying the Topp
function. Analysis of the first year of data shows that the station meas-
urements are generally within the range expected based on the classified
soil units and associated soil physical characteristics from the soil map
of the Netherlands (BOFEK2012). Exceedance of the expected saturated
SMC occurs at stations 1, 4, 6, 8, 12, 13 and 15, which could be the effect
of local soil variability not captured by BOFEK2012 and macroporosity
not considered by BOFEK2012. The measurements show expected SMC
trends across the soil profile, with the average SMC increasing and the
SMC variability decreasing with depth. The measurements confirm that
sandy soils have lower and more dynamic SMC than loamy/clayey soils
and locations with deep groundwater levels are drier than locations with
shallow groundwater levels. Among the stations of the Raam network,
on average, maize fields and grasslands are wetter than fields with sugar
beets and onions.

The Raam SMC and soil temperature monitoring network and the
mentioned additional datasets provide a valuable and ongoing dataset
for investigating water management applications, for the calibration and
validation of SMC estimations from earth observations on a coarse scale
and a field scale, for the understanding of processes affected by SMC in
the unsaturated zone, and for the assessment of land process models.
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3. The Raam regional soil moisture content monitoring network

Stations 1 to 7, 10 and 12 to 15 can also be used for modelling the
behaviour of the Raam catchment.
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4The uncertainty of in situ station
measurements as reference for
field-scale soil moisture content

The method and results in this chapter are based on parts (especially
Supplement 2) of:

Benninga, H. F., Van der Velde, R., and Su, Z.: Sentinel-1 soil moisture
content and its uncertainty over sparsely vegetated fields, J. Hydrol. X, 9,
100066, doi:10.1016/j.hydroa.2020.100066, 2020.
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4. The uncertainty of in situ station measurements

Abstract

A horizontal and a vertical mismatch between the soil moisture con-
tent (SMC) retrievals from satellites and the references from station
measurements cause a spatial mismatch uncertainty between the
two. This spatial mismatch uncertainty was estimated by calculating
the unbiased root mean square deviation (uRMSD), i.e. the stand-
ard deviation, of station measurements at 5 cm depth with field
measurements that were collected inside four agricultural fields
and following uncertainty propagation rules. First, the field probe
measurements were calibrated against gravimetrically determined
volumetric SMC measurements, which results in an uncertainty of
the field probe measurements of 0.020 m3 m−3–0.032 m3 m−3. After
correcting for the uncertainty of the field probe measurements, the
estimates of spatial mismatch uncertainty for the four study fields
are between 0.036 m3 m−3 and 0.068 m3 m−3. The average value of
0.051 m3 m−3 is found as common measure for the spatial mismatch
uncertainty.

Keywords: Soil moisture content, station measurements, reference uncertainty,
field measurements.
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4.1 Introduction

Soil moisture content (SMC) retrievals from satellite observations rely
on references for calibration and validation purposes (e.g. Dorigo et al.,
2011). The SMC references are typically obtained from in situ measure-
ments. Continuous SMC monitoring stations can provide the references
for a long time period and for a range of surface and hydrometeorological
conditions.

A difference in sampling depth, however, exists between the SMC
retrievals from satellite observations and the references from station
measurements (Van der Velde et al., 2021; Escorihuela et al., 2010; Kor-
nelsen and Coulibaly, 2013; Rondinelli et al., 2015; Zheng et al., 2019; Lv
et al., 2018; Lee et al., 2017). C-band microwave observations, such as
from the Sentinel-1 satellites, sample the soil from the surface to a depth
of 1 cm–10 cm (Nolan and Fatland, 2003; Ulaby et al., 1996). In contrast,
SMC stations are equipped with measurement probes at discrete depths,
with the shallowest probe often at 5 cm or 10 cm depth. Consequently, a
vertical mismatch is introduced.

Furthermore, a scale gap exists between SMC retrievals and (point-
scale) station measurements (Western et al., 2002; Cosh et al., 2006).
Many SMC monitoring networks, such as the Twente network (Van der
Velde and Benninga, in preparation, in Chapter 2) and the Raam network
(Benninga et al., 2018c, in Chapter 3) in the Netherlands, were developed
on a regional scale. These two networks have densities of approximately
100 km2 and 33 km2 per station, and up to 80 km2 and 8.2 km2 per
station in denser monitored areas. The distributed stations of a network
can be averaged to obtain a regional estimate of SMC (e.g. Van der
Velde et al., 2021; Crow et al., 2012; Colliander et al., 2017; Balenzano
et al., 2021; Singh et al., 2020). Regarding fine- and field-scale SMC
estimates, because of the large distance between the stations, this thesis
and several other studies (e.g. Lievens and Verhoest, 2012; Van der Velde
et al., 2015; Bauer-Marschallinger et al., 2019; Carranza et al., 2019;
Pathe et al., 2009; Balenzano et al., 2021) rely on single SMC stations for
providing the references. This is justified by the SMC temporal stability
concept, from which can be inferred that single stations may be used
for representing the SMC at larger scales, but this does involve a spatial
mismatch uncertainty (Cosh et al., 2006; Vachaud et al., 1985; Cosh et al.,
2016; Lievens and Verhoest, 2012; Pathe et al., 2009). Moreover, in the
case of agricultural fields, SMC stations are generally installed at the
border of fields for safety and continuity reasons. A horizontal mismatch
between the SMC at an in situ station and field-averaged SMC originates
from the spatial scale mismatch, differences in land cover, soil texture
and structure, and local features such as nearby ditches and subsurface
drainage pipes.

The vertical and horizontal mismatches cause uncertainty in the SMC
station measurements as references for field-scale satellite (Sentinel-1
in the context of this thesis) observed SMC. The horizontal and vertical
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mismatch uncertainties will together be referred to as spatial mismatch
uncertainty (Us,S1). The objective of this chapter is to estimate the Us,S1.
The measurements from continuous SMC monitoring stations at 5 cm
depth were compared with field measurements that were collected inside
four agricultural fields. Taking into account the uncertainty of the field
probe measurements (Ufp), the Us,S1 was estimated following uncertainty
propagation rules.

4.2 Data

4.2.1 Station measurements

The SMC station measurements were collected by monitoring stations
in the eastern part of the Netherlands. These monitoring stations are
collectively known as the Twente network (Van der Velde et al., 2021;
Dente et al., 2011, 2012) and further described in Van der Velde and
Benninga (in preparation, in Chapter 2). They are equipped with 5TM
probes (METER Group, 2019) installed at nominal depths of 5 cm, 10 cm,
20 cm, 40 cm and 80 cm, of which the readings are stored every 15 min.
Van der Velde and Benninga (in preparation, in Chapter 2) calibrated the
5TM probes under laboratory conditions for the soils found in the study
region. This resulted in an expected accuracy of 0.028 m3 m−3. We used
the 5 cm SMC measurements, which provide an integrated measurement
over a soil depth of 1 cm to 9 cm (Benninga et al., 2018c, in Chapter 3).

4.2.2 Field measurements

Adjacent to monitoring stations, we selected two meadows (hereafter
field I and II) and two cultivated fields (field III and IV) inside which we
collected field measurements. The study fields are shown in Figure 4.1.
Field I and III are adjacent to the same monitoring station. The study
fields have loamy sandy surface layers (detailed in Appendix A.1). In the
period of the field measurements, field III and IV were used to cultivate
maize. The vegetation conditions vary from sparse or fallow outside the
growing seasons (see the photos in Figure 4.1) up to leaf area indices
(LAI) of 8.0 m2 m−2, 7.7 m2 m−2, 3.9 m2 m−2 and 3.8 m2 m−2 for field I–IV
inside the growing seasons (Figure 7.6).

SMC field measurements of the 0 cm–5.7 cm layer were collected
inside field I–IV with a handheld Stevens HydraProbe (Stevens Water
Monitoring Systems, 2020). The field measurements were collected
between May 2016 and April 2018 on 87 occasions in total. Fields I–IV
have net surface areas, excluding a 20 m distance from the borders of
the fields and a 40 m distance from trees and buildings to avoid possible
influences on the satellite observations (Chapter 6), of 2.0 ha, 2.4 ha,
0.45 ha and 2.4 ha, respectively. Depending on the size of the field, we
took field measurements at three to six locations (50 m–100 m apart). The
locations are shown in Figure 4.1. At each location, four measurements
were acquired with the field probe to reduce the uncertainty.
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Figure 4.1 The locations of the SMC monitoring stations and SMC field meas-
urements. Background is the digital terrain model AHN2 (Actueel Hoogtebestand
Nederland, 2012b).

For the calibration of the field probe, on each measurement day gra-
vimetrically determined volumetric SMC (GVSMC) measurements were
taken immediately adjacent to field measurements. This follows the
calibration procedure described in Cosh et al. (2005). Then, a power func-
tion, fitted through the match-ups of field probe temperature-corrected
relative permittivity (εr ) measurements and adjacent GVSMC measure-
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ments, acts as calibration function in a similar fashion as described
in Benninga et al. (2018c, in Chapter 3). The uncertainty of the field
probe measurements (Ufp) is estimated between the calibrated probe
measurements and the GVSMC references.

The field measurements are considered to be representative for Sen-
tinel-1 observed SMC. Therefore, the field measurements were filtered
according to the masking rules for frozen conditions, wet snow and
intercepted rain that have been developed in Benninga et al. (2019, in
Chapter 5) for Sentinel-1 backscatter (σ 0) observations. This reduces
the number of field measurements, from the 87 occasions in total, to 66
used for estimating the Us,S1.

4.3 Method

4.3.1 Definition of uncertainty

Differences between the field and station SMC have a systematic and
variable component (Lee et al., 2017; Gruber et al., 2020). The systematic
component is a correctable bias, which is further considered in Chapter 6.
The variable component is the (random) uncertainty.

The standard deviation is selected as uncertainty measure. The stand-
ard deviation of the differences between two datasets, such as SMC
retrievals and references, is often referred to as the unbiased root mean
square deviation (uRMSD; Kerr et al., 2016):

uRMSD =

√√√√∑N
t=1

(
Ye(t)+

(
Yr − Ye

)
− Yr (t)

)2

N
, (4.1)

where N stands for the number of match-ups between estimates (Ye) and
references (Yr ), t stands for the observation number and the bars denote
the means of Ye and Yr .

4.3.2 Spatial mismatch uncertainty

Both the measurement uncertainty of the SMC station probes (Usp) and
the representativeness of the SMC station measurements at 5 cm depth
for the surface SMC at adjacent fields (Us,f ) contribute to the Us,S1.
Under the assumption that Usp and Us,f are uncorrelated, their combined
uncertainty can be calculated by following the addition rule for variances
of independent random variables (Moore et al., 2017):

Us,S1 =
√
Usp2 +Us,f 2. (4.2)

Ultimately, the Us,f is retrieved by comparing the station measure-
ments with the spatial mean of the field measurements. However, in addi-
tion to the Us,f , the Usp and Ufp constitute the uncertainty between the
station measurements and the spatial mean of the field measurements.
As the field measurements are averaged over a number of measurements
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inside the study fields, from the standard deviation of a sample mean
(Moore et al., 2017) follows that the Ufp decreases according to 1/

√
M ,

where M is the number of measurements inside a field. Under the as-
sumption that Us,f , Usp and Ufp are uncorrelated, the total uncertainty
between the station measurements and the spatial mean of the field
measurements (Us,F ) can be formulated as:

Us,F =
√√√
Us,f 2 +

(Ufp√
M

)2

+Usp2. (4.3)

Equation 4.3 can be converted to:

Us,f =
√√√
Us,F

2 −
(Ufp√

M

)2

−Usp2. (4.4)

Combining Equation 4.2 and Equation 4.4 drops out Usp and results in
the final equation to estimate the Us,S1:

Us,S1 =
√√√
Us,F

2 −
(Ufp√

M

)2

. (4.5)

The Ufp is quantified in Section 4.4.1. The Us,F is calculated with
the uRMSD (Equation 4.1) between the station measurements at the
timestamps the field measurements were collected and the spatial mean
of the field measurements.

4.3.3 Performance metrics

Next to estimates of Ufp and Us,S1, the bias, Pearson correlation coef-
ficient (rP ) and root mean square deviation (RMSD) were calculated
between datasets. This was done between the calibrated probe meas-
urements and the GVSMC references, and between the station and field-
averaged SMC measurements. The equations for the bias, rP and RMSD
are defined in Appendix A.2.

4.4 Results and discussion

4.4.1 Calibration and uncertainty of the field probe

Figure 4.2a shows the field probe εr measurements against the GVSMC
references as well as the fitted calibration function between the two.
Table 4.1 lists the performance metrics of the field measurements after
the calibration. One (regional) calibration function for the measurements
at the four study fields is justified by the overlapping point clouds
(Figure 4.2a), the small remaining bias and high rP (Table 4.1) for the
individual fields. The match between the field probe measurements
after application of the regional calibration function with the GVSMC
references is shown in Figure 4.2b.
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Figure 4.2 Field probe measurements against GVSMC references. (a) The
calibration function between the field probe εr measurements and the references,
and (b) the match between the calibrated field probe measurements and the
references.

Table 4.1 The performance metrics of the SMC field measurements after the
calibration against GVSMC references.

Field Number of pairs
Bias rP RMSD uRMSD (Ufp)

[m3 m−3] [−] [m3 m−3] [m3 m−3]

I 52 −0.014 0.95 0.034 0.031
II 13 −0.0080 0.95 0.033 0.032
III 39 0.010 0.94 0.026 0.024
IV 50 0.0084 0.97 0.021 0.020

The measurement uncertainty of the field probe (Ufp) was quanti-
fied with the uRMSD (Equation 4.1) between the calibrated field probe
measurements and the GVSMC references. The values of 0.020 m3 m−3 to
0.032 m3 m−3 are comparable to the calibration accuracy of 0.028 m3 m−3

estimated for the 5TM probes of the Twente network (Van der Velde
and Benninga, in preparation, in Chapter 2) and 0.029 m3 m−3 for a
HydraProbe (Cosh et al., 2016).

4.4.2 Spatial mismatch uncertainty

Figure 4.3 shows the SMC station measurements, the measurements at
the different locations within the fields, and the spatial mean of the
field measurements. Table 4.2 lists the bias and rP between the SMC
field means and the station measurements. For field IV an inconsist-
ency was found in the station measurements between May 2016–Novem-
ber 2016 and April 2017–September 2017 (see Figure 4.3 and the biases
in Table 4.2), so these periods are listed separately in Table 4.2. The
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inconsistency between these periods is further discussed in Chapter 6.
The high rP values in Table 4.2 correspond with the temporal stability
concept that single stations can have a high correlation with the mean
SMC at a larger scale (Vachaud et al., 1985; Cosh et al., 2006), and support
the use of the station measurements at 5 cm depth as representative for
the surface SMC of the adjacent fields (Lievens and Verhoest, 2012).
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Figure 4.3 SMC station measurements and SMC field measurements. Both the
measurements at the separate field locations in Figure 4.1 and the spatial mean
of the field measurements are shown.
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Equation 4.1 and Equation 4.5 were applied to estimate Us,F and Us,S1.
Table 4.2 lists the results for the study fields. By first averaging for
field IV the Us,S1 for the two separate periods and then calculating the
mean over field I–IV, a value of 0.051 m3 m−3 is found as the common
measure for Us,S1.

Table 4.2 Comparison between the station and field-averaged SMC measure-
ments.

Field Number of pairs
Bias rP Us,F Us,S1

[m3 m−3] [−] [m3 m−3] [m3 m−3]

I 19 0.0079 0.90 0.037 0.036
II 10 −0.0014 0.83 0.068 0.068
III 19 −0.042 0.80 0.056 0.056

IV 18
All measurements: −0.076 (18)

May ’16–Nov ’16: −0.024 (8)
April ’17–Sep ’17: −0.12 (10)

0.55
0.75
0.81

0.064
0.051
0.039

0.064
0.051
0.039

Measurements were collected at three to six locations within a field.
Furthermore, at each field location four measurements were acquired.
This brings the number of measurements per study field on 12 for
field III, 20 for field I, and 24 for field II and IV. From Equation 4.5 can
be seen that the effect of Ufp is decreased by a factor 1/

√
M . As such,

the considerable number of measurements that was used to estimate
the SMC field mean causes that the effect of Ufp is small and the Us,S1

values are almost equal to the Us,F values.
The field measurements are considered representative for satellite-

observed SMC. To be consistent with the estimation of SMC from satellite
observations, the field measurements were filtered according to masking
rules developed for Sentinel-1 σ 0 observations (Benninga et al., 2019, in
Chapter 5). The filtered field measurements are also shown in Figure 4.3.
Only the masking rule for rain interception applied to the field measure-
ments as the masking rule conditions for snow and frozen conditions
were not met during field measurements. Including both the unfiltered
and the filtered field measurements results in the Us,S1 values listed
in Table 4.3. The Us,S1 values are lower with (Table 4.2) than without
the filtering. This indicates that the masking rule for rain interception,
developed for Sentinel-1 σ 0 observations, is applicable to these field
measurements and effective in reducing the uncertainty. Whether this is
also the case for station measurements at 5 cm or 10 cm depth should
be investigated.

Time-invariant Us,S1 values per study field and a common Us,S1 value
were estimated, but this approach could be a simplification of reality.
Several studies showed that the spatial variability of SMC depends on
the SMC conditions. The SMC spatial variability is generally lowest in
dry and wet conditions and increases during intermediate SMC condi-
tions, as a result of (at this scale) homogeneous precipitation, causing
homogeneous wet conditions, and dry-down processes which are first
heterogenizing and then homogenizing (Ryu and Famiglietti, 2005; Kor-
nelsen and Coulibaly, 2013). Based on more than 36 000 measurements
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Table 4.3 Same as Table 4.2, but without filtering the field measurements
according to the masking rules developed for Sentinel-1 σ 0 observations.

Field Number of pairs
Bias rP Us,F Us,S1

[m3 m−3] [−] [m3 m−3] [m3 m−3]

I 26 0.012 0.78 0.074 0.074
II 12 0.022 0.74 0.082 0.081
III 26 −0.039 0.68 0.088 0.088

IV 23
All measurements: −0.053 (23)
May ’16–Nov ’16: 0.0037 (11)
April ’17–Sep ’17: −0.10 (12)

0.26
0.52
0.39

0.087
0.076
0.060

0.087
0.075
0.060

collected in two sub-humid regions in central USA, Famiglietti et al. (2008)
developed the empirical functions of SMC spatial variability shown in Fig-
ure 4.4. As the spatial variability of SMC depends on the SMC conditions,
the Us,S1 may actually also depend on the SMC conditions. The Us,S1

values were estimated mainly on SMC measurements in the regime for
which the highest spatial variability was found, namely in intermediate
SMC conditions between 0.1 m3 m−3 and 0.25 m3 m−3 (Figure 4.4), so the
Us,S1 value may be interpreted as probably being quite close to the upper
limit and the value may decrease for wetter and drier soil conditions.
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Figure 4.4 The number of measurements at field I–IV and the SMC spatial
variability as a function of SMC and extent. The SMC spatial variability is
adopted from the empirical functions developed by Famiglietti et al. (2008).

In contrast, the sampling depth of the field measurements likely
causes an underestimation of the Us,S1. Although sampling depths of
up to 10 cm are reported for C-band σ 0 observations, this is for very
dry soils and it is 1 cm–3 cm in the general SMC regime (Nolan and
Fatland, 2003; Ulaby et al., 1996). 0 cm–5.7 cm layer field measurements
were collected and compared with station measurements to estimate the
Us,S1, but larger differences with the station measurements are expected
because Sentinel-1’s sampling depth will generally be smaller.
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4. The uncertainty of in situ station measurements

Besides, the study by Famiglietti et al. (2008) suggests that the spa-
tial variability of SMC increases with extent. Figure 4.4 shows this for
100 m× 100 m and 800 m× 800 m, which are the extents in Famiglietti
et al. (2008) closest to the surface areas of the study fields. The Us,S1

estimates for the study fields in Table 4.2 do not directly show a re-
lation with their surface areas. However, care should be taken when
extrapolating the Us,S1 estimates to fields with different surface areas.
Furthermore, SMC variability may depend on field conditions regarding
e.g. land cover, soil characteristics and agricultural management. Such
effects on Us,S1 require further investigation.

4.5 Conclusion

The uncertainty of SMC station measurements as references for satellite
(Sentinel-1) observed field-scale SMC (Us,S1) was estimated by comparing
station measurements against measurements that were collected inside
four study fields with a handheld device. In the calculation, we corrected
for the uncertainty of the field probe measurements (Ufp). A significant
amount of uncertainty is detected between SMC station measurements
and field-scale SMC estimates. The estimates of Us,S1 for the four study
fields are between 0.036 m3 m−3 and 0.068 m3 m−3. The average value of
0.051 m3 m−3 is found as common measure for Us,S1. It may be expected
that the Us,S1 decreases in wet and dry conditions, is underestimated due
to the station probes’ sampling depth being closer to the sampling depth
of the field measurements than to that of the satellite observations as
well as depends on the extent of fields and possibly more field conditions;
aspects which require further investigation.
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5Impacts of radiometric uncertainty
and weather-related surface
conditions on soil moisture
content retrievals with Sentinel-1

This chapter is based on:

Benninga, H. F., Van der Velde, R., and Su, Z.: Impacts of Radiometric
Uncertainty and Weather-Related Surface Conditions on Soil Moisture Re-
trievals with Sentinel-1, Remote Sens., 11, 2025, doi:10.3390/rs11172025,
2019.
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5. Sentinel-1 masking rules and radiometric uncertainty

Abstract

The radiometric uncertainty of synthetic aperture radar (SAR) obser-
vations and weather-related surface conditions, caused by frozen
conditions, snow and intercepted rain, affect the backscatter (σ 0)
observations and limit the accuracy of soil moisture content (SMC)
retrievals. This study estimates Sentinel-1’s radiometric uncertainty,
identifies the effects of weather-related surface conditions on σ 0

and investigates their impact on SMC retrievals for various condi-
tions regarding SMC, surface roughness and incidence angle. Mask-
ing rules for the surface conditions that disturb σ 0 were developed
based on meteorological measurements and timeseries of Sentinel-1
observations collected over five forests, five meadows and five cultiv-
ated fields in the eastern part of the Netherlands. The Sentinel-1 σ 0

observations appear to be affected by frozen conditions below an air
temperature of 1 ◦C, snow during Sentinel-1’s morning overpasses
on meadows and cultivated fields and interception after more than
1.8 mm of rain in the 12 h preceding a Sentinel-1 overpass, whereas
dew was not found to be of influence. After the application of
these masking rules, the radiometric uncertainty was estimated by
the standard deviation of the seasonal anomalies timeseries of the
Sentinel-1 forest σ 0 observations. By spatially averaging the σ 0

observations, the Sentinel-1 radiometric uncertainty improves from
0.85 dB for a surface area of 0.25 ha to 0.30 dB for 10 ha for the
VV polarization and from 0.89 dB to 0.36 dB for the VH polariza-
tion, following approximately an inverse square root dependency
on the surface area over which the σ 0 observations are averaged.
Deviations in σ 0 were combined with the σ 0 sensitivity to SMC as
simulated with the integral equation method (IEM) surface scattering
model, which demonstrated that both the disturbing effects by the
weather-related surface conditions (if not masked) and radiometric
uncertainty have a significant impact on the SMC retrievals from
Sentinel-1. The SMC retrieval uncertainty due to radiometric uncer-
tainty ranges from 0.01 m3 m−3 up to 0.17 m3 m−3 for wet soils and
small surface areas. The impacts on SMC retrievals are found to be
weakly dependent on the surface roughness and the incidence angle,
and strongly dependent on the surface area (or the σ 0 disturbance
caused by a weather-related surface condition for a specific land
cover type) and the SMC itself.

Keywords: Sentinel-1, radiometric uncertainty, disturbing surface conditions,
masking rules, soil moisture content.
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5.1 Introduction

Earth observations made by synthetic aperture radar (SAR) instruments
can be used to estimate soil moisture content (SMC) at field scale (e.g. El
Hajj et al., 2017; Lievens and Verhoest, 2012; Su et al., 1997; Amazirh
et al., 2018; Kornelsen and Coulibaly, 2013). However, SAR backscatter
(σ 0) observations contain inaccuracies due to calibration uncertainties,
sensor instabilities and speckle effects (Ulaby and Long, 2014; Torres
et al., 2012; Schwerdt et al., 2017; Schmidt et al., 2018), hereafter com-
bined and referred to as radiometric uncertainty. In addition to imper-
fections inherent to a retrieval algorithm, the radiometric uncertainty
controls the accuracy of SMC retrievals.

The radiometric uncertainty of SAR observations can be determined
by analysing the temporal σ 0 variability of a target for which the σ 0

is time-invariant (El Hajj et al., 2016; Baghdadi et al., 2015; Hawkins
et al., 1999). The C-band Sentinel-1 signal is unlikely to penetrate dense
canopies (Link et al., 2018; Guerriero et al., 2016; Ulaby et al., 1990; Ulaby
and Long, 2014). Therefore, forest σ 0 can be assumed to be unaffected
by variations in SMC and surface roughness, which can cause large and
abrupt changes in the σ 0 over other land covers, and forests should
behave as fairly time-invariant targets (Baghdadi et al., 2015; El Hajj et al.,
2016; Hawkins et al., 1999). This property of the forest σ 0 was exploited
to estimate the radiometric stability of SAR observations by calculating
the standard deviation of the σ 0 timeseries (El Hajj et al., 2016; Baghdadi
et al., 2015; Hawkins et al., 1999).

Previous studies (El Hajj et al., 2016; Baghdadi et al., 2015; Hawkins
et al., 1999) determined the radiometric stability of σ 0 timeseries from
targets with surface areas ranging from a pine tree forest of 8.1 ha
(856 Sentinel-1 pixels) to an Amazon rainforest area of 10 000 km2. Cal-
ibration uncertainties and sensor instabilities will mainly determine
the variability in the mean forest σ 0 over such large surface areas, be-
cause the large number of independent samples leads to the suppression
of the speckle effects (Ulaby and Long, 2014; Hawkins et al., 1999). Ra-
diometric uncertainty from smaller surface areas, which contains a larger
contribution of speckle due to the lower number of independent samples,
is particularly relevant for the retrieval of SMC at field scale. If speckle
is not completely suppressed, this is a contributing factor to the SMC
retrieval accuracy. For example, with synthetically generated speckled σ 0

representing Sentinel-1 observations of bare soil, Pierdicca et al. (2014)
obtained an improvement in SMC retrieval accuracy (root mean square
deviation, RMSD) from 0.035 m3 m−3 at the native resolution (1 pixel)
to 0.025 m3 m−3 at field scale (10× 10 pixels). For the quantification
of radiometric uncertainty and its effect on SMC retrieval uncertainty,
radiometric uncertainty needs to be determined as a function of the
surface area over which the σ 0 observations are aggregated.

Besides radiometric uncertainty, several weather-related surface con-
ditions may disturb σ 0 observations, e.g., inundation (Henry et al., 2006;
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Huang et al., 2018), frozen conditions (Hallikainen et al., 1985; Mironov
et al., 2017; Baghdadi et al., 2018), wet snow (Ulaby and Long, 2014; Na-
gler and Rott, 2000; Baghdadi et al., 1997), intercepted rain (El Hajj et al.,
2016; De Jong et al., 2000; Cisneros Vaca and Van der Tol, 2018; Dobson
et al., 1991) and dew (Jackson and Moy, 1999; Gillespie et al., 1990; Ulaby
and Long, 2014; Riedel et al., 2002), and thus affect the forthcoming SMC
retrievals. Masking satellite observations for conditions under which SMC
retrieval is not possible or more uncertain is common for existing coarse
resolution (> 9 km) products, such as from the Advanced Scatterometer
(ASCAT; Naeimi et al., 2012; Wagner et al., 2013), Soil Moisture and Ocean
Salinity (SMOS; Kerr et al., 2016; Wigneron et al., 2017) and Soil Moisture
Active Passive (SMAP; Wigneron et al., 2017). Previous studies (Bauer-
Marschallinger et al., 2019; Molijn et al., 2018) have acknowledged that
geophysical products derived from Sentinel-1 are also subject to elevated
uncertainty levels if unwanted disturbances in the σ 0 observations are
not addressed and further development of operational products would
benefit from a masking procedure for disturbing surface conditions.

The objectives of this study are (1) to develop a masking procedure
for the weather-related surface conditions that disturb Sentinel-1 σ 0

observations, (2) to estimate Sentinel-1’s radiometric uncertainty as a
function of surface area, and (3) to determine their impact on SMC re-
trievals. We investigated the weather-related surface condition effects of
frozen conditions, snow, intercepted rain and dew, which are represented
by nearby meteorological measurements, on Sentinel-1 σ 0 observations
collected over five meadows, five cultivated fields and five forests in
the Twente region in the east of the Netherlands. The results from
these analyses are used to define a set of rules that could be taken as
a starting point for the development of a formal masking procedure.
After the application of the developed masking rules, the Sentinel-1
σ 0 observations of the five forests are used to estimate Sentinel-1’s
radiometric uncertainty (sS1) as a function of the forest surface area (A)
over which the Sentinel-1 σ 0 observations are averaged (from 0.25 ha to
10 ha). With the quantifications of sS1 and the disturbing effects on σ 0

by the weather-related surface conditions, we determined their impact
on SMC retrievals from Sentinel-1 σ 0 for various bare surface conditions.
The widely applied integral equation method (IEM) surface scattering
model (Fung et al., 1992) was employed to simulate the σ 0 sensitivity
to SMC for a surface representing meadows and a surface representing
cultivated fields, for the incidence angles at which Sentinel-1 observes
the Twente region and for dry to wet soil conditions. With these analyses
we aim to provide insight in the role that the sS1 and the weather-related
surface conditions (if not masked) play in the accuracy of SMC retrievals
from Sentinel-1 σ 0.
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5.2 Study area and data

5.2.1 Twente region and meteorological measurements

The Twente region, located in the eastern part of the Netherlands (Fig-
ure 5.1a), has a temperate oceanic climate. In the region are 20 stations
equipped with 5TM SMC and soil temperature sensors (METER Group,
2019) at depths of 5 cm, 10 cm, 20 cm, 40 cm and 80 cm (Dente et al.,
2012, 2011). The Twente region and the SMC and temperature monit-
oring network are further described in Van der Velde and Benninga (in
preparation, in Chapter 2).

The Twente region is rather flat with some elevated glacial ridges,
see Figure 5.1b. The land cover in the region is a mosaic of cultivated
crop fields, meadows, forested and built-up areas. The masking rules for
weather-related surface conditions have been developed on Sentinel-1
σ 0 observations over five forests, five meadows and five cultivated fields
(Figure 5.1b), and the sS1 has been estimated using the σ 0 observations of
the five forests. These forest areas (Figures 5.1c–g) were selected because
they consist of dense forest, they are approximately homogeneous and
have an area larger than 10 ha. The CORINE Land Cover maps 2012
and 2018 (Copernicus Land Monitoring Service, 2019) and the High
Resolution Layer Forest 2012 and 2015 (Copernicus Land Monitoring
Service, 2018) show that forest I–III are coniferous forest. Forest IV is
dominated by coniferous forest (classified as coniferous forest in the
CORINE Land Cover maps) and forest V contains a significant portion of
deciduous forest (classified as deciduous forest in the CORINE Land Cover
maps). Field visits have confirmed these classifications and revealed that
most parts of the forests I–V have an understory of deciduous bush and
trees, and that the soil surfaces are covered by litter.

According to laboratory analyses (Dente et al., 2011) and the soil
physical units map of the Netherlands (‘bodemfysische eenhedenkaart
2012’ in Dutch, or BOFEK2012; Wösten et al., 2013), sandy to loamy sandy
soils dominate the surface layer in the Twente region. The average soil
texture from BOFEK2012 for the selected meadows and cultivated fields
is 81.5 % sand, 14 % silt and 4.5 % clay, with a bulk density of 1.36 g cm−3.

The Royal Netherlands Meteorological Institute (‘Koninklijk Neder-
lands Meteorologisch Instituut’ in Dutch, or KNMI) operates three auto-
mated weather stations in the Twente region (Figure 5.1b). The stations
provide hourly measurements (KNMI, 2019), of which air temperature
(1.5 m above ground) and relative humidity (1.5 m above ground) at
hourly time steps, rainfall as hourly sums and wind speed (10 m above
ground) as hourly averages were used to develop the masking rules for
frozen conditions, rain interception and dew (see Section 5.3.2). Table 5.1
lists some statistics on the measurements by the KNMI weather stations
in the Twente region.

Adjacent to one of the selected meadows (since 13 April 2017) and
two of the selected cultivated fields (since 27 May 2016 and 13 April 2017)
rainfall was measured by a tipping bucket rain gauge (Davis Rain Col-
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Figure 5.1 (a) Location of the Twente region in the Netherlands. (b) The Twente
region with the selected study fields and the meteorological measurement
locations. Background is the digital terrain model AHN2 (Actueel Hoogtebestand
Nederland, 2012b). The grid shows WGS84 coordinates. (c–g) Zoom-ins of the
selected forest areas I to V.

lector 7857M; Davis Instruments, 2015) with a resolution of 0.2 mm, also
shown in Figure 5.1b. If available, these measurements were used to
develop the masking rule for rain interception (see Section 5.3.2.3).

KNMI also operates a network of precipitation stations (Figure 5.1b)
that record precipitation and snow depth daily at 09:00 CET (KNMI, 2019).
These measurements were used to develop the masking rule for snow
(see Section 5.3.2.2). Over 2014–2019 the surface was covered by snow
on average 10 days per year, varying between 5 days in the hydrological
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Table 5.1 Summary statistics of the measurements by the three KNMI weather
stations (KNMI, 2019) in the Twente region, averaged over five hydrological
years (1 April 2014–31 March 2019).

Condition Twenthe Hupsel Heino

Minimum monthly mean air temperature [◦C] 2.9 (January) 3.2 (January) 3.0 (January)
Maximum monthly mean air temperature [◦C] 19.0 (July) 19.0 (July) 18.7 (July)
Number of days per year on which the air
temperature dropped below 0 ◦C

53 49 49

Annual amount of rainfall [mm] 830 744 740
Number of days per year with rain
(minimum 1 mm d−1)

139 124 131

year 2015 (1 April 2015–31 March 2016) and 23 days in the hydrological
year 2016 (1 April 2016–31 March 2017).

5.2.2 Sentinel-1 imagery

The Sentinel-1 constellation (Sentinel-1A and Sentinel-1B) provides over
land images in Interferometric Wide Swath (IW) mode at VV and VH
polarization, C-band (5.405 GHz), with a reported radiometric accuracy
of 1 dB (three standard deviations) and, after multi-looking, a spatial res-
olution of 20 m× 22 m (4.4 equivalent number of looks) for the Ground
Range Detected (GRD) High Resolution (HR) product (Torres et al., 2012;
Bourbigot et al., 2016). By analysing timeseries of Sentinel-1 σ 0 observa-
tions from point targets with a well-specified σ 0, radiometric accuracy
standard deviations of 0.30 dB (one standard deviation) for Sentinel-1A
(Schmidt et al., 2018), and 0.29 dB (one standard deviation) for Sentinel-1B
(Schwerdt et al., 2017) have been obtained.

Level-1 GRD HR IW Sentinel-1 images were downloaded from the Co-
pernicus Open Access Hub (Copernicus, 2019). We processed the images
using the following operations available in the European Space Agency
(ESA)’s Sentinel Application Platform (SNAP) V6.0 (ESA, 2019): (1) Apply
Orbit File, (2) Thermal Noise Removal, and (3) Range Doppler Terrain
Correction, including radiometric normalization to σ 0 (in m2 m−2) with
projected local incidence angles on a geographic grid (WGS84) with a
pixel spacing of 9.0E−5◦ (equivalent to 10 m× 6.1 m at the study region’s
latitude). Subsequently, we averaged the Sentinel-1 σ 0 observations sep-
arately over the five individual forests for surface areas ranging from
0.25 ha (41 pixels) to 10 ha (1626 to 1631 pixels) taken from the centre
points (see Figures 5.1c–g), the five individual meadows and the five
individual cultivated fields, and we converted the σ 0 values to decibel
(dB). In the averaging, we excluded the area within 20 m from borders of
fields and 40 m from trees (obviously not for the forests) and buildings
to avoid possible influences on the σ 0 values from outside the study
fields. Sentinel-1A (since 3 October 2014) and Sentinel-1B (since 28 Sep-
tember 2016) together make observations of the Twente region with a
temporal resolution of 1.5 days. Table 5.2 specifies the orbits that cover
the study region. We included all Sentinel-1 images available for the

89



5. Sentinel-1 masking rules and radiometric uncertainty

Twente region from 3 October 2014 until 1 November 2018, which are in
total 676 images.

Table 5.2 Specifications of the Sentinel-1 orbits that cover the Twente region.

Relative orbit
number

Pass Acquisition
time (CET)

Number of
Sentinel-1 images

Projected incidence angle
over the study fields

15 Ascending 18:16 165 32.8◦–36.8◦
37 Descending 6:49 166 33.7◦–38.4◦
88 Ascending 18:24 171 41.2◦–45.1◦
139 Descending 6:41 174 41.5◦–46.2◦

5.3 Methods

5.3.1 Sentinel-1 seasonal anomalies

Seasonal σ 0 dynamics, if not removed from the σ 0 timeseries, would ob-
scure the assessment of the effects of weather-related surface conditions
on Sentinel-1 σ 0 and would cause an overestimation of the sS1.

The σ 0 observations from meadows and cultivated fields vary due to
variations in SMC and vegetation. As the σ 0 increases with increasing
SMC (e.g. Kornelsen and Coulibaly, 2013; Ulaby and Long, 2014; Altese
et al., 1996), the Sentinel-1 σ 0 observations over the meadows and
cultivated fields are expected to be higher in winter than in summer.
The SMC measurements at 5 cm depth in the Twente region indicate
that the SMC is generally at a high level from mid-November to mid-
March (mean is 0.42 m3 m−3) and at a low level from mid-May to mid-
October (mean is 0.23 m3 m−3). However, the exact surface SMC cycle is
different each year and also contains dynamics on shorter timescales in
response to meteorological events. The growing season typically starts
in April and ends in October, during which the meadows are cut multiple
times and/or being grazed and the crops on the cultivated fields are
sowed and harvested. Depending on the crop type and the development
stage, the vegetation decreases the σ 0 when attenuation is dominant
or increases the σ 0 when the scattering from the vegetation and the
soil-vegetation pathways are dominant (e.g. Kornelsen and Coulibaly,
2013; Ulaby and Long, 2014; Joseph et al., 2010).

Although the Sentinel-1 signal is unlikely to penetrate forest canopies,
forest σ 0 might still vary seasonally (Cisneros Vaca and Van der Tol,
2018; Dobson et al., 1991; Hawkins et al., 1999) because canopy develop-
ment in the leafy period leads to an increase in foliar and stem biomass,
and to changes in the vegetation’s dielectric properties (Dobson et al.,
1991). On top of the seasonal development in forest biomass, the leave
and trunk water content (and thus the vegetation’s dielectric properties)
may vary in response to the hydrological conditions (Steele-Dunne et al.,
2017; Frolking et al., 2011). For example, Frolking et al. (2011) identified
a decrease in Ku-band σ 0 observations over the southwestern Amazon
forest during a prolonged drought.
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In addition to the σ 0 variations in response to changes in land surface
parameters, there may be instabilities in the Sentinel-1 σ 0 observations
over time (El Hajj et al., 2016; Schmidt et al., 2018). For example, El Hajj
et al. (2016) reported an offset of +0.9 dB in Sentinel-1A σ 0 observations
over three time-invariant targets (an asphalt racetrack, a pine tree forest
and a tropical forest) between 19 March 2015 and 25 November 2015
compared to observations outside this period, which they attributed
to changes in the calibration of the Sentinel-1 products. In the period
from 25 November 2015 to August 2017 the Sentinel-1A σ 0 observations
varied between −0.75 dB (in October 2016) and +0.6 dB (in May 2016)
relative to the σ 0 that is expected from point targets (Schmidt et al.,
2018), which Schmidt et al. (2018) explained by seasonal changes of
the atmospheric attenuation and temporal trends of transmission and
receive modules in the instrument’s front-end.

To remove the seasonal variation in Sentinel-1 σ 0 observations, we
considered the anomalies of Sentinel-1 σ 0 observations with the moving
average that resembles their seasonality (dσ 0, in dB):

dσ 0(T) = σ 0(T)− 1
NW

i=T+W∑
i=T−W

σ 0(i), (5.1)

where T is an observation timestamp in the σ 0 timeseries,W is the length
of the moving average window applied both forwards and backwards and
NW is the number of observations in the window from T −W to T +W .

At the moving average window that resembles the seasonality of the
σ 0 timeseries, anomalies are assumed to be exclusively due to meas-
urement noise and speckle (i.e., random). Therefore, at this window
length the autocorrelation of the dσ 0 timeseries should be 0. A too small
window will result in a negative autocorrelation of dσ 0, because the
moving average will tend to follow the σ 0 timeseries and a negative
anomaly will likely be followed by a positive anomaly (and vice versa).
As a consequence, part of the uncertainty in which we are interested is
removed. A too large window will result in a positive autocorrelation of
dσ 0, because the moving average underestimates the seasonal dynamics
of σ 0. To find the moving average window that resembles the seasonal
dynamics of σ 0, we evaluated the autocorrelation at a lag of 1 for varied
window lengths (the results are in Section 5.4.1).

5.3.2 Sentinel-1 masks for weather-related surface conditions

Masks for frozen conditions, snow, rain interception and dew were
developed by comparing meteorological measurements that represent
these surface conditions against the Sentinel-1 dσ 0 of the five forests
(the 10 ha forest areas), the five meadows and the five cultivated fields.
We used standard meteorological measurements, which adds to the
general applicability of the resulting masking rules. The results are
presented in Section 5.4.2.
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5.3.2.1 Frozen conditions

Both the water in the soil and in the vegetation can freeze, which we
together refer to as frozen conditions. Its effect on Sentinel-1 σ 0 obser-
vations was investigated by comparing Sentinel-1 dσ 0 against the linear
interpolation result of the two hourly air temperature measurements that
are closest in time to a Sentinel-1 overpass, made by the KNMI weather
station nearest to a study field.

5.3.2.2 Snow

For the assessment of the effect of snow on Sentinel-1 dσ 0, we averaged
the snow depth measurements of the three KNMI precipitation stations
nearest to a study field. Subsequently, the daily snow depth measure-
ments at 9:00 CET were linearly interpolated to the Sentinel-1 overpass
times (listed in Table 5.2).

5.3.2.3 Rain interception

Local rain gauge measurements are available for one meadow and two
cultivated fields. For rainfall at the other study fields we used the hourly
measurements from the nearest KNMI weather station. To denote the pos-
sibility of rain interception on the surface and the canopy, we summed
the precipitation in the hour in which the Sentinel-1 observation was
acquired and the 12 preceding hours following Cisneros Vaca and Van
der Tol (2018) for a coniferous and a deciduous forest in the Netherlands.
Iida et al. (2005, 2017) also used a period of 12 h to separate rainfall
interception events.

5.3.2.4 Dew

Dew consists of water droplets that have condensed from the air on
cooler objects, such as leaves (Conti, 2005; Jackson and Moy, 1999).
Dew is not measured directly in the Twente region, but it is known
that relative humidity conditions larger than 90 % are optimal for dew
formation (Jackson and Moy, 1999).

Rao et al. (1998) showed that a relative humidity threshold of 90 % is
a rather good predictor of dew onset and duration on maize, and they
found only limited improvement with physically-based models. Be-
cause of the limited availability of the variables that are required as
input to physically-based models (Rao et al., 1998), we opted for using
relative humidity as an estimation for the likelihood of dew. The two
hourly relative humidity measurements closest in time, made by the
KNMI weather station nearest to a study field, were linearly interpolated
to a Sentinel-1 overpass time.

Dew most likely forms during the night/morning and other stimuli
are low wind speeds of about 1 m s−1 to 2 m s−1, clear skies and a temper-
ature gradient between the object and the ambient atmosphere of about
1 ◦C to 2 ◦C (Conti, 2005; Gleason et al., 1994; Jackson and Moy, 1999).
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Gleason et al. (1994) used a threshold of 2.5 m s−1 for wind speed (at
10 m above the ground) below which dew is more likely to form. Based
on these studies, we analysed the effect of relative humidity on dσ 0

for the morning and the evening overpasses of Sentinel-1 and for wind
speeds below and above 2.5 m s−1.

5.3.3 Sentinel-1 radiometric uncertainty

After masking the Sentinel-1 σ 0 timeseries, we assume that the remaining
anomalies in the forest dσ 0 timeseries are due to Sentinel-1 measure-
ment noise and speckle. The standard deviation of the dσ 0 timeseries is
a measure for the radiometric uncertainty (sS1, in dB), formulated as:

sS1 =

√∑i=N
i=1 (dσ 0(i)− dσ 0)2

N − 1
, (5.2)

where dσ 0 is the mean of the dσ 0 timeseries (in dB) and N is the total
number of observations in the timeseries.

We estimated sS1 with Equation 5.2 for the five forests for surface
areas (A) ranging from 0.25 ha to 10 ha. Subsequently, a second-order
power function between A (in ha) and sS1 (in dB) of the following form
was fitted:

sS1 = c1Ac2 + c3. (5.3)

The first term on the right-hand side of Equation 5.3 describes the
dependency of sS1 to A. According to the Rayleigh fading model for
speckle, each σ 0 observation is a sample from a Rayleigh distribution
(Ulaby and Long, 2014). By averaging independent σ 0 observations, like
spatially averaging them over an area (A), the uncertainty of the mean σ 0

decreases with 1/
√
M , where M is the number of independent samples

(Ulaby and Long, 2014). This follows from the standard deviation of a
sample mean which decreases with 1/

√
M , as is also formulated as part

of the central limit theorem (Moore et al., 2017). Thus, the expected
value for c2 is −0.5 (A−0.5 = 1/

√
A). For a very large A (infinite number

of samples) the uncertainty due to speckle approaches 0 dB. The second
term on the right-hand side of Equation 5.3 specifies the sS1 which is
present due to the variation in a σ 0 timeseries as a result of inherent
sensor instabilities and calibration uncertainties. The model coefficients
c1 to c3 were obtained by the ‘Trust-Region’ algorithm in the Matlab
Curve Fitting toolbox. The results are presented in Section 5.4.3.

5.3.4 Impact on soil moisture content retrieval accuracy

The physically-based IEM surface scattering model (Fung et al., 1992),
of which various versions have widely been used (e.g. Baghdadi et al.,
2018; Verhoest et al., 2008; Kornelsen and Coulibaly, 2013; El Hajj et al.,
2017; Lievens and Verhoest, 2012; Su et al., 1997; Altese et al., 1996;
Verhoest et al., 2007; Paloscia et al., 2013; He et al., 2017; Guo et al.,

93



5. Sentinel-1 masking rules and radiometric uncertainty

2019; Van der Velde et al., 2012b), simulates the σ 0 of bare land surfaces
as a function of the land surface’s geometric and dielectric properties.
For more background on the IEM model, readers are referred to Ulaby
and Long (2014). We employed IEM to simulate the σ 0 sensitivity to SMC
for various bare surface conditions.

The geometry of the land, also known as the surface roughness, is
parameterized by the root mean square surface height (s), the auto-
correlation length (cl) and an autocorrelation function. An exponential
autocorrelation function was selected here, because it is viewed as most
applicable to agricultural fields (Ulaby and Long, 2014; Verhoest et al.,
2008). Table 5.3 lists the surface roughness scenarios that were in-
vestigated, representing the surfaces of meadows and cultivated fields.
The found surface roughness parameters describe a slightly smoother
surface for meadows than for cultivated fields. A very smooth surface
scenario was added for reference purposes.

Table 5.3 The root mean square surface height (s) and the autocorrelation
length (cl) for three surface roughness scenarios. These surface roughness
scenarios were used to evaluate the impacts of the weather-related surface
conditions and sS1 on SMC retrievals.

Scenario s [cm] cl [cm] Source

Cultivated fields 1.1 11.5 Average of the measurements for
maize fields during SMAPVEX12

(McNairn et al., 2015)
Meadows 0.94 14.8 Average of the measurements for

pastures during SMAPVEX12
(McNairn et al., 2015)

Very smooth surface 0.5 10 Added for reference purposes

The land surface’s dielectric properties, composed of the real and
imaginary relative permittivity (εr ), were estimated with the Mironov
soil dielectric mixing model (Mironov et al., 2009) using the average soil
texture of the meadows and cultivated fields (see Section 5.2.1) and SMC
as input. For the impact of the weather-related surface conditions on
SMC retrievals, we evaluated a SMC range of 0.05 m3 m−3 to 0.50 m3 m−3.
For the impact of the sS1 on SMC retrieval uncertainty, we evaluated a
dry scenario (SMC equal to 0.10 m3 m−3) and a wet scenario (SMC equal
to 0.35 m3 m−3).

The σ 0 sensitivity to SMC was simulated with IEM for the three surface
roughness scenarios (Table 5.3) and the SMC conditions as defined above,
for incidence angles of 35◦ (representative for Sentinel-1 orbits 15 and 37,
see Table 5.2) and 44◦ (representative for Sentinel-1 orbits 88 and 139,
see Table 5.2). Figure 5.2 illustrates the methodology that was used to
calculate the impact of a deviation in σ 0 (∆σ 0) on SMC retrievals: ∆σ 0,
either due to sS1 (both plus and minus) or a disturbing surface condition
(single direction), is superimposed on the σ 0 for a specific SMC value (θ).
The difference between the SMC that is retrieved with σ 0 ±∆σ 0 and the
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SMC starting point (θ) resembles the impact on the SMC retrieval (∆θ±).
The performance of SMC retrievals is typically defined as the standard
deviation of the differences between retrievals and a reference, i.e., the
unbiased RMSD (Kerr et al., 2016). The standard deviation is also taken
as a measure for the sS1. Hence, the ∆θ± that is obtained from sS1 can
be considered equivalent to the unbiased RMSD (both are in m3 m−3).
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Figure 5.2 Illustration of the method to estimate the impact on SMC retrievals
(∆θ) at a specific SMC value (θ) due to a deviation (∆σ 0) in VV backscatter (σ 0

VV ),
for a certain relation between σ 0

VV and SMC simulated by IEM. This example
uses the surface roughness parameters representative for meadows, listed in
Table 5.3.

IEM can simulate the σ 0 for the VV polarization and the VH polar-
ization. In Section 5.4.4 we show the results for the VV polarization,
because this channel is generally used in SMC retrieval procedures for its
larger sensitivity to SMC (e.g. El Hajj et al., 2017; Amazirh et al., 2018).

5.4 Results and discussion

5.4.1 Sentinel-1 timeseries and seasonal anomalies

Figure 5.3 shows the effect of varied moving average windows in Equa-
tion 5.1 on the standard deviation and autocorrelation of the dσ 0 timeser-
ies to find the moving average window that resembles the seasonal
dynamics in the Sentinel-1 σ 0 timeseries. The standard deviation is
larger when no moving average is applied (Figures 5.3a and b), so the
sS1 would be overestimated when the σ 0 seasonal dynamics are not
removed. This is explained by the variations in the timeseries due to
seasonal dynamics and instabilities in the Sentinel-1 σ 0 observations
that are still included, which is also reflected in the autocorrelation be-
ing significantly above 0.0 (Figures 5.3c and d). Regarding forests the
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autocorrelation is approximately 0.0 for a moving average window of
40 days. A moving average window of 40 days backwards and 40 days
forwards is close to the three-month timescale of the meteorological
seasons in the Twente region. Regarding meadows and cultivated fields
the autocorrelation is approximately 0.0 for a moving average window
of 25 days. The smaller window for meadows and cultivated fields can
be explained by the shorter growth cycles of vegetation and harvesting
and the shorter timescales of SMC dynamics, which strongly affect the
σ 0 from these fields.
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Figure 5.3 Standard deviation for the VV (a) and VH polarization (b) and
autocorrelation at a lag of 1 for the VV (c) and VH polarization (d), averaged over
all orbits, for the dσ 0 timeseries calculated with Equation 5.1 using a moving
average window varying from 15 days to 100 days. The values labelled as ’no
window’ were calculated for the anomalies of Sentinel-1 σ 0 observations with
respect to the mean of the timeseries. The dashed lines represent the individual
study fields and the solid lines are the means per land cover type.

Figure 5.4 shows examples of Sentinel-1 σ 0 and dσ 0 timeseries for a
forest, a meadow and a cultivated field. For brevity only the VV polariza-
tion is shown. The Sentinel-1 σ 0, moving average and dσ 0 timeseries of
all the study fields for both the VV and VH polarization are included in
Supplement 1 of Benninga et al. (2019), see Chapter 9.

The variation in the moving average (the second term on the right-
hand side of Equation 5.1) timeseries of the forest σ 0 is limited com-
pared to the results from the meadows and cultivated fields. Exclud-
ing the Sentinel-1 observations that are masked for frozen conditions,
snow or rain interception in the calculation of the moving averages,
the minimum-to-maximum ranges of the moving average for the five
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Figure 5.4 Sentinel-1 VV backscatter observations (σ 0
VV ) and anomalies with

the moving average (dσ 0) calculated with Equation 5.1, using a moving average
window of 40 days for an example forest (a) and 25 days for an example
meadow (b) and an example cultivated field (c). The Sentinel-1 observations that
are masked for frozen conditions, snow or rain interception are not included
in the calculation of the moving averages. The masking rules are defined in
Section 5.4.2.

forests are 1.04 dB–2.09 dB (mean is 1.57 dB) for the VV polarization and
0.91 dB–2.68 dB (mean is 1.52 dB) for the VH polarization. The mean
minimum-to-maximum moving average range is 5.35 dB for the meadows
and 8.57 dB for the cultivated fields for the VV polarization, and 4.83 dB
and 9.17 dB, respectively, for the VH polarization. For C-band SAR obser-
vations, Cisneros Vaca and Van der Tol (2018) and Dobson et al. (1991)
showed that summer conditions lead to an increase of 0.7 dB–1 dB in
the σ 0 from a coniferous Douglas-fir forest and a coniferous pine forest,
respectively. For a deciduous beech forest Cisneros Vaca and Van der Tol
(2018) showed an increase of 0.5 dB at the VV polarization and a decrease
of 1 dB at the VH polarization, whereas Dobson et al. (1991) identified
a general decrease of 0 dB–2 dB for a deciduous forest. The seasonal
variations found in these studies are of the same order of magnitude
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as the moving average ranges that were estimated for the five selected
forests. In Section 5.3.1 we also discussed an offset of +0.9 dB in Sen-
tinel-1A σ 0 observations between 19 March 2015 and 25 November 2015
(El Hajj et al., 2016). Indeed, forest σ 0 increases in this period (see
Figure 5.4a and Supplement 1), although part of the σ 0 offset will be due
to the seasonal effect on σ 0. In the further analyses in this study these
seasonal dynamics are removed from the σ 0 timeseries by considering
the anomalies with the moving averages (dσ 0).

As can be seen in the examples in Figure 5.4 and deduced from
Figures 5.3a–b, dσ 0 values are generally smaller for the forests than for
the meadows and cultivated fields. The larger dσ 0 for meadows and
cultivated fields relate to the effects of short-term variations in SMC and
abrupt changes in vegetation, which superimpose on the seasonality in
Sentinel-1 σ 0 as determined by the moving average.

5.4.2 Effects by weather-related surface conditions

The effects of frozen conditions, snow, intercepted rain and dew on
Sentinel-1 dσ 0 are discussed in Sections 5.4.2.1–5.4.2.4. The meteor-
ological measurements that are used to represent the weather-related
surface conditions are introduced in Section 5.3.2, and dσ 0 follows from
Equation 5.1 and the analysis in Section 5.4.1.

5.4.2.1 Frozen conditions

Figure 5.5 shows dσ 0 against air temperature. For the VV and the VH
observations of the three land cover types, the bin means of 25 dσ 0

data points along the x-axis decrease with air temperature below ap-
proximately 1 ◦C. In other words, for low temperatures the Sentinel-1
observations are lower than their moving averages. This is also visible in
Figure 5.4 in the majority of the Sentinel-1 observations that are masked
for frozen conditions. From this analysis follows the masking rule for
Sentinel-1 observations that were acquired when air temperature was
below 1 ◦C, listed in Tables 5.4 and 5.5. The air temperature threshold
of 1 ◦C could be explained by the measurement height of 1.5 m above
ground, at which the temperature is generally higher than closer to the
ground.

Hallikainen et al. (1985) and Mironov et al. (2017) demonstrated that
for wet soils the real and imaginary parts of εr are considerably lower in
frozen than in thawed conditions, because the εr of ice is much lower
than that of liquid water: εr ≈ 3.2− j0 (ice) versus εr ≈ 73.3− j21.5
(water at 20 ◦C) for C-band (Ulaby and Long, 2014). Consequently, the σ 0

is lower for frozen than for thawed land surfaces. Figure 5.5 and the
mean effects on dσ 0 when the masking rule for frozen conditions applies
(listed in Tables 5.4 and 5.5) indicate that the effect is stronger for the
σ 0 observations in the VH than in the VV polarization, which was also
found by Baghdadi et al. (2018) for Sentinel-1 observations. The largest
signal is observed for the cultivated fields.
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Figure 5.5 The effect of air temperature on the seasonal anomalies (dσ 0) of
the Sentinel-1 σ 0 observations in VV polarization (a) and VH polarization (b).
Each point on the lines represents a bin of 25 Sentinel-1 observations along the
x-axis. The Sentinel-1 observations masked for snow or rain interception are
not included.

5.4.2.2 Snow

Snow is generally shallow and short-lived (couple of days) in the Twente
region, so the number of Sentinel-1 observations under conditions with
snow and the observed snow depth are limited. Moreover, during many
Sentinel-1 observations when snow was present the masks for frozen
conditions or rain interception also apply. Therefore, in Figure 5.6
(dσ 0 against snow depth) and Figure 5.7 (dσ 0 against air temperature,
when snow was present) we also show the Sentinel-1 observations that
would actually be masked for rain interception and frozen conditions,
respectively.

Neither the presence of snow, the depth of the snow layer nor pre-
ceding precipitation seem to have an unambiguous effect on the dσ 0 in
Figure 5.6. Some Sentinel-1 σ 0 observations are clearly lower than their
moving average (for example for a snow depth of 0.70 cm), whereas other
observations seem unaffected (for example for a snow depth of 0.87 cm).
Based on simulations with a radiative transfer model, Ulaby and Long
(2014) have deduced that a dry snow layer is optically thin for snowpacks
below 2 m if r/λ < 10−2, where r is the ice-crystal radius and λ is the
wavelength. This condition holds for Sentinel-1’s C-band, for typical ice-
crystal radii of 0.25 mm to 2 mm (Ulaby and Long, 2014). In contrast, wet
snow’s εr is larger, and consequently wet snow has a larger reflectivity
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Figure 5.6 The effect of snow depth on the seasonal anomalies (dσ 0) of the
Sentinel-1 σ 0 observations in VV polarization (a) and VH polarization (b). Each
data point represents a single Sentinel-1 observation. The Sentinel-1 observa-
tions masked for frozen conditions are not included, whereas the Sentinel-1
observations that are masked for rain interception are included (marked with a
cross).

than dry snow (Ulaby and Long, 2014). Moreover, the absorption by wet
snow is much larger than by dry snow, which also reduces the soil con-
tribution to the σ 0 (Ulaby and Long, 2014). For a snowpack of 48 cm, HH
σ 0 observations at a frequency of 5.5 GHz and an incidence angle of 50◦

reduce from −17 dB (snow liquid water content of 0 %) to −21 dB (snow
liquid water content of 1.26 %) (Ulaby and Stiles, 1981). Using C-band HH
(Radarsat) and VV (European Remote Sensing Synthetic Aperture Radar,
or ERS SAR) observations and theoretical model simulations, Baghdadi
et al. (1997) and Nagler and Rott (2000) also demonstrated that wet snow
strongly reduces the σ 0 and both studies identified a change detection
threshold of −3 dB compared to reference σ 0 from snow-free or dry
snow surfaces for the classification of wet snow. As such, it is expected
that dry snow does not affect the σ 0 and wet snow decreases the σ 0

observations.

Figure 5.7 plots dσ 0 against air temperature for the Sentinel-1 ob-
servations acquired in the morning and in the evening overpasses when
snow was present. From Figure 5.7 it can be deduced that most of the
large negative dσ 0 values in Figure 5.6 come from a Sentinel-1 morn-
ing overpass. The Sentinel-1 observations for the example with a snow
depth of 0.70 cm (mentioned above in this section) were also acquired
in a morning overpass, whereas the Sentinel-1 observations with a snow
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Figure 5.7 The effect of air temperature on the seasonal anomalies (dσ 0)
when snow was present, for the Sentinel-1 VV σ 0 observations acquired in the
morning overpasses (a) and the evening overpasses (b), and the Sentinel-1
VH σ 0 observations acquired in the morning overpasses (c) and the evening
overpasses (d). Each data point represents a single Sentinel-1 observation.
The Sentinel-1 observations masked for rain interception are not included,
whereas the Sentinel-1 observations that are masked for frozen conditions are
included (marked with a cross).

depth of 0.87 cm were acquired in an evening overpass.

When the average air temperature in the 6 h preceding a Sentinel-1
morning observation was above 0 ◦C and the snow depth at 9:00 CET
shortly after the Sentinel-1 morning observation was 0 cm, it is likely
that the snow at the time of the Sentinel-1 observation (at 6:45 CET) also
already melted. Therefore, these Sentinel-1 morning observations are
indicated with a different marker type in Figures 5.7a,c. Indeed, the dσ 0

values of those Sentinel-1 observations are around 0 dB. The remaining
data points in Figures 5.7a,c, i.e. when a snow cover is assumed to be
present, show that the meadow and cultivated field σ 0 observations
acquired in the morning overpasses are disturbed even when the air
temperature is above 1 ◦C. There are two possible explanations for this.
Firstly, despite the air temperature being above 0 ◦C, the soil and the
snow layer may still be frozen. This may be possible because the air
temperature measurements are collected at 1.5 m above the ground
surface. A frozen surface below the optically thin dry snow layer will
reduce the σ 0. Secondly, the snow is melting (wet snow conditions).
Both options would reduce the σ 0 compared to unfrozen and snow-
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5. Sentinel-1 masking rules and radiometric uncertainty

free conditions, but it is impossible to distinguish them with the snow
and temperature measurements available in this study. Baghdadi et al.
(2018) also noted that frozen soils and wet snow cannot reliably be
distinguished with C-band σ 0 observations.

As with the effect of frozen conditions (see Section 5.4.2.1), the largest
signal is observed for the cultivated fields. These fields are generally bare
in winter. The Sentinel-1 forest σ 0 appears unaffected by snow when
air temperature was above 1 ◦C. Baghdadi et al. (1997) also found that,
in contrast to i.a. alfalfa, forage crop, oat and grass, wet snow cannot be
identified over forested areas, which they attributed to the attenuation
of the ground σ 0 signal by the canopy. Some snow may reside on the
forest canopy, but this will melt fast when the air temperature is above
0 ◦C.

The Sentinel-1 observations acquired in the evening overpasses (Fig-
ures 5.7b and d) are unaffected by snow when the air temperature was
above 0 ◦C. The maximum observed snow depth is 1.3 cm, which is the
time-interpolated result of the snow depth recorded at 9:00 CET before
and after the Sentinel-1 observation at 18:20 CET. In reality it is likely
that (most of) such shallow snow has already melted in the time between
the snow depth measurement at 9:00 CET and the Sentinel-1 observation
at 18:20 CET, when the average air temperature was above 0 ◦C. For most
of the Sentinel-1 observations in Figures 5.7b,d the three closest KNMI
precipitation stations also recorded no snow or only a broken snow cover
at 9:00 CET the day after the Sentinel-1 observation. Even though the
majority of the Sentinel-1 evening observations is evidently unaffected,
some suspicious data points can be identified in Figures 5.7b,d. However,
we could not find any evidence for the presence of snow, and therefore,
considered these points as outliers.

From the analyses above follows that the Sentinel-1 morning ob-
servations of meadows and cultivated fields are affected by snow and
should be masked. The masking rules for snow are summarized in
Tables 5.4 and 5.5, along with the mean dσ 0 when the masking rule
applies. For a further development of the snow mask, Sentinel-1 σ 0

observations should be analyzed in combination with detailed snow in-
formation, regarding e.g., depth, wetness and where the snow resides,
for a region where snowpacks are deeper and long-lived.

5.4.2.3 Rain interception

Figure 5.8 shows that the σ 0 increases after rainfall in the 12 h preceding
a Sentinel-1 observation. Regarding meadows and cultivated fields this
will not exclusively being the effect of intercepted rain, but also the effect
of increased SMC. Therefore, for the development of the rain interception
mask we focused on the effect on dσ 0 that is observed for forests.

We defined the masking rule for rain interception as minimum 1.8 mm
of rain (listed in Tables 5.4 and 5.5), because from this amount of rainfall
the effect on the bin-averaged dσ 0 is consistently positive. Starting
from 1.8 mm of rain, the dσ 0 values generally increase with the amount
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Figure 5.8 The effect of the rainfall sum in the preceding 12 h on the seasonal
anomalies (dσ 0) of the Sentinel-1 σ 0 observations in VV polarization (a) and
VH polarization (b). Each point on the lines represents a bin of 25 Sentinel-1
observations along the x-axis. The Sentinel-1 observations masked for frozen
conditions or snow are not included.

of rain until the bin-averaged dσ 0 values are approximately constant
onwards from 4.2 mm of rain with an average effect of +0.47 dB for the
VV polarization and +0.51 dB for the VH polarization. De Jong et al.
(2000) and Riedel et al. (2002) explained that the σ 0 is influenced by the
free-water content of the vegetation, and canopies intercept rainfall as a
thin layer of free water on hydrophilic leaves or as drops on hydrophobic
leaves (De Jong et al., 2000). Moreover, the orientation of the leaves can
change due to the added weight (Jackson and Moy, 1999). Previous stud-
ies showed effects of rainfall on C-band σ 0 of +0.7 dB to +2.5 dB (mean
is +1.3 dB) for a dense mixed forest (De Jong et al., 2000), +1 dB to +2 dB
for a Douglas-fir canopy (Cisneros Vaca and Van der Tol, 2018), +2 dB
to +3 dB for mature conifer and hardwood forests (Dobson et al., 1991),
and +1 dB for a pine tree forest (El Hajj et al., 2016). Regarding crops,
the X-band σ 0 observations by Allen and Ulaby (1984), as described by
Jackson and Moy (1999), show an increase of about 3 dB directly after
the canopies (wheat, maize and soybeans) had been sprayed with water,
whereas the C-band σ 0 observations by Riedel et al. (2002) suggest that
the effect on the σ 0 depends on the vegetation structure and the growth
stadium.

Not only may the effect on the σ 0 by intercepted rain depend on
the vegetation characteristics, also the amount and duration of the
intercepted rain will vary. In this study we used the rainfall sum in
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5. Sentinel-1 masking rules and radiometric uncertainty

the 12 h preceding a Sentinel-1 observation as a rather simple proxy for
rain interception. In reality, many more factors, including evaporation,
the canopy’s density and shape of elements, and the timing and intensity
of the event(s) preceding a Sentinel-1 observation, control whether a
canopy is wet at the moment of a Sentinel-1 overpass. A rain interception
model, such as the Gash model (Gash, 1979), should be used to simulate
these effects, but this goes beyond the scope of this study.

Standing water on fields after a heavy rain event might also affect
the Sentinel-1 σ 0 observations. Complete inundation of an area shows
a clear decrease in the σ 0 (e.g. Henry et al., 2006; Huang et al., 2018),
but standing water on an agricultural field is generally a mosaic of wet
soil and standing water in local depressions. We have not collected
information about standing water on the selected agricultural fields.
Given the high infiltration capacity of the sandy to loamy sandy soils
in the Twente region, we assume that the most severe standing water
situations will already be masked out by the masking rule for rain inter-
ception based on a minimum of 1.8 mm of rain in the 12 h preceding a
Sentinel-1 observation.

5.4.2.4 Dew

Figure 5.9 shows dσ 0 against relative humidity for the Sentinel-1 morn-
ing and evening overpasses and for weak (wind speed < 2.5 m s−1) and
strong winds (wind speed ≥ 2.5 m s−1). In all figures dσ 0 seems un-
affected by a high relative humidity. As explained in Section 5.3.2.4,
the highest likelihood of dew is expected for the Sentinel-1 observations
that were acquired during the morning overpasses when the wind speed
was below 2.5 m s−1 and the relative humidity was above 90 %. Indeed,
Figure 5.9 shows that the relative humidity is generally higher during
Sentinel-1’s morning overpasses, especially when the wind speed was low
(Figures 5.9a and e). However, even Figures 5.9a,e exhibit no distinct sys-
tematic effect of high relative humidity (> 90 %) on dσ 0. In Figures 5.9a,e
there is a peak in the cultivated field bin-averaged dσ 0 of about 1 dB at
a relative humidity of 98 %, but dσ 0 is not systematically positive from
the expected threshold of 90 % and for relative humidity higher than
98 % the bin-averaged dσ 0 values decrease again. This is probably just
inherent variation in the bin-averaged dσ 0 values, which is also observed
for example at relative humidities of 65 % and 85 %. We could not find a
systematic effect of dew on the Sentinel-1 σ 0 observations, so we do not
mask them for dew (also see Tables 5.4 and 5.5).

This is supported by Jackson and Moy (1999), who concluded, based
on the work by Batlivala and Ulaby, that for frequencies between 1.1 GHz
and 7.25 GHz there is no effect of dew on the σ 0. On the contrary,
Gillespie et al. (1990) did find an increase in σ 0 observations due to a
dew event for C-band HH, VV and HV observations taken from incid-
ence angles of 10◦ to 40◦ parallel to the crop row direction. However,
the Ku-and L-band observations are less affected, and the C-band VH
observations, at an incidence angle of 60◦ or in across-row direction seem
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Figure 5.9 The effect of relative humidity on the seasonal anomalies (dσ 0),
for the Sentinel-1 VV σ 0 observations acquired in the morning overpasses (a–b)
and the evening overpasses (c–d), and the Sentinel-1 VH σ 0 observations ac-
quired in the morning overpasses (e–f) and the evening overpasses (g–h).
The Sentinel-1 observations are shown separately for weak and strong winds
(average wind speeds in the hour of the Sentinel-1 observation below and above
2.5 m s−1, see the text in the sub-figures). Each point on the lines represents a
bin of 25 Sentinel-1 observations along the x-axis. The Sentinel-1 observations
masked for frozen conditions or rain interception are not included.

unaffected by dew (Gillespie et al., 1990). The C-band VV and VH σ 0

observations by Riedel et al. (2002) decrease by about 0.5 dB to 2 dB due
to a dew event, whereas the X-band observations slightly increase and
the L-band observations respond differently for different polarizations.
These σ 0 observations show inconsistent σ 0 responses to dew for differ-
ent radar settings and no explanations are provided for these differences
(Jackson and Moy, 1999), and Ulaby and Long (2014) and Jackson and
Moy (1999) stated that no general conclusions can be drawn regarding
the effects of dew as a function of frequency, angle and polarization and
the mechanisms behind it.

Both dew and intercepted rain wet the land surface. However, whereas
the Sentinel-1 observations are affected by rain interception (see Sec-
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5. Sentinel-1 masking rules and radiometric uncertainty

tion 5.4.2.3), they seem unaffected by dew. Gillespie et al. (1990) and
Riedel et al. (2002) suggested that the nature of the intercepted water by
dew and rain interception may be different (i.e., drop size or thin layer)
and that this can alter their effect on the σ 0. Moreover, dew deposits are
relatively small, typically 0.1 mm to 0.3 mm per night with maxima of
0.5 mm per night (Jackson and Moy, 1999). The rain interception storage
capacity is generally larger, in the order of 2 mm for a Douglas-fir forest
(Cisneros Vaca et al., 2018) and a dense mixed forest (De Jong et al.,
2000) in the Netherlands.

5.4.2.5 Summary of the masking rules

Tables 5.4 and 5.5 summarize the masking rules that result from the
analyses in Sections 5.4.2.1–5.4.2.4 and list the mean effects on Sentinel-1
dσ 0 by the weather-related surface conditions.

Table 5.4 The masking rules for the weather-related surface conditions that
result from the analyses in Sections 5.4.2.1–5.4.2.4. Tair (T) is air temperature,
Ds(T) is snow depth and P(T) is rainfall representative for the time of the
Sentinel-1 observation (T ). The calculation of these variables is explained
in Section 5.3.2. The right columns list the mean dσ 0 of the Sentinel-1 VV
observations to which a specific masking rule applies and none of the other
masking rules apply.

Surface condition Masking rule
Mean of dσ0

VV [dB]

Forests Meadows Cultivated fields

Frozen conditions Tair (T) ≤ 1 ◦C −1.0 −0.88 −2.39

Snow

Ds(T) > 0 cm &
Ds at 9:00 CET after T > 0 cm &

Sentinel-1 morning observation &
Land cover meadow or cultivated

Not masked −0.52 −1.93

Rain interception
∑i=T
i=T−12hours P(i) ≥ 1.8 mm 0.36 0.73 1.39

Dew No masking Not masked Not masked Not masked

Table 5.5 Same as Table 5.4, but for the Sentinel-1 VH observations.

Surface condition Masking rule
Mean of dσ0

VH [dB]

Forests Meadows Cultivated fields

Frozen conditions Tair (T) ≤ 1 ◦C −1.56 −1.96 −2.99

Snow

Ds(T) > 0 cm &
Ds at 9:00 CET after T > 0 cm &

Sentinel-1 morning observation &
Land cover meadow or cultivated

Not masked −1.09 −2.04

Rain interception
∑i=T
i=T−12hours P(i) ≥ 1.8 mm 0.43 0.91 1.53

Dew No masking Not masked Not masked Not masked

The developed masking procedure for frozen conditions, snow, rain
interception and dew is based on a rather simple set of masking rules
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and standard meteorological measurements, which adds to their applic-
ability. However, in Sections 5.4.2.1–5.4.2.4 various complexities in the
representations of these weather-related surface conditions and their
effects on σ 0 were discussed. In general, the representations of the
weather-related surface conditions could be improved by using models
that simulate these surface conditions and by using available spatially
distributed products from land surface models and satellite observa-
tions. For example, Kerr et al. (2016) used the surface soil temperature
and snow cover products from two models to mask SMOS observations,
and Wagner et al. (2013) used SSM/I satellite information about snow to
flag ASCAT SMC retrievals. Even the surface state flags that accompany
coarse resolution SMC products could be used as information in the
masking of Sentinel-1 products.

It should be realized that due to uncertainty in the representations
of the weather-related surface conditions and uncertainty in the SAR
observations, the masks will remain imperfect. Some σ 0 observations will
unnecessarily be masked (false alarms), whereas other observations will
be disturbed but missed by the masking rules (missed hits). For example,
not all Sentinel-1 observations that were acquired when air temperature
was below 1 ◦C are actually disturbed by frozen conditions, which is
reflected in the dispersion of the points in Figure 5.5 and in Figure 5.4b
for example in the period December 2016 to January 2017. This could
be improved by utilizing the actual values of σ 0 observations (Naeimi
et al., 2012), e.g., only masking for frozen conditions when the σ 0 or
dσ 0 values of a Sentinel-1 observation indicate that it is affected. Further
research is required to obtain the appropriate σ 0 or dσ 0 thresholds,
thereby considering the σ 0 deviations that can be expected due to the
sS1 for a certain surface area (see Section 5.4.3).

5.4.3 Radiometric uncertainty

Figure 5.10 shows the sS1, calculated with Equation 5.2, as a function
of A for the five selected forests and for each orbit in which Sentinel-1
collected data over the study region. As expected, the sS1 improves
for larger A over which the Sentinel-1 σ 0 observations are averaged.
The differences between the five forests in Figure 5.10 are rather small
and there is no obvious systematic pattern between the forests, e.g., one
forest consistently showing the highest radiometric uncertainty in each
sub-figure. This provides a justification for combined fits over the five
forests, of which the model coefficients are listed in Tables 5.6 and 5.7.

The sS1 is also rather similar for the different orbits, as can be seen
from the blue and black lines in Figure 5.10. Only for the VV observations
in orbit 15 there is a small underestimation of 0.03 dB at 10 ha by the
combined fit, and for the VV observations in orbit 88 there is a small
overestimation of 0.04 dB at 10 ha. These deviations are small and not
seen in the other sub-figures, which suggests that there are no significant
differences between the radiometric uncertainties of the different orbits
due to the differences in incidence angle and pass direction (listed in

107



5. Sentinel-1 masking rules and radiometric uncertainty

0 5 10

Area [ha]

0

0.5

1

1.5

R
a
d
io

m
e
tr

ic
 u

n
c
e
rt

a
in

ty
 

0 V
V

 [
d
B

]

Orbit 15

Forest I Forest II Forest III Forest IV Forest V

0 5 10

Area [ha]

0

0.5

1

1.5
Orbit 37

Fit Forest I Fit Forest II Fit Forest III Fit Forest IV Fit Forest V Fit for 5 forests Fit for 5 forests and 4 orbits

0 5 10

Area [ha]

0

0.5

1

1.5
Orbit 88

Fit without applying the masking rules

0 5 10

Area [ha]

0

0.5

1

1.5
Orbit 139

0 5 10

Area [ha]

0

0.5

1

1.5

R
a
d
io

m
e
tr

ic
 u

n
c
e
rt

a
in

ty
 

0 V
H

 [
d
B

]

0 5 10

Area [ha]

0

0.5

1

1.5

0 5 10

Area [ha]

0

0.5

1

1.5

0 5 10

Area [ha]

0

0.5

1

1.5

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 5.10 Radiometric uncertainty (sS1) of the Sentinel-1 VV observa-
tions (a–d) and the Sentinel-1 VH observations (e–h). The points are calculated
sS1 values and the lines are the fitted second-order power functions (Equa-
tion 5.3). The sS1 is calculated on the forest σ 0 timeseries after application of
the developed masking rules. For comparison the red lines show the combined
fits over the four orbits and the five forests of sS1 without applying the masking
rules. The model coefficients of the fits are listed in Tables 5.6 and 5.7.

Table 5.6 Model coefficients of the second-order power function between A
and sS1 (Equation 5.3) of the Sentinel-1 VV observations over the five forests
combined. The RMSD is the root mean square deviation between the function
and the underlying data points.

Relative orbit c1 c2 c3 RMSD [dB]

All orbits in one fit 0.3381 −0.4809 0.1884 0.043
15 0.3556 −0.4443 0.2042 0.029
37 0.2710 −0.6091 0.2439 0.040
88 0.3706 −0.4703 0.1377 0.031
139 0.3756 −0.4035 0.1461 0.042

Table 5.2). This is in accordance with the results by Schmidt et al.
(2018) and Schwerdt et al. (2017), who draw similar conclusions in their
analyses of the radiometric accuracy of the Sentinel-1A and Sentinel-1B
observations acquired in the IW mode.

The combined fits over the four orbits and the five forests indicate
that the sS1 reduces from 0.85 dB (0.25 ha) to 0.30 dB (10 ha) for the
VV polarization and from 0.89 dB (0.25 ha) to 0.36 dB (10 ha) for the
VH polarization. Schwerdt et al. (2017) also found a lower radiometric
accuracy standard deviation for the Sentinel-1B VV observations (0.23 dB)
than for the VH observations (0.33 dB). The developed masking rules
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Table 5.7 Same as Table 5.6, but for the sS1 of the Sentinel-1 VH observations.

Relative orbit c1 c2 c3 RMSD [dB]

All orbits in one fit 0.2705 −0.5765 0.2891 0.041
15 0.2376 −0.6341 0.3125 0.030
37 0.2355 −0.6228 0.3128 0.039
88 0.3314 −0.4940 0.2325 0.037
139 0.2872 −0.5636 0.2888 0.049

have improved the sS1 by up to 0.16 dB and 0.29 dB at 10 ha, for the VV
and VH polarization respectively.

Interesting to note is that the c2 coefficients in Tables 5.6 and 5.7 are
close to −0.5, especially for the combined fits over the five forests and
the four orbits. This value of −0.5 for c2 is in accordance with the theory
about the standard deviation of sample means (decreasing with 1/

√
M),

as explained in Section 5.3.3.
El Hajj et al. (2016) obtained sS1 values of 0.35 dB for VV and 0.45 dB

for Sentinel-1 VH observations of a 8.1 ha forest area (for the longest
period that El Hajj et al. (2016) analysed). The sS1 values calculated
with the model coefficients in Tables 5.6 and 5.7 for A equal to 8.1 ha
are slightly lower (0.31 dB for VV and 0.37 dB for VH), which can be
explained by the removal of the seasonal dynamics (see Section 5.4.1)
and the extensive masking procedure in this study. The even lower c3

coefficients in Tables 5.6 and 5.7 suggest that the sS1 further decreases
for A larger than 10 ha. El Hajj et al. (2016) also found lower sS1 for
A larger than 10 ha, namely 0.19 dB (VV σ 0) for a racetrack of 14.7 ha,
and 0.18 dB (VV σ 0) and 0.29 dB (VH σ 0) for a tropical forest of 635.2 ha.
The c3 values are also lower than the specified radiometric accuracy
standard deviations of Sentinel-1A and Sentinel-1B (see Section 5.2.2). It
should, however, be realized that the relationships of sS1 versus A have
been developed on Sentinel-1 σ 0 observations aggregated over areas up
to 10 ha. The extrapolation to larger spatial domains should be tested
on Sentinel-1 images collected over a study region with a time-invariant
target of at least 100 ha (1 km× 1 km resolution, see Section 5.4.4).

5.4.4 Impact on soil moisture content retrievals

Figure 5.11 shows the deviations in SMC retrievals that are expected due
to the disturbing effect on the σ 0 by the weather-related surface con-
ditions, if the Sentinel-1 observations would not be masked. The meth-
odology explained in Section 5.3.4 was used to estimate the impacts of
the mean effects on Sentinel-1 VV σ 0 observations over meadows and
cultivated fields by frozen conditions, snow and rain interception (listed
in Table 5.4) on SMC retrievals. Rain interception causes an overestima-
tion, and snow and frozen conditions cause an underestimation of SMC.
It should be noted that the decrease in SMC retrievals during frozen
conditions relates to an actual decrease in liquid water content and this
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is, therefore, difficult to label as an error in SMC retrievals.
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Figure 5.11 Impacts of frozen conditions, snow and rain interception on SMC
retrieved from Sentinel-1 VV σ 0, for an incidence angle of 35◦ on meadows (a),
44◦ on meadows (b), 35◦ on cultivated fields (c) and 44◦ on cultivated fields (d).
For the effects of frozen conditions, snow and rain interception on Sentinel-1
σ 0, the mean effects listed in Table 5.4 are taken.

The penetration depth of C-band observations in wet snow is in the
order of 3 cm to 1 m (Ulaby and Long, 2014; Casey et al., 2016; Nagler
et al., 2016; Mätzler, 1987). This suggests that for shallow snowpacks,
like they occur in the study region, the effects of frozen conditions and
wet snow may superimpose to some extent, decreasing the σ 0 further
and causing even a larger underestimation of the SMC.

Figure 5.12 shows the expected SMC retrieval uncertainties due to
the sS1 as a function of A, for the surface conditions introduced in
Section 5.3.4. The sS1 is estimated with Equation 5.3 and the model coef-
ficients listed in Table 5.6 for the combined fit over all orbits. With this,
we assume that the sS1 that has been estimated using forest σ 0 observa-
tions is applicable also to meadows and cultivated fields. This implicates
that the the radiometric uncertainty sources are multiplicative, which
is commonly adopted for speckle filtering (Lee, 1986; Touzi, 2002; Esch
et al., 2011).

The impacts on SMC retrievals are larger for the cultivated fields
than for the meadows for two reasons. Firstly, regarding the impacts
of the disturbing effects on the σ 0 by the weather-related surface con-
ditions (Figure 5.11), the mean effects of frozen conditions, snow and

110



5.4. Results and discussion

0 2 4 6 8 10

Area [ha]

-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2

R
e
tr

ie
v
a
l 
u
n
c
e
rt

a
in

ty
 [
m

3
 m

-3
]

Incidence angle 35o

0 2 4 6 8 10

Area [ha]

-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2
Incidence angle 44o

Very smooth surface, dry

Very smooth surface, wet

Meadows, dry

Meadows, wet

Cultivated fields, dry

Cultivated fields, wet

(a) (b)

Figure 5.12 Upper (∆θ+) and lower boundary (∆θ−) of the SMC retrieval uncer-
tainty due to the sS1 at VV polarization as a function of A, for incidence angles
of 35◦ (a) and 44◦ (b), for the three surface roughness scenarios (Table 5.3) and
for dry soil (SMC equal to 0.10 m3 m−3) and wet soil (SMC equal to 0.35 m3 m−3).

rain interception on σ 0 are larger for the cultivated fields than for the
meadows (see Table 5.4). Secondly, the σ 0 sensitivity to SMC is slightly
larger for the surface roughness parameters taken as representative for
meadows than for cultivated fields. As a result, a similar deviation in σ 0

results in a larger deviation in SMC for cultivated fields. However, as can
be deduced from Figure 5.12, this effect is small in comparison to the
first-mentioned reason.

The differences between the incidence angles of 35◦ and 44◦ are very
small. In contrast to the small effects of surface roughness and incidence
angle is the effect of SMC large. This is explained by the σ 0 sensitivity to
SMC, which diminishes with increasing SMC according to IEM simulations
(Altese et al., 1996). This is also reflected in the larger values for ∆θ+
in comparison to ∆θ− shown in Figure 5.12. Verhoest et al. (2007) also
showed SMC retrieval distributions that are skewed towards the higher
SMC levels due to the non-linear relation between SMC and σ 0.

Paloscia et al. (2013) proposed a spatial resolution of 1 km or finer for
an operational Sentinel-1 based SMC product. Figure 5.13 shows the SMC
retrieval uncertainty for the sS1 that is estimated for a 1 km resolution
(0.23 dB for the VV polarization), assuming that the obtained relations
between A and sS1 can be applied to A larger than 10 ha. The figure
shows that the sS1 consumes a significant portion of the 0.05 m3 m−3

accuracy requirement proposed for the operational SMC product by
Paloscia et al. (2013), especially in the wet SMC range.

With IEM we demonstrated the effect of various surface conditions on
the SMC retrieval errors and uncertainty, for a surface without vegetation.
Vegetation typically reduces the σ 0 sensitivity to SMC (e.g. Guerriero
et al., 2016). As such, the impacts of the disturbing effects by the weather-
related surface conditions and sS1 on SMC retrievals are expected to
increase with vegetation present. The impacts on SMC retrievals that we
obtained with IEM, therefore, resemble the lower limits. The vegetation
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Figure 5.13 Upper (∆θ+) and lower boundary (∆θ−) of the SMC retrieval uncer-
tainty due to the sS1 at VV polarization at 1 km resolution as a function of SMC,
for incidence angles of 35◦ (a) and 44◦ (b) and for the three surface roughness
scenarios (Table 5.3).

type and the vegetation stage can have a large effect on the σ 0 sensitivity
to SMC, and further research is required to determine their effect on the
SMC retrieval errors and uncertainty due to the weather-related surface
conditions and the radiometric uncertainty.

5.5 Conclusions

In the scope of SMC retrieval from SAR observations, we have developed
a masking procedure for weather-related surface conditions that dis-
turb Sentinel-1 σ 0 observations and we have estimated the radiometric
uncertainty of Sentinel-1 as a function of the surface area over which
the σ 0 observations are aggregated. The impacts of the weather-related
surface conditions and the radiometric uncertainty on SMC retrievals
from Sentinel-1 σ 0 were investigated for various bare surface conditions
using the IEM surface scattering model.

The effects of frozen conditions, snow, rain interception and dew
on σ 0 were investigated by analysing meteorological measurements
representing these surface conditions against seasonal anomalies of
Sentinel-1 observations for five forests, five meadows and five cultivated
fields in the eastern part of the Netherlands. From these analyses we have
developed a set of masking rules for Sentinel-1 observations. From our
results it follows that:

1. Sentinel-1 σ 0 observations of forests, meadows and cultivated
fields are affected by frozen conditions below an air temperature
of 1 ◦C, on average by −1.80 dB. Intercepted rain affects the σ 0

after more than 1.8 mm of rain in the 12 h preceding an observa-
tion, on average by +0.89 dB. Snow affects the σ 0 observations of
meadows and cultivated fields that were acquired in the Sentinel-1
morning overpasses on average by −1.40 dB. We could not find a
systematic effect of dew on the Sentinel-1 σ 0 observations, so no
masking rule for dew was formulated.
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2. Frozen conditions, snow and intercepted rain have the largest effect
on the Sentinel-1 σ 0 observations of cultivated fields in comparison
to forest and meadow σ 0 observations.

3. The effects of frozen conditions, snow and intercepted rain are
larger on the Sentinel-1 σ 0 observations in VH than in VV polariza-
tion.

After masking the Sentinel-1 σ 0 timeseries of the five forests using
the masking rules defined at point 1 above, Sentinel-1’s radiometric
uncertainty has been estimated by the standard deviation of the seasonal
anomalies timeseries of the σ 0 observations averaged over forest surface
areas ranging from 0.25 ha to 10 ha. From our results it follows that:

1. The Sentinel-1 radiometric uncertainty improves from 0.85 dB (0.25 ha)
to 0.30 dB (10 ha) for the VV polarization and from 0.89 dB (0.25 ha)
to 0.36 dB (10 ha) for the VH polarization.

2. The radiometric uncertainty is approximately inversely proportional
to the square root of the surface area over which the Sentinel-1 σ 0

observations are averaged.

With the quantifications of radiometric uncertainty and the disturbing
effects on the σ 0 by the weather-related surface conditions, we have de-
termined their impact on SMC retrievals from Sentinel-1 VV σ 0. With the
IEM model the σ 0 sensitivity to SMC was simulated for a surface rep-
resenting meadows and a surface representing cultivated fields, for the
incidence angles at which Sentinel-1 observes the study region and for
dry to wet soil conditions. Based on the results, we draw the following
conclusions:

1. If not masked, intercepted rain causes a significant overestima-
tion of SMC ranging from +0.047 m3 m−3 for dry soils (SMC equal
to 0.10 m3 m−3) up to +0.26 m3 m−3 for wet soils (SMC equal to
0.35 m3 m−3), averaged over the meadows and cultivated fields.
Snow and frozen conditions lead to a significant decrease in SMC
retrievals, from −0.035 m3 m−3 and −0.045 m3 m−3 for dry soils up
to −0.13 m3 m−3 and −0.16 m3 m−3 for wet soils respectively.

2. The SMC retrieval uncertainty as a result of radiometric uncertainty
is minimum −0.01 m3 m−3 to +0.01 m3 m−3 for dry soils and large
surface areas, and maximum −0.10 m3 m−3 to +0.17 m3 m−3 for
wet soils and small surface areas.

3. At the 1 km spatial resolution that Paloscia et al. (2013) proposed
for an operational Sentinel-1 SMC product, radiometric uncertainty
still leads to SMC retrieval uncertainty ranging from 0.01 m3 m−3

for dry soils to 0.033 m3 m−3 for wet soils. Especially in the wet SMC
range the radiometric uncertainty consumes a significant portion
of the 0.05 m3 m−3 accuracy requirement proposed for this SMC
product (Paloscia et al., 2013).

4. The impact on SMC retrievals by a σ 0 deviation, either due to a
weather-related surface condition or radiometric uncertainty, is
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5. Sentinel-1 masking rules and radiometric uncertainty

weakly dependent on the surface roughness and the incidence
angle, and strongly dependent on the SMC itself.

This study demonstrates that the weather-related surface conditions
disturbing Sentinel-1 σ 0 observations and Sentinel-1’s radiometric un-
certainty have a major impact on SMC retrieval uncertainty especially
in wet soil conditions and for retrievals based on a small number of
independent σ 0 samples (fine spatial resolutions). This understanding
aids appreciating the application value of SAR-based SMC products un-
der various surface conditions and spatial resolutions. The reported
uncertainty estimates represent the lower limits because the effects of
vegetation are not accounted for in the simulations of σ 0 sensitivity to
SMC. Further development of the masking procedure and characteriza-
tion of other error contributions to SMC retrievals, such as imperfections
in retrieval algorithms, would further benefit SMC product development
and utilization.
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6Sentinel-1 soil moisture content
and its uncertainty over sparsely
vegetated fields

This chapter is based on parts of:

Benninga, H. F., Van der Velde, R., and Su, Z.: Sentinel-1 soil moisture
content and its uncertainty over sparsely vegetated fields, J. Hydrol. X, 9,
100066, doi:10.1016/j.hydroa.2020.100066, 2020.
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6. S1 soil moisture content and its uncertainty over sparsely vegetated fields

Abstract

Soil moisture content (SMC) retrievals from synthetic aperture radar
(SAR) observations do not exactly match with in situ references due
to imperfect retrieval algorithms, and uncertainties in the model
parameters, SAR observations and in situ references. Information
on the uncertainty of SMC retrievals would contribute to their ap-
plicability. This chapter presents a methodology for deriving the
SMC retrieval uncertainty and decomposing this in its constituents.
A Bayesian calibration framework was used for deriving the total
uncertainty and the model parameter uncertainty. The method-
ology was demonstrated with the integral equation method (IEM)
surface scattering model, which was employed for reproducing
Sentinel-1 backscatter (σ 0) observations and the retrieval of SMC
over four sparsely vegetated fields in the Netherlands. For two
meadows the calibrated surface roughness parameter distributions
are remarkably similar between the ascending and the descending
Sentinel-1 orbits as well as between the two meadows, and yield
consistent SMC retrievals for the calibration and validation peri-
ods (RMSDs of 0.076 m3 m−3 to 0.11 m3 m−3). These results are
promising for operational retrieval of SMC over meadows. In con-
trast, the surface roughness parameter distributions of two fallow
maize fields differ significantly and the surface roughness condi-
tions changing over time result in less consistent SMC retrievals
(calibration RMSDs of 0.096 m3 m−3 and 0.13 m3 m−3 versus valida-
tion RMSDs of 0.26 m3 m−3). The SMC retrieval uncertainty derived
with the Bayesian calibration successfully reproduces the uncer-
tainty estimated empirically using in situ references. The main
uncertainty originates from the in situ references and the Sentinel-1
observations, whereas the contribution from the surface roughness
parameters is relatively small. The presented research yields fur-
ther insights into the surface roughness of agricultural fields and
SMC retrieval uncertainties, and these insights can be used to guide
SAR-based SMC product developments.

Keywords: Soil moisture content, remote sensing, Sentinel-1 satellites, retrieval
uncertainty, uncertainty sources, soil surface roughness.
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6.1 Introduction

The soil moisture content (SMC) is a key state variable in climatological,
meteorological, hydrological and ecological processes. Its control on the
exchanges of water and energy at the land surface plays an important
role in the development of climate and weather systems (Global Climate
Observing System (GCOS), 2016; Massari et al., 2014; Seneviratne et al.,
2010). In addition, it is important for the partitioning of rainfall in
infiltration and runoff (Beck et al., 2009; Massari et al., 2014; Wanders
et al., 2014), regarded as an indicator for the onset of droughts (Miralles
et al., 2016; Seneviratne et al., 2010; Vautard et al., 2007), and essential
for vegetation growth (Feddes et al., 1976; Ines et al., 2013). Hence,
information about the SMC would benefit a number of applications.

Microwave remote sensing observations from satellites can be used to
monitor SMC over large spatial domains. Examples of satellite-based SMC
products are from the Advanced Scatterometer (ASCAT) at 25 km and
50 km (Wagner et al., 2013), Advanced Microwave Scanning Radiometer 2
(AMSR2) at 0.1◦ and 0.25◦ (Zhang et al., 2017; Kim et al., 2015), Soil
Moisture and Ocean Salinity (SMOS) at on average 43 km (Kerr et al., 2010,
2016) and Soil Moisture Active Passive (SMAP) at 3 km, 9 km and 36 km
resolution (Chan et al., 2016, 2018; Das et al., 2019). However, these
products have a too coarse spatial resolution for many hydrological and
agricultural applications (De Lange et al., 2014; Carranza et al., 2019;
Pierdicca et al., 2014).

Backscatter (σ 0) observations by synthetic aperture radar (SAR) in-
struments can be used to estimate the SMC at much finer scale, even up
to agricultural field scale (e.g. El Hajj et al., 2017; Lievens and Verhoest,
2012; Su et al., 1997; Amazirh et al., 2018). Bauer-Marschallinger et al.
(2019) developed an operational 1 km resolution SMC product from Sen-
tinel-1 SAR σ 0 observations, based on a change detection algorithm that
assumes static surface roughness and vegetation conditions. However,
at the field scale this assumption is unlikely to hold because spatial
surface roughness and vegetation effects on the σ 0 are not averaged
out over a large area (Bauer-Marschallinger et al., 2019). In those situ-
ations, the relation between the σ 0 signal and SMC must be separated
from the effects of surface roughness and vegetation before the SMC
can be estimated reliably (Kornelsen and Coulibaly, 2013; Paloscia et al.,
2013; Verhoest et al., 2008). Physically based scattering models, such as
the integral equation method (IEM) for surfaces (Fung et al., 1992) and
the Tor Vergata model for vegetation (Bracaglia et al., 1995), simulate
the scattering contributions from soil-vegetation systems based on pre-
scribed electromagnetic characteristics. This supports the application
of these models to various site conditions and sensor configurations
(Paloscia et al., 2013; Petropoulos et al., 2015), the understanding of
backscattering processes (Baghdadi et al., 2002; Balenzano et al., 2012;
Wang et al., 2018) and the propagation of uncertainty sources (Satalino
et al., 2002; Van der Velde et al., 2012b).
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Surface scattering models, including the frequently-used IEM model,
simulate the scattering of electromagnetic waves from a surface and are
used to estimate the σ 0 from soils (Ulaby and Long, 2014). The surface
roughness essentially governs the σ 0 response and, thus, the sensitivity
to SMC. The parameterisation of the surface roughness is, therefore, an
important input. Measuring the surface roughness was part of many
field campaigns, such as EMAC’94 (Su et al., 1997), FLOODGEN in 1994,
1998 and 1999 (Baghdadi et al., 2004), Orgeval’94 (Zribi et al., 1997),
OPE3 in 2002 (Joseph et al., 2010), SMAPVEX12 (McNairn et al., 2015),
SMAPVEX16-IA (Hornbuckle et al., 2017) and SMAPVEX16-MB (McNairn
et al., 2016). However, Baghdadi et al. (2002, 2004) and Su et al. (1997)
have shown that the IEM model does not accurately reproduce σ 0 ob-
servations using measured surface roughness parameters. Lievens et al.
(2011) and Verhoest et al. (2008) attributed this to both uncertainties in
the surface roughness measurements and simplifications in the repres-
entation of surfaces.

A pragmatic approach for applying surface scattering models to land
surfaces is considering the surface roughness parameters as ‘effective
parameters’, obtained by model calibration instead of field measure-
ments (Baghdadi et al., 2002; Lievens et al., 2011; Lievens and Verhoest,
2012; Rahman et al., 2008; Su et al., 1997; Verhoest et al., 2008, 2007).
The calibration of the surface roughness parameters is accomplished
by searching for a parameter set that results in a match between σ 0

observations and model simulations. Subsequently, the calibrated sur-
face roughness parameters can be used to retrieve SMC from other σ 0

observations and/or on other fields (Su et al., 1997).
In addition to the surface roughness parameterisation, the SMC es-

timates from σ 0 observations will contain uncertainties specific for the
selected retrieval algorithm (De Lannoy et al., 2014; Pathe et al., 2009)
and due to uncertainty in the σ 0 observations (Benninga et al., 2019;
Pathe et al., 2009). The σ 0 observations contain uncertainty from calib-
ration uncertainties, sensor instabilities and speckle effects, which are
together referred to as radiometric uncertainty (Benninga et al., 2019,
in Chapter 5). Furthermore, SMC references are required for the calibra-
tion of scattering models and the validation of the SMC retrievals. The
SMC references are typically obtained from in situ measurements. This
introduces uncertainties due to a SMC probe’s measurement uncertainty
(Cosh et al., 2005) and spatial mismatches with satellite-observed SMC
(Western and Blöschl, 1999; Cosh et al., 2006). A horizontal mismatch
between the SMC at an in situ monitoring station and field-averaged SMC
originates from differences in land cover, soil texture and structure, and
local features such as nearby ditches and subsurface drainage pipes. A
vertical mismatch originates from the (Sentinel-1 C-band) σ 0 observa-
tions having a sampling depth that varies from the surface to a depth
of 1 cm–10 cm (Nolan and Fatland, 2003; Ulaby et al., 1996), whereas in
practice SMC measurements at 5 cm or 10 cm depth, with an influence
zone of e.g. 4 cm above and below the probe (Benninga et al., 2018c, in
Chapter 3), often have to be adopted for calibration and validation pur-
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poses (e.g. Bauer-Marschallinger et al., 2019; Chan et al., 2018; Kornelsen
and Coulibaly, 2013; Pathe et al., 2009; Van der Velde et al., 2015).

Information on the uncertainty of SMC retrievals is essential to assess
their reliability and for their applicability, for example for the assim-
ilation of SMC retrievals into land surface models and for combining
SMC products (Pierdicca et al., 2014; Verhoest et al., 2007; De Lannoy
et al., 2014). Verhoest et al. (2007) estimated the uncertainty of SMC
retrievals with the IEM model by defining uncertainty distributions for
the surface roughness parameters. As a result of assumed surface
roughness parameter uncertainties of ±7.5 %, ±15 % and ±25 %, Verhoest
et al. (2007) reported SMC retrieval uncertainties (standard deviations) of
0.023 m3 m−3, 0.041 m3 m−3 and 0.060 m3 m−3, respectively. Vernieuwe
et al. (2011) continued on the study by Verhoest et al. (2007) by consid-
ering the correlation between the parameters based on a synthetically
generated surface roughness dataset. Doubková et al. (2012) and Pathe
et al. (2009) estimated the uncertainty of SMC retrievals from parameter
uncertainty assumptions and the radiometric uncertainty. Pulvirenti
et al. (2018) defined fuzzy logic rules in order to assign a degree of
uncertainty (low, medium, high) to each SMC retrieval. These previous
studies, however, relied on assumptions regarding the uncertainty of
model parameters for the estimation of the SMC retrieval uncertainty.
This is reflected in the applied calibration methods in general, which
ignore uncertainties and aim for one optimal parameter set that results
in a match between observations and simulations (e.g. Joseph et al., 2008;
Lievens et al., 2011; Verhoest et al., 2007).

Bayesian calibration approaches allow for the derivation of parameter
distributions and the separation of parameter uncertainty from the total
simulation uncertainty, based on statistical assumptions of which the
validity can be verified (Barber et al., 2012; De Lannoy et al., 2014; Haddad
et al., 1996; Notarnicola et al., 2006; Notarnicola and Posa, 2004; Pierdicca
et al., 2014). For example, using semi-empirical Oh surface scattering
models (Oh et al., 1992, 2002), Haddad et al. (1996) and Pierdicca et al.
(2014, 2010) formulated Bayesian frameworks for the retrieval of surface
roughness parameters and SMC along with estimates of their retrieval
uncertainty.

Bayesian frameworks cannot be solved analytically for highly nonlin-
ear models (Vrugt, 2016), such as physically based scattering models. To
provide an efficient solution for such models, the DiffeRential Evolution
Adaptive Metropolis package (DREAM; Vrugt, 2016) implements a multi-
chain Markov chain Monte Carlo simulation algorithm for generating
samples from the posterior distributions that describe the parameter
uncertainty and the total simulation uncertainty. De Lannoy et al. (2014)
used DREAM to calibrate a radiative transfer model for simulating SMOS
L-band brightness temperatures and to estimate the uncertainty of the
parameters and the total simulation uncertainty.

In this study, the uncertainties involved in surface scattering model
simulations and SMC retrievals were investigated. We focused on the
calibration of the IEM surface roughness parameters, and, therefore, used
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Sentinel-1 σ 0 observations and SMC measurements from sparsely veget-
ated fields, namely two meadows and two fallow cultivated parcels. The
Bayesian calibration was performed with DREAM. The chapter extends on
previous research on SMC retrieval from SAR σ 0 observations by (1) ad-
opting a Bayesian calibration framework for deriving the uncertainty of
the IEM surface roughness parameters and the total uncertainty, (2) as-
sessing the derived SMC retrieval uncertainty against the uncertainty
estimated empirically using in situ references, and (3) decomposing the
total uncertainty in its four constituents.

6.2 Definitions of uncertainties

The standard deviation is selected as uncertainty measure. The standard
deviation of the differences between two datasets, such as SMC retrievals
and references, is often referred to as the unbiased root mean square
deviation (uRMSD; Kerr et al., 2016):

uRMSD =

√√√√∑N
t=1

(
Ye(t)+

(
Yr − Ye

)
− Yr (t)

)2

N
, (6.1)

where N stands for the number of match-ups between estimates (Ye) and
references (Yr ), t stands for the observation number and the bars denote
the means of Ye and Yr .

A SMC retrieval, its total uncertainty and constituents are illustrated
in Figure 6.1. The surface roughness parameters for retrieving the SMC,
as well as the parameter uncertainty (Up) and total uncertainty were de-
rived with Bayesian calibrations, using DREAM as described in Section 6.4.
We refer to the total uncertainty that is derived with the Bayesian calibra-
tion as Utotal-B . The surface roughness parameter set with the highest
posterior probability, also referred to as the ‘maximum a posteriori’
(MAP; Vrugt, 2016; De Lannoy et al., 2014; Lu et al., 2017), was used for
the optimal SMC retrieval. Utotal-B should be of similar magnitude as
the empirical uncertainty of SMC retrievals for cases that the Bayesian
calibration was statistically valid (De Lannoy et al., 2014). The empirical
SMC retrieval uncertainty can be calculated with Equation 6.1 using in
situ references. The Utotal-B and Up are visualized by two histograms in
Figure 6.1, which partly overlap and show that the distribution of the
Utotal-B is wider than the distribution of the Up. This is expected as Up
is one of the constituents of the total uncertainty.

The other constituents are inherent to the in situ references and the
satellite observations, namely the measurement uncertainty of the station
probes providing the in situ references (Usp), the in situ references’
uncertainty attributable to a spatial mismatch with Sentinel-1 observed
SMC (Us,S1), and Sentinel-1’s radiometric uncertainty (US1). Figure 6.1
illustrates that Usp and Us,S1 apply to the in situ references, and US1

applies to the SMC retrievals. In Section 6.3, the Usp, Us,S1 and US1 are
quantified.
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Figure 6.1 The SMC total retrieval uncertainty and its constituents, which are
quantified in this study. The arrows represent one standard deviation. The two
histograms partly overlap.

Next to its estimation with the Bayesian calibration, the total uncer-
tainty can be found by combining its constituents. This is referred to as
Utotal-C and can be calculated by following the addition rule for variances
(Moore et al., 2017):

Utotal-C =
√
Usp2 +Us,S1

2 +US1
2 +Up2 + Cov, (6.2)

where Cov stands for the covariance terms between the uncertainty
constituents. The constituents are assumed to be uncorrelated, whereby
Cov reduces to 0. The relative contributions of Usp, Us,S1, US1 and Up
can then be calculated in a similar fashion as was done in Van der Velde
et al. (2012a):

RCsp =
Usp2

Utotal-C2 , (6.3)

RCs,S1 =
Us,S1

2

Utotal-C2 , (6.4)

RCS1 =
US1

2

Utotal-C2 , (6.5)

and

RCp =
Up2

Utotal-C2 . (6.6)

With Equation 6.2 we can evaluate to what extent Utotal-C explains
Utotal-B , and with Equations 6.3–6.6 we can assess their individual relative
contributions.
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6.3 Data

6.3.1 Study region, fields and periods

The SMC measurements used as references were collected by monitoring
stations in the Twente region, located in the eastern part of the Nether-
lands (Figure 6.2). The Twente region is flat with some elevated glacial
ridges and it has a temperate oceanic climate with a Cfb Köppen-Geiger
climate classification (Beck et al., 2018). The SMC monitoring stations in
this region are collectively known as the Twente network (Van der Velde
et al., 2021; Dente et al., 2011, 2012), further described in Van der Velde
and Benninga (in preparation, in Chapter 2).
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Figure 6.2 (a) Location of the Twente region in the Netherlands. (b) The
locations of the study fields. Background is the digital terrain model AHN2
(Actueel Hoogtebestand Nederland, 2012b).

Stations are installed at the border of fields for safety and continuity
reasons. Adjacent to monitoring stations, we selected two meadows
(hereafter field I and II) and two fallow cultivated fields (field III and IV)
as study fields for which we collected additional field measurements in
total on 87 occasions. The study fields and the locations of the field
measurements are shown in Figure 4.1. Field I and III are adjacent to
the same monitoring station. The study fields have loamy sandy surface
layers. Appendix A.1 details the study fields’ surface layer soil textures
and bulk densities from the soil physical units map of the Netherlands
(‘bodemfysische eenhedenkaart 2012’ in Dutch, or BOFEK2012; Wösten
et al., 2013).

Table 6.1 lists the study periods. We used the winter season of
October 2016–March 2017 for the calibration of the surface roughness
parameters and the winter season of October 2017–March 2018 for the
validation of σ 0 simulations and SMC retrievals. The study periods are
taken outside the growing season, from October (after harvesting and
other agricultural practices) to March (before ploughing and sowing), so
that the fields were fallow or covered with non-growing sparse vegetation
and no agricultural practices were applied during the study periods. In
between the winter seasons, several agricultural practices are applied on
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cultivated fields (field III and IV), such as sowing, harvesting, manuring
and ploughing. On meadows (field I and II) typically no ploughing is
applied and the surface roughness is expected to change little.

Table 6.2 lists the land covers at the locations of the SMC monit-
oring stations and on the study fields during the calibration and val-
idation period. Field I and II are covered with grass which is virtu-
ally static and sparse during winters: field measurements with the
LI-COR LAI-2000 (LI-COR, 1992) indicated leaf area indices (LAI) of
1.1 m2 m−2 and 1.3 m2 m−2 outside the growing season versus maxim-
ums of 8.0 m2 m−2 and 7.7 m2 m−2 in the growing season for field I and II,
respectively (Benninga et al., 2021a). Field III and IV were fallow with
remaining maize stubble in the winter of 2016/2017. In the winter of
2017/2018 field III was again fallow with maize stubble, whereas field IV
was used to grow winter wheat. Table 6.2 indicates that also the land
cover at station IV changed between the calibration and the validation
period. This station was installed on 20 May 2016. In the first period
after installation the land cover at the station’s location was similar to
the study field. The second year it was covered with grassy vegetation
because the area with the station probes was no longer directly subjected
to agricultural practices.

Table 6.1 Study periods.

Field Calibration Validation

I 14 Oct 2016–21 March 2017 14 Oct 2017–21 March 2018
II 31 Oct 2016–16 March 2017 31 Oct 2017–1 April 2018
III 7 Oct 2016–21 March 2017 14 Oct 2017–21 March 2018
IV 14 Oct 2016–21 March 2017 17 Oct 2017–21 March 2018

Table 6.2 Size and land covers of the study fields.

Field
Net area

[ha]
Calibration period Validation period

Land cover at the
station’s location

Field’s land
cover

Land cover at the
station’s location

Field’s land
cover

I 2.0 Grass Grass Grass Grass
II 2.4 Grass Grass Grass Grass
III 0.45 Grass Fallow with

maize stubble
Grass Fallow with

maize stubble
IV 2.4 Fallow with maize

stubble
Fallow with

maize stubble
Grass Winter wheat

6.3.2 Soil moisture content references

The SMC monitoring stations are equipped with 5TM probes (METER
Group, 2019) installed at nominal depths of 5 cm, 10 cm, 20 cm, 40 cm
and 80 cm, of which the readings are stored every 15 min. We used
the 5 cm SMC measurements collected at Sentinel-1 overpass times as
the in situ references. The probes at 5 cm depth provide an integrated
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measurement over a soil depth of 1 cm to 9 cm (Benninga et al., 2018c,
in Chapter 3).

The SMC measurements inside the study fields revealed an incon-
sistency in the station measurements of field IV. During the period
May 2016–November 2016 the station measurements had a bias of
−0.024 m3 m−3 with respect to the field measurements, whereas for the
period April 2017–September 2017 the bias increased to −0.12 m3 m−3

(see Table 4.2). This likely is a consequence of the change in the land
cover at the station’s location from fallow with maize stubble to grassy
vegetation (see Table 6.2 and Section 6.3.1).

6.3.2.1 Measurement uncertainty

A soil-specific calibration function was developed for the station probes
of the Twente network (Van der Velde et al., 2021). The calibration
accuracy, quantified by Equation 6.1 between the calibrated probe meas-
urements and gravimetrically determined volumetric SMC (GVSMC) ref-
erences, is 0.027 m3 m−3. We adopted this value as general measure for
the Usp (it should be noted that later we found a value of 0.0277 m3 m−3;
see Van der Velde and Benninga (in preparation), in Chapter 2).

6.3.2.2 Spatial mismatch uncertainty

The horizontal and vertical mismatches have a systematic and a vari-
able impact on differences between the SMC references and Sentinel-1
observed SMC. The systematic component is a bias which will implicitly
be accounted for via the calibration of the surface roughness parameters.
The variable component is Us,S1, which contributes to the uncertainty of
Sentinel-1 SMC retrievals.

The Us,S1 was quantified by Equation 6.1 between the station meas-
urements and the spatial mean of the 0 cm–5.7 cm layer SMC measure-
ments inside field I–IV. Chapter 4 provides further information on the
estimation of Us,S1. The values for Us,S1 in Table 4.2 demonstrate that
adopting the station measurements as reference for the Sentinel-1 SMC
retrievals introduces a significant amount of uncertainty, varying from
0.036 m3 m−3 to 0.068 m3 m−3. We adopted the mean of 0.051 m3 m−3

over field I–IV as the common measure for Us,S1.

6.3.3 Sentinel-1 imagery

6.3.3.1 Data processing

The Sentinel-1 constellation provides images in C-band (5.405 GHz), over
land in Interferometric Wide Swath (IW) mode at VV and VH polarization.
We only used the Sentinel-1 σ 0 observations in VV polarization because
of the higher expected sensitivity to SMC than the VH polarization (e.g.
Amazirh et al., 2018; El Hajj et al., 2017) and because the definitions
of the surface roughness parameters in the IEM model are different for
VV and VH due to underlying assumptions. The radiometric accuracy
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is specified at 1 dB (three standard deviations). After multi-looking,
the Ground Range Detected (GRD) High Resolution (HR) product has a
resolution of 20 m× 22 m (4.4 equivalent number of looks) (Torres et al.,
2012; Bourbigot et al., 2016).

To obtain Sentinel-1 backscatter (σ 0), we downloaded Level-1 GRD HR
IW Sentinel-1 images from the Copernicus Open Access Hub (Copernicus,
2019) and processed them using the following operations in the European
Space Agency (ESA)’s Sentinel Application Platform (SNAP) V6.0 (ESA,
2019): (1) Apply Orbit File, (2) Thermal Noise Removal, and (3) Range
Doppler Terrain Correction, including radiometric normalization to σ 0

(in m2 m−2) with projected local incidence angles on a geographic grid
(WGS84) with a pixel spacing of 9.0E−5◦ (equivalent to 10 m× 6.1 m at
the study region’s latitude). Subsequently, the Sentinel-1 σ 0 observations
were averaged over the study fields, excluding a 20 m distance from the
borders of the fields and 40 m from trees and buildings to avoid possible
influences of features outside the fields (see the net area in Table 6.2).
The last step was to convert the σ 0 values to decibel (dB).

Table 6.3 specifies the orbits that cover the study region. Sentinel-1A
provides images since 3 October 2014 and Sentinel-1B since 28 Sep-
tember 2016. The combination of Sentinel-1A and Sentinel-1B gives a
temporal resolution of 1.5 days over the study region. However, frozen
conditions, wet snow and intercepted rain can disturb σ 0 observations
and we masked the Sentinel-1 observations for these weather-related
surface conditions with the masking rules presented in Benninga et al.
(2019, in Chapter 5). Furthermore, in situ references that decreased
during frozen soil periods (Van der Velde et al., 2021) were removed,
and from 18 January 2018 to 16 March 2018 the SMC monitoring station
adjacent to field II was malfunctioning and no references are available
for this period. Table 6.4 lists the number of Sentinel-1 observations
with a matching in situ reference, before and after masking for the
above-mentioned weather-related surface conditions.

Table 6.3 Specifications of the Sentinel-1 orbits that cover the Twente region.

Relative orbit
number

Pass Acquisition
time (CET)

Platform heading
relative to north

Projected incidence angle
over the study fields

15 Ascending 18:16 −15.4◦ 34.4◦–35.3◦
37 Descending 6:49 −164.6◦ 35.4◦–36.1◦
88 Ascending 18:24 −15.3◦ 42.6◦–43.4◦
139 Descending 6:41 −164.6◦ 43.6◦–44.2◦

6.3.3.2 Radiometric uncertainty

Sentinel-1’s radiometric uncertainty (sS1, in dB) was estimated by the
standard deviation of Sentinel-1 σ 0 observations from a target which
is assumed time-invariant (Benninga et al., 2019, in Chapter 5). This
resulted in a second-order power function between sS1 and the surface
area over which the Sentinel-1 σ 0 observations are averaged. The SMC
retrieval uncertainty due to the sS1 (being US1) is then derived through
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Table 6.4 The number of Sentinel-1 observations for which a matching in situ
reference is available.

Field
Calibration Validation

Total After masking Total After masking

I 87 50 96 54
II 74 42 63 40
III 92 54 96 54
IV 79 55 98 56

combination with the σ 0 to SMC sensitivity, which follows from sim-
ulations with the IEM model. The upper and lower boundaries of the
uncertainty interval, as in Benninga et al. (2019, in Chapter 5) and Fig-
ure 6.1, were averaged for providing US1.

6.4 Methods

6.4.1 Surface scattering model application

IEM is a physically based surface scattering model (Fung et al., 1992)
that has widely been used to simulate the σ 0 from bare and sparsely
vegetated land surfaces. Readers are referred to Ulaby and Long (2014)
for more background on the IEM model and to Kornelsen and Coulibaly
(2013) for a discussion of previous studies in which IEM was used.

Vegetation effects are not accounted for by the IEM model, and ac-
cordingly, we limited the calibration and validation periods to the fallow
or non-growing sparse vegetation conditions outside the growing season
(see Section 6.3.1). The applicability of the IEM model to sparse grass
covers is justified by the results of Van der Velde and Su (2009) and
Van der Velde et al. (2012b). Van der Velde and Su (2009) found that
for C-band σ 0 observations the effects of grass, with a normalized dif-
ference vegetation index (NDVI) varying from 0.15 in winters to 0.55
in summers, are small throughout the entire year. These NDVI values
correspond to LAI values of approximately 0.38 m2 m−2 to 1.63 m2 m−2

(Knyazikhin et al., 1999; Tesemma et al., 2014), which is comparable to
our LAI measurements outside the growing season. Moreover, the SMC
retrieval uncertainties attributable to vegetation effects were found to be
fairly small compared to uncertainties caused by the surface roughness
parameterisation (Van der Velde et al., 2012b).

The IEM model requires parameterisations on the dielectric and geo-
metric properties of the land surface. The dielectric properties were
estimated with the Mironov soil dielectric mixing model (Mironov et al.,
2009). SMC and the soil textures from Appendix A.1 served as input
to the Mironov model. The geometry of the land, also known as the
surface roughness, is parameterised by the root mean square surface
height (s), the autocorrelation length (cl) and an autocorrelation func-
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tion. The exponential autocorrelation function was selected, because it is
viewed as most appropriate for agricultural fields (Ulaby and Long, 2014;
Verhoest et al., 2008). Callens et al. (2006) have shown that changes in
surface roughness due to heavy rainfall are limited when no agricultural
practices were applied recently. The study periods were taken such that
no agricultural practices were applied within them (see Section 6.3.1)
and, therefore, surface roughness can be assumed time-invariant. This
assumption is discussed in Section 6.5.3.

Agricultural surfaces are generally anisotropic (Verhoest et al., 2008)
and the fields are viewed from a different direction in Sentinel-1’s ascend-
ing and descending orbits, causing that the surface roughness would
be different for these orbits. This is especially expected for the fallow
maize fields, which have tillage rows (see Figure 4.1). The meadows do
not have a clear row structure. The anisotropy of the study fields was
considered by separating the calibration of s and cl for the Sentinel-1
σ 0 observations made in the ascending and in the descending orbits. By
combining the two ascending orbits (15 and 88) and the two descending
orbits (37 and 139) respectively, the surface roughness parameters were
calibrated on two incidence angles (see Table 6.3) and the varying SMC
conditions encountered during the calibration period.

6.4.2 Bayesian model calibration

Bayesian model calibration derives posterior parameter distributions
conditioned on prior parameter distributions (prior ) and the match
between model simulations and reference data (likelihood), by solving
Bayes’ rule (Vrugt, 2016):

p(ϑ|z)∝ likelihood× prior , (6.7)

where p(ϑ|z) is the resulting posterior probability density function (PDF)
of the parameters (ϑ) given the reference data (z). The likelihood function
evaluates how well the model reproduces z given ϑ, by describing the
PDF of the residuals between simulations and references.

The generalized likelihood function, derived by Schoups and Vrugt
(2010), offers a wide flexibility in heteroscedasticity, distribution and
autocorrelation of the residuals. The likelihood model parameters have
to be inferred jointly with the model parameters or must be given a fixed
value. The validity of the residual model can be verified with a residual
analysis. For more background on residual analysis, readers are referred
to Lu et al. (2017), Scharnagl et al. (2011), Schoups and Vrugt (2010) and
Thyer et al. (2009).

6.4.3 Application of DREAM

We adopted a simple implementation of the generalized likelihood func-
tion, and assumed homoscedastic, Gaussian and uncorrelated residuals.
These assumptions are often made and convenient to use (e.g. Lu et al.,
2017; Raj et al., 2018; Scharnagl et al., 2011), and lead to the common
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standard least squares approach (Schoups and Vrugt, 2010). In Sec-
tion 6.5.1, the validity of the residual model is verified with a residual
analysis. The standard deviation of the residuals (σ0) has to be inferred
with the calibration. The two surface roughness parameters in combina-
tion with σ0 bring the dimensionality (number of unknowns) at three.

The validity of the IEM model is limited to medium surface roughness
conditions with ks ≤ 3, where k is the free-space wavenumber (Baghdadi
et al., 2004; Su et al., 1997). For the wavelength of Sentinel-1, this
corresponds to a maximum s of 2.68 cm. For cl no IEM validity domain
has been formulated. Calibration ranges of 0.2 cm to 400 cm have been
used, and the resulting calibrated cl values ranged from 1.4 cm to 13 cm
for maize and bare agricultural fields (Joseph et al., 2010, 2008; Lievens
et al., 2011; Satalino et al., 2002; Verhoest et al., 2007) and from 0.2 cm
to 7 cm for a mosaic of grasslands and wetlands (Van der Velde et al.,
2012b). Non-informative (uniform) priors are preferred for scientific
objectivity (Lunn et al., 2013; Notarnicola and Posa, 2004; Notarnicola
et al., 2006). We defined the prior distributions as uniform distributions
with the ranges (0.1 cm,2.68 cm) for s and (0.1 cm,100 cm) for cl. The
prior distribution of σ0 is defined as a uniform distribution with ranges
(0 dB,2 dB).

We used the standard DREAM settings (Vrugt, 2016), with ten Markov
chains. A burn-in of 50 % of the realizations is recommended to allow
initialization to the posterior parameter distributions (Vrugt, 2016). Con-
vergence of the chains was assessed by the multivariate Gelman-Rubin
convergence diagnostic R̂d, where R̂d below 1.2 indicates convergence
(Brooks and Gelman, 1998; Vrugt, 2016), and by visual inspection of the
mixing of the Markov chains (Raj et al., 2018; Vrugt, 2016). 7000 realiza-
tions per chain appeared sufficient to reach convergence after 50 % of the
realizations, which results in 35 000 samples describing the posterior
parameter distributions.

6.4.4 Soil moisture content retrieval

The MAP surface roughness parameter set was used for the optimal
σ 0 simulations and SMC retrievals. These were evaluated against the
Sentinel-1 σ 0 observations and in situ SMC references, respectively, with
the root mean square deviation (RMSD), the unbiased RMSD (uRMSD)
and the Pearson correlation coefficient (rP ), defined in Appendix A.2.

For the retrieval of SMC from the Sentinel-1 σ 0 observations, we
generated look-up tables of σ 0 simulations for SMC values ranging from
0.01 m3 m−3 to 0.75 m3 m−3, with an increment of 0.001 m3 m−3, and
combinations of soil textures, incidence angles and surface roughness
parameter sets. A SMC retrieval is then taken equal to the SMC value for
which the minimum difference between σ 0 simulations and a Sentinel-1
σ 0 observation is found.

For deriving Utotal-B , we generated 1000 σ 0 residual samples from
the skew exponential power distribution that underlies the likelihood
function (Schoups and Vrugt, 2010), using the σ0 that was found for the
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MAP surface roughness parameter set. The resulting 1000 SMC retrievals
with the MAP surface roughness parameters, after superimposing the σ 0

residual samples on a Sentinel-1 σ 0 observation, describe Utotal-B . For
the computation of Up, we randomly sampled 1000 surface roughness
parameter sets from their posterior distributions and derived 1000 SMC
retrievals.

6.5 Results and discussion

6.5.1 Residual analysis

The residual analysis plots for the Bayesian calibrations are included in
Appendix A.3.1. The figures (a) in Figures A.1–A.4 show for fields I to IV
that the residual variances are generally independent of the simulated
σ 0, which justifies the use of a homoscedastic residual model. The
figures (b) show that the deviations from the theoretical quantiles for a
Gaussian distribution are only substantial for a few σ 0 simulations at the
tails and not systematic among the calibration cases, so we accepted the
validity of the Gaussian residual distribution. Only for field IV a number
of outliers can be observed, which is further discussed with regard to
the σ 0 simulations in Section 6.5.3.

The calibration cases show some autocorrelation, with mean values
of 0.40 at a lag of one time step and 0.28 at a lag of two time steps
(figures (c) in Figures A.1–A.4). In the Bayesian calibration of process
models, such as rainfall-runoff models (Schoups and Vrugt, 2010) and
terrestrial ecosystem models (Lu et al., 2017), autocorrelation in the resid-
uals can be accounted for with autoregressive residual models. However,
the IEM model does not contain state variables. Using autoregressive
residual models, therefore, does not change the posterior parameter
distributions nor the residual analysis plots of our calibration results. In
Appendix A.4 this is demonstrated by showing for field I the calibration
results obtained with a first-order and a second-order autoregressive
residual model.

Appendix A.3.2 contains the residual analysis plots for the validation
period. Figures A.5–A.8 show that the homoscedastic Gaussian residual
model is generally also valid for the validation period. The quantile-
quantile plots already give an outlook on the performances of the σ 0

simulations and SMC retrievals in the validation period. Regarding field I,
the quantile-quantile plot (Figure A.5b) is steeper (larger dispersion)
than the quantile-quantile plot for the calibration period and it reveals
a bias (compare to the plot’s origin, (0,0)). Hence, a ‘slightly’ degraded
performance and a bias are expected for the validation period. For
field II the quantile-quantile plots for the calibration and the validation
period (Figures A.2b and A.6b) are comparable, so we expect similar
performances. For field III (Figure A.3b) and field IV (Figure A.4b) steep
lines and high biases are observed, suggesting worse performances for
the validation period.
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6.5.2 Posterior parameter distributions

Figures 6.3–6.6 show the posterior parameter sets and the MAP s and
cl for fields I to IV. Joseph et al. (2008), Lievens et al. (2011), Rahman
et al. (2008) and Verhoest et al. (2007) already reported that multiple
optimal combinations of s and cl are possible. The scatter plots in
Figures 6.3–6.6 illustrate that the posterior distributions of the surface
roughness parameters actually cover a large part of the solution space,
and that the s and cl are highly correlated (Spearman’s rank correlation
coefficient, rS , is 0.97 to 1.0).
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Figure 6.3 (a) The posterior combinations of s and cl, and (b) histograms of
the posterior Zs distributions, for field I.
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Figure 6.4 Same as Figure 6.3, but for field II.

0 20 40 60 80 100
cl [cm]

0

0.5

1

1.5

2

2.5

s 
[c

m
]

MAP ascending orbits
MAP descending orbits
Par. samples asc. orbits
Par. samples desc. orbits
Par. distribution asc. orbits
Par. distribution desc. orbits

0 0.05 0.1 0.15 0.2
Zs [cm]

0

0.1

0.2

0.3

0.4

Pr
ob

ab
ilit

y 
[-]

(a) (b)

Figure 6.5 Same as Figure 6.3, but for field III.
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Figure 6.6 Same as Figure 6.3, but for field IV.

Individual values of s or cl, therefore, do not contain much inform-
ation about the surface roughness. For example, s values of 0.5 cm
to 1.5 cm are found in the posterior parameter distributions of all the
fields. Hence, both s and cl or a ratio between them should be used to
characterize the roughness of a surface. From Figures 6.3–6.6 it is clear
that the relation between s and cl is non-linear and that the simple s/cl
ratio will not suffice. Instead, it is approximately a square root relation
and the parameter Zs = s2/cl (Zribi and Dechambre, 2002) is suitable for
characterizing the roughness of the surfaces.

For the meadows (Figures 6.3 and 6.4), the ascending and the des-
cending orbits’ posterior distributions coincide. In other words, the
surface roughness is similar for the Sentinel-1 σ 0 observations made in
the ascending and in the descending orbits. This is an indication that
the meadows have an isotropic surface roughness, at least in Sentinel-1’s
ascending and descending orbit viewing directions. Therefore, we also
calibrated the surface roughness parameters with the Sentinel-1 σ 0 ob-
servations from both passes combined, of which the results are also
shown in Figures 6.3 and 6.4. The parameter sets obtained from the
combined calibration were used in the remainder of this chapter.

Furthermore, the posterior parameter distributions of the two mead-
ows are quite similar. The MAP s values are 0.16 cm and 0.18 cm, and the
cl values are 1.31 cm and 1.49 cm for field I and field II, respectively. In
Section 6.5.3 we discuss the cross-validation results of the MAP surface
roughness parameters of field I applied to retrieve the SMC for field II,
and vice versa.

For the fallow maize fields (Figures 6.5 and 6.6), the ascending and
the descending orbits’ posterior distributions are different. This was
expected, as these fields do have an anisotropic surface due to tillage
rows and these are viewed from different angles in the ascending and
descending orbits.

6.5.3 Retrievals

The MAP SMC retrievals, Up and Utotal-B are plotted as time series in
Figure 6.7, and Table 6.5 lists the performance metrics of the MAP SMC
retrievals for the calibration and the validation period. Time series
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and performance metrics of the forward σ 0 simulations, using the SMC
references and calibrated surface roughness parameters as input to the
IEM model, are shown in Figure 6.8 and Table 6.6 respectively.
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Figure 6.7 The SMC retrievals and in situ references. The Up and Utotal-B are
visualized by the 95 % confidence interval.

6.5.3.1 Meadows

The performance of the meadows’ MAP σ 0 simulations is comparable
for the calibration and the validation period. This indicates that the
surface roughness remained similar, which can be explained by the fact
that no ploughing was applied on the meadows. The increase in the
empirical uncertainty (uRMSD, Equation 6.1) of the SMC retrievals can
be explained by the wetter conditions during the validation period. IEM
model simulations show that the σ 0 to SMC sensitivity diminishes with
increasing SMC, see for example Figure 3 in Altese et al. (1996) and the
results in Benninga et al. (2019, in Chapter 5), which results in larger
SMC deviations for equal σ 0 deviations under wetter conditions. Because
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Table 6.5 Performance metrics of the MAP SMC retrievals against the in situ
references.

Field Note
Calibration Validation

rP RMSD uRMSD rP RMSD uRMSD
[−] [m3 m−3] [m3 m−3] [−] [m3 m−3] [m3 m−3]

I
- 0.50 0.079 0.079 0.65 0.11 0.10

With parameters II 0.51 0.10 0.070 0.55 0.12 0.12

II
- 0.30 0.076 0.076 0.54 0.10 0.10

With parameters I 0.28 0.14 0.098 0.14 0.10 0.10

III
All orbits 0.70 0.15 0.14 0.51 0.25 0.14

Excluding orbit 15 0.70 0.13 0.12 0.43 0.26 0.15
IV - 0.76 0.096 0.088 −0.056 0.26 0.077

Table 6.6 Performance metrics of the MAP σ 0 simulations against the Sentinel-1
σ 0 observations.

Field Note
Calibration Validation

rP RMSD uRMSD rP RMSD uRMSD
[−] [dB] [dB] [−] [dB] [dB]

I
- 0.67 0.72 0.72 0.69 0.99 0.77

With parameters II 0.68 0.99 0.72 0.68 0.78 0.77

II
- 0.54 0.62 0.62 0.66 0.63 0.63

With parameters I 0.52 0.92 0.62 0.66 0.92 0.63

III
All orbits 0.88 1.13 1.13 0.62 2.41 2.19

Excluding orbit 15 0.88 0.93 0.93 0.54 2.48 2.21
IV - 0.85 1.10 1.10 0.49 4.07 1.56

of this, the SMC retrieval uncertainty distributions in Figure 6.7 are also
wider at higher SMC and they are skewed towards the higher SMC levels.

The posterior surface roughness parameter distributions and the MAP
values are quite similar for the two meadows. To further verify this, we
performed a cross-validation by retrieving the SMC for field II using the
MAP surface roughness parameters of field I, and vice versa. Table 6.5
lists the SMC retrieval performances, and Appendix A.5 includes the SMC
and σ 0 time series figures. The calibration has aimed to optimize the
RMSD of the σ 0 simulations, so it could be expected that the RMSD for
the calibration period is higher using the MAP parameter set of the other
meadow. In general, the SMC retrieval performances are comparable
using the MAP surface roughness parameter sets obtained for the other
meadow.

6.5.3.2 Fallow fields

The validation performances for the fallow fields are considerably worse
than the calibration performances. Field III was fallow with maize stubble
during both the calibration and the validation period, but the surface
roughness is likely to be different due to agricultural practices in between.
Furthermore, Figures 6.7c (and 6.8c) show in the validation period three
distinctive periods: from 14 October 2017 to 10 November 2017 with
low SMC retrievals (high σ 0 simulations), from 15 November 2017 to
14 January 2018 with high SMC retrievals (low σ 0 simulations), and from
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Figure 6.8 Sentinel-1 σ 0 observations and simulations. The parameter and
total simulation uncertainty are visualized by the 95 % confidence interval.

15 January 2018 to 21 March 2018 with low SMC retrievals (high σ 0 sim-
ulations). However, the field was harvested in September/October 2017
and not ploughed after May 2017, so changes in surface roughness due
to agricultural practices and heavy rainfall were not expected. This res-
ult demonstrates that even under these circumstances, the fallow field
cannot be simulated with a single set of surface roughness parameters.

Besides, Sentinel-1 σ 0 observations of up to −3 dB in the calibration
period and −2 dB in the validation period were acquired for field III, with
a maximum of −1.62 dB. These Sentinel-1 observations all originate from
relative orbit number 15. The IEM model with an exponential autocorrel-
ation function for the surface roughness cannot reproduce such high σ 0

observations with any set of surface roughness parameters. Therefore,
we omitted the Sentinel-1 σ 0 observations of field III acquired in relative
orbit 15 for further analysis in this study. An additional calibration
was performed exclusively on the Sentinel-1 observations acquired in
relative orbit 88, of which the results are presented in Appendix A.6. The
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6.5. Results and discussion

posterior parameter distributions (Figure A.14) and the σ 0 simulation
performances (Figure A.17) for this calibration are, however, similar
to the calibration on both ascending orbits. Using the original surface
roughness parameter sets and omitting the orbit 15 Sentinel-1 σ 0 obser-
vations does improve the σ 0 simulation and SMC retrieval performances
(Tables 6.5 and 6.6).

For field IV, the validation performances are more degraded than for
field III. This can be explained by the different land covers in the calibra-
tion and the validation period (Table 6.2) and by the bias in the in situ
references during the validation period (Section 6.3.2). Figure 6.9a shows
the residuals of the MAP SMC retrievals with the original references and
with the references corrected for the bias of −0.12 m3 m−3. Part of the
residuals can indeed be explained by this bias. However, still three peri-
ods can be distinguished in the residuals: between 17 October 2017 and
the sowing of the winter wheat on 10 November 2017 the RMSD against
the bias-corrected references is 0.10 m3 m−3 (13 observations), between
13 November 2017 and 6 December 2017 the RMSD is smallest with a
value of 0.050 m3 m−3 (10 observations), and after 15 December 2017 the
RMSD is 0.19 m3 m−3 (32 observations). The development of the winter
wheat vegetation on this field during the validation period does not have
a large effect, as this should otherwise be visible as a gradual trend in the
residuals extending to April 2018. Moreover, at the end of the validation
period the wheat cover is still sparse, as is shown in Figure 6.9b. A
number of heavy rainfall events occurred between 6 December 2017 and
15 December 2017 (in total 64 mm). Callens et al. (2006) demonstrated
that rainfall smoothens the surface and reduces the surface roughness
on recently tilled fields. Indeed, the Sentinel-1 σ 0 observations being
lower after 15 December 2017 is in accordance with a reduced surface
roughness.
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Figure 6.9 (a) Residuals between the MAP SMC retrievals and the in situ refer-
ences of field IV over the validation period. (b) Field IV on 21 March 2018.

A number of outliers were observed in the residual analysis plots of
the calibrations on field IV. As visualized in Figure A.4, the σ 0 simulations
in the first part of the calibration period, between 14 October 2016 and
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6. S1 soil moisture content and its uncertainty over sparsely vegetated fields

6 November 2016, hold the largest residuals and all these residuals are
on one side of the quantile-quantile plots. This indicates that the surface
roughness conditions have changed within the calibration period. As
discussed in the previous paragraphs, for both fallow fields the same
holds between the calibration and the validation period as well as within
the validation periods.

6.5.3.3 Note on the soil moisture content references

It should be noted that the SMC references extend to higher levels than
saturated SMCs generally observed. BOFEK2012 (Wösten et al., 2013)
lists saturated SMC values of 0.44 m3 m−3–0.45 m3 m−3 for the surface
layers (0 cm to 23 cm depth) of field I to IV. These values are exceeded by
the station SMC measurements. This can be partly attributed to higher
organic matter content and root density near the soil surface. Organic
matter increases SMC values especially in sandy and loamy sandy soils
(Minasny and McBratney, 2018). In addition, local soil variability is not
captured by BOFEK2012, local soil variability is not considered in the
probes’ calibration function, and roots and macropores in the probes’
influence zone can increase measured SMC (Benninga et al., 2018c, in
Chapter 3). However, even with consideration of these factors, the
very high SMC measurements, especially for field II, seem unrealistic in
absolute sense. Nevertheless, the correlations between the station and
field measurements, listed in Table 4.2, are high. It can, therefore, be
expected that the station measurements capture the temporal variability
of the adjacent field’s SMC.

The absolute SMC measurement values may still deviate from realistic
values. This will affect the surface roughness parameters obtained by the
calibration, and for the SMC retrieval over independent periods or fields
it may be necessary to apply an unbiasing procedure. This is reflected
in the meadows’ cross-validation results, see Tables 6.5 and 6.6: the
RMSDs, which include the bias in the mean, are generally higher than
the original calibration metrics, whereas the rP and uRMSDs, which
exclude this bias, are comparable.

6.5.4 Retrieval uncertainty

Figure 6.10 shows Utotal-B in comparison to the uncertainty of the MAP
SMC retrievals estimated empirically using the SMC references and Fig-
ure 6.11 shows Utotal-B relative to Utotal-C , for bins of SMC references.
The empirical uncertainty is quantified with Equation 6.1, but without
removing the bias for each bin separately to preserve the integrity of
the time series’ PDFs. For field I and II both the calibration and the
validation period are included (Figures 6.10a and b). Since it was found
that the parameters calibrated for the cultivated fields (field III and IV)
are invalid for the validation period, the latter period is not included in
Figures 6.10c–f. As a consequence of that and because the ascending and
descending orbits are separated for field III and IV, the total number of
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pairs is larger for field I and II and for visualization purposes the number
of pairs per bin in Figures 6.10 and 6.11 is ten for field I and II and five
for field III and IV.
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Figure 6.10 The empirical uncertainty of SMC retrievals and Utotal-B, for bins
of SMC references. The number of pairs per bin is ten for field I (a) and II (b)
and five for field III (c–d) and IV (e–f).

The increasing empirical uncertainty and Utotal-B with increasing SMC
in Figure 6.10 are explained by the diminishing σ 0 to SMC sensitivity with
increasing SMC, as was discussed in Section 6.5.3.1. Both the increasing
trend and the magnitude of the empirical uncertainty are rather closely
approximated by Utotal-B . In other words, the SMC retrieval uncertainty
derived with the Bayesian calibration does successfully reproduce the
uncertainty estimated empirically. This does, however, not hold for
field IV. As explained in Section 6.5.3.2, the IEM model does not correctly
reproduce the σ 0 of field IV within the calibration period with a single set
of surface roughness parameters. As a consequence, the likelihood func-
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Figure 6.11 Utotal-B and its four constituents relative to Utotal-C . The bins are
the same as in Figure 6.10.

tion implementation with a homoscedastic residual standard deviation
is not valid over the complete calibration period.

Figure 6.11 shows that the combination of Usp, Us,S1, US1 and Up, i.e.
Utotal-C , approximately explains Utotal-B , except for field IV again. Fig-
ure 6.11 also shows the relative squared contributions of Usp, Us,S1, US1

and Up, namely RCsp, RCs,S1, RCS1 and RCp. The RCp is relatively small
and constant across the investigated SMC domain, with an average of 13 %
over the SMC domain and fields I to III. This means that the Up increases
with SMC because the total uncertainty increases with increasing SMC.
From the assumption that Usp and Us,S1 are equal to 0.027 m3 m−3 and
0.051 m3 m−3 across the entire SMC domain follows that their relative
contributions (RCsp and RCs,S1) decrease with increasing SMC because
the total uncertainty increases with SMC. The average RCsp and RCs,S1
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decrease, respectively, from 13 % and 46 % at a SMC of 0.26 m3 m−3 to
4 % and 15 % at a SMC of 0.53 m3 m−3. The average RCS1 increases from
31 % at a SMC of 0.26 m3 m−3 to 67 % at a SMC of 0.53 m3 m−3, which
is explained by the increasing US1 with increasing SMC (Benninga et al.,
2019, in Chapter 5). The US1 is found to be the dominant driver for the
increasing SMC retrieval uncertainty with increasing SMC. For field III,
the RCS1 is even larger than for the other fields (at an equal SMC level)
because of field III’s smaller surface area.

6.6 Conclusions

The total uncertainty and its constituents were investigated for SMC
retrievals from Sentinel-1 σ 0 observations over four sparsely vegetated
fields (two meadows and two fallow cultivated fields). A Bayesian frame-
work was used for calibrating the surface roughness parameters that are
input to the IEM surface scattering model, and for deriving the parameter
and total uncertainty distributions. Subsequently, these distributions
were used to retrieve the SMC and its uncertainty, and the relative contri-
butions of four uncertainty sources were evaluated. This resulted in the
following conclusions:

1. The simplest implementation of the likelihood function, using a
homoscedastic Gaussian residual model, describes the simulation
residuals. An exception is when the IEM model is not capable
of reproducing the Sentinel-1 σ 0 observations in a calibration or
validation period with a single set of surface roughness parameters.

2. The surface roughness parameters (s and cl) are highly correlated,
with Spearman’s rank correlation coefficients (rS ) of 0.97 to 1.0.
The s and cl have approximately a square root relation and the
parameter Zs = s2/cl, which was already introduced in Zribi and
Dechambre (2002), is shown to be suitable for characterizing the
roughness of the surfaces. This result also implies that it is valid
to fix one of the parameters s or cl for simplifying the calibration
while still acquiring the same posterior Zs distribution.

3. For the two meadows the surface roughness parameter distribu-
tions coincide for Sentinel-1’s ascending and descending orbits, des-
pite the different directions from which Sentinel-1 views the fields
in these passes. Furthermore, the surface roughness parameter
distributions of the two meadows are quite similar. In contrast, for
the two fallow fields the surface roughness parameter distributions
depend on the pass direction and the distributions differ between
the two fields. This is attributed to the anisotropic nature of these
surfaces caused by tillage rows.

4. The performance of the SMC retrievals for the calibration period,
expressed by the RMSD, is between 0.076 m3 m−3 and 0.13 m3 m−3.
The validation results for an independent period confirm that, for
the meadows, the surface roughness parameters can be used across
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years. For the fallow fields, however, the surface roughness condi-
tions change; not only between the calibration and the validation
period, but even within single winter periods.

5. The total SMC retrieval uncertainty derived with the Bayesian cal-
ibration successfully reproduces the uncertainty estimated empir-
ically using in situ references, including the trend of increasing
uncertainty with increasing SMC.

6. The in situ references’ measurement uncertainty (Usp) and spatial
mismatch uncertainty (Us,S1), the SMC retrieval uncertainty due to
Sentinel-1’s radiometric uncertainty (US1) and the parameter uncer-
tainty (Up) constitute the total uncertainty. The main uncertainty
originates from the in situ references and the Sentinel-1 σ 0 ob-
servations, whereas the contribution from the surface roughness
parameters is relatively small.

The two meadows’ coinciding surface roughness parameter distri-
butions for the ascending and descending orbits, their similar surface
roughness and consistent SMC retrievals for the calibration and val-
idation period are promising results for operational retrieval of SMC
over meadows. The value of such a SMC product would be substantial
as meadows cover a major portion of the land in use for agriculture,
e.g. 71 % in the study region Twente and 55 % in the Netherlands in
2017 (Ministry of Economic Affairs and Climate Policy, 2020). Therefore,
further research to the selection of a common surface roughness para-
meter set for meadows and the associated retrieval uncertainty would be
interesting.

To improve the performance of the Sentinel-1 SMC retrievals it will
be essential to reduce the in situ references’ uncertainties and the ra-
diometric uncertainty. The references’ uncertainties can be reduced by
averaging multiple spatially distributed measurements. Reducing the
impact of radiometric uncertainty can be achieved by accepting a coarser
spatial resolution or a further improvement of the SAR image processing.

By the Bayesian calibration of the IEM model, further insights into the
surface roughness of agricultural fields and SMC retrieval uncertainties
have been derived. These insights can be used to guide SAR-based SMC
product developments. Moreover, the study shows the utility of Bayesian
calibration approaches for deriving such new insights and the presented
methodology may serve as an example for the Bayesian calibration of
other scattering model applications.
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7Sentinel-1 soil moisture content
retrieval over meadows using a
physically based scattering model

This chapter is based on:

Benninga, H. F., Van der Velde, R., and Su, Z.: Sentinel-1 soil moisture
content retrieval over meadows using a physically based scattering model,
submitted.

141



7. Soil moisture content retrieval over meadows

Abstract

Soil moisture content (SMC) information at field scale could have
important applications in agricultural and regional water manage-
ment. This study presents an operationally applicable scheme for
SMC retrieval over meadows from synthetic aperture radar (SAR)
backscatter (σ 0) observations. We parameterised the vegetation
scattering and absorption model developed at the Tor Vergata Uni-
versity of Rome (TV) and the integral equation method (IEM) sur-
face scattering model for grass-covered soil surfaces. Leaf area
index (LAI) estimates from a Sentinel-2 product provide field-scale
vegetation information, as is demonstrated by validation against
in situ measurements. The SMC retrieval scheme is applied with
field-averaged Sentinel-1 σ 0 observations from November 2015 to
November 2018 and evaluated on 21 meadows against adjacent
in situ station measurements, without (IEM) and with a vegetation
correction (TV-IEM). Masking the IEM and TV-IEM SMC retrievals for
dense vegetation conditions improves their performance, but this is
a trade-off with the number of retrievals. By setting the SMC retriev-
als that exceed the upper retrieval limit of 0.75 m3 m−3 during the
wet period to the maximum SMC, the performance metrics improve
to mean Pearson correlation coefficients of 0.55 for IEM and 0.64
for TV-IEM, root mean square deviations (RMSD) of 0.14 m3 m−3

for IEM and 0.13 m3 m−3 for TV-IEM, and RMSDs relative to the
range of the SMC references of 24 % for both IEM and TV-IEM. The
slightly better SMC retrieval performance with TV-IEM is caused by
invalid SMC retrievals under dense vegetation conditions, and the
performance metrics for IEM and TV-IEM are practically equal by
considering the same retrieval-reference pairs. The IEM and TV-IEM
retrieval performances are also similar to the performance of two
other Sentinel-1 based products at field scale. They are, on average,
outperformed by NASA’s Soil Moisture Active Passive (SMAP) 9 km
and 36 km products evaluated at field scale, but these products are
expected to deviate if larger regional differences are present and in
field-specific situations.

Keywords: Soil moisture content, Sentinel-1 satellites, vegetation correction,
LAI validation, operationally applicable scheme.
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7.1 Introduction

Microwave backscatter (σ 0) observations by synthetic aperture radar
(SAR) instruments are known for their potential to monitor soil moisture
content (SMC). Recently, interest has grown in the Sentinel-1 satellites
because of the combination of its fine spatiotemporal resolutions, high
radiometric accuracy and the operational ambition of the programme
(Balenzano et al., 2021; Bauer-Marschallinger et al., 2019; Hornacek
et al., 2012; Pulvirenti et al., 2018). Balenzano et al. (2021), Bauer-
Marschallinger et al. (2019) and Pulvirenti et al. (2018) developed al-
gorithms for the retrieval of SMC from Sentinel-1 observations at resolu-
tions of 1 km, 1 km and 500 m, respectively.

Several studies noted the potential of Sentinel-1 σ 0 observations for
monitoring SMC even at finer scales, up to agricultural field scale (e.g.
Amazirh et al., 2018; El Hajj et al., 2017). Especially over heterogeneous
landscapes with relatively small agricultural fields, such as in western
Europe, new applications may be anticipated with SMC information at
field scale. This includes agricultural water management for field traffic-
ability and irrigation (Carranza et al., 2019; Lei et al., 2020; Vereecken
et al., 2014), and regional catchment management in dry and wet periods
(Cenci et al., 2017; Mahanama et al., 2008; Pauwels et al., 2001; Pezij
et al., 2019b).

For the SMC to be estimated from Sentinel-1 observations, the rela-
tion between σ 0 and SMC must be separated from the effects of surface
roughness and vegetation (Kornelsen and Coulibaly, 2013; Paloscia et al.,
2013; Verhoest et al., 2008). Surface scattering models, such as the
frequently-used ‘integral equation method’ (IEM) model, simulate the σ 0

from surfaces based on the surface roughness and SMC (via relative per-
mittivity) given the sensing configurations regarding frequency and incid-
ence angle (Ulaby and Long, 2014). The results in Benninga et al. (2020b,
in Chapter 6) show that the IEM surface roughness parameters can be
assumed time-invariant, independent of the ascending/descending orbit
and similar for different meadows. This is a promising finding for the
retrieval of SMC over meadows across a larger region because it sug-
gests that using a single set of surface roughness parameters would be
allowed. The value of such a product would be substantial as meadows
cover a major portion of the land in use for agriculture. However, this
finding was obtained only for two meadows. Furthermore, the meadows
were in relatively wet and sparsely vegetated (winter) conditions. Hence,
further research is required over additional meadows and for a range of
hydrometeorological and vegetation conditions.

The development of vegetation throughout a year complicates the
retrieval of SMC. Interactions of the microwave signal with vegetation
results in attenuation of the soil σ 0, direct σ 0 from the vegetation and
σ 0 from soil-vegetation pathways (Ulaby and Long, 2014). These effects
are enhanced by Sentinel-1’s sub-optimal specifications for SMC retrieval,
notably the C-band (wavelength 5.6 cm) observations at relatively large
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incidence angles and in VV polarization (Fascetti et al., 2017; Pulvirenti
et al., 2018). Based on the theory it is, thus, expected that correcting
Sentinel-1 σ 0 observations for vegetation effects contributes to more
accurate SMC retrievals. The discrete electromagnetic Tor Vergata (TV)
model coupled with the IEM surface scattering model (Bracaglia et al.,
1995; Dente et al., 2014; Wang et al., 2018) is a physically based model.
Advantages of using a physically based model are the application to
various site conditions and sensor configurations (Paloscia et al., 2013;
Petropoulos et al., 2015) as well as propagation of uncertainty sources
(Benninga et al., 2020b, in Chapter 6; Satalino et al., 2002; Van der
Velde et al., 2012b) and the understanding of backscattering processes
(Baghdadi et al., 2002; Balenzano et al., 2012; Wang et al., 2018). However,
deficiencies in the models, their parameterisations and uncertainty in the
input variables, such as current vegetation conditions, will also influence
the accuracy of SMC retrievals.

This study presents an operationally applicable scheme for SMC re-
trieval over meadows from SAR σ 0 observations. For this purpose, we
parameterised the TV and IEM models for grass-covered soil surfaces.
For representing field-scale vegetation conditions, we utilized a leaf area
index (LAI) product derived from Sentinel-2 optical imagery (Paepen and
Wens, 2017; VITO, 2019). The Sentinel-2 LAI estimates were validated
against in situ measurements collected on six agricultural fields in the
east of the Netherlands. The parameters required for the TV and IEM
models were adopted from previous studies, except for the vegetation wa-
ter content (VWC) for which various time-invariant and time-varying VWC
values were tested. Then, the SMC retrieval scheme was demonstrated by
retrieving the SMC from Sentinel-1 σ 0 observations for 21 meadows and
validated against measurements from adjacent in situ monitoring sta-
tions. The retrieval results with IEM (without vegetation correction) and
TV-IEM (with vegetation correction) are compared to evaluate whether
the vegetation correction improves the SMC estimates. Furthermore, we
tested whether the performance improves by incorporating information
from SMC retrievals that exceed the upper SMC retrieval limit and by
masking SMC retrievals for dense vegetation conditions. Eventually, the
SMC retrieval performance is compared with the performance of three
other Sentinel-1 based products at field scale, three Sentinel-1 based
products at 1 km resolution and the Soil Moisture Active Passive (SMAP)
9 km and 36 km products evaluated at field scale.

7.2 Soil moisture content retrieval scheme

Figure 7.1 shows the SMC retrieval scheme, separated in the boxes A–C.

7.2.1 A: Input data

The preparation of the input data starts with the selection of meadows
within a study region. In case of the Netherlands this can be done
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Figure 7.1 Flowchart of the SMC retrieval scheme, separated in the preparation
of the input data (A), the parameterisation of the TV-IEM model (B), and the
retrieval of SMC from σ 0 observations (C).

with the crop parcel registry (‘Basisregistratie Gewaspercelen’ in Dutch;
Ministry of Economic Affairs and Climate Policy, 2020). This database
contains, on an annual basis, the type of crop for each agricultural
parcel in the Netherlands. For the selected meadows the average soil
texture, Sentinel-1 σ 0 and incidence angle, and Sentinel-2 LAI were
calculated. For the soil texture we could use the soil physical properties
map of the Netherlands (‘bodemfysische eenhedenkaart 2012’ in Dutch,
or BOFEK2012; Wösten et al., 2013). The preparation steps that were
applied to the Sentinel-1 imagery and Sentinel-2 LAI maps are described
below.

145



7. Soil moisture content retrieval over meadows

7.2.1.1 Sentinel-1 imagery

The Sentinel-1 constellation consists of the Sentinel-1A and Sentinel-1B
satellites, which provide imagery since October 2014 and September 2016
(Bourbigot et al., 2016; Torres et al., 2012). Their imaging revisit time
over the European landmasses, which is one of the high priority areas in
Sentinel-1’s acquisition strategy (Bauer-Marschallinger et al., 2019; Torres
et al., 2012), is approximately 3 to 8 days with Sentinel-1A and improves
to 1.5 to 3 days with both Sentinel-1A and -1B. Inconsistencies in the
Sentinel-1 σ 0 time series were found before 25 November 2015 (Benninga
et al., 2019, in Chapter 5; El Hajj et al., 2016), so the SMC retrieval
scheme was started from 25 November 2015 and it was continued until
1 November 2018.

Sentinel-1 σ 0 and local incidence angle values for study fields were ob-
tained from Level-1 Ground Range Detected (GRD) High Resolution (HR)
Interferometric Wide Swath (IW) imagery. The images were downloaded
from the Copernicus Open Access Hub (Copernicus, 2019). The opera-
tions (1) Apply Orbit File, (2) Thermal Noise Removal and (3) Range Dop-
pler Terrain Correction, including radiometric normalization to σ 0 (in
m2 m−2) with projected local incidence angles, available in the European
Space Agency (ESA)’s Sentinel Application Platform (SNAP) V6.0 (ESA,
2019), were used to pre-process the Sentinel-1 images.

The Level-1 GRD HR IW Sentinel-1 images have, after multi-looking, a
resolution of 20 m× 22 m (Bourbigot et al., 2016; Torres et al., 2012). The
Range Doppler Terrain Correction included projection of the Sentinel-1
σ 0 and local incidence angles on a geographic grid (WGS84) with a pixel
spacing of 9.0E−5◦ (equivalent to 10 m× 6.1 m at the study region’s
latitude). After the pre-processing operations the Sentinel-1 σ 0 and
incidence angle values were averaged over study fields, excluding the
area within 20 m from borders of fields and 40 m from trees and buildings
to avoid possible influences from outside fields. The final steps were to
mask the Sentinel-1 σ 0 observations of study fields for frozen conditions,
wet snow and intercepted rain with the masking rules for weather-related
surface conditions presented in Benninga et al. (2019, in Chapter 5) and
to express the σ 0 intensity values in dB.

Sentinel-1 provides σ 0 observations in VV and VH polarization. The
σ 0 observations in VV polarization have a higher expected sensitivity to
SMC (e.g. Amazirh et al., 2018; El Hajj et al., 2017; Pulvirenti et al., 2018).
Therefore, only the VV polarization σ 0 observations were used in the
presented SMC retrieval scheme.

7.2.1.2 Sentinel-2 leaf area index

The Sentinel-2A and -2B satellites provide imagery in 13 spectral bands in
the visible, near infrared and short wave infrared parts of the electromag-
netic spectrum (Drusch et al., 2012). The resolution is 10 m, 20 m or 60 m,
depending on the spectral band. The revisit period over the Netherlands
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7.2. Soil moisture content retrieval scheme

is 12 to 6 days from 1 July 2015 to 1 July 2017 (Sentinel-2A) and 5 to
2.5 days from 1 July 2017 onwards (Sentinel-2A and Sentinel-2B).

Using Sentinel-2 imagery, the Flemish Institute for Technological
Research (‘Vlaamse Instelling voor Technologisch Onderzoek’ in Dutch,
or VITO) generates 10 m grid maps of various vegetation indicators,
namely the fraction of absorbed photosynthetically active radiation,
fraction of green vegetation cover, LAI, normalized difference vegetation
index (NDVI), chlorophyll canopy content and chlorophyll water content
(Paepen and Wens, 2017; VITO, 2019). The maps are masked for the
scene classifications cloud shadow, medium probability for clouds and
high probability for clouds. For this study, V102 vegetation indicator
maps as well as scene classification maps were downloaded from the
VITO Product Distribution Portal (VITO, 2019). Recently, V200 replaced
V102 and the distribution moved to Terrascope (Piccard et al., 2020).

Figure 7.2 illustrates that individual fields can be distinguished on
the Sentinel-2 LAI maps. Differences between the LAI values of meadows
exist due to different management practices: part of them is being grazed
and others are cut at several moments in the year. On 15 September 2016
(the example map in Figure 7.2) part of the crop fields had already been
harvested, whereas on others the crop was still there.

Maps are in the projected coordinate system 
for the Netherlands RD New (EPSG: 28992)
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Figure 7.2 Sentinel-2 LAI maps on 15 September 2016 for the fields where
we collected in situ LAI measurements. The outlines of the agricultural fields
originate from the crop parcel registry 2016 (Ministry of Economic Affairs and
Climate Policy, 2020).
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7. Soil moisture content retrieval over meadows

The Sentinel-2 LAI images are not collected at the same time as
Sentinel-1 images. Furthermore, only about 40 % of the LAI estimates is
available after the masking for cloud shadow, medium probability and
high probability for clouds. To provide LAI information at the time of
Sentinel-1 images we, therefore, had to interpolate the Sentinel-2 LAI
estimates. We assumed that we do not have local information available,
such as when a study field was sowed or harvested, to enable region-
wide application of the Sentinel-2 LAI information. Instead, we linearly
interpolated two subsequent Sentinel-2 LAI estimates if the time gap
between them is less than 15 days and the LAI does not decrease more
than 2 m2 m−2, thereby assuming that a larger decrease associates with
the harvesting of a crop. For the winter period between 1 November
and 1 March no variation in LAI is expected and we adopted the mean
of Sentinel-2 LAI estimates over this period for a field. Furthermore,
if no interpolated Sentinel-2 LAI estimate is available for a Sentinel-1
observation, a maximum time gap of 1.5 days is assumed to adopt a
Sentinel-2 LAI estimate. The interpolated Sentinel-2 LAI estimates are
validated against in situ LAI measurements in Section 7.5.1.

7.2.2 B: Forward backscattering model

7.2.2.1 Surface and vegetation models

The total σ 0 constitutes of three contributions as follows (in m2 m−2):

σ 0 = γ2σ 0
s + σ 0

v + σ 0
sv , (7.1)

where γ2 is the two-way transmissivity of the vegetation (= 1−two-way
attenuation), σ 0

s is the σ 0 from the soil surface, σ 0
v is the direct vegeta-

tion σ 0 and σ 0
sv is the σ 0 from soil-vegetation pathways. The IEM surface

scattering model (Fung et al., 1992) simulates the scattering in all upward
directions from the soil by representing it as a rough dielectric surface.
The TV electromagnetic model, developed at the Tor Vergata University
of Rome, represents the vegetation as a medium of discrete scatterers
and simulates the γ2, σ 0

v and σ 0
sv based on radiative transfer theory.

Readers are referred to Bracaglia et al. (1995) and Dente et al. (2014) for
more background on the TV-IEM model.

7.2.2.2 Parameterisation

We implemented the TV model for grass-covered surfaces using the
vegetation parametrisation reported in Dente et al. (2014), excluding the
litter layer, and the IEM surface roughness parameter values that were
calibrated on sparsely vegetated meadows in Benninga et al. (2020b, in
Chapter 6). The TV vegetation and IEM surface roughness parameter
values are listed in Table 7.1. For the soil texture parameters, we used
the average sand, silt and clay content, and soil bulk density of the study
fields (i.e. regional averages).

The LAI determines the number of discs that represent the vegetation
(Bracaglia et al., 1995). In Benninga et al. (2020b, in Chapter 6) it has been
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7.2. Soil moisture content retrieval scheme

Table 7.1 The surface and vegetation parameters used for simulating a grass-
covered soil surface with the TV-IEM model.

Module Parameter Symbol Value Source

Surface Root mean square surface
height

s 0.16 cm Benninga et al.
(2020b, in Chapter 6)

Surface Autocorrelation length cl 1.31 cm Benninga et al.
(2020b, in Chapter 6)

Surface Soil texture: sand, silt and clay
content, and soil bulk density

- Averages for the study fields,
see Section 7.4.1

Vegetation Leaves’ disc radius Rleaf 1.4 cm Dente et al. (2014)
Vegetation Leaves’ disc thickness Dleaf 0.02 cm Dente et al. (2014)

assumed that the sparse grass cover on meadows in winter conditions
does not affect the Sentinel-1 σ 0 observations. To enable adopting
the surface roughness parameter values from Benninga et al. (2020b,
in Chapter 6), we subtracted from the Sentinel-2 LAI estimates the LAI
during winter before they were used as input to the SMC retrieval scheme.

Regarding the VWC vegetation variable, previous studies adopted
time-invariant values of 0.8 kg kg−1 (Dente et al., 2014) and 0.59 kg kg−1

(Wang et al., 2018) for grass. These VWC values were obtained after
optimizing TV simulations with regard to passive and active microwave
observations over Tibetan alpine meadows. However, given the water-
limited conditions that can occur in our study region, the VWC may vary
over time as well. Therefore, besides searching for one optimum VWC
value, we also investigated implementation of a time-varying VWC. The
VWC is adapted each Sentinel-1 time step by optimizing the VWC value
on the match between the SMC retrieval and reference of the previous
time step. This is based on the assumptions that the residual between
a SMC retrieval and reference is caused by an imperfect VWC value and
that the VWC value of the previous time step can be used for the current
time step. Two methods were tested, namely: (i) combining the Sentinel-1
observations in the ascending and descending orbits, and (ii) separating
the ascending (afternoon) and descending (morning) orbits, i.e. using for
a descending orbit Sentinel-1 observation the optimum VWC value of the
previous descending observation.

7.2.3 C: Retrieval of soil moisture content from backscatter
observations

The retrieval of SMC from a Sentinel-1 σ 0 observation involves finding
the SMC value for which the minimum difference between σ 0 simulations
and the Sentinel-1 σ 0 observation is achieved. This would require a large
number of TV-IEM simulations over a broad range of incidence angle, LAI,
VWC and SMC combinations, which is not feasible in operational settings
because of the considerable run time of single TV-IEM simulations. Ap-
pendix A.7 details the estimation of TV-IEM’s and IEM’s run time. On an
Intel Core(TM) i7-4790 CPU @ 3.60 GHz processor, the run time is 26.1 s
per TV-IEM simulation.
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7. Soil moisture content retrieval over meadows

As an alternative, we performed the TV-IEM simulations and stored
the σ 0 contributions (σ 0

v , σ 0
s , σ 0

sv and γ2) in look-up tables. The TV-IEM
simulations were first executed on the ranges and coarse simulation
increments listed in Table 7.2. Second, similar to Kim et al. (2014), the
TV-IEM simulations were linearly interpolated to the finer increments that
are listed in Table 7.2. This two-step procedure increases the number
of nodes from a limited number of simulations, i.e. from 11 880 simula-
tions to 278 633 043 nodes. The validity of the linear interpolations is
discussed in Section 7.3.

Table 7.2 Discretisation of the TV-IEM look-up tables. Regarding LAI, the
simulation nodes are [0 m2 m−2, 1 m2 m−2, ..., 10 m2 m−2] with an additional sim-
ulation for 0.1 m2 m−2. Regarding SMC, the simulations nodes are [0.05 m3 m−3,
0.1 m3 m−3, ..., 0.75 m3 m−3] with an additional simulation for 0.01 m3 m−3.

Variable Lower limit Upper limit Coarse simulation
increment

Fine interpolation
increment

Incidence angle [◦] 29 47 2 0.25
LAI [m2 m−2] 0, 0.1 10 1.0 0.1
VWC [kg kg−1] 0.4 0.9 0.05 0.01
SMC [m3 m−3] 0.01, 0.05 0.75 0.1 0.001

To limit the number of TV-IEM simulations, we only performed them
for a study region’s average soil texture and at discrete incidence angles.
IEM’s short run time (0.0556 ms per simulation, see Appendix A.7) allows
to combine the TV-IEM σ 0

v , σ 0
sv and γ2 simulations, during the retrieval

process, with IEM σ 0
s simulations for the fine interpolation increments

and field-specific soil textures and incidence angles.

7.3 TV-IEM model sensitivity to soil and vegetation
variables

The σ 0
v , γ2σ 0

s and σ 0
sv relative contributions to the total σ 0, as simulated

with the TV-IEM model, are shown in Figure 7.3. The fine grid simulated
contributions, as functions of LAI and VWC, show small random devi-
ations from the coarse grid simulations. As a function of SMC, the coarse
grid simulations align with the fine grid simulations— for the 35◦ case—
because the coarse grid simulations were combined with IEM simulations
at fine increments. However, in contrast with the LAI and VWC, interpol-
ating the simulations for the coarse incidence angle increments to the
fine interpolation increments has a systematic effect on the simulations,
as can be seen from the systematic deviations in Figures 7.3b, d and f.
Nevertheless, the linear interpolations of the coarse grid simulations
approximately follow the lines of fine grid simulations and in this study
we consider the linear interpolations as acceptable approximations for
establishing the σ 0 contributions look-up tables.

Figures 7.3a–b show that the σ 0 originates completely from the soil
surface for a LAI of 0 m2 m−2, which is expected because the σ 0

v and σ 0
sv
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Figure 7.3 The σ 0
v , γ2σ 0

s and σ 0
sv relative contributions for varied LAI, VWC and

SMC conditions, and incidence angles of 35◦ and 44◦. The solid lines represent
TV-IEM simulations with fine increments of 0.1 m2 m−2 (a–b), 0.01 kg kg−1 (c–d)
and 0.01 m3 m−3 (e–f), and the dashed lines represent simulations with the
coarse increments listed in Table 7.2.

will be 0 m2 m−2 and γ2 will be 1 when no vegetation is present. How-
ever, the γ2σ 0

s contribution already reduces significantly with a limited
grass cover. The σ 0

v is larger than the γ2σ 0
s from a LAI of approximately

1.5 m2 m−2 and onwards (for a VWC of 0.6 kg kg−1). Figures 7.3c–d show
that the γ2σ 0

s contribution also reduces with increasing VWC. Hence,
both an increasing LAI and VWC cause a diminishing σ 0 to SMC sensitiv-
ity. Figures 7.3e–f show that the relative γ2σ 0

s contribution is larger for
higher SMC. This is because σ 0

s increases with increasing SMC. The σ 0 to
SMC sensitivity diminishes with increasing SMC (Altese et al., 1996; Ben-
ninga et al., 2019, in Chapter 5), as is illustrated in Figure 7.4. Figure 7.4
also reflects the reduced σ 0 to SMC sensitivity under a vegetation cover:
the higher the LAI and VWC are, the more the σ 0 to SMC sensitivity re-
duces because the σ 0

s is increasingly more attenuated and the σ 0
v relative

contribution to the total σ 0 increases. The γ2σ 0
s relative contribution is

slightly smaller for the 44◦ incidence angle than for the 35◦ incidence
angle. This is explained by the longer path through the vegetation for
larger incidence angles. For example, for a LAI of 2 m2 m−2 and a VWC of
0.6 kg kg−1 the γ2 values are 0.49 and 0.48 for incidence angles of 35◦
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Figure 7.4 The sensitivity of σ 0 to SMC. The simulations in this figure are for a
35◦ incidence angle.

and 44◦, respectively, and for a LAI of 4 m2 m−2 they are 0.23 and 0.22.
The σ 0

sv relative contribution is small for all grass cover and SMC
conditions. The mean σ 0

sv values are 5.5 % of the total σ 0 for the 35◦

incidence angle (Figures 7.3a, c and e) and 3.6 % for the 44◦ incidence
angle (Figures 7.3b, d and f). In contrast to the γ2σ 0

s , the σ 0
sv relative

contribution is fairly independent of the LAI and VWC, and under dense
grass conditions its contribution is similar to that of the γ2σ 0

s . Whereas
in the frequently-used water cloud model (WCM), which was introduced
by Attema and Ulaby (1978) and used in e.g. El Hajj et al. (2017), Paloscia
et al. (2013) and Pulvirenti et al. (2018) for SMC mapping from Sentinel-1
imagery, multiple scattering interactions between the soil surface and
the vegetation are neglected, these results suggest that σ 0

sv should be
included because of its significant contribution to the total σ 0 for grass-
covered soil surfaces. Furthermore, σ 0

sv may still contribute to σ 0 to
SMC sensitivity under dense vegetation conditions (Chiu and Sarabandi,
2000; Joseph et al., 2010; Stiles et al., 2000).

7.4 Validation references and method

7.4.1 Study region and period

The study region is located in the eastern part of the Netherlands (Fig-
ure 7.5a). For an extensive description of the study region’s landscape,
soils and climate, we refer to Van der Velde and Benninga (in preparation,
in Chapter 2). From mid-November to mid-March (winter period) the SMC
is generally at a high level and from mid-May to mid-October (summer
period) at a low level mainly due to a higher evaporative demand (Ben-
ninga et al., 2019, in Chapter 5; Van der Velde et al., 2021). Moreover, the
general SMC cycle contains dynamics on shorter time-scales in response
to meteorological events. In the study period of 25 November 2015 to
1 November 2018, the 2018 summer was exceptionally dry due to high
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evaporative demands and low rainfall (Bakke et al., 2020; Buitink et al.,
2020; Buras et al., 2020). The grass growing season is approximately
from 1 March to 1 November (Pellikaan, 2017; Veeneman et al., 2017).
Outside the growing season, grass covers are virtually static and sparse.
Within the growing season meadows are being grazed or cut at several
moments, which is why the LAI can be very different between adjacent
meadows (see Figure 7.2).
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Figure 7.5 (a) Location of the study region in the Netherlands. (b) The locations
of the study fields, adjacent to stations of the SMC monitoring network Twente.
Background is the digital terrain model AHN2 (Actueel Hoogtebestand Nederland,
2012b).

The imaging revisit time of the Sentinel-1 satellites over a region is
controlled by a region’s latitude and Sentinel-1’s acquisition strategy
(Bauer-Marschallinger et al., 2019; Torres et al., 2012). Sentinel-1 images
are collected relatively intensively over our study region because this
region is covered by two ascending and two descending orbits. The
characteristics of these orbits are listed in Table 7.3. Sentinel-1’s imaging
revisit time over the study region with these four orbits combined and
both Sentinel-1A and -1B is 1.5 days. The Sentinel-2 LAI maps were
available for specific time periods and specific parts of Europe (Paepen
and Wens, 2017; VITO, 2019): for the northern part of our study region
throughout the study period, but for the southern part the period from
1 January 2017 to 1 July 2018 was not available and for the most eastern
part only half of the Sentinel-2 images were processed. This gives tem-
poral resolutions of 4 days for the western and middle part and 8 days
for the eastern part of the study region.
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Table 7.3 Specifications of the Sentinel-1 orbits that cover the study region.
The number of Sentinel-1 images is for the study period from 25 November 2015
to 1 November 2018 and before masking the σ 0 observations for weather-related
surface conditions.

Relative orbit
number

Pass Acquisition
time (CET)

Number of
Sentinel-1 images

Projected local incidence
angle over the study

fields

15 Ascending 18:16 145 32.3◦–36.3◦
37 Descending 6:49 148 34.0◦–37.8◦
88 Ascending 18:24 143 40.8◦–44.4◦
139 Descending 6:41 146 42.2◦–45.6◦

7.4.1.1 In situ soil moisture content

The study region is equipped with a network of twenty SMC monitoring
stations, known as the Twente network (Dente et al., 2012; Dente et al.,
2011; Van der Velde and Benninga, in preparation, in Chapter 2; Van
der Velde and Benninga, 2020) and shown in Figure 7.5b. The retrieval
scheme was applied to estimate SMC for the meadows adjacent to mon-
itoring stations. Table A.3 lists the study fields and their surface areas.
Multiple meadows can be adjacent to a single SMC station, as can also be
seen in Figure 7.2.

Table A.3 also lists the soil characteristics of the study fields. Sandy
to loamy sandy soils dominate the surface layer in the study region,
with some remnants of loamy soils and organic soils (Van der Velde
and Benninga, in preparation, in Chapter 2; Wösten et al., 2013). This
study was limited to the meadows with sandy to loamy sandy surface
layers. We generated TV look-up tables for the study fields’ average
soil texture of 80 % sand, 15 % silt and 5 % clay, with a bulk density of
1.33 g cm−3, derived from BOFEK2012 (Wösten et al., 2013). As explained
in Section 7.2.3, IEM was run for the field-specific soil textures.

The monitoring stations measure SMC with 5TM probes (METER
Group, 2019) at nominal depths of 5 cm, 10 cm, 20 cm, 40 cm and 80 cm
and store the readings every 15 min. The 5TM probes have an influence
zone of approximately up to 4 cm above and below the sensor’s middle
prong (Benninga et al., 2018c, in Chapter 3). We used the 5 cm depth
SMC measurements, being representative for a soil depth of 1 cm to 9 cm,
that are collected at Sentinel-1 overpass times as the in situ references.

7.4.1.2 In situ leaf area index

The interpolated Sentinel-2 LAI estimates were validated against in situ
references. During the growing seasons of 2016 and 2017, we measured
the LAI on two meadows (fields I and III) on a two-weekly basis. In
order to increase the number of available LAI references and evaluate the
general performance of the Sentinel-2 LAI estimates, we also validated
them with in situ LAI measurements that were collected on four maize
fields (fields A–D). In situ LAI measurements were also collected on a
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fifth maize field (field E), but no concurrent Sentinel-2 LAI estimates are
available here.

Figure 7.5b shows the locations of fields I, III and A–E, and Figure 7.2
shows the locations of the LAI measurements within these fields. The
LAI measurements were collected at three to six locations, about 50 m to
100 m apart, within a field. The optical instrument LI-COR LAI-2000 (LI-
COR, 1992) was used for the measurements. This instrument estimates
the LAI based on the ratio between light intensity readings above and
below the canopy. We operated the instrument with a sensor opening of
90◦ to remove the operator and the sun from the sensor’s view (LI-COR,
1992). On the meadows we acquired one above-canopy reading and four
below-canopy readings about 0.5 m apart to reduce the measurement
uncertainty. On the maize fields we acquired, at each measurement
location, four below-canopy readings with the sensor opening along the
rows and four below-canopy readings with the sensor opening facing a
maize row, each set accompanied with an above-canopy reading. Of the
four measurements below a maize canopy, the first was in/adjacent to the
maize row, the second was at 1/4 between rows, the third was halfway,
and the fourth was at 3/4 between rows, following the LAI-2000 manual
(LI-COR, 1992). The LAI-2000 File Viewer (FV2000) application (LI-COR,
2004), using the default horizontal uniform canopy model, converted
the light intensity readings to LAI.

The Sentinel-2 LAI estimates and the in situ references are shown in
Figure 7.6. Following the conditions for the interpolation of Sentinel-2
LAI estimates as defined in Section 7.2.1.2, during harvesting periods
the Sentinel-2 LAI estimates are indeed not interpolated. As a result,
however, no validation pair is established for the in situ LAI references
that were acquired just before or after a harvesting period. These in
situ LAI references typically represent the most extreme LAI conditions.
As the LAI will not vary much in the week before and the week after
harvesting, we relaxed the maximum time gap of 1.5 days to maximum
one week for these LAI references and included them as pairs with the
Sentinel-2 LAI estimate just before or after.

7.4.2 CDF matching

Cumulative distribution function (CDF) matching suppresses system-
atic biases in the mean, variability and dynamic range of estimates —
the Sentinel-2 LAI and Sentinel-1 SMC— with their respective references
(Boé et al., 2007; Brocca et al., 2011; Drusch et al., 2005; Kornelsen and
Coulibaly, 2015; Reichle and Koster, 2004). CDF matching was imple-
mented by fitting a polynomial (correction function) to ranked estimates
against the residuals between the ranked estimates and ranked refer-
ences (Brocca et al., 2011; Drusch et al., 2005; Kornelsen and Coulibaly,
2015). The correction function is generated on estimate-reference pairs.
We obtained the model coefficients of the correction function with the
‘Trust-Region’ algorithm in Matlab’s Curve Fitting toolbox, by fitting,
similar to Brocca et al. (2011), a fifth-order polynomial.
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Figure 7.6 Sentinel-2 LAI estimates and in situ LAI references. The figure
titles specify within the brackets the name for the same field as that is used in
Chapters 4 and 6.

After generation of the correction function, the estimates were subjec-
ted to the correction function so that the estimates’ CDF should match
the references’ CDF. The Kolmogorov-Smirnov test with a significance
level of 5 % (Kornelsen and Coulibaly, 2015; Massey, 1951) was used to
verify whether the correction function successfully aligned the CDFs. If
this is confirmed, the correction function was also applied to the estim-
ates for which no concurrent reference is available and beyond the range
for which it was developed. Following Boé et al. (2007), the correction
factor of the correction function’s boundary was applied to estimates
that exceed the ranges on which the correction function was established.
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7.4.3 Performance metrics

The Sentinel-2 LAI estimates and Sentinel-1 SMC retrievals were evaluated
against their in situ references with the Pearson correlation coefficient
(rP ) and the root mean square deviation (RMSD), which are defined in
Appendix A.2. The RMSD is the standard deviation of the differences
between estimates and references (Kerr et al., 2016), and can, as such, be
considered as a measure for uncertainty.

The rP and the relative RMSD (RRMSD) were used for comparison of
the SMC retrieval performance among fields and against the performance
of other SMC products. The RRMSD is defined as follows:

RRMSD = RMSD
max(Yr )−min(Yr )

, (7.2)

where Yr stands for the references, and max(Yr ) and min(Yr ) for the
maximum and minimum Yr . The RRMSD evaluates the retrieval uncer-
tainty relative to the range of the SMC references. In contrast to the
RMSD, of which the value depends on the range of SMC values that
occur, the RRMSD may be compared among fields, conditions or studies
with different SMC ranges. We calculated the RRMSD of other studies us-
ing the reported unbiased RMSD values and SMC ranges or, if available,
the original SMC retrievals and references.

7.5 Results and discussion

7.5.1 Sentinel-2 leaf area index

7.5.1.1 Validation

The time series of the Sentinel-2 LAI estimates and the in situ LAI ref-
erences in Figure 7.6 show the same dynamics. The Sentinel-2 LAI
product, thus, provides information of vegetation conditions at field
scale. Table 7.4 lists the performance metrics between the linearly in-
terpolated Sentinel-2 LAI estimates and the in situ references. However,
the Sentinel-2 LAI estimates that were acquired when snow was present
seem disturbed. Therefore, in addition to the default masking for cloud
shadow, medium probability for clouds and high probability for clouds,
we also masked the Sentinel-2 LAI maps when the scene classification
of snow applies to a pixel. For the maize fields no in situ references are
available in winter, but for the meadows the performance metrics (see
Table 7.4) indeed slightly improve.

Figure 7.7 shows the CDFs of the Sentinel-2 LAI estimates before and
after CDF matching against the in situ references. The aligning of the
Sentinel-2 LAI’s CDFs with the in situ LAI’s CDFs was confirmed with the
Kolmogorov-Smirnov test with a significance level of 5 % (Kornelsen and
Coulibaly, 2015; Massey, 1951). The match between the final Sentinel-2
LAI estimates and the in situ references is presented in Figure 7.8. The
rP and RMSD improve by the CDF matching, as is listed in Table 7.4.
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7. Soil moisture content retrieval over meadows

Table 7.4 Performance metrics of three Sentinel-2 LAI products against the in
situ references collected on the meadows and maize fields.

Study fields LAI product Number of
pairs

rP [−] RMSD
[m2 m−2]

Meadows
Original 21 0.93 1.15
Masked for snow 21 0.93 1.11
Masked for snow & CDF-matched 20 0.94 0.71

Maize
Original 23 0.63 0.83
Masked for snow 23 0.63 0.83
Masked for snow & CDF-matched 23 0.65 0.79
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Figure 7.7 CDFs for the in situ LAI references and the Sentinel-2 LAI estimates
before (‘uncorrected’) and after (‘corrected’) CDF matching.

The uncertainty of the linearly interpolated Sentinel-2 LAI estimates for
the meadows is estimated at 0.71 m2 m−2.

7.5.1.2 Propagation of Sentinel-2 leaf area index uncertainty

The uncertainty of the Sentinel-2 LAI estimates propagates through the
TV-IEM SMC retrieval scheme and affects SMC retrievals. We investigated
this effect by retrieving the SMC from a σ 0 value for a given LAI value as
well as for this LAI value perturbed upwards and downwards with the
Sentinel-2 LAI uncertainty of 0.71 m2 m−2. This propagation principle
can be deduced from Figure 7.4b and is illustrated in more detail in
Appendix A.9.

Figure 7.9 shows the effect of the Sentinel-2 LAI uncertainty on the
SMC retrievals. The σ 0 to SMC relation is more sensitive to the LAI in
the lower LAI range, e.g. a LAI of 2 m2 m−2, as is visible in Figure 7.4b.
This causes in many cases even invalid SMC retrievals above or below
the retrieval limit. In the upper range of LAI values the σ 0 to SMC
sensitivity diminishes, causing that a same deviation in σ 0 results in a
larger deviation in SMC.
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Figure 7.8 The Sentinel-2 LAI estimates, after masking for snow and CDF
matching, against the in situ LAI references collected on the meadows and
maize fields.

7.5.2 Calibration of the vegetation water content

Figure 7.10 shows the performance of SMC retrievals for a range of
time-invariant VWC values and the time-varying methods, as explained
in Section 7.2.2.2. Both the rP and RMSD are hardly affected by the
used VWC. This suggests that other uncertainties, such as the Sentinel-1
radiometric uncertainty (Benninga et al., 2019, in Chapter 5; Pathe et al.,
2009; Schmidt et al., 2018; Schwerdt et al., 2017), surface roughness
parameter uncertainty (Benninga et al., 2020b, in Chapter 6), SMC refer-
ence uncertainties (Benninga et al., 2020b, in Chapter 6; Cosh et al., 2005;
Cosh et al., 2006; Western et al., 2002) and Sentinel-2 LAI uncertainty
(Section 7.5.1.2), dominate the retrieval uncertainty. Moreover, temporal
variation in the vegetation status is included via the LAI time series: when
the VWC is low, the LAI will also tend to be lower. This is illustrated
in Figure 7.6a–b for example for the very dry 2018 summer and this
reduces the sensitivity of the model performance to VWC.

The highest rP and lowest RMSD are obtained for a VWC of
0.90 kg kg−1. This value also outperforms the two time-varying VWC
methods. In addition, the time-varying VWC methods have the disad-
vantage of requiring a SMC reference for the previous Sentinel-1 time
step, which will generally not be available in operational applications.
Therefore, the VWC value of 0.90 kg kg−1 was selected as input to the
SMC retrieval scheme.

7.5.3 Soil moisture content retrievals

Figure 7.11 shows time series and CDFs of SMC retrievals and references
for field XVIII, XIV and II, respectively the fields with the best, worst
and a medium RRMSD performance. The CDF matching is successful in
aligning the SMC retrievals’ CDFs to the references’ CDFs. All fields pass
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Figure 7.9 The propagation of the Sentinel-2 LAI uncertainty (0.71 m2 m−2)
into TV-IEM SMC retrievals. The SMC retrievals limits are 0.01 m3 m−3 and
0.75 m3 m−3. Exceedances of these limits after perturbation of the LAI are shown
as crosses. These figures are for a VWC of 0.90 kg kg−1, which followed from its
calibration (Section 7.5.2).

the Kolmogorov-Smirnov test with a significance level of 5 % (Kornelsen
and Coulibaly, 2015; Massey, 1951). The time series in the left panels
demonstrate that the retrievals match the SMC references pretty well,
although the retrievals also exhibit a significant spread, i.e. uncertainty,
and there are periods with systematic deviations from the references.

As a result of the successful CDF matching, over the complete period
no systematic differences between the IEM and TV-IEM SMC retrievals are
present. Nevertheless, their retrievals are different due to the different
pairs that were used in the CDF matching and due to the vegetation
correction. The vegetation correction (without considering the CDF
matching) causes that the majority of the vegetation-corrected TV-IEM
retrievals is lower than the IEM retrievals. For most combinations of LAI,
VWC and SMC, the vegetation contributes more to the σ 0

v and σ 0
sv than

that it attenuates the σ 0
s . This is shown in Figure 7.4b by the higher

SMC-σ 0 lines with vegetation present.
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Figure 7.10 Performance metrics between SMC retrievals and references for
a range of time-invariant VWC values and the time-varying VWC methods (i)
and (ii).

7.5.3.1 The performance of IEM and TV-IEM retrievals

Figure 7.12 shows the performance metrics of the SMC retrievals. More
SMC retrievals are possible if no vegetation correction is applied be-
cause not for every Sentinel-1 σ 0 observation a Sentinel-2 LAI estimate
is available and because TV-IEM results in more invalid SMC retriev-
als above or below the retrieval limit. Averaged over the study fields,
there are 164.0 and 322.9 SMC retrievals possible for the total period
and 102.5 and 261.4 for the growing seasons with TV-IEM and IEM re-
spectively. The performance metrics of the IEM retrievals for the same
retrieval-reference pairs as TV-IEM are also shown in Figure 7.12.

The performance metrics of the SMC retrievals with TV-IEM are
slightly better than the performance metrics of ‘IEM all retrievals’, espe-
cially regarding rP . Comparison with the performance metrics of IEM
shows, however, that this is effect is caused by the different retrieval-
references pairs. The invalid TV-IEM retrievals occur mainly under denser
vegetation conditions because the range of σ 0 values for which a SMC
retrieval is possible becomes limited, as can be seen in Figure 7.4b. When
a Sentinel-1 σ 0 observation is outside this range, the SMC retrieval will
be invalid. Under denser vegetation cover, i.e. increasing LAI, the σ 0 to
SMC sensitivity reduces (see Section 7.3). IEM does not account for the
effect of vegetation, as a result of which the Sentinel-1 σ 0 observations
that led to the invalid SMC retrievals by TV-IEM yield less accurate SMC
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Figure 7.11 SMC retrievals and references for field XVIII (best retrieval perform-
ance), field XIV (worst performance) and field II (medium performance). The
CDFs (right panels) are only shown for the IEM retrievals.

retrievals by IEM and negatively impact the performance metrics.

Although it could be expected that correcting σ 0 observations for
vegetation effects contributes to better SMC retrieval performances, the
similar performance metrics for TV-IEM and IEM may be explained by
two factors. Firstly, Section 7.5.1.2 demonstrates the substantial effect
of the Sentinel-2 LAI uncertainty on SMC retrievals. It is likely that
the correction required for grass is dominated by the uncertainty that
is introduced by the Sentinel-2 LAI estimates. Secondly, the effect of
grass on the Sentinel-1 σ 0 may be not as large as simulated with the
TV model, which would cause incorrect corrections for the vegetation
effects. This is supported by the results in Benninga et al. (2020b, in
Chapter 6), in which it was found that the uncertainty of SMC retrievals
can be explained even when the vegetation effects are not considered.
The LAIs for the meadows in that study were 1.1 m2 m−2 and 1.3 m2 m−2,
and their results suggest that the vegetation effects could be neglected
under these sparse vegetation conditions. Similar results were found by
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Figure 7.12 Performance metrics of the IEM and TV-IEM SMC retrievals against
the SMC references. ‘IEM for TV-IEM pairs’ contains the same retrieval-reference
pairs as ‘TV-IEM’ (i.e. a Sentinel-2 LAI estimate is available and TV-IEM resulted
in a valid SMC retrieval), whereas ‘IEM all retrievals’ contains all the retrieval-
reference pairs possible (i.e. from all the Sentinel-1 σ 0 observations).

Van der Velde et al. (2012b) and Van der Velde and Su (2009). In contrast,
the vegetation effects as simulated by the TV model are significant at
LAI values of 1.1 m2 m−2 and 1.3 m2 m−2, with, for a 35◦ incidence angle,
γ2 values of 0.50 and 0.45 and σv values of −14.0 dB and −13.6 dB
respectively.
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7.5.3.2 Exceedance of retrieval limits

One result we want to highlight is obtained for field XXI (Figure 7.13):
hardly any Sentinel-1 σ 0 observation resulted in a valid SMC retrieval
between 25 November 2015 and 26 March 2017. The crop parcel registry
(Ministry of Economic Affairs and Climate Policy, 2020) lists that this field
was used to grow maize in 2015 and 2016, and only since 2017 it has been
in use as meadow. Figure 7.13 shows that this has a large effect on the
SMC retrievals and results in many invalid retrievals, i.e. the Sentinel-1
σ 0 observation does not correspond to a SMC between 0.01 m3 m−3 and
0.75 m3 m−3 according to the modelled σ 0 to SMC relation. This can be
explained by the surface roughness that is different for maize fields than
for meadows (Benninga et al., 2020b, in Chapter 6). In all performance
results, therefore, only the period after 26 March 2017 was evaluated for
field XXI.
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Figure 7.13 SMC retrievals and references for field XXI. Only since 2017 this
field has been in use as meadow, resulting in many invalid retrievals in the
period before due to a different surface roughness.

SMC retrievals for the other fields exceed the upper retrieval limit
of 0.75 m3 m−3 mainly in wet periods, and this may, as such, provide
information about the SMC. To test this, we set the retrievals that ex-
ceed 0.75 m3 m−3 to the maximum SMC. For example, for field II these
retrievals (red data points in Figure 7.11c) were set to 0.63 m3 m−3. This
was applied to all the SMC retrievals exceeding the upper limit (variant 1)
and only to those retrievals in the period from 15 November to 15 March
(variant 2), which is the expected wet period in the study region. As
shown in Figures A.21–A.22 and summarized in Table 7.5, both variants
improve the rP in particular. Variant 2 results in the best SMC retrieval
performance for both IEM and TV-IEM. Setting retrievals that exceed the
lower limit of 0.01 m3 m−3 to the minimum SMC was also tested, but this
does not improve the IEM and TV-IEM retrieval performances.

7.5.3.3 Masking for dense vegetation

The SMC retrievals will be less accurate under denser vegetation condi-
tions. El Hajj et al. (2017) acknowledged this limitation of C-band SAR
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Table 7.5 Performance metric means of the study fields for two variants of
incorporating information from SMC retrievals that exceed the upper retrieval
limit of 0.75 m3 m−3. Variant 1 sets all the IEM retrievals that exceed 0.75 m3 m−3

and variant 2 sets only the IEM retrievals that exceed 0.75 m3 m−3 in the expected
wet period (15 November to 15 March) to the maximum SMC. The performance
metrics per study field are shown in Figures A.21–A.22.

SMC product Variant Number of pairs rP [−] RMSD
[m3 m−3]

RRMSD [−]

IEM all retrievals
Original 322.9 0.46 0.14 0.25
1 352.2 0.54 0.15 0.25
2 339.5 0.55 0.14 0.24

TV-IEM
Original 164.0 0.56 0.13 0.25
1 185.3 0.61 0.14 0.25
2 178.1 0.64 0.13 0.24

IEM for TV-IEM pairs
Original 163.2 0.55 0.13 0.25
1 185.3 0.59 0.14 0.25
2 177.4 0.62 0.13 0.24

σ 0 observations by masking the σ 0 observations acquired under veget-
ation conditions with a NDVI higher than 0.75. Applying the relation
reported in Knyazikhin et al. (1999) and Tesemma et al. (2014), a NDVI
of 0.75 converts into a LAI of 5.63 m2 m−2. This might even be a too high
LAI threshold, as the σ 0 to SMC sensitivity, according to the TV model
(Figure 7.4), is already significantly reduced at a LAI of 2 m2 m−2.

The performance of the IEM SMC retrievals was analysed for a range
of LAI thresholds used to mask the SMC retrievals. For example, for a LAI
threshold of 4 m2 m−2 we masked all SMC retrievals from Sentinel-1 σ 0

observations that were acquired when the Sentinel-2 LAI estimate was
higher than 4 m2 m−2. Figure 7.14 shows that the performance metrics
improve with the LAI threshold. However, the number of pairs also
reduces with application of a (lower) LAI threshold. Applying a certain
LAI threshold for masking SMC retrievals is a trade-off between accuracy
and number of retrievals.

7.5.4 Retrieval performance compared with other studies

The SMC retrieval performances are compared with the performance
of two other Sentinel-1 based products at field scale, one Sentinel-1
and a priori SMC information based product at field scale, three Sen-
tinel-1 based products at 1 km resolution, and the SMAP 9 km and 36 km
products. The characteristics and performance metrics of these products
are listed in Table 7.6.
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Figure 7.14 Performance metric means of the study fields, after first applying
variant 2 from Section 7.5.3.2, for a range of LAI thresholds used to mask the
SMC retrievals. Only the SMC retrievals for which a Sentinel-2 LAI estimate was
available are included.

Table 7.6 The performance of other SMC products from satellite imagery.

Study Product rP [−] RRMSD [−] Evaluation

El Hajj
et al.
(2017)

Sentinel-1 VV,
IEM combined
with the WCM
for incorporating
vegetation
effects.
Field-scale
product.

not reported 0.25 The averages of 25 to
30 measurements within
a study field were used as
references. The reported
RMSD values were

unbiased, using
Equation 3 in Entekhabi
et al. (2010b), with the

also reported mean bias.
The first product
and a priori
information on
SMC (wet/dry).

not reported 0.18
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Carranza
et al.
(2019)

Sentinel-1 VV,
change detection
method for a
field-scale
product. We
subjected the
retrievals to CDF
matching.

0.44 0.25 Evaluated against the
measurements from

single stations.

Bazzi et al.
(2019)

First product of
El Hajj et al.
(2017), at 1 km
resolution.

0.77 0.14 The references from El
Hajj et al. (2017) were
used, averaged for the
fields within 1 km by

1 km grid cells.
The 1 km
resolution
Copernicus
Surface Soil
Moisture
product,
developed by
Bauer-
Marschallinger
et al. (2019).

0.48 0.22

Balenzano
et al.
(2021)

Sentinel-1, short
term change
detection
approach for a
1 km resolution
product.

0.71 0.18 The 1 km resolution
product was evaluated at

1.6 km× 1.6 km by
averaging the SMC

retrievals and references
from 11 stations that

cover this area.

Pezij et al.
(2020)

SMAP 9 km
product (SCA-V
morning
overpasses). We
subjected the
retrievals to CDF
matching.

0.77 0.16 The SMAP product (Chan
et al., 2018) was

extracted for the study
region. Evaluated against
the measurements from

single stations (i.e. at
field scale): stations 2, 3,
4, 5, 11, 13, 14, 15, 16, 17,

18 and 19.

Van der
Velde et al.
(2021)

SMAP 36 km
product (SCA-V).
We subjected the
retrievals to CDF
matching.

0.78 0.15 The SMAP product (Chan
et al., 2016) was

extracted for the study
region, specifically SMAP

reference pixel 3606.
Evaluated against the
measurements from

single stations (i.e. field
scale) in SMAP reference
pixel 3606: stations 2, 3,

5, 11, 15, 16, 17.

7.5.4.1 Comparison with Sentinel-1 based products

The performance metrics of the two Sentinel-1 based products at field-
scale — the first product in El Hajj et al. (2017) and the product in
Carranza et al. (2019)— are similar to the performance we obtained. Note
that the SMC retrievals in El Hajj et al. (2017) are compared to references
based on 25 to 30 measurements within a study field. Benninga et al.
(2020b, in Chapter 6) found that the references’ sensor uncertainty and
spatial mismatch uncertainty constitute, respectively, 13 % and 46 % of
the retrieval uncertainty at a SMC of 0.26 m3 m−3 to 4 % and 15 % at a
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SMC of 0.53 m3 m−3. These uncertainty contributions are reduced by
averaging spatially distributed measurements (Balenzano et al., 2021;
Singh et al., 2020; Vinnikov et al., 1999), as in El Hajj et al. (2017). As
such, the actual RRMSD, which excludes the references’ uncertainties,
of the SMC products in this study are expected to be lower than that
of the product in El Hajj et al. (2017). The second product in El Hajj
et al. (2017) has a better SMC retrieval performance than the algorithm
presented in this chapter, which is explained by the use of the a priori
information on the SMC condition. The products in Bazzi et al. (2019)
and in Balenzano et al. (2021) also show better performance metrics.
This can be explained by the lower references’ uncertainties and the
lower radiometric uncertainty (Benninga et al., 2019, in Chapter 5) at the
1 km or 1.6 km scale than at the field scale of 0.16 ha to 6.3 ha that is
studied here.

7.5.4.2 Comparison with SMAP products

The SMAP 36 km and 9 km products perform better at field scale than the
Sentinel-1-based SMC products in this study and the other studies listed
in Table 7.6. The SMAP imagery, which is in L-band, are less obstructed
by vegetation and more sensitive to SMC as well as have a sampling
depth closer to the references at 5 cm depth than the C-band Sentinel-1
observations (El Hajj et al., 2019; Entekhabi et al., 2010a). Furthermore,
Gruber et al. (2020) points out that coarse scale products often better
match local SMC dynamics than downscaled (finer) products. The result
here does, however, not necessarily apply to other regions. The study
region is rather flat and homogeneous regarding soil characteristics and
meteorological conditions, so large regional differences in SMC dynamics
are not expected. Moreover, information at field scale is still required in
specific situations, such as after irrigation practices or in the presence of
local drainage systems.

One period in which the Sentinel-1 SMC retrievals significantly deviate
from the references is the end of the 2018 summer, which is shown in
more detail with the examples in Figures 7.15 and 7.16. Whereas the
SMC references remain low, the retrievals show an increased SMC level
especially from mid-August. The same is visible in the SMAP retrievals
(Chan et al., 2018, 2016; Van der Velde et al., 2021). At the end of
July and in August 2018 a number of rainfall events occurred, but the
2018 summer was exceptionally dry in the months before and these
rainfall events are not or only minorly reflected in the SMC references.
The SMC references originate from measurements at 5 cm depth and due
to the extreme dryness of the soil and high evaporative demand (Van
der Velde et al., 2021), we expect that (most of) the rainfall did not fully
infiltrate the sensor’s influence zone of 1 cm–9 cm soil depth. Field V
is located in a slightly wetter area than field II and the level of the SMC
references increased from the end of August. Still, in this period the
SMC retrievals show more dynamics in response to the rainfall than the
references. The SMC estimates from satellites and from in situ sensors
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provide information for different soil layers and, in an optimum setting,
complement each other.
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Figure 7.15 SMC retrievals and references for field V during the 2018 summer.
Field V has the best RRMSD retrieval performance after fields XVIII and XVII, for
which no references are available in this period. The SMAP 9 km retrievals for
the pixel in which field V is located are shown. Both the Sentinel-1 and SMAP
SMC retrievals were CDF-matched against the references over the complete time
period (25 November 2015 to 1 November 2018). The rainfall data originate
from the weather station Twenthe, which is operated by the Royal Netherlands
Meteorological Institute (‘Koninklijk Nederlands Meteorologisch Instituut’ in
Dutch, or KNMI; KNMI, 2019).

Rainfall does not explain all of the increased SMC retrievals, as can be
seen in July, beginning of August, mid-September and mid-October in Fig-
ures 7.15 and 7.16. Also the SMAP retrievals remain low in these periods,
which indicates an issue in the Sentinel-1 SMC retrievals. The increased
SMC retrievals originate from Sentinel-1 σ 0 observations acquired in
orbits 88 & 139 (see Appendix A.11). The σ 0 observations acquired in
orbits 88 & 139 have an incidence angle of 40.8◦–45.6◦, whereas the
σ 0 observations from orbits 15 & 37 have an incidence angle of 32.3◦–
37.8◦ (Table 7.3). For larger incidence angles, the microwaves have a
longer path through the vegetation to and from the soil surface and, con-
sequently, experience more effect of vegetation and a lower sensitivity
to SMC (e.g. Crow et al., 2010; Palmisano et al., 2018; Ulaby et al., 1979).
This is also seen in the TV simulations, discussed in Section 7.3. The
higher σ 0 to SMC sensitivity for lower incidence angles is reflected in
better SMC retrieval performance metrics for orbits 15 & 37 than for
orbits 88 & 139, shown in Figure A.31 and summarized in Table 7.7.
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Figure 7.16 Same as Figure 7.15, but for field II. The rainfall data originate
from the weather station Twenthe (KNMI, 2019) and from a local rain gauge
adjacent to field II.

Table 7.7 Performance metrics means of the study fields, for the SMC retrievals
from Sentinel-1 σ 0 observations acquired in orbits 15 & 37 and in orbits 88
& 139. The performance metrics per study field are shown in Figure A.31.

SMC product Orbits Number of pairs rP [−] RMSD [m3 m−3] RRMSD [−]

IEM all retrievals
All 322.9 0.46 0.14 0.25
15 & 37 162.4 0.52 0.13 0.24
88 & 139 160.4 0.41 0.15 0.29

TV-IEM
All 164.0 0.56 0.13 0.25
15 & 37 82.0 0.63 0.12 0.23
88 & 139 82.0 0.47 0.14 0.29

7.6 Conclusions

An operationally applicable scheme is presented for field-scale SMC re-
trieval over meadows from SAR σ 0 observations, and this scheme is
evaluated without (IEM) and with vegetation correction (TV-IEM). The TV
vegetation scattering and absorption model and the IEM surface scat-
tering model were parameterised for grass-covered soil surfaces. To
facilitate fast inversion of σ 0 observations to SMC, look-up tables of
the TV-IEM-modelled direct vegetation σ 0 (σ 0

v ), σ 0 from soil-vegetation
pathways (σ 0

sv ), soil surface σ 0 (σ 0
s ) and the vegetation two-way trans-

missivity (γ2) were generated on fine grids. The axes of these look-up
tables are incidence angle, LAI, VWC and SMC. We used the look-up
tables to invert field-averaged Sentinel-1 σ 0 observations into SMC for
meadows. Field-scale LAI information was derived from a Sentinel-2
vegetation product.

The Sentinel-2 LAI estimates were validated against in situ measure-
ments collected on two meadows and four maize fields. The rPs are
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0.94 and 0.65 and the RMSDs are 0.71 m2 m−2 and 0.79 m2 m−2 for the
meadows and the maize fields, respectively, after masking the Sentinel-2
LAI estimates for snow and CDF-matching them against the in situ refer-
ences. The results demonstrate that the Sentinel-2 LAI product provides
field-scale information. However, despite the rather good performance,
the Sentinel-2 LAI uncertainty of 0.71 m2 m−2 results in the lower LAI
range in many invalid SMC retrievals because the modelled σ 0 to SMC
relation is very sensitive to LAI and in the upper LAI range it propagates
into large SMC retrieval deviations because the σ 0 to SMC sensitivity
diminishes.

The SMC retrieval scheme was demonstrated by retrieving the SMC for
21 meadows and validating the results against references from adjacent
in situ monitoring stations. By setting the SMC retrievals that exceed
the upper retrieval limit of 0.75 m3 m−3 during the wet period to the
maximum SMC, the performance metrics improve to mean rPs of 0.55 for
IEM and 0.64 for TV-IEM, RMSDs of 0.14 m3 m−3 for IEM and 0.13 m3 m−3

for TV-IEM, and RMSDs relative to the range of the SMC references
(RRMSD) of 0.24 for both IEM and TV-IEM. Masking the SMC retrievals
for dense vegetation also improves the performance metrics, but this is a
trade-off with the number of retrievals. Because not for every Sentinel-1
σ 0 observation a Sentinel-2 LAI estimate is available and TV-IEM results in
more invalid SMC retrievals under dense vegetation conditions, more SMC
retrievals are possible without the vegetation correction. By considering
the same retrieval-reference pairs as for TV-IEM, the performance metrics
of the SMC retrievals that are obtained with IEM are practically equal to
the performance metrics of the SMC retrievals with TV-IEM.

The IEM and TV-IEM retrieval performances are also similar to the
performance of two other Sentinel-1 based products at field scale, of
which one was obtained with a data-driven (change detection) method and
one with a semi-empirical vegetation model (WCM) combined with IEM.
The SMAP 36 km and 9 km products perform better at the field scale, with
mean RRMSDs of 0.15 and 0.16 respectively, but they may be unsuitable
if larger regional differences are present and in field-specific situations
such as after irrigation practices or with local drainage systems.

The two scheme implementations (without and with the vegetation
correction) and the SMC products to which their performance was com-
pared are based on imagery from different satellites or on different
algorithms. As a consequence, the individual retrievals of these products
are different. However, the performance metrics indicate that all these
SMC products provide information about SMC at field scale. It would,
therefore, be interesting to (1) research the representation of field-scale
SMC as an ensemble of SMC products, and (2) validate more products at
field scale, such as the 500 m product from Sentinel-1 imagery retrieved
with a multi-temporal algorithm (Pulvirenti et al., 2018), the 1 km Coper-
nicus Surface Soil Moisture product with a change detection algorithm
(Bauer-Marschallinger et al., 2019), the 1 km product from Sentinel-1
imagery with the short term change detection algorithm (Balenzano et al.,
2021), the 1 km and 3 km products from a combination of SMAP and
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Sentinel-1 imagery (Das et al., 2019), and several more, and potentially
include them in an ensemble of SMC products. Analysing multiple SMC
products in conjunction may provide further insights into these products,
and ensembles of SMC retrievals could reveal the uncertainties and show
the probability of SMC conditions.
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With soil moisture content (SMC) information at field scale, new ap-
plications in water and agricultural management may be anticipated.
Furthermore, at field scale more direct relations between the ground
conditions (SMC, surface roughness and vegetation) and the backscatter
(σ 0) observations are expected. This supports studying σ 0-SMC relations.
This thesis aimed at developing a method for retrieving SMC at field scale
from Sentinel-1 σ 0 observations and obtaining a better understanding
of the uncertainties involved in such retrievals. Based on the research
presented in Chapters 2–7, this chapter summarizes the answers to the
research questions, formulates the general conclusions and recommends
directions for future research.

8.1 Summary of the main findings

Research question 1: What is the uncertainty of in situ SMC measure-
ments as reference for field-scale SMC retrievals?
Two regional SMC monitoring networks were employed, namely the
Twente network in the east (Chapter 2) and the Raam network in the
south (Chapter 3) of the Netherlands. Both regions mainly hold sandy to
loamy sandy soils. Soil-specific calibration functions were established for
the SMC sensors. The associated measurement uncertainty of the station
probes (Usp) is 0.018 m3 m−3 to 0.023 m3 m−3 for the Raam network
and 0.028 m3 m−3 for the Twente network. The sensor’s influence zone,
determined in Raam soil, is 3 cm–4 cm.

The networks’ stations have sensors installed at depths of 5 cm,
10 cm, 20 cm, 40 cm and 80 cm. The SMC sensors at 5 cm depth meas-
ure the 1 cm–9 cm soil layer, whereas Sentinel-1’s C-band observations
are expected to be sensitive to SMC from the surface to a depth of
1 cm–10 cm. This difference in sampling depth introduces a vertical
mismatch. Furthermore, the field-scale SMC retrievals are to be com-
pared against the measurements from a single SMC monitoring station,
which introduces a horizontal mismatch due to a spatial scale mismatch,
differences in land cover, soil texture and structure, and local features
such as nearby ditches and subsurface drainage pipes. These vertical
and horizontal mismatches cause a spatial mismatch uncertainty in the
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SMC station measurements as references for field-scale SMC estimates
from satellite observations (Us,S1). In Chapter 4, the Us,S1 is estimated
by comparing station measurements against measurements inside four
agricultural fields with a handheld device. The Us,S1 estimates for the
four fields are between 0.036 m3 m−3 and 0.068 m3 m−3. The average
value of 0.051 m3 m−3 is adopted as common measure for the Us,S1.

Research question 2: What is the impact of Sentinel-1 σ 0 uncertainty
and weather-related surface conditions on SMC retrievals?
Chapter 5 focuses on the Sentinel-1 σ 0 observations. It presents mask-
ing rules for weather-related surface conditions, estimates Sentinel-1’s
radiometric uncertainty (sS1) and investigates the impact of both on
SMC retrievals. The masking rules were developed by analysing met-
eorological measurements against seasonal anomalies of Sentinel-1 σ 0

observations over five forests, five meadows and five cultivated fields.
The Sentinel-1 (VV) σ 0 observations are affected by frozen conditions
below an air temperature of 1 ◦C, on average by −1.80 dB, snow during
Sentinel-1’s morning overpasses on meadows and cultivated fields, on
average by −1.40 dB, and interception after more than 1.8 mm of rain in
the 12 h preceding a Sentinel-1 overpass, on average by +0.89 dB. Dew
was not found to be of influence. Following these results, a set of mask-
ing rules was formulated for frozen conditions, snow and intercepted
rain, and applied to all the Sentinel-1 σ 0 observations in this thesis.

The sS1 consists of calibration uncertainties, sensor instabilities and
speckle effects. It was estimated from the seasonal anomalies timeseries
of the Sentinel-1 forest σ 0 observations. The obtained sS1 values are
0.85 dB (VV polarization) and 0.89 dB (VH polarization) for a surface area
of 0.25 ha. The sS1 values improve, by spatially averaging the σ 0 obser-
vations, to 0.30 dB (VV polarization) and 0.36 dB (VH polarization) for a
surface area of 10 ha. In accordance with the theory about the standard
deviation of sample means, the sS1 is approximately inversely propor-
tional to the square root of the surface area over which the Sentinel-1
σ 0 observations are averaged.

The impacts on SMC retrievals, if not masking for the weather-related
surface conditions and of the sS1, were estimated via the σ 0 to SMC
sensitivity modelled with the integral equation method (IEM) surface
scattering model. This was done for three surface roughness scenarios,
representing cultivated fields, meadows and a very smooth surface, the
incidence angles at which Sentinel-1 observes the Twente region, spe-
cifically 35◦ and 44◦, and SMC values from 0.05 m3 m−3 to 0.50 m3 m−3.
The impact on SMC retrievals is shown to be weakly dependent on the
surface roughness and the incidence angle, and strongly dependent on
the SMC and the surface area (or the σ 0 disturbance caused by a weather-
related surface condition for a specific land cover type). Averaged over
the meadows and cultivated fields, intercepted rain causes a significant
overestimation of SMC ranging from +0.047 m3 m−3 for dry soils up
to +0.26 m3 m−3 for wet soils. Snow and frozen conditions lead to a
significant decrease in SMC retrievals, respectively from −0.035 m3 m−3
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and −0.045 m3 m−3 for dry soils up to −0.13 m3 m−3 and −0.16 m3 m−3

for wet soils. As a result of sS1 (US1), the SMC retrievals have a low
uncertainty (−0.01 m3 m−3 to +0.01 m3 m−3) for dry soils and large sur-
face areas and a high uncertainty (−0.10 m3 m−3 to +0.17 m3 m−3) for
wet soils and small surface areas. Because the effects of vegetation are
not accounted for in the simulations of the σ 0 to SMC sensitivity, the
reported impacts and uncertainties represent the lower limits.

Research question 3: What are the relative uncertainty contributions
to SMC retrievals under sparsely vegetated conditions?
In Chapter 6, SMC retrieval was implemented for two sparsely vegetated
meadows and two fallow maize fields. In this way, the surface roughness
parameters in the IEM surface scattering model could be investigated. A
Bayesian framework was used to calibrate the surface roughness para-
meters, and to derive the model parameter (Up) and total uncertainty.
The resulting total SMC retrieval uncertainty successfully reproduces
the uncertainty estimated empirically from the SMC retrievals against
station references. This includes the trend of increasing SMC retrieval
uncertainty with increasing SMC, which is explained by the diminishing
σ 0 to SMC sensitivity with increasing SMC.

The combination of the derived Up with the estimates of the Usp from
Chapter 2, the Us,S1 from Chapter 4 and the US1 from Chapter 5 also
constitute total SMC retrieval uncertainty, which allows to decompose
the total uncertainty in its four constituents. The main uncertainty ori-
ginates from the in situ references (Usp and Us,S1) and the Sentinel-1 σ 0

observations (US1), whereas the contribution from the surface roughness
parameters (Up) is small. Their relative contributions depend on the
SMC conditions. As the Usp and Us,S1 are assumed independent of SMC
and the total uncertainty increases with SMC, their relative contribu-
tions decrease, respectively, from 13 % and 46 % at a SMC of 0.26 m3 m−3

to 4 % and 15 % at a SMC of 0.53 m3 m−3. The relative contribution of
the US1 increases with increasing SMC, namely from 31 % at a SMC of
0.26 m3 m−3 to 67 % at a SMC of 0.53 m3 m−3. The relative contribution
of Up is relatively constant and on average 13 % over the SMC domain.

The surface roughness parameter distributions, for the two fallow
fields, are different and depend on the pass direction from which Sen-
tinel-1 σ 0 observations were acquired. These fields have an anisotropic
surface due to tillage rows and these are viewed with different angles
from the ascending/descending orbits of Sentinel-1. Furthermore, the
surface roughness conditions change between periods. This is in con-
trast with the surface roughness parameter distributions for the two
meadows, which are time-invariant, independent of Sentinel-1’s ascend-
ing/descending orbits and similar for the two meadows that were studied.
These are promising results for the operational retrieval of SMC over
meadows across a larger region because they suggest that using a single
set of surface roughness parameters is allowed.
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Research question 4: Can Sentinel-1 SMC retrievals be improved by
accounting for vegetation in an operationally applicable scheme for
SMC retrieval over meadows?
SMC retrieval over meadows is implemented as an operationally applic-
able scheme in Chapter 7. For this purpose, the IEM surface scattering
model and the Tor Vergata (TV) vegetation scattering and absorption
model were parameterised for grass-covered soil surfaces. The scheme
is evaluated without (IEM) and with (TV-IEM) the vegetation correction
applied to Sentinel-1 σ 0 observations.

Field-scale vegetation conditions, being input to the vegetation correc-
tion, were derived from a Sentinel-2 product. Validation of the Sentinel-2
leaf area index (LAI) estimates against in situ measurements on two
meadows and four maize fields demonstrates that the Sentinel-2 LAI
product provides field-scale information. However, uncertainty propaga-
tion also shows that the Sentinel-2 LAI uncertainty of 0.71 m2 m−2 has a
large impact on SMC retrievals. In the lower LAI range it results in invalid
SMC retrievals because the modelled σ 0 to SMC relation is very sensitive
to LAI, and in the upper LAI range it propagates into large SMC retrieval
deviations because the σ 0 to SMC sensitivity diminishes.

The validation of SMC retrievals for 21 meadows in the Twente region
demonstrates that the performances of the IEM and TV-IEM retrievals
are similar, i.e. without and with the vegetation correction. The final
performance metrics have mean Pearson correlation coefficients of 0.55
for IEM and 0.64 for TV-IEM, root mean square deviations (RMSD) of
0.14 m3 m−3 for IEM and 0.13 m3 m−3 for TV-IEM, and RMSDs relative
to the range of the SMC references (RRMSD) of 24 % for both IEM and
TV-IEM, but the performance metrics are practically equal if the same
retrieval-reference pairs are considered. Masking for dense vegetation
conditions improves the performance metrics to the detriment of the
number of retrievals, and this is a trade-off that deserves further in-
vestigation. Not only are the SMC retrieval performances similar with
and without the vegetation correction, they are also similar to the per-
formance of two other Sentinel-1 based products at field-scale. The
Sentinel-1 based products are outperformed by the Soil Moisture Active
Passive (SMAP) 9 km and 36 km products evaluated at field scale, with
mean RRMSDs of 15 % and 16 %. However, the coarse SMAP products are
expected to deviate if larger SMC differences within regions are present
and in field-specific situations such as after irrigation practices or with
local drainage systems.

8.2 General conclusions

Uncertainty information is essential to assess the reliability and for the
applicability of SMC retrievals. Frozen conditions, snow and intercepted
rain impact Sentinel-1 σ 0 observations. Rules were formulated for mask-
ing these weather-related surface conditions, so — if done perfectly —
no impact would be expected. The in situ references’ measurement
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uncertainty and spatial mismatch uncertainty, Sentinel-1’s radiometric
uncertainty, and the retrieval algorithm and parameters are uncertainty
contributions to SMC retrievals.

Synthetic aperture radar (SAR) σ 0 observations, such as acquired by
the Sentinel-1 satellites, are often mentioned as a source for SMC in-
formation at field-scale. The SMC retrieval accuracies that were obtained
for the sparsely vegetated fields seem low. However, the combination
of the uncertainty sources demonstrates that this low accuracy can be
explained and originates for a large part from the in situ references
against which the SMC retrievals are validated and the Sentinel-1 σ 0

observations.
Vegetation effects on σ 0 and accounting for them adds to the SMC

retrieval uncertainty over vegetated fields. The uncertainty contribu-
tion of vegetation model parameters has not yet been investigated, but
uncertainty in the Sentinel-2 LAI estimates for representing field-scale
vegetation conditions has a large impact on SMC retrievals. Both with and
without correction for vegetation effects on Sentinel-1 σ 0, the presented
SMC retrieval scheme results in accuracies of 24 % relative to the SMC
range. Insight in the uncertainty contributions helps to comprehend
such SMC retrieval accuracies.

8.3 Recommendations

The topics that were studied in this thesis will be increasingly relevant,
given the expected Earth’s population growth as well as increase in floods
and droughts due to climate change. Based on the thesis’ methods and
findings, directions for future research are suggested below.

Recommendation 1: Focus on the uncertainty sources with the largest
contributions to effectively improve the SMC retrievals.
Information on the relative contributions of uncertainty sources can
direct towards efforts that potentially are (most) effective in improving
the accuracy of SMC retrievals (Karthikeyan et al., 2017a). Chapter 6
shows that the in situ references’ measurement uncertainty (Usp), the
in situ references’ spatial mismatch uncertainty (Us,S1) and the SMC
retrieval uncertainty due to Sentinel-1’s radiometric uncertainty (US1)
constitute large contributions to the total uncertainty.

References are required for the calibration of model parameters and
the validation of the SMC retrievals. Although not directly, in this way
the references’ uncertainties (Usp and Us,S1) contribute to the total SMC
retrieval uncertainty. This thesis had to rely on single sensors for provid-
ing field-scale references. Both the Usp and Us,S1 can be reduced by
averaging spatially distributed measurements. Therefore, set-up of long-
term field-scale SMC monitoring networks consisting of multiple stations
is recommended. A minimum number of three stations is suggested, in
order to reduce the spatial mismatch uncertainty to 0.041 m3 m−3 for a
70 % confidence interval as in Colliander et al. (2017). Besides, Gruber
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et al. (2020) points out that coarse scale products often better match
local SMC dynamics than downscaled (finer) products. A similar finding
was obtained in Chapter 7 regarding the performances of the field-scale
SMC retrieval and the SMAP 9 km and 36 km products. It should be
evaluated whether finer scale SMC retrievals indeed represent real SMC
variations. Hence the recommendation is to set-up multiple field-scale
networks of at least three stations within the single grid cells of coarser
(e.g. 1 km) products.

The sS1 is an inherent contribution to the SMC retrieval uncertainty
(US1). Nevertheless, its contribution can be reduced and the SMC retriev-
als be improved. One way is by improvement of SAR image processing,
which may include better SAR observation systems, temporal filtering
and speckle filtering. Another way is by adopting a coarser spatial
resolution.

Recommendation 2: Investigate the dependency of the uncertainty
sources on field conditions.
The uncertainty sources were estimated for study fields in the Twente
region. Characteristic for this region is the temperate oceanic climate,
flat landscape, sandy to loamy sandy soils, small agricultural fields
and specific agricultural practices regarding, e.g., crop types and till-
age. These factors influence the total SMC retrieval uncertainty and the
relative uncertainty contributions, meaning that the conclusions and
recommendation 1 cannot directly be extrapolated to other climatic and
landscape contexts. The methods presented in this thesis and the SMC
measurement networks that are available globally (Dorigo et al., 2021;
Colliander et al., 2017) may be used to broaden the conclusions on the
contributions of the uncertainty sources.

A specific note to the Us,S1 is that it was estimated for four agricul-
tural fields and one common estimate was adopted. These estimates
were assumed independent of SMC conditions. As already discussed in
Chapter 4, however, several studies demonstrated that SMC spatial vari-
ability depends on the SMC conditions. Therefore, it may be expected that
the Us,S1 actually depends on the SMC conditions. Besides, the results by
Famiglietti et al. (2008) suggest that the SMC spatial variability increases
with spatial extent. The dependency of Us,S1 on SMC conditions, field
surface area and possibly more field conditions (e.g. vegetation, soil char-
acteristics and agricultural management), could be further investigated
by using the field measurements from the 2009 and 2015 measurement
campaigns in Twente (Chapter 2) and from several other field campaigns
(Gruber et al., 2020) in addition to the field measurements that were
collected in the context of this thesis.

Recommendation 3: Assess the general applicability of the presented
SMC retrieval scheme.
The SMC retrieval scheme that is presented is, potentially, operationally
applicable for SMC retrieval over meadows. However, the SMC retrievals
have only been validated on meadows in the study region Twente. The
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characteristics of this region are described under recommendation 2.
Besides, Chapter 7 validated the temporal dynamics with the match
between SMC retrievals and references separately for each study field.
Before operational implementation, it is recommended to study the gen-
eral applicability of the SMC retrieval scheme and extend the validation
to other soil types and field, SMC and vegetation conditions as well as
validate spatial dynamics.

It should be noted, however, that a limitation of the SMC retrieval
scheme, which probably degrades its performance, are the set of assumed
surface roughness and vegetation parameters. Regarding the surface
roughness parameters, Chapter 6 suggests that using a single set of
surface roughness parameters is permitted for meadows across a larger
region and multiple seasons. However, this finding was obtained for
two meadows over two winter seasons and the assumption of using a
single set of surface roughness parameters is not verified in Chapter 7.
Regarding the vegetation parameters, values calibrated on Tibetan alpine
grassland were adopted from Dente et al. (2014). Chapter 7 focuses
on establishing a scheme for operational SMC retrieval and investigates
whether, with the described implementation, the vegetation correction
improves the SMC retrievals. Further research questions are if SMC
retrieval performance would improve with (i) a region-specific calibration
of vegetation parameters, (ii) field-specific roughness parameters and
vegetation parameters, and (iii) how either can be established in a SMC
retrieval scheme that is operationally applicable.

Recommendation 4: Functionally evaluate the surface SMC retrievals.
The evaluation of SMC retrievals against SMC references involves several
complexities, which is extensively described in this thesis. Moreover,
from evaluating estimated accuracies against a target accuracy threshold,
such as 0.04 m3 m−3 for the Soil Moisture and Ocean Salinity (SMOS)
and SMAP missions, a product cannot be declared ‘valid’ or ‘invalid’
because such thresholds do not relate to the suitability for a specific
application (Entekhabi et al., 2010b; Gruber et al., 2020). Estimating
the performance at different timescales could inform of prediction skill
regarding e.g. seasonal and short wetting/drying events (Gruber et al.,
2020; Beck et al., 2021). However, in many cases surface SMC is not
even the actual variable of interest. Entekhabi et al. (2010b) and Gruber
et al. (2020) stress that the user community should define SMC accuracy
requirements inferred from the relation of SMC with another variable
and the accuracy requirement of that variable.

Alternatively, to value SMC retrievals and bypass the direct valida-
tion against SMC references, the SMC retrievals could be functionally
evaluated in potential applications (e.g. Crow, 2007; Crow et al., 2012;
Bauer-Marschallinger et al., 2018). An example could be to assimilate
SMC retrievals into a catchment model, and evaluate whether the river
discharge can be simulated with sufficient or improved accuracy. Within
the context of the research project OWAS1S (Optimizing Water Availabil-
ity with Sentinel-1 Satellites), functional evaluation of SMC information
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has been applied in the PhD theses by Carranza (2021) for agricultural
water management and by Pezij (2020) for operational water manage-
ment. Similar analyses could be performed with the SMC retrievals from
this thesis.

Recommendation 5: Analyse SMC products in conjunction and present
them as ensembles.
SMC retrievals are generally evaluated against in situ references to
quantify their performance. From the comparison of the Sentinel-1 SMC
retrievals against SMAP 9 km retrievals in Chapter 7, it was inferred that
rainfall did not fully infiltrate the influence zone of the in situ sensors at
5 cm depth in the months after the exceptionally dry 2018 summer. The
satellite retrievals and the in situ sensors provide information for differ-
ent soil layers, as was also found for e.g. SMOS (Rondinelli et al., 2015;
Escorihuela et al., 2010) and SMAP retrievals (Van der Velde et al., 2021;
Shellito et al., 2016). In an optimum setting, the SMC estimates from
satellites and from in situ sensors, thus, complement each other. The
comparison also pointed to increased SMC retrievals from two Sentinel-1
orbits. These cases illustrate that analysing a SMC product against other
SMC products may give additional insights into the SMC products.

The scheme implementations with and without vegetation correction,
two other Sentinel-1 based products and the SMAP products in Chapter 7
each yield different SMC retrievals because they are based on imagery
from different satellites or on different algorithms, but the perform-
ance metrics indicate that all these SMC products provide information
about field-scale SMC. It would, therefore, be interesting to research
the representation of field-scale SMC as an ensemble of SMC products.
Ensemble representations provide multiple predictions of a quantity for
the same location and time, based on multiple models (‘super-ensembles’
or ‘grand-ensembles’), and initial condition, forcing and/or parameter
uncertainties. These are common practice in other fields, such as for
meteorological forecasts (e.g. Buizza et al., 2005; Bougeault et al., 2010)
and river discharge forecasts (e.g. Cloke and Pappenberger, 2009; Flem-
ing et al., 2015; He et al., 2009). SMC retrievals have in common with
meteorological and river discharge forecasts that they are uncertain.
Ensembles of SMC retrievals could reveal the uncertainties and provide
information on the possibility of a certain (e.g. extreme) SMC condition
to occur. An ensemble-like approach was already used in Chapter 6 for
estimating the Up and the total uncertainty, after taking 1000 samples
from the surface roughness parameter and residual distributions. Quets
et al. (2019) presented an ensemble approach for SMC retrievals, using
SMOS observations, 5 parameter sets and 17 perturbed parameter val-
ues. Examples of SMC products that could be validated and potentially
added to a field-scale SMC super-ensemble are the 500 m product from
Sentinel-1 imagery retrieved with a multi-temporal algorithm (Pulvirenti
et al., 2018), the 1 km Copernicus Surface Soil Moisture product with a
change detection algorithm (Bauer-Marschallinger et al., 2019), the 1 km
product from Sentinel-1 imagery with the short term change detection
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algorithm (Balenzano et al., 2021), and the 1 km and 3 km products from
a combination of SMAP and Sentinel-1 imagery (Das et al., 2019). The
insights gained in this thesis on the contributing factors to SMC retrieval
uncertainty can be used for generating ensembles of field-scale SMC
retrievals from Sentinel-1.

Recommendation 6: Use the vegetation signal in Sentinel-1 backscatter
observations.
The model study in Chapter 7 points out that vegetation highly attenuates
the soil σ 0 signal and significantly contributes to the total Sentinel-1
σ 0. Actually, Sentinel-1’s specifications are sub-optimal for SMC retrieval
with its observations in C-band at relatively large incidence angles and
in the VV and VH polarizations. Next to attempting to correct or mask
for vegetation effects and focus on the soil signal, information may
be extracted from the vegetation signal. For example, vegetation σ 0

signals were used to monitor vegetation water stress (Van Emmerik et al.,
2017), SMC in the root zone (Carranza, 2021) and vegetation indices
(Vreugdenhil et al., 2018).

Recommendation 7: Utilize upcoming L-band SAR missions for SMC
retrieval.
L-band σ 0 observations are less obstructed by vegetation and penetrate
deeper in the soil than C-band σ 0 observations (Entekhabi et al., 2010a;
El Hajj et al., 2019). Hence, L-band σ 0 observations are more suitable
for SMC retrieval. This could also be in combination with C-band σ 0

observations (Mengen et al., 2021). A next generation of satellite missions
with selected operational land coverage will enable this. The SAOCOM-1A
and -1B satellites (Azcueta et al., 2021) were launched in 2018 and 2020,
launch of NISAR (Kellogg et al., 2020) is planned for 2023, Tandem-L
(Moreira et al., 2015) for 2024 and ROSE-L (Davidson et al., 2021) for
2028.
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9Data availability

Chapter 2

The raw and processed soil moisture content (SMC) and temperature
Twente network data from 2008 till 2020, the photos and notes taken
during field visits as well as the measurements collected during the
2009, 2015, 2016 and 2017 field campaigns are publicly available at
https://doi.org/10.17026/dans-zrn-n8nh (Van der Velde and
Benninga, 2020). An updated version of the dataset is expected. The
locations of the measurements are given in geographic (WGS84) and map
projected coordinates (RD New). Table 2.7 lists open third-party datasets.

The following supplements will be made available with the scientific
paper when published and until then may be requested from the authors
of the paper, Table S1: the groundwater monitoring wells nearest to
the Twente monitoring stations, Table S2: lists of maintenance practices
applied to the Twente monitoring stations, Table S3: types of capacitance
probes installed at each station and depth.

Chapter 3

The processed SMC and soil temperature data collected by the Raam
network are available at:

• 5 April 2016–4 April 2017: https://doi.org/10.4121/uuid:
276a8c0e-c9a9-4fdf-916a-75cfe06fa974 (Benninga et al.,
2018a).

• 5 April 2017–4 April 2018: https://doi.org/10.4121/uuid:
afb36ac8-e266-4968-8f76-0d1f6988e23d (Benninga et al.,
2018b).

• 5 April 2018–4 April 2019: https://doi.org/10.4121/uuid:
b68e3971-c73e-4d7f-b52f-9ef7d7fe1ed2 (Benninga et al.,
2020a).

A readme file describes the structure of the files, contact information and
locations. Also included is a file containing information about additional
datasets available for the Raam catchment (elevation, soil physical, land
cover, groundwater level and meteorological data).
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9. Data availability

Chapters 4 and 6

The SMC measurements that were collected inside four study fields, and
the processed Sentinel-1 σ 0 observations, masks for weather-related
surface conditions, SMC retrievals and SMC references are available at
https://doi.org/10.17026/dans-xfs-3anu (Benninga et al., 2020c).
This dataset contains modified Copernicus Sentinel data [2016–2018].
The Sentinel-1 images were downloaded from the Copernicus Open Ac-
cess Hub (https://scihub.copernicus.eu/; Copernicus, 2019), the
SMC references were collected by the Twente network, which is oper-
ated by the Faculty of Geo-Information Science and Earth Observation
(ITC) - University of Twente (Van der Velde and Benninga, 2020), and
meteorological measurements of the Royal Netherlands Meteorological
Institute (‘Koninklijk Nederlands Meteorologisch Instituut’ in Dutch, or
KNMI) were obtained from http://www.knmi.nl/nederland-nu/klim
atologie-metingen-en-waarnemingen (KNMI, 2019).

Chapter 5

The following are available online at www.mdpi.com/2072-4292/11/1
7/2025/s1, Supplement 1: figures of Sentinel-1 σ 0 time series for all
study fields, Supplement 2: tables with the processed masks for weather-
related surface conditions, meteorological conditions and Sentinel-1 σ 0

observations for the study fields. Contain modified Copernicus Sentinel
data [2014–2018]. The data sources are the same as for Chapters 4 & 6.

Chapter 7

The leaf area index (LAI) measurements collected inside two meadows
and five maize fields and the Sentinel-2 LAI estimates for these fields
are available at https://doi.org/10.17026/dans-xxv-sdez (Ben-
ninga et al., 2021a). Tables of processed Sentinel-1 σ 0 observations,
masks for weather-related surface conditions, processed Sentinel-2 LAI
estimates, SMC references, and the IEM and TV-IEM retrievals, as well as
supplementary time series figures for the 21 study fields are available at
https://doi.org/10.17026/dans-z9z-t36z (Benninga et al., 2021b).
The datasets at Benninga et al. (2021a) and Benninga et al. (2021b) con-
tain modified Copernicus Sentinel data [2015–2019]. The V102 vegetation
indicator (LAI) maps and scene classifications were downloaded from
the VITO Product Distribution Portal of the Flemish Institute for Techno-
logical Research (‘Vlaamse Instelling voor Technologisch Onderzoek’ in
Dutch, or VITO; VITO 2019). The data sources of the Sentinel-1 images,
KNMI meteorological measurements and SMC references are the same as
for Chapters 4 & 6.
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A. Appendices

A.1 Soil characteristics of the study fields in
Chapters 4 and 6

Table A.1 The soil textures and bulk densities of the study fields in Chapter 4
and Chapter 6. The values are from the surface layer (0 cm to 23 cm depth) of
the soil physical units map of the Netherlands (‘bodemfysische eenhedenkaart
2012’ in Dutch, or BOFEK2012; Wösten et al., 2013).

Field
Texture

Bulk density [g cm−3]
Sand [%] Silt [%] Clay [%]

I 79 17 4 1.37
II 75 18 7 1.39
III 79 17 4 1.37
IV 78 17 5 1.40
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A.2 Performance metrics definitions

Match-ups between estimates (Ye) and references (Yr ) are evaluated with
the root mean square deviation (RMSD), the unbiased RMSD (uRMSD),
the Pearson correlation coefficient (rP ) and the bias.

RMSD =

√√√∑N
t=1

(
Ye(t)− Yr (t)

)2

N
, (A.1)

uRMSD =

√√√√∑N
t=1

(
Ye(t)+

(
Yr − Ye

)
− Yr (t)

)2

N
, (A.2)

rP =
∑N
t=1

(
Ye(t)− Ye

)(
Yr (t)− Yr

)
√∑N

t=1

(
Ye(t)− Ye

)2
√∑N

t=1

(
Yr (t)− Yr

)2
, (A.3)

and

bias = Ye − Yr , (A.4)

where N stands for the number of pairs and t for the observation number.
The bars denote the means of Ye and Yr .
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A.3 Residual analysis plots

A.3.1 Calibration period
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Figure A.1 Residual analysis plots of the MAP σ 0 simulations for the combined
ascending & descending orbits calibration on field I. (a) Residuals against simula-
tions, (b) quantile-quantile plot, (c) autocorrelation coefficients of the residuals.
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Figure A.2 Residual analysis plots of the MAP σ 0 simulations for the combined
ascending & descending orbits calibration on field II. (a) Residuals against
simulations, (b) quantile-quantile plot, (c) autocorrelation coefficients of the
residuals.
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Figure A.3 Residual analysis plots of the MAP σ 0 simulations for the calibra-
tions on field III. (a) Residuals against simulations, (b) quantile-quantile plot,
(c) autocorrelation coefficients of the residuals.
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Figure A.4 Residual analysis plots of the MAP σ 0 simulations for the calibra-
tions on field IV. (a) Residuals against simulations, (b) quantile-quantile plot,
(c) autocorrelation coefficients of the residuals.
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A.3.2 Validation period
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Figure A.5 Residual analysis plots of the MAP σ 0 simulations for the combined
ascending & descending orbits validation on field I. (a) Residuals against simula-
tions, (b) quantile-quantile plot, (c) autocorrelation coefficients of the residuals.
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Figure A.6 Residual analysis plots of the MAP σ 0 simulations for the combined
ascending & descending orbits validation on field II. (a) Residuals against simula-
tions, (b) quantile-quantile plot, (c) autocorrelation coefficients of the residuals.
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Figure A.7 Residual analysis plots of the MAP σ 0 simulations for the valida-
tions on field III. (a) Residuals against simulations, (b) quantile-quantile plot,
(c) autocorrelation coefficients of the residuals.
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Figure A.8 Residual analysis plots of the MAP σ 0 simulations for the valida-
tions on field IV. (a) Residuals against simulations, (b) quantile-quantile plot,
(c) autocorrelation coefficients of the residuals.
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A.4 Calibration results with a first-order and a
second-order autoregressive residual model

For the calibration with a second-order autoregressive residual model,
which has two additional parameters to be inferred, 10 000 realizations
per chain were used in order to reach convergence after 50 % of the
realizations (burn-in realizations).
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Figure A.9 (a) The posterior combinations of s and cl, and (b) histograms of
the posterior Zs distributions for field I, using a residual model with uncorrelated
residuals, a first-order (AR(1)) and a second-order (AR(2)) autoregressive model.
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Figure A.10 Residual analysis of the MAP σ 0 simulations for the calibration
on field I with an AR(1) residual model. (a) Residuals against simulations,
(b) quantile-quantile plot, (c) autocorrelation coefficients of the residuals.
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Figure A.11 Residual analysis of the MAP σ 0 simulations for the calibration
on field I with an AR(2) residual model. (a) Residuals against simulations,
(b) quantile-quantile plot, (c) autocorrelation coefficients of the residuals.
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A.5 Time series figures of the meadows’ surface
roughness cross-validation
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Figure A.12 SMC retrievals for field I using the MAP surface roughness para-
meter set of field II, and vice versa. The Up and Utotal-B are visualized by the
95 % confidence interval.
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Figure A.13 σ 0 simulations for field I using the MAP surface roughness para-
meter set of field II, and vice versa. The parameter and total simulation uncer-
tainty are visualized by the 95 % confidence interval.
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A.6 Field III surface roughness calibration exclusively
on Sentinel-1 observations acquired in relative
orbit 88

The posterior surface roughness parameter distributions (Figure A.14) of
the calibration on field III Sentinel-1 σ 0 observations acquired exclusively
in relative orbit 88 are similar to the results obtained on the Sentinel-1
observations acquired in both ascending orbits (15 & 88), except for a
limited number of parameter combinations having a Zs around 1.0 cm.

Figures A.15 and A.16 show the residual analysis plots. Figure A.15
justifies the use of the homoscedastic Gaussian residual model for the
calibration period. The residual analysis plots for the validation period
(Figure A.16) are similar to the residual analysis plots of the old calibra-
tion on both ascending orbits (Figure A.7).

Figure A.17 shows that the performances of the orbit 88 σ 0 simula-
tions with the parameter sets sampled from the posterior distributions
obtained by the calibration on orbit 88 are similar to the performances
with the parameter sets obtained by the calibration on both orbit 15
and 88.
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Figure A.14 (a) The posterior combinations of s and cl, and (b) histograms of
the posterior Zs distributions for field III, including the calibration exclusively
on Sentinel-1 observations acquired in relative orbit 88.

199



A. Appendices

-9 -8.5 -8 -7.5 -7 -6.5 -6 -5.5
Simulated backscatter [dB]

-6

-3

0

3

6

R
es

id
ua

l [
dB

] 0 simulations

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2
Theoretical quantiles [-]

-6

-3

0

3

6

R
es

id
ua

l [
dB

] 0 simulations
Gaussian distribution

0 1 2 3 4 5 6 7
Lag [-]

-1

-0.5

0

0.5

1

A
ut

oc
or

re
la

tio
n 

[-
]

Autocorrelation 95% conf. interval

(a)

(b)

(c)

Figure A.15 Residual analysis plots of the MAP σ 0 simulations for the relative
orbit 88 calibration on field III. (a) Residuals against simulations, (b) quantile-
quantile plot, (c) autocorrelation coefficients of the residuals.
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Figure A.16 Residual analysis plots of the MAP σ 0 simulations for the relative
orbit 88 validation on field III. (a) Residuals against simulations, (b) quantile-
quantile plot, (c) autocorrelation coefficients of the residuals.
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A.7 Estimation of TV-IEM’s and IEM’s run time

The run times of TV-IEM (Tor Vergata - integral equation method) and
IEM (integral equation method) were estimated by running the models for
seven cases with a varied number of simulations and ten repetitions per
case. The computer that was used was equipped with an Intel Core(TM)
i7-4790 CPU @ 3.60 GHz processor. The results are shown in Figure A.18.

A linear equation can be fitted through the data points in Figure
A.18a–b because both TV-IEM and IEM consist of a for-loop by which each
input instance (combination of incidence angle, LAI, VWC and SMC) is
independently simulated. The run times per simulation and the overhead
times (M = 0) can be derived from the linear equations. Their estimates
are listed in Table A.2.

A negative overhead time as found by the linear equation for TV-IEM
is actually not possible. The estimated overhead time for TV-IEM is very
small and its value is largely affected by uncertainty in the run times of
the simulations. For both TV-IEM and IEM it can be considered negligible.
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Figure A.18 The run time of the TV-IEM and the IEM model for a varied number
of simulations (M).

Table A.2 Estimates of the run time per simulation and the overhead time for
the TV-IEM and the IEM model.

Model Run time per simulation [s] Overhead time [s]

TV-IEM 26.1 −0.330
IEM 5.56× 10−5 0.0541
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A.8 Details of the study fields in Chapter 7

Table A.3 Characteristics of the study fields in Chapter 7. The SMC monitoring
stations, collectively known as the Twente network, are detailed in Van der Velde
et al. (2021) and Van der Velde and Benninga (in preparation). The soil texture
and soil bulk density originate from the soil physical properties map of the
Netherlands and apply to the upper soil layer (BOFEK2012; Wösten et al., 2013).
The net area refers to the net surface area of a field, excluding a 20 m distance
from borders of fields and 40 m from trees and buildings (see Section 7.2.1.1).

Station Field
Soil texture [%] Soil bulk density

[g cm−3]
Net area

[ha]Sand Silt Clay

ITC_SM02
I 79 17 4 1.37 1.96
II 79 17 4 1.37 4.12

ITC_SM03
III 75 18 7 1.39 2.38
IV 65 22 13 1.21 1.53

ITC_SM04 V 78 14 8 1.36 1.83
ITC_SM05 VI 78 17 5 1.38 1.50

ITC_SM11
VII 87 9 4 1.06 6.32
VIII 88 8 4 1.15 5.35

ITC_SM13
IX 87 10 3 1.38 2.43
X 87 10 3 1.38 2.22

ITC_SM14
XI 77 17 6 1.42 1.48
XII 77 17 6 1.42 1.39

ITC_SM15
XIII 67 21 12 1.24 0.70
XIV 79 17 4 1.37 1.45

ITC_SM16 XV 87 9 4 1.26 0.60
ITC_SM17 XVI 87 10 3 1.38 0.93

ITC_SM18
XVII 77 17 6 1.42 0.16
XVIII 77 17 6 1.42 0.80

ITC_SM19
XIX 78 18 4 1.35 1.31
XX 78 18 4 1.35 3.88
XXI 78 18 4 1.35 1.55
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A.9 Effect of the Sentinel-2 LAI uncertainty on the
backscatter to soil moisture content sensitivity

The propagation principle of the Sentinel-2 LAI uncertainty into SMC
retrievals is illustrated in Figures A.19 and A.20. First, for a given
LAI (e.g. LAI = 1 m2 m−2) and SMC (e.g. SMC = 0.35 m3 m−3) the σ 0 is
determined. Next, the LAI is perturbed with the Sentinel-2 LAI uncertainty
(LAI = 1 m2 m−2 ± 0.71 m2 m−2) and two new SMC to σ 0 relations are
established. Then, the SMC is determined from the σ 0 value and the new
SMC to σ 0 relations (SMC+ and SMC− in Figures A.19a and A.20a). Finally,
the effects on the SMC retrievals are determined as the differences of the
original SMC with SMC+ and SMC− (∆SMC+ and ∆SMC− in Figures A.19a
and A.20a).
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Figure A.19 The sensitivity of σ 0 to SMC for LAI values perturbed upwards and
downwards by the Sentinel-2 LAI uncertainty of 0.71 m2 m−2. The simulations in
this figure are for a 35◦ incidence angle. The colours match Figure 7.4.
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Figure A.20 Same as Figure A.19, but for a 44◦ incidence angle.
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A.10 Performance metrics of all fields for two variants
of incorporating upper limit exceedances
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Figure A.21 Performance metrics of the IEM and TV-IEM SMC retrievals against
the SMC references for two variants of incorporating information from SMC
retrievals that exceed the upper retrieval limit of 0.75 m3 m−3. Variant 1 sets
all the IEM retrievals that exceed 0.75 m3 m−3 and variant 2 sets only the IEM
retrievals that exceed 0.75 m3 m−3 in the expected wet period (15 November to
15 March) to the maximum SMC.
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Figure A.22 Same as Figure A.21, but for TV-IEM and ‘IEM for TV-IEM pairs’.
‘IEM for TV-IEM pairs’ contains the same retrieval-reference pairs as ‘TV-IEM’ (i.e.
a Sentinel-2 LAI estimate is available and TV-IEM resulted in a valid SMC retrieval),
whereas ‘IEM all retrievals’ (in Figure A.21) contains all the retrieval-reference
pairs possible (i.e. from all Sentinel-1 σ 0 observations).
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A.11 Sentinel-1 and SMAP soil moisture content
retrieval time series

A.11.1 Field V
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Figure A.23 SMC retrievals and references for field V during the 2018 summer.
Only the Sentinel-1 SMC retrievals for orbits 15 & 37 are shown. More information
about the data sources in this figure can be found in the caption of Figure 7.15.
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Figure A.24 SMC retrievals and references for field V. Only the Sentinel-1 SMC
retrievals for orbits 15 & 37 are shown.
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A.11. Sentinel-1 and SMAP soil moisture content time series
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Figure A.25 SMC retrievals and references for field V during the 2018 summer.
Only the Sentinel-1 SMC retrievals for orbits 88 & 139 are shown.
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Figure A.26 SMC retrievals and references for field V. Only the Sentinel-1 SMC
retrievals for orbits 88 & 139 are shown.
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A.11.2 Field II
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Figure A.27 SMC retrievals and references for field II during the 2018 summer.
Only the Sentinel-1 SMC retrievals for orbits 15 & 37 are shown.
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Figure A.28 SMC retrievals and references for field II. Only the Sentinel-1 SMC
retrievals for orbits 15 & 37 are shown.
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Figure A.29 SMC retrievals and references for field II during the 2018 summer.
Only the Sentinel-1 SMC retrievals for orbits 88 & 139 are shown.
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A.12 Performance metrics of all fields for orbits 15
& 37 and orbits 88 & 139
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