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1. Introduction

1. Importance of LAI and vertical LAI profile

Forests cover about 30% of the Earth land surface (Hansen et al., 2013).

They provide numerous ecological services, including carbon storage,

water supply, climate regulation, and habitat for various species. From

1990 to 2007, forests sequestered up to 60% of the anthropogenic carbon

emissions (Pan et al., 2011). Human well-being strongly depends on the

status of forests. However, Earth is undergoing accelerating tropical

forest loss (Luo et al., 2013) and temperate forest mortality (Senf et al.,

2018). Mapping and monitoring forests is extremely important.

Leaves are the interface between forests and atmosphere, the place

where most of the energy fluxes exchange. The amount and distribution

of leaves determine the radiation interception (Verhoef, 1984), carbon

sequestration (Barr et al., 2004), precipitation interception and evapo-

transpiration (Wilson et al., 2001) in forests. Therefore, leaf area index

(LAI), defined as one half the total green leaf area per unit ground surface

area (Chen et al. 1997), has been widely used as a key component to

model ecosystem productivity, hydrological process and climate change

(Weiss et al., 2004; Van der Tol et al., 2009; Zheng and Moskal, 2009).

LAI has been identified as both an essential climate variable (ECV) (Baret

et al., 2013; Bojinski et al., 2014), and an essential biodiversity variable

(EBV) (Skidmore and Pettorelli, 2015).

The vertical distribution of leaves warrants particular importance for

forest biodiversity. Many species including birds (Walther, 2002; Siegel

and DeSante, 2003), primates (Davies et al., 2017), arthropods (Halaj et al.,

2000), and reptiles (Shine et al., 2002) were reported to have structural

preferences in forests. The vertical LAI profile, which is the vertical

distribution of leaf area expressed as a function of height, has been

widely used in wildlife habitat modelling (MacArthur and MacArthur,

1961; Goetz et al., 2007; Muller et al., 2013). Compared with LAI, the

vertical LAI profile is a more realistic representation of the 3D canopy

structure. It has been used to map forest succession stages (Falkowski

et al., 2009; Marselis et al., 2018), canopy strata (Wilkes et al., 2015a)

and forest vertical structure complexity (Stark et al., 2012; Atkins et al.,

2018).
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2. Estimation of LAI and vertical LAI profile using remote sensing

2. Estimation of LAI and vertical LAI profile using re-

mote sensing

The most accurate LAI and vertical LAI profile values are acquired by

direct leaf collection and leaf area measurement using either planimetric

or gravimetric methods (Tang 2015). However, these methods are costly,

time-consuming and sometimes not feasible for forests (Bréda, 2003).

Remote sensing techniques provide a non-destructive, rapid and econom-

ical way for estimating LAI across a wide range of spatial and temporal

scales.

2.1 Passive remote sensing of LAI and vertical LAI profile

and its limitation

At local scales, remote sensing based indirect techniques have become

the primary in-situ LAI methods, such as LAI-2000 or LAI-2200 (LiCOR,

2009), digital hemispherical photography (DHP) and TRAC (Jonckheere

et al., 2004). They have been intensively used to collect ground LAI refer-

ence for validating satellite products. At larger spatial extent, passive

optical sensors such as MODIS (Myneni et al., 2002), SPOT (Weiss et al.,

2007), and MERIS (Bacour et al., 2006) are essential to generate spatially

explicit LAI. Several global LAI products are available, including GLASS

(Zhao et al., 2013), GEOV1 (Baret et al., 2013), GLOBMAP (Liu et al., 2012),

and MODIS (C5, C6) (Yan et al., 2016).

However, there are some limitations with passive remote sensing in

mapping LAI. Previous studies have revealed large inconsistency and

uncertainty among several LAI products at regional to global scales

from passive sensors (Fang et al., 2013; Jiang et al., 2017). Part of the

uncertainty was attributed to the saturation of spectral signals over

high LAI areas (Liu et al., 2018b). For instance, LAI estimated from the

normalized difference vegetation index (NDVI) using passive remote

sensing is known to saturate at values around 3 to 4, which is below the

global mean LAI value of 4.7 in tropical forests (Asner et al., 2003). While

the saturation problem has long been discovered, it cannot be easily

solved using passive remote sensing only. Furthermore, retrieving the

vertical LAI profile is beyond the capabilities of passive sensors.
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2.2 Potential of LiDAR for LAI and vertical LAI profile

estimation

In the past decades, LiDAR (Light Detection and Ranging) has emerged as

a new active remote sensing technology. Time-of-flight LiDAR measures

the distance between a sensor and a target based on half the elapsed

time between the emission of a pulse and the detection of a reflected

return (Baltsavias, 1999). It can be classified as either discrete return

or full waveform types (Fig 1.1). Full waveform LiDAR digitizes the

entire backscattered energy, while discrete return LiDAR records single

or multiple returns from a return pulse (Wulder et al., 2012). The ability

to capture precise 3D information has made LiDAR a powerful tool

in estimating various forest structure metrics (e.g. canopy height and

aboveground biomass) with unprecedented accuracy (Drake et al., 2002;

Lefsky et al., 2002).

Figure 1.1: Diagram of full waveform LiDAR and discrete return LiDAR
(Lefsky et al., 2002)

Compared to passive remote sensing, LiDAR has several advantages,

which offers great potential to render itself as a superior tool for mapping

LAI and the vertical LAI profiles (Zhao and Popescu, 2009). First, LiDAR

can penetrate the canopy and detect understory vegetation (Hill and

Broughton, 2009). This penetrating ability allows for alleviation of the

saturation problem in passive sensors, and better characterization of

vegetation distribution beneath the canopy surface. Second, with the
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precise 3D information, LiDAR can be used to retrieve the vertical LAI

profile, which can not be accomplished with conventional passive sensors

like MODIS or Landsat.

3. Previous studies of LAI and vertical LAI profile estim-

ation using LiDAR

3.1 Theoretical Background

3.1.1 Definition of LAI and vertical LAI profile

Various definitions of LAI were proposed for different applications. Two

most frequently used definitions are “true LAI” and “effective LAI”. True

LAI was defined as one half the total green leaf area per unit ground

surface area (Chen et al., 1997). Effective LAI was defined as one half of

the total area of light intercepted by leaves per unit ground surface area

(Chen and Black, 2010). Effective LAI differs from true LAI in that it does

not account for the non-random distribution of foliage in the canopy.

Another important term is the “plant area index (PAI)”. Many studies and

products use the term LAI but actually refer to PAI, since the distinction

between photosynthetic and non-photosynthetic elements was not made

(Weiss et al., 2004). Due to the interchangeable usage of PAI and LAI in

the literature, this thesis adopts the term LAI, but the effect of woody

elements will be discussed.

The vertical LAI profile is the vertical distribution of leaf area expressed

as a function of height. It was also referred to as foliage height profile

(MacArthur and Horn, 1969), vertical foliage profile (Tang et al., 2014b),

vertical leaf area density profile (Lin and West, 2016), vertical plant

profile (Calders et al., 2014) and canopy height profile (Harding et al.,

2001; Lefsky et al., 2002; Hilker et al., 2010) in previous studies.

3.1.2 Gap fraction model

The gap fraction model based on the Beer-Lambert law is the funda-

mental component used in most physically based LAI retrievals. Its basic
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principle is that “the attenuation of radiation passing though a canopy is

linked with the amount and distribution of leaves in the canopy, through

mathematical models". In the case of a random spatial distribution of

infinitely small leaves,

Pgap(θ,ϕ) = e−G(θ,ϕ)L/cos(θ) (1.1)

where θ is the inclination angle and ϕ is the azimuth angle of the light

beam penetrating the canopy. Pgap(θ,ϕ) is named gap fraction, defined

as the probability of a light beam to directly pass through the canopy

in the direction (θ,ϕ) without any collision(Armston et al., 2013). L is

the LAI, and G(θ,ϕ) is the leaf projection function, which is the mean

projection of unit foliage area in the direction (θ,ϕ) (Nilson, 1971; Weiss

et al., 2004). Even in canopies with non-random distributed leaves, an

extended model has been proposed,

Pgap(θ,ϕ) = e−G(θ,ϕ)λL/cos(θ) (1.2)

where λ is the clumping index, depending on the canopy structure. λ is

smaller than 1 for aggregated canopies, while greater than 1 for regular

dispersed canopies. The effective LAI (Leff) is the product of clumping

index and true LAI,

Leff = λL (1.3)

From Eq 1.1, 1.2 and 1.3, LAI can be retrieved from,

Leff =
−ln(Pgap(θ,ϕ))cos(θ)

G(θ,ϕ)
(1.4)

In terms of vertical LAI profile,

Lcum(h) =
−ln(Pgap(h, θ,ϕ))cos(θ)

G(h,θ,ϕ)
(1.5)

l(h) = ∂Lcum(h)
∂h

(1.6)

where Lcum(h) is the cumulative LAI profile as a function of height. Its

derivative, i.e. l(h) is the vertical LAI profile or leaf area density profile,

defined as the the leaf area per unit volume at level h in the canopy.

6



3. Previous studies of LAI and vertical LAI profile estimation using LiDAR

Based on Eq 1.4, 1.5 and 1.6, it is clear that LAI and vertical LAI profiles

are retrieved from gap fraction and leaf projection function values. The

leaf projection function G(θ,ϕ) is determined by how the leaves are

oriented inside the canopy (Wang et al., 2007),

G(θ,ϕ) = 1
2π

∫ 2π

0

∫ π/2
0

| cosθcosθl + sinθsinθlcos(ϕ −ϕl) | g(θl,ϕl)

×sinθldθldϕl

(1.7)

where θl is the zenith angle of a leaf normal vector (inclination angle), and

ϕl is the azimuth angle of a leaf. g(θl,ϕl) is the leaf angle distribution

(LAD), defined as the probability of leaf area with the leaf inclination

angle between θl and θl + dθl and the leaf azimuth angle between ϕl

and ϕl + dϕl (Weiss et al., 2004). Both categorical and continuous

functions have been proposed to model the LAD. Six commonly used

categorical LAD types are shown in Fig 1.2, where the planophile canopy

is dominated by horizontally growing leaves while the erectophile canopy

is dominated by erectly inclined leaves. At the convergent angle of 57.5◦,

the G(θ,ϕ) approaches 0.5 regardless of the LAD type.

Figure 1.2: Six commonly used leaf angle distribution types and the
corresponding leaf projection function

To sum up, the gap fraction model is the fundamental method used

in this study to retrieve LAI and the vertical LAI profile. The clumping

effect and woody elements were not corrected in this study, but will be

investigated in future research. From Eq 1.4 to 1.7, it is demonstrated

that an accurate estimate of gap fraction (Pgap(θ,ϕ)) and leaf angle

distribution (LAD, g(θl,ϕl)) are prerequisite for the final LAI results.
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The other two parameters θ and h may also affect the vertical LAI profile

result.

3.2 Previous studies of LAI and vertical LAI profile retrieval

using LiDAR

At local scale, terrestrial LiDAR has been used to estimate LAI and

vertical LAI profile (Lovell et al., 2003; Jupp et al., 2009; Zhao et al., 2011),

serving as the validation for airborne and satellite products (Tang et al.,

2014a). Compared to conventional techniques such as DHP or LAI-2000,

terrestrial LiDAR is insensitive to illumination condition (Calders et al.,

2018). Moreover, the differentiation of foliage and woody elements is

feasible, thus enabling correction of woody elements and extraction of

true LAI (Zhu et al., 2018b). Another advantage of terrestrial LiDAR is its

capability to estimate LAI for individual tree (Hu et al., 2018), which is

impossible for DHP or LAI-2000.

At regional scale, airborne LiDAR enables wall-to-wall mapping of LAI

and vertical LAI profile. Three retrieval methods have been proposed

including the empirical model (Alonzo et al., 2015), the gap fraction

model (Korhonen et al., 2011), and the radiative transfer model (Koetz

et al., 2006). Empirical models rely on regression of in-situ LAI values with

a set of LiDAR metrics (Jensen et al., 2008). They tend to be applicable

for a single species in a single geographical area. In heterogeneous mixed

forests, the gap fraction model as introduced in section 3.1.2 exhibited

higher accuracy (Richardson et al., 2009). Gap fraction is approximated

by various laser penetration metrics (Morsdorf et al., 2006; Solberg et al.,

2009) from discrete return LiDAR or estimated from backscattered energy

using full waveform LiDAR (Armston et al., 2013; Tang et al., 2012). Small

footprint and high pulse density even leads to the retrieval of LAI and

vertical LAI profile for individual tree (Oshio et al., 2015). A combination

of leaf-on and leaf-off airborne LiDAR flights facilitates the correction of

woody element effects to retrieve true LAI for deciduous trees (Zhu et al.,

2019 in preparation).

At continental or global scale, spaceborne LiDAR is the unique dataset to

provide large area vertical LAI profile product. LAI and vertical LAI profile

(Tang et al., 2014b) has been retrieved from the Geoscience Laser Alti-
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meter System (GLAS), a large footprint (∼65m in diameter) full waveform

profiling LiDAR from 2003 to 2009. The method was extended to map

the vertical LAI profile across the United States (Tang et al., 2016) and

Amazon (Tang and Dubayah, 2017). Very recently on Dec 5 2018, Global

Ecosystem Dynamics Investigation (GEDI), a new spaceborne LiDAR with

medium footprint (∼25m in diameter) was successfully launched. Its LAI

and vertical LAI profile product will bring numerous opportunities for

ecological and biodiversity studies (Dubayah et al., 2014; Skidmore and

Pettorelli, 2015).

3.3 Unresolved challenges at different scales

The retrieval of LAI and vertical LAI profile faces several challenges at

different scales. According to Eq 1.4 to 1.7, the gap fraction and LAD

are prerequisite for LAI and vertical LAI profile retrieval, while θ, and h
may also affect the results. In the following, challenges related to these

factors will be introduced.

At local scale, which in-situ LAI technique is the most accurate and

reliable still remains unknown. In-situ measurement is the basis for

validation of airborne or satellite products. However, large LAI inconsist-

ency and uncertainty were revealed among different in-situ techniques

including DHP, LAI-2000, and terrestrial LiDAR (Garrigues et al., 2008;

Woodgate et al., 2015). Part of the inconsistency arise from the estimation

of gap fraction (Garrigues et al., 2008; Woodgate et al., 2015). Terrestrial

LiDAR was suggested to be preferential than other techniques (Calders

et al., 2018). Nevertheless, the consistency and accuracy in the estima-

tion of LAD, another key factor in LAI and vertical LAI profile retrieval,

remains unexplored. If terrestrial LiDAR has more accurate LAD estimate,

it is potentially giving more accurate LAI estimate.

At regional scale, the variation of LAD in natural forests has rarely

been explored. Using airborne LiDAR, the importance of LAD estimate

for LAI mapping becomes more pronounced. Unlike terrestrial LiDAR

which measures the canopy from below across a large zenith angle range

(for example [-40◦,90◦] with rotation tilt), airborne LiDAR measures the

canopy from above, with much smaller zenith angle ranges (for example

[-30◦,30◦]) as shown in Fig 1.3. One cannot use the convergent angle
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of 57.5◦ when the leaf projection function can be approximated as 0.5

regardless of the LAD type (Fig 1.2). At 0◦-30◦, different LAD lead to

quite large difference of leaf projection function values. Inappropriate

estimation of LAD was reported to result in 47% underestimation of LAI

(Pisek et al., 2013). In most current studies, LAD was assumed as the

spherical distribution. Is this a valid assumption in natural forests? Is

terrestrial LiDAR able to capture the variation of LAD? This remains

poorly understood.

Figure 1.3: Difference in the scanning patterns between airborne and
terrestrial LiDAR

At regional scale, the LAI uncertainty caused by airborne LiDAR flight

settings (for example, scan angle) has rarely been investigated. As demon-

strated in section 3.1.2, accurate measurement of Pgap and vertical Pgap
profile is critical for subsequent LAI and vertical LAI profile estimation. In

many previous studies, the scan angle of airborne LiDAR was overlooked

and a nadir direction was assumed (Hilker et al., 2010; Tang et al., 2012).

This may not be a big problem in earlier studies, when the scan angle had

a smaller range (∼10◦) close to nadir (Riaño et al., 2004; Solberg et al.,

2006). However, in recent years, researchers have used airborne LiDAR

data with a much larger scan angle range (±30◦ - ±45◦) in forests (Fieber

et al., 2015; Cao et al., 2016; Marino et al., 2016; Gu et al., 2018). Using

multi temporal flights, it is even more difficult to maintain exactly the

same scan angle. It is known to us that the precision of canopy height

estimates decreased with increasing off-nadir scan angle (Lovell et al.,

2005; Pang et al., 2011). Accordingly, it is necessary to investigate the

scan angle impact on Pgap and vertical Pgap profile.
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In the retrieval of vertical LAI profile, the un-even topography is an

additional factor to consider. The vertical LAI profile is a function of

height h. But this h could refer to local height or sea level height. In most

studies, a topographic normalization algorithm was applied to retrieve

local height. Through this step, all vegetation elements were put onto

a flat terrain. However, for montane forests with un-even topography,

this preprocessing may severely change the 3D topology of vegetation.

Especially many derivative metrics from the vertical LAI profile such as

canopy layer counts and the vertical complexity are all dependent on h.

The effect of topographic normalization on the vertical LAI profile was

never evaluated.

4. Research questions and thesis structure

Accurate estimation of LAI and vertical LAI profile is the basis for its

further application in climate modelling or biodiversty modelling. The

aim of this research is to improve the retrieval of LAI and vertical LAI

profile at plot and regional scale, using terrestrial and airborne LiDAR.

Specifically, four research questions are outlined below:

1. Which in-situ technique measures the leaf angle distribution (LAD)

more accurately? Terrestrial LiDAR or digital hemispherical photo-

graphy (DHP)?

2. Is the spherical LAD a valid assumption in natural beech forests?

How much is the LAD variation?

3. What is the effect of off-nadir scan angle in gap fraction and vertical

gap fraction profile retrieval using airborne LiDAR?

4. What is the effect of topographic normalization in vertical LAI

profile retrieval using airborne LiDAR?

This thesis consists of six chapters. Chapter 1 presents the research back-

ground, identify the existing challenges and propose specific research

questions in this PhD thesis. Chapter 2 to 5 address the above-mentioned

four specific objectives. Chapter 6 concludes the thesis with a summary

of significant findings in the thesis, followed by a discussion of mapping

the 3D distribution of leaves in forests at multiple scales. The broader
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application of this thesis in forest ecology research is outlined. Three

peer reviewed ISI journals have been published, and another one is to be

submitted.
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2Retrieving leaf angle distribution

using terrestrial LiDAR *

*This chapter is based on: Liu, J., Wang, T., Skidmore, A., Jones, S., Heurich, M., 2018.
Comparing terrestrial LiDAR and digital hemispherical photography in estimating leaf
angle distribution in broadleaf forests. (to be submitted)
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Abstract

Leaf inclination plays a crucial role in regulating the radiation, carbon and

water fluxes in plant canopies. Accurate measurement of its distribution

function, i.e., the leaf angle distribution (LAD), is very important for

modelling photosynthesis as well as estimating leaf area index (LAI). In

spite of its importance, LAD is one of the most poorly constrained model

parameters due to measurement challenges. Both digital hemispherical

photography (DHP) and terrestrial LiDAR (TLS) have been used to measure

in-situ LAD. However, the results consistency and relative accuracy from

these two techniques have never been evaluated.

In this research, we aim to evaluate which in-situ technique, either DHP

or TLS, measures LAD more accurately. Both filed based and synthetic

datasets are used. The field based datasets are collected from 36 nat-

ural European beech stands covering a range of forest structures. The

synthetic datasets are generated from 24 virtual forests through TLS

and DHP simulators. Afterwards, the LAD is retrieved from TLS point

clouds using a geometrical method, and from DHP using a gap fraction

inversion method respectively. Results from the field based datasets

show a significant difference and inconsistency (r=0.19, p=0.26) between

the average inclination angle (θ) retrieved from TLS (θ ∈ (44◦, 53◦)) and

DHP (θ ∈ (18◦, 76◦)). Results from the synthetic datasets show that the

accuracy of θ from TLS (R2=0.79, RMSE = 6.41◦) is considerably higher

than that obtained from DHP (R2=0.12; RMSE=16.40◦).

This study demonstrates that the LAD estimated from TLS and DHP does

not tally. Based on the synthetic dataset, TLS estimates leaf inclination

more accurately than DHP. We therefore recommend TLS to serve as

the ground-based technique in measuring leaf inclination in broadleaf

forests.
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1. Introduction

Leaf inclination is an important component of canopy structure. How the

leaves incline and orient inside a canopy strongly regulates the radiation

interception (Weiss et al., 2004; Niinemets, 2010), biomass production

(Sakamoto et al., 2006), rainfall interception (Crockford and Richardson,

2010), and evapotranspiration (King, 1997). For some species, leaf in-

clination can serve as an indicator of stress. Drought-stressed soybean

plants are shown to have steeper inclined leaves than well-watered soy-

bean plants (Biskup et al., 2007). Leaf inclination may also reveal an

evolutionary strategy of plants adapting to biotic and abiotic factors

(Norman and Campbell, 1989). For example, a latitude cline was found

for Arabidopsis thaliana, which has more erect leaves in lower latitudes

to maximize photosynthesis (Hopkins et al., 2008). From a remote sens-

ing perspective, leaf inclination is the primary control on nadir viewed

canopy reflectance (Asner, 1998).

For a broadleaf, leaf inclination angle (θ) is the angle between the zenith

direction and the leaf normal vector. The leaf angle distribution (LAD),

or leaf inclination distribution function (LIDF), of canopies refers to the

probability of all leaves inclined at different directions. The average

inclination angle (θ) is the mean value of inclination angles of all leaves.

LAD is widely used in modeling vegetation processes, such as radiative

transfer (Verhoef, 1984), photosynthesis (Van der Tol et al., 2009; Yang

et al., 2017), and rainfall interception (Xiao et al., 2000). LAD is also

a prerequisite in estimating leaf area index (LAI) (Weiss et al., 2004)

and vertical LAI profile. Due to measurement difficulty, LAD is often

simplified as predefined mathematical functions (de Wit, 1965). For

instance, a canopy of planophile LAD is dominated by horizontal leaves (θ
= 26.8◦), while a canopy of erectophile LAD is dominated by erect leaves

((θ = 63.2◦) (Lemeur and Blad, 1975). Over-simplification of LAD has

made it one of the most poorly constrained model parameters (Ollinger,

2011). A previous research has demonstrated up to 47% underestimation

of LAI when a false LAD is assumed (Pisek et al., 2013).

Airborne and satellite remote sensing data have been used to estimate

LAD through reflectance inversion (Jacquemoud et al., 2000; Houborg

et al., 2007; Atzberger and Richter, 2012; Bayat et al., 2018; Ferreira et al.,
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2018). However, none of these studies assessed the accuracy of LAD

results, mainly due to the difficulty in acquiring in-situ reference value

of LAD. At ground level, the geometric measurement of individual leaves

is a commonly used approach to measure LAD. The inclination of each

leaf can be manually measured using inclinometer (Ross, 1981), point

quadrat (Wilson, 1960), or spatial coordinate apparatus (Lang, 1973).

Nevertheless, manual methods easily disturb the canopy and demand

much time as well. At least 75 leaves per tree should be measured across

the vertical tree profile to obtain reliable estimates of the LAD (Pisek

et al., 2013). The leveled digital canopy photography is a non-contact

approach, where photographs are taken around the canopy. Individual

leaves are visually inspected from each photo and thus LAD is calculated

through image processing (Pisek et al., 2011). However, this method is

difficult to implement in natural forests since it is very challenging to

take pictures of leaves higher than 2 m.

Recently, terrestrial LiDAR (TLS) has revolutionized the way we measure

ecosystem structure (Danson et al., 2018). TLS can rapidly generate high-

density point clouds of vegetation canopies. With small beam divergence

and high pulse frequency, individual leaf can be delineated (Hosoi and

Omasa, 2012; Zhu et al., 2017). Separation of leaf and woody elements is

also possible using TLS point clouds (Zhu et al., 2018a; Li et al., 2018c;

Ferrara et al., 2018). LAD is then retrieved from TLS by reconstructing

leaf surfaces and calculating normal vectors (Zheng and Moskal, 2012;

Bailey and Mahaffee, 2017; Li et al., 2018a).

Radiation inversion is another approach to estimate LAD (Chen et al.,

1991; Wagner and Hagemeier, 2006; Garrigues et al., 2008; Macfarlane

et al., 2014). This method does not generate data on individual leaf scale.

Instead, only the plot-averaged measure, i.e., the average inclination

angle (θ), can be retrieved (Biskup et al., 2007). The underlining principle

is that the average inclination angle (θ) is related to radiation attenuation

through mathematical models. Therefore, it is possible to measure the

radiation attenuation and then inverse the measurements to estimate θ
(Chen et al., 1991; Weiss et al., 2004). Both LAI-2000 (LiCOR, 2009) and

the digital hemispherical photography (DHP) estimate LAD based on this

theory. Due to inability to differ leaf and woody materials, the result is

more precisely to be the average plant inclination angle, rather than the
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average leaf inclination angle (Chen et al., 1991).

Although both TLS and DHP have been used to measure LAD in ground

surveys, there is no research on comparing these two techniques, and

evaluating their accuracy. The main challenge lies in the acquisition of

100% true LAD reference values. Unlike metrics such as LAI or canopy

height, of which the reference value may be acquired through destructive

sampling, the true value of LAD is almost impossible to achieve in natural

environment. Since it is almost impossible to measure all leaves without

disturbing the orientation of other leaves.

Previous studies investigated the consistency of TLS and DHP in estim-

ating gap fraction (Woodgate et al., 2015) and LAI (Calders et al., 2018)

in various forest systems. However, no studies have evaluated the re-

trieval of LAD. TLS and DHP are two techniques intrinsically based on

different theories and sensors independent of each other. If the LAD

results from them are not consistent, then their relative accuracy evalu-

ation is required. In this regard, synthetic dataset offers an alternative

avenue to provide 100% true LAD reference values for evaluating the two

techniques. A few recent studies used synthetic DHP in evaluating LAI

retrieval (Leblanc and Fournier, 2014; Zou et al., 2018). Other studies

utilized simulated LiDAR point clouds in evaluating the accuracy of tree

height (Hämmerle et al., 2017), light interception (Perez et al., 2018), LAI

(Liu et al., 2017b; Chen et al., 2018), and LAD (Liu et al., 2019). To the

best of our knowledge, no studies have been carried out to assess the

accuracy of TLS and DHP in LAD measurement.

In this research, we aim to evaluate the consistency and accuracy of

the leaf angle distribution (LAD) retrieved from TLS and DHP. Specific-

ally we set out to investigate the topic from two aspects. First, field

based datasets collected in natural broadleaf forests are used to evaluate

the consistency of the average inclination angle (θ) from TLS and DHP.

Second, synthetic datasets generated from virtual forests through LiDAR

and DHP simulators are used to evaluate the absolute accuracy of θ.
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2. Research data

2.1 Field based dataset

2.1.1 Study area and beech plots

The study area is the Bavarian Forest National Park in southeastern

Germany. It is a low mountain range natural forest ecosystem in Central

Europe (Fig. 2.1). The elevation ranges from 650m to 1453m, generally

with gentle slope gradients (Heurich et al., 2010). In order to protect

biodiversity and the natural dynamic processes, the park is managed by

a non-intervention strategy. This has led to a variety of forest structures

in the study area (Heurich et al., 2011). The dominant tree species in

the study area are Norway spruce (Picea abies) (67%) and European Beech

(Fagus sylvatica) (24.5%) (Cailleret et al., 2014). European beech stands

are chosen as the plant type under study due to its broadleaf feature.

European beech is one of the most important and widespread broadleaf

trees in Europe (San-Miguel-Ayanz et al., 2016) (Fig 2.1). The beech leaves

are elliptical. Leaf size ranges in 25-40 cm2, with 5-10 cm long and 3-7

cm wide (Barna, 2004).

In total, 36 European beech plots (Fig. 2.2 and Table 2.1) spanning from

young to mature stands were selected. The canopy height model of all

plots (Fig 2.3) were generated following the pit-free algorithm using the

2017 summer airborne LiDAR data (Khosravipour et al., 2014). It can be

seen that these plots are of varying tree density and tree height (Fig 2.3).

18



2. Research data

Figure 2.1: The distribution of European beech (Fagus sylvatica) and the
location of the study area Bavarian Forest National Park in Europe

Figure 2.2: The distribution of the 36 European beech plots with both
TLS and DHP data
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Figure 2.3: Canopy height models of the 36 European beech plots of
different structures
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Table 2.1: Basic information of the 36 European beech plots

Plot Name MedianH [m] StdH [m] Elevation [m] Median Slope [◦] N/ha
B01 33.6 11.5 808.3 9.2 280
B02 25.6 7 822.6 4.4 380
B03 23.4 1.7 844.6 8.9 540
B04 22.6 9.9 862.6 8.7 460
B05 25.6 4.8 836.2 6.1 420
B06 22.2 9.9 839.4 4.9 380
B07 25.7 3.7 853.5 9.8 280
B08 25.7 7.2 847.7 14.2 280
B09 8 8.6 829.7 7.7 540
B10 16 6.8 869.2 8.8 1840
B11 27.5 4.5 841.5 5.7 640
B12 26.8 5.8 851 9 220
B13 21.6 4 915.9 14.5 820
B14 20.2 7.3 964.2 11 320
B15 20.8 7.7 1133.9 17.6 1140
B16 13 3.2 990.9 11.8 2200
B17 24.4 2.5 1019.7 11 460
B18 13.6 5.1 781.9 5.3 980
B19 23.3 3.2 1030.4 16.1 480
B20 8.2 4.6 792.9 5.7 520
B21 17.1 5.5 826.8 7.5 420
B22 11 8.7 892.4 9.7 260
B23 21.3 8 962.3 14.2 240
B24 18.6 5.1 1043.9 18.4 1140
B25 22 5.7 972.4 8.5 540
B26 8.3 5 912.4 11.5 500
B27 4.2 6.1 866.6 8.3 240
B28 6.9 7.4 796.4 6.4 400
B29 21.3 3 911.7 7.7 480
B30 31.1 1.5 775.7 13.6 480
B31 27.3 1.7 981.8 9.3 520
B32 26.2 1.9 834.1 4.1 420
B33 21.4 1.6 1082 9.2 960
B34 18.4 8.2 1096.3 15.5 660
B35 18.5 12.7 982.1 18 360
B36 11.6 10.6 1050.9 18 320

MedianH: plot median canopy height; StdH: plot standard deviation of canopy
height
N/ha: number of trees per hectare

2.1.2 TLS and DHP data collection

Fieldwork was conducted from 17-July-2017 to 9-August-2017, in leaf-on

conditions. Both TLS and DHP data were collected in all the 36 beech

stands. The TLS used is Riegl VZ-400, with the laser pulse at 1550 nm

wavelength and a beam divergence of 0.3 mrad. The range accuracy is

5mm. The angular step in both vertical and horizontal directions was
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set as 0.04◦. At each plot, there was one center and three triangular

scan positions. To achieve co-registration of these four scans, 12-18

retro-reflective targets were placed in the plot to serve as control points.

All TLS scans were taken during calm conditions to prevent wind effects

on leaves (Wilkes et al., 2017). On average, it took 1-1.5 hours to finish

four scans in one plot. After TLS data collection and preprocessing, a

point cloud with a radius of 15 m was clipped in each plot.

In each plot, 12-20 upward-pointing hemispherical photos were collected,

first in the plot center, and then 10 m from the center in each diagonal

direction. In order to reduce gap fraction uncertainty caused by various

reasons (Woodgate et al., 2015) such as sky illumination conditions and

image classification method, DHP was carefully setup as follows. At each

position, a Canon EOS 5D camera equipped with a Sigma 8 mm F3.5 EX

fish-eye lens was leveled on a tripod between 1 and 1.3m above ground.

All photos were taken in diffuse light conditions at dusk, or overcast

diffuse conditions during cloudy days, using manual exposure. Each

image had a high resolution of 5600 by 3898 pixels.

2.2 Synthetic dataset

In order to acquire the 100% true leaf inclination reference for evaluating

the TLS and DHP method accuracies, synthetic datasets are generated

through two steps. First, a series of virtual scenes of different canopy

structures are created. Second, DHP and TLS point clouds are simulated

using these virtual scenes.

2.2.1 Virtual scene construction

In this study, 24 virtual scenes are created following the method de-

scribed by Widlowski et al. (2007) and Leblanc and Fournier (2014).

These 24 scenes include 8 homogeneous stands and 16 heterogeneous

stands. The 8 homogeneous stands are characterized by closed canopies,

an even canopy height, an even local vegetation density, and approach a

turbid media. The 16 heterogeneous stands, on the contrary, consist of a

discontinuous canopy, uneven tree spacing and uneven local vegetation

density.
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In all virtual scenes, the basic leaf unit remains the same. The leaf

has a diamond shape with an area of 20 cm2. The diamond shape

consists of only two triangles. This is used due to a compromise between

similarity to real leaf shape and computation time. This choice is similar

to other simulation studies (Gastellu-Etchegorry et al., 2015). In the 8

homogenous stands, the canopy can be regarded as one continuous layer

filled with leaves (Fig 2.4 e) and g)). Leaves are randomly distributed with

a uniform azimuth orientation. The zenith orientations (i.e. inclination)

of leaves follow a predefined LAD function, with the average inclination

angle (θ) ranging from about 15◦ to 70◦ (Fig 2.4 a) and c)). In the 16

heterogeneous stands, the stand consists of many randomly distributed

and non-overlapping trees (Fig 2.4 f) and h)). All trees are of the same

height, but tree spacing is random. For simplicity, each tree is modeled

as a cone-shape trunk with an ellipsoidal crown. Each crown is a turbid

medium, filled with randomly distributed leaves. Similarly, the leaves

have a uniform azimuth orientation, while the inclination follows a

predefined LAD, with θ ranging from about 15◦ to 70◦ (Fig 2.4 b) and d)).

The topography is set as flat in all virtual scenes. More details of each

virtual stand can be found in Table 2.3.

Figure 2.4: Examples of a) c) e) g) virtual homogeneous stands with closed
canopy and even canopy height, without any woody material; and b) d) f)
h) virtual heterogeneous stands with discontinuous canopy and uneven
tree spacing.
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2.2.2 TLS and DHP simulation

The synthetic DHP in all virtual stands are simulated by the freeware

POV-Ray (www.povray.org). POV-Ray is a ray-tracing program with the

fish-eye camera rendering. For each DHP, the camera is placed at a height

of 1.5m above the ground facing upwards. The horizontal locations of

DHPs in a stand follow a grid-pattern (10 m spacing), producing 16 DHPs

in a plot. The resolution of all DHPs is 5600 by 3898 pixels, equivalent

to the real DHP resolution as collected in the deciduous forests. Two

example DHPs in the homogeneous stands and heterogeneous stands

can be seen in Fig 2.5 a) and Fig 2.5 b).

Figure 2.5: Examples of the simulated DHP and simulated TLS point
clouds in a) c) virtual homogeneous stands with closed canopy and even
canopy height; b) d) virtual heterogeneous stands with discontinuous
canopy and uneven tree spacing.

The synthetic TLS point clouds are simulated using the open-source

software HELIOS (Bechtold and Höfle, 2016). HELIOS is an easy-to-use

LiDAR simulator, which offers various sensor platforms and LiDAR scan-

ners. We use HELIOS to scan all the 24 virtual scenes, using the same

settings as used in the beech forest fieldwork (Riegl VZ-400 scanner, 0.3

mrad beam divergence, 0.04◦ angular step, 7.5m distance away, 4 scan
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positions). Two example TLS point clouds can be seen in Fig 2.5 c) and

Fig 2.5 d).

3. Method

In this study, field-based forest datasets are first implemented to evaluate

the consistency of LAD derived from TLS and DHP. Afterwards, synthetic

datasets are designed to gain true reference for evaluating the accuracy

of LAD from TLS and DHP. In both datasets, the average inclination angle

(θ) is calculated from DHP using the gap fraction inversion method, and

from TLS using the geometrical method.

The flowchart of this study is displayed in Fig 2.6. In the following

sections, details of the LAD calculation methods are introduced.

Figure 2.6: The flowchart to evaluate the consistency and accuracy of
TLS and DHP in estimating leaf angle distribution (note: θ is the average
inclination angle)

3.1 DHP gap fraction inversion method

Radiation attenuation is controlled by the canopy structure, forming a

theoretical basis to estimate canopy structure from radiation attenuation
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measurements. Using multiple direction measurement, one can retrieve

LAD using inversion (Norman and Campbell, 1989; Weiss et al., 2004).

Using DHP, the radiation attenuation is approximated as the proportion

of gap pixels. We adopt the automatic Two-Corner classification method

(Macfarlane, 2011) to classify gap pixels and canopy pixels. This method

minimizes subjective thresholding and has been recommended in previ-

ous studies (Woodgate et al., 2015). The classified images are afterwards

broken into 18 annuli, each of 5◦. The gap fraction in θ direction is

calculated using,

Pgap(θ) =
Ngap(θ)

Ngap(θ)+Ncanopy(θ)
(2.1)

where Ngap(θ) is the number of gap pixels in the θ annulus, Ncanopy(θ)
is the number of canopy pixels in the θ annulus. For each plot, after

averaging the angular Pgap from 0◦ to 90◦ in all DHPs, the plot averaged

angular Pgap profile is calculated. Due to the high portion of mixed pixels

above 80◦, the annuli from 80◦ to 90◦ are removed from subsequent

analysis. Using the Pgap(θ) from 0◦ to 80◦, LAD inversion is conducted

based on the following equations (Weiss et al., 2004; Leblanc and Fournier,

2017),

Pgap(θ) = e−G(θ)Leff/cos(θ) (2.2)

Leff = λL (2.3)

G(θ) = (χ2 + tan2 θ)0.5cosθ
χ + 1.774(χ + 1.182)−0.73

(2.4)

cgap = (Pgap_meas − Pgap_mod) · (Pgap_meas − Pgap_mod)T (2.5)

where Pgap(θ) is the gap fraction in zenith direction θ, Leff is the effective

LAI (or effective PAI if there are woody elements), L is the true LAI and λ
is the clumping index. The λ value depends on the canopy structure. It is

smaller than 1 for aggregated canopies, while greater than 1 for regular

dispersed canopies. G(θ) is the leaf projection function in direction θ,
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Pgap_meas is the measured gap fraction and Pgap_mod is the modeled gap

fraction at different zenith directions (Fournier and Hall, 2017). Using

the ellipsoidal function, G(θ) is determined by only one parameter χ,

which is determined by the average inclination angle θ (Campbell, 1986;

Wang et al., 2007). Using numerical optimization, χ and Leff are inversed

from nonlinear least-squares method by minimizing the cost function

cgap , from Pgap observed at different θ angles. Then, θ is calculated via,

θ = 90(0.1+ 0.9e−0.5χ) (2.6)

For more details, one can refer to previous literature (Weiss et al., 2004;

Campbell et al., 1989; Wang et al., 2007; Leblanc and Fournier, 2017).

3.2 TLS geometrical method

After TLS data collection, a series of preprocessing steps are conducted.

First, the point clouds from multiple scan positions are merged together

by the Riscan software (http://www.riegl.com). To preserve the topology,

topographic normalization is not conducted (Liu et al., 2017a). After

noisy point removal, the point cloud is used for subsequent analysis.

Individual leaf surface and woody surface is reconstructed through fitting

a plane in a set of neighboring points. The normal vector of each leaf

or woody surface is calculated through principal component analysis on

the Cartesian coordinates of all the points in this surface (Klasing et al.,

2009). The direction of the normal vector is the same as the direction

of the eigenvector with the minimum eigenvalue. After retrieving the

inclination angles of all the surfaces, the average inclination angle θ is

calculated using,

θ =
∑Ntotal
i=1 ωiθi∑Ntotal
i=1 i

(2.7)

ωi =
1

Nneighbor_i
(2.8)

where θi is the inclination angle of the reconstructed surface for point

i, Ntotal is the total number of points in the TLS point cloud, ωi is a

weight value correcting the local point density variation, Nneighbor_i is the

number of neighboring points for point i within a neighborhood size of

27



2. Retrieving leaf angle distribution using terrestrial LiDAR

0.04m. The reason for weighting and correcting point density variation

is referred to a previous study (Bailey and Mahaffee, 2017).

3.3 Consistency and accuracy assessment

First, a consistency evaluation using the field based dataset is conducted

by comparing the average inclination angle (θ) estimated from TLS and

from DHP. Furthermore, an accuracy evaluation using the synthetic

dataset is conducted. The estimates of θ from TLS and from DHP are

tested against the true pre-defined reference values of θ in the virtual

stands. The linear regression line is forced to the origin (y = x). Then, the

coefficient of determination (R2) and the root mean square error (RMSE)

are calculated to compare whether the TLS or DHP method has higher

accuracy.

4. Results

4.1 The consistency of LAD estimated from TLS and DHP

using the field based dataset

Using the field based forest dataset, the results of LAD estimated from

DHP and TLS are displayed in Table 2.2 and Fig 2.7. There is a severe

inconsistency in the retrieved average inclination angle θ (r=0.19, p=0.26).

Further inspection reveals that, the θ values are in quite different data

ranges (θ ∈ (44◦, 53◦) from TLS, and θ ∈ (18◦, 76◦) from DHP).
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Table 2.2: Summary of the LAD results estimated from TLS and DHP in
the field based dataset of 36 European beech stands

Plot Name θTLS [◦] θDHP [◦] Plot Name θTLS [◦] θDHP [◦]

B01 44.13 56.11 B19 47.13 38.00

B02 47.86 53.12 B20 49.49 37.62

B03 50.68 50.74 B21 46.75 53.04

B04 48.16 32.01 B22 45.94 56.25

B05 47.80 39.84 B23 46.84 34.03

B06 46.99 18.34 B24 48.82 37.24

B07 47.26 75.86 B25 48.82 35.66

B08 44.77 21.41 B26 47.21 56.09

B09 47.76 25.05 B27 51.09 46.86

B10 49.99 55.67 B28 49.23 55.27

B11 47.51 54.62 B29 49.41 59.58

B12 47.00 60.23 B30 50.32 59.31

B13 52.65 52.69 B31 46.55 23.80

B14 47.71 59.86 B32 47.74 25.05

B15 49.89 34.49 B33 48.02 53.12

B16 52.12 52.78 B34 47.92 61.75

B17 48.84 32.86 B35 47.58 64.60

B18 49.44 34.60 B36 50.21 59.40

Figure 2.7: The average inclination angle (θ) estimated from TLS and
from DHP using the field based dataset in the 36 European beech stands
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4.2 The accuracy of LAD estimated from TLS and DHP using

the synthetic dataset

The estimated LAD results from the synthetic dataset are detailed in Fig

2.8 and Table 2.3. The average inclination angle (θ) is used to represent

the LAD results. Pre-defined true θ values and the estimated θ values

from simulated TLS and simulated DHP are displayed in the scatter

plots. The TLS method has much higher R2 and lower RMSE than the

DHP method (R2: 0.79 > 0.12; RMSE: 6.41◦ < 16.40◦) when estimating

θ. Upon further observation, TLS tends to overestimate θ in canopies

with more flat growing leaves, while underestimating θ in canopies

with more vertical leaves. DHP works very well in homogeneous stands

that approach a turbid media, with the results locating close to the 1:1

line. However, in heterogeneous forest stands, the performance of DHP

deteriorates, decreasing the accuracy. Overall, the synthetic datasets

demonstrate that TLS more accurately estimates LAD in comparison to

DHP.

Figure 2.8: The LAD results accuracy from TLS and DHP in the synthetic
dataset. a) the estimated average inclination angle (θ) from TLS; b) the
estimated θ from DHP
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Table 2.3: Summary of the LAD results estimated from TLS and DHP in
the synthetic dataset of 24 virtual stands

Plot Type Plot Name Stand Size
[m]

Rplot [m] H [m] LAI θtrue [◦] θTLS [◦] θDHP [◦]

Homogeneous
stands

T1 50×50 15 6 0.5 15.1 22.44 15.65

T1 50×50 15 6 0.5 15.1 22.44 15.65

T2 50×50 15 6 0.5 19.7 25.93 16.25

T3 50×50 15 6 0.5 27 30.85 25.85

T4 50×50 15 6 0.5 36.1 38 37.7

T5 50×50 15 6 0.5 45.3 44.36 49.02

T6 50×50 15 6 0.5 57.2 52.3 59.93

T7 50×50 15 6 0.5 62.9 56.35 64.87

T8 50×50 15 6 0.5 69.9 60.74 71.97

Heterogeneous
stands

F1 50×50 15 6 0.5 9.42 22.6 49.15

F2 50×50 15 6 0.5 14.27 24.87 34.37

F3 50×50 15 6 0.5 18.98 28.03 43.15

F4 50×50 15 6 0.5 23.72 30.04 48.56

F5 50×50 15 6 0.5 29.96 36.06 72.35

F6 50×50 15 6 0.5 33.25 37.46 69.82

F7 50×50 15 6 0.5 39.16 41.68 72.48

F8 50×50 15 6 0.5 42.83 43.83 52.3

F9 50×50 15 6 0.5 47.3 46.86 54.72

F10 50×50 15 6 0.5 57.31 53.34 63.35

F11 50×50 15 6 0.5 59.24 54.17 62.48

F12 50×50 15 6 0.5 61.31 55.72 69.21

F13 50×50 15 6 0.5 64.98 57.76 65.22

F14 50×50 15 6 0.5 70.99 61.48 84.56

F15 50×50 15 6 0.5 75.93 63.89 72.26

F16 50×50 15 6 0.5 80.5 68.24 82.17

Rplot : radius of the plot; H: canopy height

5. Discussion

5.1 Cause of inconsistency of LAD estimated from TLS and

DHP

From the field based dataset, DHP and TLS produce quite inconsistent

LAD estimates (r=0.19, p=0.26) in the European beech forests. Since

in natural forests, it is impossible to acquire 100% true reference value

on ground, we cannot conclude which method is more accurate. The

estimated θ from DHP ranges in (18◦, 76◦), the extremely high θ values

implies most beech leaves and woody branches grow vertically in the

stand, which is very unlikely in real beech forest canopies. It contradicts

previous studies, where the average leaf inclination angle is reported to

be around 21.7◦ in European beech forests in center Germany (Wagner

and Hagemeier, 2006). It also contradicts a previous study which reports

the average branch inclination angles of European beech ranges in (50.7◦,
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59.8◦) in east Germany (Levia et al., 2015). As such, it may be reasonable

for us to hypothesize that TLS is more accurate than DHP in estimating

LAD.

From the synthetic dataset, we demonstrate that TLS estimates LAD more

accurately than DHP in broadleaf forests. DHP only produces accurate θ
estimates in homogeneous stands (similar to the turbid media). In these

stands, the canopy is of even height, even local plant density, and has no

large between-crown gaps, which is rather unusual in real forest stands.

However, in heterogeneous forest stands with uneven tree spacing, un-

even local plant density and large between-crown gaps, the DHP method

estimates θ very poorly. In contrast, TLS accurately estimates θ in both

types of forest stands. There is a trend of overestimation of θ for low

values. This is perhaps due to more difficulty in generating returns for

flat leaves than for erect leaves. The plot F16 (θ = 80.5◦) has 1.8 times

points than the plot F2 (θ = 14.27◦). This results in higher contribution

of large leaf angles. The reason for underestimation of θ for high values

currently remains unknown to us, which requires further research.

The abnormal θ results from DHP in heterogeneous forest stands are

very likely caused by a violation of the "path length" calculation, which

assumes an even tree height, even tree spacing and flat topography for

the canopy. In the DHP method, a key factor determining the radiation

attenuation (or gap fraction) through canopies is the path length the light

has to travel. Let L1 and L2 be the path length at zenith angle θ1 and θ2.

DHP cannot provide the exact values of L1 and L2 due to lens projection.

Instead, DHP approximates the ratio of L1 and L2 as the ratio of cos(θ1)
and cos(θ2), in Fig 2.9 a). This forms the basis for Eq 2.2 in Section 3.1 in

this chapter. However, this approximation is only valid in homogeneous

stands with even canopy height, even tree spacing, and a flat topography

(Chen et al., 1991). But for forests with complex structure, it is very

common that the real stands are more similar to the case in Fig 2.9 b).

In such stands, the uneven canopy height, uneven between-crown gaps,

and rugged topography make the DHP method assumption invalid. To

sum up, the complex canopy and topography structure in natural forests

undermines the basis to use the DHP method.

Our results reveal that for the synthetic dataset, the correlation between

LAD estimated from DHP and TLS was much higher than in the real
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Figure 2.9: The violation of path length assumption in DHP due to uneven
tree height, uneven tree spacing and non-flat underneath topography in
heterogeneous forests

forest dataset (Fig 2.10 and Fig 2.7). There may be several reasons for

the greater inconsistency in the field based dataset. First, unlike the flat

topography in all the virtual scenes, in the real forests there is higher

slope variation (4.44◦-19.35◦). This makes the path length issue worse.

Second, the DHP classification accuracy may be lower in real forests

than in virtual forests. Although special care is taken in the field, the

illumination levels, exposures and the reflectance of leaves may differ

among different stands. These all affect the classification accuracy and

further affect the gap fraction value. However, in the synthetic dataset,

the above-mentioned factors are kept the same to avoid uncertainty in

DHP processing. Third, the real LAD in the European beech forests may

not have a variation as large as [5◦, 80◦] in the virtual forests. This

would also decrease the correlation. The positive bias in the θ estimated

from DHP than from TLS (Fig 2.10) is perhaps caused by the angular

dependence of Leff . In the inversion, Leff was assumed constant in

all directions. This may not be valid in heterogeneous stands since the

clumping index λ may decrease with θ (Frazer et al., 2017).

5.2 Comparison of TLS and DHP in estimating LAD

Although this study has demonstrated TLS estimates LAD more accur-

ately than DHP, this conclusion applies only for broadleaf species. TLS

uses a geometrical method to detect canopy structure. The underlying

requirement is that there are sufficient data sampling of plant organs.
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Figure 2.10: Inconsistency of the average inclination angle (θ) estimated
from TLS and from DHP using the synthetic forest datasets

For coniferous forests, it is currently difficult to generate small and dense

returns on each needle. But the structure of individual branches can be

retrieved (Zhu et al., 2018b). In this study, the leaf size ranged in 20-40

cm2, so future studies could explore the impact of leaf size and shape on

the accuracy of leaf angle estimation. In addition, to ensure a high point

density in dense canopies, utilizing multiple scan positions is strongly

recommended.

DHP is a conventional technique, which has been widely used in estimat-

ing canopy structure. However, a key limitation of DHP is its assumption

that a 2D medium can be used to infer a 3D environment (Fournier and

Hall, 2017). The basic principle of DHP is based on gap fraction inversion.

As a result, the following two aspects both greatly influence the estim-

ations. The first factor is an accurate gap fraction measurement. The

second factor is an appropriate radiative transfer theory to inverse the

gap fraction (Norman and Campbell, 1989). In the past 20 years, many

studies have proven the challenge and high uncertainty when measur-

ing gap fraction using DHP, including photo numbers, positions and

averaging methods (Weiss et al., 2004), camera exposure (Zhang et al.,

2005), and image classification methods (Wagner and Hagemeier, 2006;

Woodgate et al., 2015). However, few studies have investigated whether

the canopy of interest fits the DHP radiative transfer theory or not. In

the early research, Chen et al. (1991) clarified their study area as “... the

forest floor was horizontal and the canopy was homogeneous in terms
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of tree height and spacing". Nevertheless, most follow-up studies fail

to take this limitation of the DHP method into account (Beaudet and

Messier, 2002; Macfarlane et al., 2007; Woodgate et al., 2017). Regarding

non-flat topography, although some studies try to correct for the path

length variation over slope terrains, a uniform slope is often assumed

(Schleppi et al., 2007; Gonsamo and Pellikka, 2008), which is not applic-

able to rugged topography. In addition, it is currently not possible to

correct for uneven tree height and uneven tree spacing effect using DHP.

Due to the high uncertainty in the DHP gap fraction measurement and the

limited applicability of the inversion model, we suggest to develop and

use TLS methods rather than DHP methods in estimating leaf angle dis-

tribution for broad leaf forests. A summary of the comparison between

the two techniques is shown in Table 2.4.

Table 2.4: Comparison of TLS and DHP in measuring leaf angle distribu-
tion (LAD)

TLS DHP
equipment cost high medium
equipment weight high low
disturbance to canopy no no
sampling time long (usually>1 hour) short (usually<1 hour)
canopy type broadleaf broadleaf or coniferous
individual leaf angle yes no
3D information yes no
ability to differ woody yes no
requirement high point density similar tree height, tree

spacing, flat or uniform
slope

6. Conclusion

This study evaluates which in-situ technique, either terrestrial LiDAR

(TLS) or digital hemispherical photography (DHP), estimates the leaf

angle distribution (LAD) more accurately. To achieve this, both field

based broadleaf forest dataset and synthetic (virtual) dataset are used

to evaluate the consistency and accuracy of LAD. Real TLS and DHP

data are collected in 36 European beech stands, covering a wide range

of natural forest structure. From the results, there is inconsistency
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of the average inclination angle (θ) retrieved from TLS and DHP (θ ∈
(44◦, 53◦) from TLS, and θ ∈ (18◦, 76◦) from DHP). Due to lack of a

true reference value, it cannot be concluded which technique is more

accurate. Further experiments are conducted using 24 virtual scenes,

including homogeneous stands and heterogeneous stands. The results

demonstrate that TLS produces much more accurate LAD results than

DHP (R2: 0.79>0.12; RMSE: 6.41◦<16.40◦). DHP can produce reliable

results in homogeneous stands featured by even canopy height and

closed canopy. Nevertheless, DHP cannot produce accurate estimates

of LAD in heterogeneous stands with discontinuous canopy and an

uneven tree spacing. A plausible reason may be that the complex canopy

structure and rugged topography in natural forests lead to violation

of the DHP method assumptions. Therefore, we recommend using TLS

instead of DHP, in measuring leaf angle distribution in broad leaf forests.
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3Variation of leaf angle

distribution in natural beech

forests *

*This chapter is based on: Liu, J., Skidmore, A., Wang, T., Zhu, X., Premier, J., Heurich,
M., Beudert, B., Jones, S., 2019. Variation of leaf angle distribution quantified by terrestrial
LiDAR in natural European beech forest. ISPRS Journal of Photogrammetry and Remote
Sensing, 148, 208-220.
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Abstract

Leaf inclination angle and leaf angle distribution (LAD) are important

plant structural traits, influencing the flux of radiation, carbon and water.

Although LAD may vary spatially and temporally, its variation is often

neglected in ecological models, due to difficulty in quantification.

In this study, terrestrial LiDAR (TLS) was used to quantify the LAD

variation in natural European beech (Fagus sylvatica) forests. After ex-

tracting leaf points and reconstructing leaf surface, leaf inclination angle

was calculated automatically. The mapping accuracy when discriminat-

ing between leaves and woody elements was very high across all beech

stands (overall accuracy = 87.59%). The calculation accuracy of leaf

angles was evaluated using simulated point clouds and proved accurate

generally (R2=0.88, p <0.001, RMSE=8.37◦, nRMSE = 0.16). Then the mean

(θmean), mode (θmode), and skewness of LAD were calculated to quantify

the LAD variation.

Moderate variation of LAD was found in different successional status

stands ( θmean ∈ (37◦, 46◦), θmode ∈ [17◦, 43◦], skewness ∈ [0.07, 0.48]).

Rather than the previously assumed spherical distribution or reported

planophile distribution, here we find that LAD tended towards a uniform

distribution in young and medium stands, and a planophile distribution

in mature stands. A strong negative correlation was also found between

the plot average inclination angle θmean and plot median canopy height,

making it possible to estimate plot specific LAD from canopy height data.

Larger variation of LAD was found on different canopy layers ( θmean ∈
(34◦, 53◦), θmode ∈ [14◦, 64◦], skewness ∈ (-0.3, 0.7)). Beech leaves grow

more vertically in the top layer, while more obliquely or horizontally in

the middle and bottom layer.

LAD variation quantified by TLS can be used to improve leaf area index

(LAI) mapping and canopy photosynthesis modelling.
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1. Introduction

Leaf angle is an important plant structural trait. It influences light

interception and radiation scattering in the canopy, as well as the flux

of carbon and water (Weiss et al., 2004). Therefore, it has been used

as a parameter in canopy photosynthesis modelling (Van der Tol et al.,

2009), rainfall interception modelling (Xiao et al., 2000), and leaf area

index (LAI) estimation. For individual leaves, leaf angle consists of leaf

inclination angle and leaf azimuth angle. For the whole canopy, leaf

angle distribution (LAD) is used to describe the probability of all leaves

orientating at different directions. Usually a uniform azimuth direction

can be assumed for most species (Ross, 1981; Falster and Westoby, 2003).

Due to measurement challenges, LAD is usually simplified using pre-

defined mathematical functions, without considering its variation (Welles,

1990; Richardson et al., 2009; Tang et al., 2014a). Six commonly used

functions are depicted in Fig. 3.1. Planophile canopies are dominated by

horizontal leaves, while erectophile canopies by vertical leaves (Lemeur

and Blad, 1975). The spherical distribution (de Wit, 1965) is the most

widely used due to its simplicity in calculating the leaf projection func-

tion value (approximated as 0.5 in any direction).

Figure 3.1: Six predefined mathematical functions used to approximate
leaf angle distribution and the corresponding average leaf inclination
angle (θmean)

However, such simplification fails to consider the variation of LAD. In

reality, LAD may vary for different species of plants (Pisek et al., 2013).

Even for the same species, LAD may also exhibit a spatial and temporal

variability. LAD was found to vary in different canopy layers in a tropical
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forest (Wirth et al., 2001), and several temperate deciduous trees (Raabe

et al., 2015). LAD may also change with light exposure (McMillen and

McClendon, 1979; Utsugi et al., 2006), time of the day (Shell et al., 1974)

and season (Hosoi and Omasa, 2009; Raabe et al., 2015). Due to over-

simplification, LAD has become one of the most poorly constrained

radiative transfer model parameters (Ollinger, 2011). There is great

potential to improve canopy photosynthesis modelling and LAI mapping

if the LAD variation can be quantified.

One strategy to measure LAD is the direct geometrical approach. The

basic principle is to obtain a representative description of the whole

canopy by observations on individual leaf (Norman and Campbell, 1989),

for example using compass and inclinometers (Ross, 1981). But direct

contact often leads to disturbance of the leaves (Zheng and Moskal, 2012).

The spatial coordinate apparatus (Lang, 1973) method was proposed to

avoid direct contact, but the required number of leaves takes a large

logistical effort to measure in forests. Consequently, the levelled digital

canopy photography method has been introduced (Ryu et al., 2010; Pisek

et al., 2011). In this method, the authors first took several photos around

the canopy at different heights. Then leaves were visually identified from

each photo and each leaf angle was calculated using image processing

(Pisek et al., 2011). Although this method is robust and low-cost, it

involves substantial user interaction when identifying individual leaves.

In addition, taking photos for trees higher than 2 m is very difficult in

natural forests.

Another strategy to estimate LAD is the indirect radiometric approach.

This approach yields a statistical estimate of LAD on plot level, rather

than measuring the orientation of an individual leaf (Biskup et al., 2007).

The basic principle is to record how radiation is attenuated by the can-

opy in several zenith directions, then one can invert the Beer’s law for

radiation interception to infer LAD (Norman and Campbell, 1989; Chen

et al., 1991). However, this method has two main shortcomings. First,

it cannot distinguish leaf and woody material. What was retrieved is

the plant angle distribution rather than LAD. Second, the radiometric

method makes assumptions (flat topography and homogeneous tree

height) which may not hold in heterogeneous natural forests.

With the development of close range remote sensing, efforts were made
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using three dimensional (3D) point cloud data to quantify canopy struc-

ture (Coops et al., 2007; Hancock et al., 2014). Magnetic 3D digitizer

(Sinoquet et al., 1998; Falster and Westoby, 2003), film-based stereo pho-

togrammetry (Ivanov et al., 1995) and digital stereo imaging (Biskup et al.,

2007) have been used to obtain 3D reconstructions of plants. But the

drawback of these methods is their restricted usage to the outer canopy

of small stands, usually an area of a few square meters (Muller-Linow

et al., 2015). When combined with unmanned aerial vehicles (UAV), it can

sample larger areas at stand scale. However, UAV-mounted cameras are

vulnerable to lens distortion and image noise (McNeil et al., 2016).

From the 1990s, terrestrial LiDAR (TLS) has received increasing attention

in vegetation surveys due to its capability to capture unprecedented de-

tail of plant 3D structure, from individual tree to plot scale (Liang et al.,

2018). With high pulse frequency and small beam divergence, tree trunks,

branches, and even leaves can be easily recorded (Eitel et al., 2010). TLS

data was used to estimate LAD using indirect radiometric inversion (Zhao

et al., 2015). TLS data was also used to visually delineate individual leaf

(Béland et al., 2011), and automatically reconstruct leaf surface and nor-

mal vectors at individual tree scale (Zheng and Moskal, 2012). However,

there was no leaf size constraint in the leaf reconstruction. Instead, a

fixed number of 6 neighboring points was used to form each leaf surface

(Zheng and Moskal, 2012). This may be problematic for upper canopy

layers when point density is low, making the distance among the 6 points

much larger than the size of an individual leaf. Recently, a rapid LAD

estimation method was developed based on triangulation of TLS point

clouds (Bailey and Mahaffee, 2017). This method demonstrated good

accuracy for an isolated tree and a vineyard. However, the calculated

LAD should be more precisely named plant angle distribution, as leaf

and woody material were not differentiated.

To the best of our knowledge, the leaf angle distribution (LAD) vari-

ation has only been quantified at individual canopy level by manual

measurement (Wirth et al., 2001; Holder, 2012), levelled digital canopy

photography methods (Raabe et al., 2015), or digital stereo imaging

(Muller-Linow et al., 2015). All these methods are difficult to implement

in natural forests. The objective of this research is therefore to use

terrestrial LiDAR to explore whether there is LAD variation at different

41
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canopy layers and across different succession stands in European beech

(Fagus sylvatica) forests.

2. Research data

2.1 Study area and plot distribution

The study area is the Bavarian Forest National Park, located in southeast-

ern Germany. It is a low mountain range forest ecosystem in Central

Europe, with elevation ranging from 650m to 1453m. It is located in

the temperate climate zone and is subject to maritime and continental

influences (Bässler et al., 2008). Mean annual precipitation is between

830 and 2230 mm depending on altitude. Dominant tree species are

Norway spruce (Picea abies) (67%) and European beech (Fagus sylvatica)

(24.5%) (Cailleret et al., 2014). In this research, European beech is selected

due to its broadleaf feature, as well as its wide distribution in Western

and Central Europe. Beech trees normally grow to 30-35m (up to 50m

in optimal conditions) tall. A 15-year-old sapling stands about 4 m. The

bark of European beech is smooth as seen in Fig 3.2 b). The leaves are

elliptical without any lobes and have a short stalk, as seen in Fig 3.2

a). Leaf size ranges in 25-40cm2, with 5-10 cm long and 3-7 cm wide

(Barna, 2004). European beech is a highly shade-tolerant species, which

can regenerate naturally in continuous cover. In Central Europe, it is

the most abundant broad leaf forest tree, because of its physiological

tolerance and competitiveness (Ellenberg and Leuschner, 2010).

In total, 36 European beech plots were selected as shown in Fig 3.3. They

covered a wide range of stand structures and were further categorized

into “young, medium, mature” stands using ancillary land cover classific-

ation data (Silveyra Gonzalez et al., 2018) and canopy height information.

The structural information, including the median and standard deviation

of canopy height, was extracted from airborne laser scanning data in

2016. More details can be seen in Table 3.1.
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Figure 3.2: European Beech (Fagus sylvatica) in the Bavarian Forest Na-
tional Park. a) leaves; b) trunk and branch; c) a mature plot

Figure 3.3: The distribution of 36 European beech plots in the Bavarian
Forest National Park
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Table 3.1: Basic information of the 36 European beech plots

Plot Name MedianH [m] StdH [m] Elevation [m] Slope [◦] N/ha
B01 33.6 11.5 808.3 9.2 280
B02 25.6 7 822.6 4.4 380
B03 23.4 1.7 844.6 8.9 540
B04 22.6 9.9 862.6 8.7 460
B05 25.6 4.8 836.2 6.1 420
B06 22.2 9.9 839.4 4.9 380
B07 25.7 3.7 853.5 9.8 280
B08 25.7 7.2 847.7 14.2 280
B09 8 8.6 829.7 7.7 540
B10 16 6.8 869.2 8.8 1840
B11 27.5 4.5 841.5 5.7 640
B12 26.8 5.8 851 9 220
B13 21.6 4 915.9 14.5 820
B14 20.2 7.3 964.2 11 320
B15 20.8 7.7 1133.9 17.6 1140
B16 13 3.2 990.9 11.8 2200
B17 24.4 2.5 1019.7 11 460
B18 13.6 5.1 781.9 5.3 980
B19 23.3 3.2 1030.4 16.1 480
B20 8.2 4.6 792.9 5.7 520
B21 17.1 5.5 826.8 7.5 420
B22 11 8.7 892.4 9.7 260
B23 21.3 8 962.3 14.2 240
B24 18.6 5.1 1043.9 18.4 1140
B25 22 5.7 972.4 8.5 540
B26 8.3 5 912.4 11.5 500
B27 4.2 6.1 866.6 8.3 240
B28 6.9 7.4 796.4 6.4 400
B29 21.3 3 911.7 7.7 480
B30 31.1 1.5 775.7 13.6 480
B31 27.3 1.7 981.8 9.3 520
B32 26.2 1.9 834.1 4.1 420
B33 21.4 1.6 1082 9.2 960
B34 18.4 8.2 1096.3 15.5 660
B35 18.5 12.7 982.1 18 360
B36 11.6 10.6 1050.9 18 320

2.2 Data collection

From 17-July to 9-August in 2017, 36 beech plots were visited during

leaf-on conditions. A Riegl VZ-400 TLS was used to scan each plot. The

scanner employs a laser (wavelength 1550nm) with a beam divergence of

0.3mrad and a range accuracy of 5mm. The footprint diameter is 0.15cm

at a distance of 5m, 1.05cm at a distance of 35m. The measurement

range is up to 600m. The angular step was set to 0.04◦ for the fieldwork.
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One center and three triangular scan positions were used in each plot, to

reduce occlusion and increase point density. To achieve co-registration

of the four scans, 12-18 retro-reflective targets were placed as control

points. In total, it took 1-2 hours to finish all scanning in a plot.

In addition to TLS data, four transects in the park were also scanned by

airborne laser scanning (ALS) in August 2016, seen in Fig 3.3. The sensor

used was Riegl LMS-Q680-i, operating at a wavelength of 1550 nm, with

a beam divergence of 0.5mrad. The flying altitude was approximately

300 m above ground. The average point density for each flight line was

70 points/m2. The ALS data was used to calculate basic plot structure

metrics including canopy height model (CHM), the median and standard

deviation of canopy height (details in Table 3.1).

3. Method

3.1 Preprocessing

First, the four TLS scans were co-registered and merged into one for

each plot, to maximize point density, using the Riscan Pro software

(http://www.riegl.com). The average registration error was 3-8 mm. Then,

a point cloud with a radius of 15m was clipped. Each point consisted

of multiple attributes, including the Cartesian coordinates (x, y, z), laser

shot direction (azimuth and zenith angle), target distance, amplitude of

the echo, GPS timestamp, target surface relative reflectance, pulse shape

deviation, etc. Filtering was conducted to remove noisy points, based on

the pulse shape deviation value. Pulse shape deviation may be interpreted

as a measure of the reliability of the range measurement (Pfennigbauer

and Ullrich, 2010). The overall quality of the point cloud can be improved

by setting up a maximum allowed deviation value. In this research, all

points with deviation above 20 were eliminated. This threshold was based

on suggestions from previous research (Pfennigbauer and Ullrich, 2010;

Greaves et al., 2015). After noise filtering, ground returns were identified

and the local height of each point was calculated using LAStools software

(Isenburg, 2012). All points below 1.5 m such as ground and grass were

removed from subsequent analysis.
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3.2 Differentiating between leaf and woody material

TLS has shown promising results in differentiating leaf and woody mater-

ial (Beland et al., 2014; Zhu et al., 2018a; Li et al., 2018b). In this research,

the point cloud was classified into leaf or woody points, thus eliminat-

ing the effect of woody material to retrieve LAD rather than PAD. The

classification followed the method using both radiometric and geometric

features (Zhu et al., 2018a). The significant difference in reflectivity

between leaf and woody material at the 1550nm wavelength forms the

basis to use radiometric features. The bark has high reflectance, while

leaves have low reflectance due to water absorption. Geometric features

of leaf and woody material are also different. Leaves have planar shape,

while woody material is more likely to have linear shape. A list of selected

features (seen in Table 3.2) was calculated for each point, for the detailed

equation one can refer to (Demantke et al., 2011; Zhu et al., 2018a).

Table 3.2: Radiometric and geometric features used to differentiate leaf
and woody points

Type Feature Description

Radiometric
features

Ref calibrated relative reflectance
Refmean mean Ref of the local points
Refstd standard deviation of Ref of the local points
Dev pulse shape deviation

Geometric
features

α1D the likelihood that the shape of the local points is
linear

α2D the likelihood that the shape of the local points is
planar

α3D the likelihood that the shape of the local points is
random

Zdiff range of maximum and minimum height value of
the local points

Zstd standard deviation of height in the local points

After feature calculation, the Support Vector Machine (SVM) classifier

was used to differentiate leaf and woody points. SVM is a supervised

non-parametric statistical learning technique. It shows to achieve good

results even with small training datasets in high dimensional feature

space (Melgani and Bruzzone, 2004), often producing higher classification

accuracy than other methods (Foody and Mathur, 2004). In this research,

training samples were manually selected from one plot at different layers

(top, middle and bottom layer). Then the points were labeled with a class
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of either “leaf” or “woody” based on visual interpretation. These training

samples (357 leaf points and 359 woody points) were used to build the

SVM model, and applied to all 36 plots. After initial classification, a

post filtering was conducted on all detected leaf points. If the majority

of the neighboring points of a leaf point are woody points, then the

class label of this point was changed to “woody”. Classification accuracy

was evaluated in all 36 plots. For each plot, the point cloud was first

partitioned into 12 sector cylinders (0◦, 30◦, . . . , 360◦), and sliced into

10 vertical layers (1/10, 2/10, . . . , 1). Then a random point was selected

from each of these 120 sub point clouds. To define the true class label of

each test sample point, all its neighboring points within a 50 cm radius

spheroid were displayed. With the help of contextual information, (i.e.

the point locates in a branch or a leaf), the class label (wood or leaf)

of this point could be determined through visual interpretation. The

classification accuracy was then calculated.

3.3 Reconstructing surface and calculating normal vector

After classification, individual leaf surfaces were reconstructed on the

leafy point cloud through plane fitting constrained by leaf size. Let S =

pi (x, y, z), i ∈ [1, Ntotal] be the point cloud of the plot in the Cartesian

coordinate system, Ntotal is the number of all points. For point pk, its

neighboring points S’ = (p1, p2,..., pn) could be identified by searching all

points in S that are within a distance Lmax of point pk. If the number of

neighboring points, i.e. n, is greater than 5, these points were considered

to form a leaf surface. The normal vector of S’ was calculated through

principal component analysis. The normal vector direction is the same

as the direction of the eigenvector with the minimum eigenvalue. If n is

smaller or equal to 5, point pk was considered as an isolated point, and

eliminated from subsequent analysis. In theory, within the Lmax radius,

3 points can form a plane. However, to avoid uncertainty caused by

noise points, we used 5 neighboring points (in total 6 points) to do the

plane fitting. For more discussion on this, one can refer to a previous

study (Hoppe et al., 1992). It should be noted that in this method, no

differentiation was made between leaves having an adaxial sky facing

surface or abaxial sky facing surface, thus all leaf inclination angles are
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positive.

The radius of this neighborhood distance Lmax, should be constrained by

the leaf size. If the value of Lmax is very low, many points were processed

as isolated points and eliminated, since their neighboring points are

beyond the distance of Lmax. However, if the value of Lmax is very high,

points from two adjacent leaves may be merged into one neighborhood

S’. In a previous research, Lmax was set to be 5cm (Bailey and Mahaffee,

2017). In this research, after considering the leaf size of European beech

(as mentioned in section 2.1, usually 5-10 cm long and 3-7 cm wide), Lmax

was set to be 4cm.

3.4 Validating accuracy of the leaf angle calculation method

In order to evaluate the accuracy of the leaf angle calculation method, we

generated a simulated dataset, where the location and the true angle of

each leaf was known, similarly to techniques used in previous research

(Bailey and Mahaffee, 2017; Li et al., 2018a). First, the 3D models of

two synthetic beech trees, one young (3m high, 1122 leaves) and one

mature (30m high, 21534 leaves) were constructed using the open source

software Arbaro (http://arbaro.sourceforge.net/). The LiDAR simulator

HELIOS (Bechtold and Höfle, 2016) was employed to “scan” the beech

tree, using the same settings as used in the fieldwork (0.3 mrad beam

divergence, 0.04◦ angular step, 7.5m distance away, 3 scan positions). For

the mature tree, titled (90◦) scans were used to ensure coverage on the

canopy top. Leaf angles were calculated using our proposed method from

the simulated TLS point cloud. The calculation accuracy was evaluated

in the “leaf-wise” way, by comparing all leaf angles estimated from the

simulated TLS point cloud with true leaf angles from the 3D models. The

coefficient of determination (R2), the root mean square error (RMSE), and

the normalized RMSE (nRMSE) were used to evaluate the performance of

the method.

3.5 Statistical analysis

LAD was retrieved through calculating the histogram of the inclination

angles of all reconstructed leaf surfaces, as the frequency distribution
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from 0◦ to 90◦ with 1◦ bin width. Four statistical parameters of the leaf

angle distribution (LAD) were also calculated, including the median angle

(θmedian), the average incliantion angle (θmean), the most frequent incli-

antion angle (θmode), and skewness of LAD (skewness). In addition, each

LAD was classified into one of the six categorical (planophile, plagiophile,

uniform, spherical, erectophile, extremophile) LAD functions (de Wit,

1965) as detailed in Fig 3.1. This was done by quantifying the similarity

of plot LAD with the six pre-defined LAD functions (Pisek et al., 2013)

through the following three metrics,

χ1 =
90∑
θ=0

| f(θ)− f deWit(θ) | (3.1)

χ2 =

√∑90
θ=0(f (θ)− f deWit(θ))2

90
(3.2)

χ3 =
| f(θ)∩ f deWit(θ) |
| f(θ)∪ f deWit(θ) |

=

90∑
θ=0
min(f(θ), f deWit(θ))

90∑
θ=0
max(f(θ), f deWit(θ))

(3.3)

The pre-defined LAD which had the lowest χ1, χ2, or highest χ3 will

be voted as similar to the plot LAD. The LAD type, which received the

highest count of votes, was chosen as the classification result for the

plot LAD. In order to explore the variation of LAD on different height

levels in a canopy, each plot was divided into 3 layers according to the

local height of each point. Let Hmax be the maximum canopy height.

Points with greater than 80% Hmax were treated as the top layer. Points

at 80% to 20% Hmax were regarded as the middle layer. Points below 20%

Hmax were used as the bottom layer. The above-mentioned analyses were

conducted on each layer of each plot. In order to explore the variation

of LAD across stands, the above-mentioned analyses were conducted

for each plot. The correlation coefficient was calculated between θmean

and the plot median canopy height, to explore the relationship between

plot LAD and plot successional status. A positive close to 1 correlation

coefficient would suggest a strong positive correlation between the θmean

and the stand successional status.
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4. Results

4.1 Accuracy of leaf angle calculation

From the simulated dataset, we compared the TLS estimated leaf angles

with true leaf angles directly read from the synthetic beech tree model.

Through this, we can evaluate the accuracy of our proposed method.

From the results in Fig 3.4, for the synthetic young beech tree (3m

high, with 1122 leaves), the proposed method works very well (R2=0.88,

RMSE=8.37◦, nRMSE=0.16). For the synthetic mature beech tree (30m

high, with 21534 leaves), although there are some leaves with larger es-

timation errors for leaf angle, the overall accuracy remains high (R2=0.83,

RMSE=9.29◦, nRMSE=0.20).

Figure 3.4: Results of the leaf angle calculation accuracy using simulated
dataset: a) d) the 3D models of two synthetic beech trees; b) e) the
simulated TLS point clouds of the beech trees; c) f) true leaf angles and
leaf angles estimated using the proposed method
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4.2 Results of differentiating leaf and woody materials

In this study, the overall classification accuracy when differentiating leaf

and woody materials is 87.59% across 36 beech plots, with the accuracy

of each plot ranging from 78.26% to 94.32% (details in Table 3.3)). An

example of the classification result is displayed in Fig 3.5. Large tree

trunks and smaller branches could be accurately detected. At 8m level,

most leaves were covered by dense points and were accurately detected,

shown in Fig 3.5 c). However, small twigs were often misclassified as

leaves. Similar results occurred at the 16m level in Fig 3.5 d). Although

the point density was not as high as at lower height levels, tree trunks,

branches, and leaves could still be differentiated. But fine twigs were

again misclassified as leaves.

Table 3.3: The overall accuracy (OA) of classification between leaf and
woody materials in the 36 plots

Plot Name OA[%] Plot Name OA[%] Plot Name OA[%]
B01 83.72 B13 90.32 B25 86.32
B02 89.54 B14 94.32 B26 82.65
B03 92.78 B15 90.63 B27 82.42
B04 90.11 B16 88.54 B28 87.64
B05 92.71 B17 91.49 B29 80.46
B06 93.68 B18 83.52 B30 88.37
B07 93.33 B19 90.32 B31 85.71
B08 91.21 B20 82.29 B32 88.64
B09 87.95 B21 85.06 B33 89.25
B10 80.22 B22 86.02 B34 78.26
B11 88.04 B23 86.17 B35 85.56
B12 90.53 B24 82.11 B36 93.67

51



3. Variation of leaf angle distribution in natural beech forests

Figure 3.5: Results of differentiating leaf and woody materials in part of
a mature beech plot B32: a) before and b) after classification; detailed
results at c) 8m and d) 16m above ground
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4.3 LAD variation on different canopy layers

An example of the 3D distribution of leaf inclination angle in a mature

plot is shown in Fig 3.6. In the top layer, many leaves are displayed as red

and yellow colors (50◦-80◦), indicating a more vertical growing direction.

But in the middle layer and bottom layer, most leaves display blue or

cyan colors (10◦-40◦), indicating a more horizontal and lateral growing

direction. From statistical parameters and LAD classifications in Fig 3.6

g), LAD in the top layer is most similar to the uniform distribution, with

largest θmedian, θmean, θmode, and lowest skewness. But LAD the middle

and bottom layers is most similar to the planophile distribution. The

θmedian, θmean and θmode decrease, while skewness rises. In general, from

the top to bottom layer, the frequency of vertical leaves decreases, while

the frequency of more horizontal (oblique) leaves increases.

4.4 LAD variation at different succession stands

The 3D distribution of leaf inclination angles in three different stands

can be seen in Fig 3.7. In a young plot B27 with beech regeneration,

stem density is low. Beech canopies have a spheroid rather than cylinder

shape, as seen in Fig 3.7 d), with leaves orientated in various directions.

In a medium plot B10, stem density becomes much higher. Leaves grow

in various directions in the top layer, but grow more horizontally in

the middle layer. In a mature plot B31, the vertical difference of LAD

becomes more pronounced (Fig 3.7 c) and Fig 3.7 f)).

53



3. Variation of leaf angle distribution in natural beech forests

Figure 3.6: LAD at different canopy layers in the mature beech plot B01.
a), b) and c) are the 3D distribution of leaf angles; d), e) and f) are the
LAD histograms; g) summary of statistics
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Figure 3.7: LAD on plots of different successional status. The 3D distri-
bution of leaf angles in a) a young plot B27; b) a medium plot B10; c) a
mature plot B31; d) part of B27; e) part of B10; f) part of B31
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Statistical parameters demonstrate moderate variation of LAD across

these three stands (Table 3.4 and Fig 3.8). From young to mature stands,

the θmean decreases about 8◦, while θmode decreases 22◦. The LAD of

the young plot B27 and medium plot B10 is most similar to the uniform

distribution, but LAD of the mature plot B31 is most similar to the

planophile distribution, with a highly positive skewness of 0.42.

Figure 3.8: LAD of plots at different successional status: a) a young plot
B27; b) a medium plot B10; c) a mature plot B31.

Table 3.4: Summary of LAD statistics across three different stands

Plot Succession Status θmedian θmean θmode skewness Type
B27 young 45.43 46.14 42 0.07 uniform
B10 medium 40.24 42.28 25 0.23 uniform
B31 mature 34.38 37.98 20 0.42 planophile
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The LAD variation across all 36 stands is depicted in Fig 3.9. The re-

lationship between LAD and stand succession status was explored by

inspecting θmean and skewness with the median canopy height in the plot

(CHMmedian). Interestingly, plot θmean is strongly negatively related to

CHMmedian (r = -0.70, p <0.001), while skewness of LAD is moderately

positively related to CHMmedian (r = 0.64, p <0.001). In young and me-

dium plots (CHMmedian∈ (4, 20) m), LAD is most similar to the uniform

distribution. However in mature plots (CHMmedian>20m), LAD is most

similar to the planophile distribution. Among all 36 plots, the difference

between minimum and maximum θmean is moderate (10◦, from 36.91◦ to

46.14◦). It is also worth noted that the LAD in all plots are quite different

from the spherical distribution.

Figure 3.9: The correlation between plot median canopy height and plot
a) average leaf inclination angle and b) skewness of leaf angle distribution
(LAD) across all 36 European beech plots

The LAD variation at different canopy layers in all 36 plots is shown in

Fig 3.10. From paired sample t test, for all plots, the LAD in the top layer

has the highest θmean (p <0.001), the highest θmode (p <0.001) and the

lowest skewness (p <0.001). There is no statistical significant difference

in θmean (p = 0.586), θmode (p = 0.704) and skewness (p = 0.69) of the

middle layer and bottom layer. This indicates that beech leaves in the

top layer grow more vertically. From Fig 3.10, in young and medium
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plots when CHMmedian is below 20m, the top layer has a spherical or

plagiophile LAD (θmean ∈ (47◦, 55◦), skewness ∈ (-0.4, 0)). In contrast,

the middle and bottom layer have an uniform LAD (θmean ∈ (41◦, 47◦),

skewness ∈ (0, 0.4)). In most mature plots, when CHMmedian is above 20m,

the top layer becomes uniform or plagiophile LAD (θmean ∈ (43◦, 51◦),

skewness ∈ (-0.2, 0.1)). The middle and bottom layer have a planophile

LAD (θmean ∈ (33◦, 45◦), skewness ∈ (0.1, 0.8)).

Figure 3.10: LAD variation at different canopy layers and across different
stands, a) average leaf inclination angle; b) most frequent leaf inclination
angle; c) skewness of LAD

Additional statistics can be seen in Table 3.5. Out of all 108 layers

from the 36 plots, there is a large variation of θmean (33.64◦ - 52.97◦),

while the variation of θmode is even higher (14◦- 64◦). 20 of the 36 plots

have an inner plot vertical θmean difference of more than 15% (maximum

difference = 28.18%, from 33.64◦ to 46.84◦). 23 plots have an inner

plot vertical θmode difference of more than 40% (maximum difference =

69.57%, from 14◦ to 46◦). This demonstrates inner-plot vertical variation

of LAD is even more severe than inter-plot variation of LAD.
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3. Variation of leaf angle distribution in natural beech forests

5. Discussion

5.1 Variation of leaf angle distribution in European beech

forests

In this research, moderate LAD variation was found across European

beech plots in different succession status, and they are all quite different

from the spherical distribution. This led us to question the widespread

simplification of LAD as the spherical distribution (Richardson et al.,

2009; Tang et al., 2012) in previous research. In mature stands, we found

planophile LAD, which is consistent with previous research where the

average leaf inclination angle of beech forests is reported to be around

21.7◦ (Wagner and Hagemeier, 2006), 31◦ (Chianucci et al., 2015) and

18.08◦ (Chianucci et al., 2018). It is also consistent with the planophile

LAD suggestion for temperate broadleaf forests (Pisek et al., 2013). How-

ever, in young and medium stands, LAD is most similar to the uniform

rather than the planophile distribution.

An important new discovery from this research is that there is a strong

negative correlation (r = -0.70, p < 0.001) between the median canopy

height of a plot and the average leaf inclination angle θmean of the plot,

for natural European beech forests. From young to mature stands, LAD

changed from symmetric uniform or plagiophile distribution to a skewed

planophile distribution. This implies that in situations where canopy

height or stand age data is available, it is possible to estimate plot-

specific LAD. This offers the potential to upscale this study and map LAD

at regional scale using airborne or satellite LiDAR data.

There is even larger variation of LAD on different canopy layers (θmean ∈
[33.64◦ to 52.97◦], θmode ∈ [14◦ to 64◦]) quantified by TLS. A general

trend is that leaves grow more vertically in the top canopy layer, and

grow more horizontally in the middle and bottom layers. This is con-

sistent with previous studies, where leaves were found more horizontal

in understory beech saplings (Planchais and Pontailler, 1999; Balandier

et al., 2007; Chianucci et al., 2014) or shaded beech saplings (Delagrange

et al., 2006). Based on the results in 4.3 and 4.4, we recommend when

in-situ LAD data are not available, the choice of predefined functions for

LAD approximation could follow instructions in Table 3.6.
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5. Discussion

Table 3.6: Suggested choice of predefined functions for LAD approxima-
tion in European Beech stands

previous
from this research

young or medium stands mature stands

multilayer
top \ spherical uniform

middle \ uniform planophile
bottom \ uniform planophile

plot averaged spherical uniform planophile

There may be many reasons for such variation of LAD in European

beech forests. LAD can be viewed as a morphological or structural

trait of plants. Plant traits can reflect the outcome of evolutionary

and community assembly processes responding to abiotic and biotic

environmental constraints (Valladares et al., 2007; Kattge et al., 2011).

The vertical variation of LAD in European beech plots can be interpreted

as a result of plant adaptation to different light availability at different

canopy layers. On the one hand, leaves in the top layer have a higher

chance of direct sun, so steeper leaf angles can help reduce exposure

to excess radiation and consequent water stress during the middle of

the day (Falster and Westoby, 2003), as well as allowing more light to

reach the lower canopy. On the other hand, leaves in the middle and

bottom layer are more likely to be shaded leaves, with a flatter inclination

enhancing light interception under low light levels (Niinemets, 2010).

These mid to low canopy position leaves are also less susceptible to high

evapotranspiration due to canopy shading (Ryu et al., 2011). The more

horizontal inclination may also be a strategy to eliminate competition

from other species (Niinemets, 2010). A similar trend of more planophile

LAD in lower canopy was also found in an oak forest in the UK (Kull et al.,

1999), a mixed deciduous forest in the US (Hutchison et al., 1986) and a

mature tropical moist forest in Republic of Panama (Wirth et al., 2001),

where researchers used only one stand and estimated LAD manually.

The negative correlation of LAD with the median canopy height of the

plot, may be due to the increasing percentage of leaves under low light

conditions inside the canopy relative to the crown periphery. This led to

an increasing percentage of leaves with low leaf inclination angles, thus

leading to a decrease in θmean.
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3. Variation of leaf angle distribution in natural beech forests

5.2 Factors affecting LAD retrieval from TLS

Compared to the manual measurement and levelled digital canopy pho-

tography method, TLS has the advantage of rapid data acquisition of

large area, dense sampling, efficient automatic processing and less hu-

man intervention (e.g., no need to identify each leaf visually), let alone

its advantage to acquire millimeter level precise geometrical informa-

tion. Although this study was conducted in European beech forests, the

TLS method can be transferred to many other broadleaf species, most

suitable for flat leaves. It may also be used to large non-flat leaf like

corn, where individual leaf can be regarded consisting of several flat

patches. In the following, we will discuss some aspects, which should be

considered when using TLS to quantify LAD.

5.2.1 TLS data collection and preprocessing

High quality point cloud data are prerequisite for LAD retrieval from TLS.

A small beam divergence, small angular step, and close range is necessary

for plants with small leaves. Otherwise the TLS footprint may be larger

than individual leaf, making leaf surface reconstruction impossible. The

optimal settings can be calculated from the parameters of the TLS sensor

and plant leaf size. For more information, one can refer to a previous

research (Wilkes et al., 2017). A multiple scan position design and a

small angular step are suggested to increase point density. Accurate co-

registration among multiple scans ensures utilization of all scan points.

While a bad co-registration and misalignment may lead to many isolated

points in the leaf surface reconstruction step or create spurious objects.

In addition, raw height was used in this research instead of local height,

since LAD estimation involves 3D structure and topology of neighboring

points. Topographic normalization will create distortion of the point

cloud (Liu et al., 2017a).

5.2.2 Extraction of leaf points

The classification of leaf versus woody points was very accurate in gen-

eral. The main errors appear to be caused by fine scale twigs, which were

wrongly classified as leaf points. This may result from high uncertainty
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5. Discussion

in twig point reflectance due to the “partial hit”. Because twigs are very

narrow, there is a higher possibility for a laser beam to partially hit the

twig and only a fraction of the laser pulse is returned (Eitel et al., 2010).

In this condition, the “calibrated relative reflectance” measured by Riegl

VZ-400 is not valid, since the partial illumination of a bright target can

yield the same measurement as a more complete illumination of a darker

target (Beland et al., 2014). As a result, the reflectance of twigs was lower

than other woody points, causing incorrect classification as leaves.

5.2.3 Point density effect

A potential source of uncertainty in leaf angle distribution (LAD) is the

point density effect. In TLS, the spherical scanning geometry leads to a

higher point density of near-range objects than far-range objects (Jupp

et al., 2009; Zhao et al., 2015). Point density was shown to influence

the retrieval accuracy of canopy height, canopy cover, and biomass (Jak-

ubowski et al., 2013; Wilkes et al., 2015b; Garcia et al., 2017). Therefore,

the point density effect on leaf angle calculation was analyzed. We used

the mean nearest neighbor points distance (MNNPD) (Wilkes et al., 2017)

to quantify point density. Sparse point clouds have high MNNPD while

dense point clouds have high MNNPD. In all 36 beech plots, with in-

creasing height above ground, MNNPD increases from 0.24cm to 2.86cm

shown in Fig 3.11 a). To mimic this point density change, the simulated

TLS point cloud of the synthetic young beech tree was thinned to differ-

ent levels. First, we randomly selected points from the raw TLS data at

different percentages, from 5% to 20% at a step of 1%, from 20% to 100%

at a step of 5%. In total 32 point clouds were generated. Second, the

leaf angle calculation and accuracy evaluation was implemented for each

point cloud. From the results (Fig 3.11 b), leaf angle estimation became

less accurate (R2: from 0.88 to 0.52, RMSE: from 8.37◦ to 12.39◦) with

a decreasing point density (or increasing MNNPD). It can be concluded

that at a height of 0-20m above ground, the leaf angle estimation is

very accurate (MNNPD<1.4cm, R2 >0.75, RMSE<9.5◦). From 20-30m,

leaf angle estimation is moderately accurate (MNNPD<2.4cm, R2 >0.6,

RMSE<11.5◦). Above 30m, leaf angle estimation is roughly accurate

(MNNPD<3cm, R2 >0.5, RMSE<13◦). In future studies, for more accurate

leaf angle measurements of tree tops (above 30m), it is recommended to
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3. Variation of leaf angle distribution in natural beech forests

combine with TLS scans below canopy with an UAV LiDAR scan above

canopy.

Figure 3.11: a) The decreasing point density with height above ground in
all 36 beech plots (point density was quantified by mean nearest neighbor
points distance (MNNPD); b) leaf angle estimation accuracy decreases
with decreasing point density from the simulated point clouds

5.2.4 Evaluating the accuracy of leaf angle distribution retrieval

Evaluating the LAD accuracy is extremely difficult due to challenges

in manually measuring true leaf angle. Especially in natural forests,

it is virtually impossible to find nearby tall buildings or observation

towers as used in previous studies (Raabe et al., 2015), to remotely

observe and measure leaf angles. Although it is possible to use ladders

or tree climbing to reach higher levels in a tree, the movement usually

disturbs the canopy and changes leaf angles (Zheng and Moskal, 2012).

Therefore, in this study, the accuracy of the proposed method was

evaluated using a simulated dataset. The results demonstrated that

the leaf angle calculation were very accurate in general. It should be

highlighted that compared to terrestrial LiDAR data scanned from real

forests, the simulation data have perfect registration, less noisy points,

and no errors for woody material classification (since the material type

is known from the beech tree model). Future studies may investigate the

effect of these factors on LAD measurement.
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5.3 Management implications

The findings in this research may improve the accuracy in LAI mapping.

Airborne and spaceborne LiDAR has been increasingly used to map LAI

(Korhonen et al., 2011; Stark et al., 2015; Tang and Dubayah, 2017). In

these studies, gap fraction was first estimated by laser pulse penetration.

Then LAI could be estimated based on the gap fraction model,

Pgap(θ) = e−G(θ)λL/cos(θ) (3.4)

where θ is the direction of incoming radiation, Pgap(θ) is the gap fraction

in direction θ, L is the LAI, λ(θ) is the clumping index, G(θ) is the leaf

projection function determined by LAD. However in this method, an

accurate estimate of G(θ) is necessary for accurate LAI estimate. The

spherical LAD distribution was preferred in most cases because the G(θ)
can be approximated as 0.5 in any direction (Fig 3.12). But unfortunately

airborne LiDAR usually operates at small scan angles in 0◦-30◦ (Liu et al.

2018). At this range, there is large difference among G(θ) of different

LAD (Fig 3.12). If stand specific LAD can be quantified, there is potential

to increase LAI mapping accuracy.

Figure 3.12: The value of leaf projection function G(θ) under 6 predefined
leaf angle distribution (LAD) assumptions and commonly used airborne
LiDAR (ALS) scan angle range

In addition, the vertical LAD variation at different canopy layers, demon-

strates the necessity for multi-layer radiative transfer modelling (Kuusk,

2001; Yang et al., 2017), even for the same species. The method used in
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3. Variation of leaf angle distribution in natural beech forests

this research, could also be utilized to study plant function, forest eco-

logy and evolution. For example, leaf inclination may change due to water

stress (Biskup et al., 2007), leaf expansion and senescence. Terrestrial

LiDAR could be used to acquire measurements during the live cycle of

leaves under varying microclimatic conditions. The vertical variation of

LAD in European beech stands as found in this research, are consistent

with the discovery that late-successional stands dominated by shade

tolerant species often have a more horizontal leaf inclination angles

(McMillen and McClendon, 1979; Pearcy et al., 2004; Niinemets, 2010).

Further research could use terrestrial LiDAR to acquire measurements

in different forest types, to explore the relationship between geography

and plant structural traits.

6. Conclusion

In this study, the variation of leaf angle distribution (LAD) in European

beech (Fagus sylvatica) forests was examined using terrestrial LiDAR. A

total of 36 plots ranging from young, medium to mature successional

status were studied. Leaf and woody materials were differentiated based

on a combination of radiometric and geometric features. Leaf surface was

reconstructed and leaf inclination angles were subsequently calculated.

From the statistical results, we conclude:

1. Terrestrial LiDAR proves to be an effective tool to quantify LAD

variation due to its capability to acquire massive data rapidly, dif-

ferentiate leaf and woody materials, and provide precise 3D inform-

ation.

2. There is moderate variation of LAD across beech plots at different

successional status. Instead of a spherical LAD assumption, it is

more valid to assume a uniform LAD for young and medium stands,

a planophile LAD for mature stands.

3. There is large variation of LAD on different canopy layers. Beech

leaves grow more vertically in the top layer, but more obliquely or

horizontally in the middle and bottom layer.

4. A strong negative correlation exists between the plot average leaf

angle and the plot median canopy height. This offers the potential

66



6. Conclusion

to estimate plot specific LAD from canopy height data in European

Beech forests.

5. Large variation of LAD should be accounted for better LAI mapping

and canopy photosynthesis modelling.
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4Scan angle impact on gap fraction

estimation from airborne LiDAR *

*This chapter is based on: Liu, J., Skidmore, A., Jones, S., Wang, T., Heurich, M., Zhu,
X., Shi, Y., 2018. Large off-nadir scan angle of airborne LiDAR can severely affect the
estimates of forest structure metrics. ISPRS Journal of Photogrammetry and Remote
Sensing, 136, 13-25.
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Abstract

Gap fraction (Pgap) and vertical gap fraction profile (vertical Pgap profile)

are important forest structure metrics. Accurate estimation of Pgap and

vertical Pgap profile is therefore critical for many ecological applications,

including leaf area index (LAI) mapping, vertical LAI profile estimation

and wildlife habitat modelling. Although many studies estimated Pgap
and vertical Pgap profile from airborne LiDAR data, the scan angle was

often overlooked and a nadir view assumed. However, the scan angle

can be off-nadir and highly variable in the same flight strip or across

different strips.

In this research, the impact of off-nadir scan angle on Pgap and vertical

Pgap profile was evaluated, for several forest types. Airborne LiDAR data

from nadir (0◦-7◦), small off-nadir (7◦-23◦), and large off-nadir (23◦-38◦)

directions were used to calculate both Pgap and vertical Pgap profile.

Digital hemispherical photographs (DHP) acquired during fieldwork were

used as references for validation. Our results show that angular Pgap
from airborne LiDAR correlates well with angular Pgap from DHP (R2

= 0.74, 0.87, and 0.67 for nadir, small off-nadir and large off-nadir

direction). But underestimation of Pgap from LiDAR amplifies at large off-

nadir scan angle. By comparing Pgap and vertical Pgap profiles retrieved

from different directions, it is shown that scan angle impact on Pgap and

vertical Pgap profile differs among different forest types. The difference

is likely to be caused by different leaf angle distribution and canopy

architecture in these forest types. Statistical results demonstrate that

the scan angle impact is more severe for plots with discontinuous or

sparse canopies. These include coniferous plots, and deciduous or mixed

plots with between-crown gaps. In these discontinuous plots, Pgap and

vertical Pgap profiles are maximum when observed from nadir direction,

and then rapidly decrease with increasing scan angle.

The results of this research have many important practical implications.

First, it is suggested that large off-nadir scan angle of airborne LiDAR

should be avoided to ensure a more accurate Pgap and LAI estimation.

Second, the angular dependence of vertical Pgap profiles observed from

airborne LiDAR should be accounted for, in order to improve the re-

trieval of vertical LAI profiles, and other quantitative canopy structural
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metrics. This is especially necessary when using multi-temporal datasets

in discontinuous forest types. Third, the anisotropy of Pgap and vertical

Pgap profile observed by airborne LiDAR, can potentially help to resolve

the anisotropic behavior of canopy reflectance, and refine the inversion

of biophysical and biochemical properties from passive multispectral or

hyperspectral remote sensing data.
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1. Introduction

In forest ecosystems, within-crown and between-crown gaps are im-

portant functional and structural properties in forest canopies. Their

ecological importance has long been recognized because of their role in

controlling the transmission and interception of light (Ross, 1981), water

vapor (Anderson et al., 1969), and snow (Hedstrom and Pomeroy, 1998),

thus affecting the microclimate and soil moisture of the forest stand

(Prescott, 2002). Gaps also contribute to the regeneration of trees (Gray

and Spies, 1996), drive successional dynamics (Schnitzer and Carson,

2001), and increase overall species diversity.

Gap fraction (Pgap) is a quantitative metric of forest gaps, defined as

the probability of a ray of light passing directly through the canopy to a

reference level (generally the ground), without being intercepted by a leaf,

branch, or stem (Nilson, 1971). From a remote sensing perspective, Pgap
is equivalent to the probability that ground surface is directly visible to

airborne and spaceborne platforms (Armston et al., 2013; Chen et al.,

2014). Vertical gap fraction profile (vertical Pgap profile) is a function

of the Pgap with height. It describes the gap fraction value at each

height above ground in the canopy. Many other canopy structural prop-

erties, including fractional cover, leaf area index (LAI), vertical LAI profile,

above-ground biomass can be modelled using different expressions and

combinations of canopy height and Pgap (Armston et al., 2013).

The development of LiDAR technology has advanced the mapping of

Pgap. Early research used airborne LiDAR penetration variables to es-

timate Pgap and then LAI was estimated based on the Beer-Lambert law

(Riaño et al., 2004; Solberg et al., 2009). A growing body of research

also exploited the ranging advantage of LiDAR, to estimate the vertical

Pgap profile and vertical LAI profile using terrestrial (Lovell et al., 2003;

Jupp et al., 2009), airborne (Coops et al., 2007; Hilker et al., 2010) or

spaceborne (Tang et al., 2014b) LiDAR data. The vertical Pgap profile and

the vertical LAI profile have been further utilized in a broad range of eco-

logical applications, including modelling avian species diversity (Goetz

et al., 2007), modelling carbon dynamics (Kotchenova et al., 2004; Stark

et al., 2012), mapping forest succession stages (Falkowski et al., 2009),

modelling fire susceptibility (de Almeida et al., 2016), quantifying canopy
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strata (Wilkes et al., 2015a), quantifying forest understory growth (Tang

and Dubayah, 2017), and monitoring vegetation phenology (Calders et al.,

2015; Griebel et al., 2015).

As such an important prerequisite metric, accurate measurement of Pgap
is critical to subsequent applications. In recent years, researchers have

used airborne LiDAR data with a large scan angle range (up to ± 45◦) in

forests (Morsdorf et al., 2010; Cao et al., 2016; Marino et al., 2016). With

this configuration, there is high variation in scan angles, even in the same

flight. For forest managers or researchers using multi temporal LiDAR

flights, it is more difficult to maintain exactly the same settings and scan

angle. Previous research has shown that the precision of canopy height

estimates decreased with increasing off-nadir scan angle (Lovell et al.,

2005; Pang et al., 2011). Also, lower height percentiles were affected

more than upper height percentiles, due to obscuration and longer path

of laser pulse penetrating into canopy (Holmgren et al., 2003). However,

in Pgap and vertical Pgap profile mapping, the scan angle was often

overlooked and a nadir scanning geometry was assumed (Hilker et al.,

2010; Stark et al., 2012; Tang et al., 2012). The potential impacts of

off-nadir scan angle on Pgap and vertical Pgap profile estimation have

rarely been studied.

In a previous study, Pgap was found to decrease with increasing zenith

angle (Liu et al., 2008), in four plots dominated by Engelmann spruce

(Picea engelmannii), subalpine fir (Abies lasiocarpa) and lodgepole pine

(Pinus contorta). But this result was observed from a geometric optical

radiative transfer modelling instead of direct measurement from airborne

LiDAR (Liu et al., 2008). In other research, the accuracy of estimated

Pgap from airborne LiDAR was found to be influenced by the range

of scan angles. Using a small range of scan angles (0◦-15◦), the Pgap
from ground measurement had a good linear 1:1 correlation with the

Pgap estimated from LiDAR, with low root-mean-square error (RMSE)

and bias. But at a large range of scan angles (0◦-75◦), the Pgap from

ground measurement had a strong but nonlinear dependency with the

Pgap from LiDAR (Korhonen et al., 2011). However, this comparison

may not be appropriate because the 0◦-75◦ angle range is very large for

direct comparison between ground-measured Pgap and LiDAR-derived

Pgap. Unlike ground-based techniques such as digital hemispherical
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photography (DHP) or LAI-2200 which can sample the entire hemisphere,

airborne LiDAR measurements usually sample the plot at only limited

scan angle range. The high cost of acquiring multi-angle airborne LiDAR

data covering the same area is probably one of the biggest challenges

impeding research on the scan angle impact. Typically, a limited angular

range can be acquired for a forest plot in each airborne LiDAR flight strip.

In order to acquire multi-angle data, highly overlapping LiDAR flight

lines are required. Using multi-angle airborne LiDAR data, Zheng et al.

(2017) observed anisotropy of Pgap in a broadleaf plot. They found that

the Pgap was different both at different zenith angles and at different

azimuth angles. The author also suggested that the scan angle effect

should be corrected for a more accurate effective LAI estimation (Zheng

et al., 2017). In terms of scan angle impact on vertical Pgap profile, there

has been some inspiring observation in one study, where significant

differences among vertical Pgap profiles derived from different scan

angles have been found (Jupp et al., 2009). From 0◦ nadir to 10◦ off-nadir

direction, there is very high variance in derived vertical Pgap profiles.

The author attributed these differences to the clumping effect and large

gaps near the nadir direction (Jupp et al., 2009). However, this research

was conducted using a terrestrial LiDAR, of which the scanning pattern is

quite different from airborne LiDAR. Also the experiment was conducted

in only one coniferous (Pinus ponderosa) stand, whether other forest

types will also be impacted by scan angle or not remains unknown.

In this chapter, airborne LiDAR data acquired at different scan angles

was used to assess the scan angle impact on Pgap and vertical Pgap
profile, in several forest types. Specifically, the capability and accuracy

of angular Pgap derived from airborne LiDAR was first examined. Then,

the scan angle impact was explored through analyzing the difference

between Pgap or vertical Pgap profile results derived from LiDAR data of

different scan angles. Possible reasons and implications of the anisotropy

characteristics of Pgap and vertical Pgap profile were also discussed.
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2. Materials and method

2.1 Study Area

This study was conducted in the Bavarian Forest National Park in the

southern-eastern part of Germany (N 49◦3′19′′, E 13◦12′9′′). The park

has a total area of 24218 hectares, with elevation ranging from about 600

to 1450 m above sea level (Heurich et al., 2010). The forest is dominated

by Norway spruce (Picea abies) (67%) and European beech (Fagus sylvatica)

(24.5%). Above 1100 m many lying and standing deadwood areas can

be found on the mountain summit. Between 600 m and 1100 m, white

fir (Abies alba) and sycamore maple (Acer pseudoplatanus) occur. Wet

depressions in the valleys harbor highly mixed forest with Norway spruce,

mountain ash (Sorbus aucuparia) and birches (Betula spp.) (Cailleret et al.,

2014). Due to natural disturbance and the non-intervention management

policy, there is high structural complexity in the study area. Typical

pure deciduous European beech stands, pure coniferous Norway spruce

stands and mixed stands can be seen in Fig 4.1.

Figure 4.1: Examples of a) European beech, b) Norway spruce, and c)
mixed stands in the study area

2.2 Airborne LiDAR data

The airborne LiDAR data was collected by Milan Flug GmbH in August

2016, covering four transects (Fig 4.2) in the park. These four transects

spanned from the valleys to mountain tops, encompassing different
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types of forest structures in the national park (Bässler et al., 2008). The

sensor onboard was a Riegl LMS-Q680i laser scanner, operating at a

wavelength of 1550 nm, with a beam divergence of 0.5 mrad. The flying

altitude was approximately 300 m above ground, with a pulse repetition

frequency of 400 KHz. This led to a nominal footprint size of about

0.15 m, and the maximum scan angle was as high as 38◦. The average

point density for single LiDAR flight line was 70 points per m2. Multiple

overlapped flight lines were used with 30%-50% side overlaps. As a result,

the point density in overlapped areas could be double or triple the point

density in single flight line covered areas. These overlaps created more

chance for the same areas being viewed from multiple scan angles. Point

cloud data generated from Gaussian decomposition (Wagner et al., 2006)

was delivered by Milan Flug. Up to eight returns can be recorded for

each pulse. The discrete multiple return point cloud data composed of

planimetric coordinates (x and y), ellipsoidal heights (z), return intensity,

return number, class label, scan angle, echo width, number of total

returns for a laser shot, and the GPS timestamp of the return.

2.3 Forest plot selection

In order to obtain LiDAR data from multiple scan angles, overlapped

(between flying tracks) areas are the primary selection areas. 30 estab-

lished forest plots (Table 4.1) were chosen from the Bioklim project

(Bässler et al., 2008) and visited during the fieldwork from 21 June to

2 July 2016. The Pgap was measured using ground-based DHP in these

30 plots for evaluating the accuracy of the Pgap derived from LiDAR

data. To increase the sample size for analyzing scan angle impact and

statistical analysis, another 77 plots were also selected from the over-

lapped areas. As a result, a total of 107 circular plots (Fig 4.2), each

with a radius of 20 m, were clipped from the airborne LiDAR dataset.

There were 36 coniferous, 31 deciduous and 40 mixed plots. Only pulses

having all returns located inside the 20 m radius cylinder were kept.

These plots cover a wide range of forest structures. The plots were

categorized into three forest types including deciduous, coniferous, and

mixed plots, using ancillary land cover classification data and digital

aerial photograph (0.25m spatial resolution) acquired on 5 June 2015.

76



2. Materials and method

Figure 4.2: Airborne LiDAR flight lines and selected forest plots on
the four transects (T1, T2, T3, T4) in the study area of Bavarian Forest
National Park (DHP: digital hemispherical photograph)

All subsequent analysis in this research was conducted in these plots.

The plot distribution and the airborne LiDAR flight lines can be seen in

Fig 4.2.
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Table 4.1: Basic information of the 30 Bioklim plots with DHP measure-
ments

Plot Forest Type Long [◦] Lat [◦] Ele [m] Hmax [m] Hmean [m] Transect
T4-25 mix 13.23 49.10 710 45.68 20.04 4
T4-21 mix 13.23 49.10 734 52.6 23.86 4
T4-14 mix 13.22 49.10 690 37.67 19 4
T4-09 mix 13.21 49.10 741 47.12 21.95 4
T3-49 mix 13.32 49.10 1181 22.8 6.51 3
T3-40 mix 13.31 49.09 1106 34.59 16.88 3
T3-25 mix 13.30 49.07 872 44.92 24.97 3
T2-41 mix 13.38 48.96 1001 34.8 16.35 2
T2-23 mix 13.37 48.94 842 26.2 3.81 2
T2-08 mix 13.37 48.93 849 38.48 24.24 2
T2-01 mix 13.36 48.92 785 41.26 25.36 2
T1-52 mix 13.44 48.95 965 39.79 8.96 1
T4-54 deciduous 13.27 49.10 1122 27.49 19.28 4
T4-39 deciduous 13.25 49.10 788 43.95 26.74 4
T4-23 deciduous 13.23 49.10 717 39.93 17.31 4
T2-52 deciduous 13.38 48.97 1152 27.42 16.41 2
T2-14 deciduous 13.37 48.93 831 39.96 20.68 2
T2-02 deciduous 13.36 48.92 803 38.34 28.09 2
T1-49 deciduous 13.44 48.95 914 30.59 12.77 1
T1-08 deciduous 13.40 48.92 802 36.32 12.19 1
B2 deciduous 13.43 48.96 997 32.52 22.77 1
B1 deciduous 13.43 48.95 849 35.62 21.13 1
T4-81 coniferous 13.31 49.10 1316 11.13 1.51 4
T4-59 coniferous 13.28 49.10 1162 37.3 17.03 4
T3-50 coniferous 13.32 49.05 1193 19.05 2.02 3
T3-05 coniferous 13.29 49.06 703 14.84 5.01 3
T3-04 coniferous 13.29 49.06 694 28.63 17.08 3
T3-03 coniferous 13.29 49.06 684 31.71 16.58 3
T1-42 coniferous 13.43 48.95 829 35.25 20.39 1
T1-40 coniferous 13.43 48.95 815 16.53 3.56 1

Long: longitude; Lat: latitude
Ele: elevation; Hmax : maximum canopy height; Hmean : average canopy height

2.4 Digital hemispherical photograph

From 21 June to 2 July 2016, digital hemispherical photographs (DHP)

were acquired in the above-mentioned 30 plots (Fig 4.2). Previous re-

search showed that Pgap results from DHP may have high variance due

to instrument calibration (Lang et al., 2010), sky illumination conditions

(Pueschel et al., 2012), camera exposure (Zhang et al., 2005), and image

classification method (Woodgate et al., 2015). To reduce uncertainty,

DHP was carefully setup during this research as follows. In each plot,

20-30 upward-pointing DHPs were collected, first in the plot center, and

then 10 m from the center in each diagonal direction. At each position,
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a digital camera (Canon EOS 5D) equipped with a fish-eye lens (Sigma

8mm F3.5 EX DF) was first set-up and leveled on a tripod between 1

to 1.3 m above ground. Photos were taken in diffuse light conditions

at dusk or dawn, or overcast diffuse conditions during the day, using

manual exposure. Each image had a high resolution of 5600 by 3898

pixels. In order to minimize subjective thresholding, the two-corner

classification method (Macfarlane, 2011) was applied on the blue channel

of all obtained images to classify sky and canopy pixels. Then, the binary

classified images are imported into the CanEye (Weiss and Baret, 2010)

software to calculate Pgap . Each classified image was broken into a series

of annuli from 0◦-60◦, with each ring of 2.5◦ width. Angular Pgap could

then be derived for each annulus. The remaining 60◦-90◦ annuli were

excluded because of high portion of mixed pixels.

2.5 Pgap and vertical Pgap profile

The premise of using LiDAR to calculate Pgap is that the interaction

between forest canopy and laser pulses can be considered analogous to

the interaction of forest canopy with direct beam solar radiation (Hop-

kinson and Chasmer, 2007). When a laser pulse comes into contact with

an object in its path, part of the laser energy is reflected back to the

laser sensor, and triggers the signal recording once the energy exceeds

a threshold. In full waveform LiDAR, the entire return signal is recor-

ded. The Pgap can then be computed through the ratio between canopy

backscattered energy and total backscattered energy, after correcting for

the backscattering coefficient difference between ground and vegetation

(Lefsky et al., 2002; Tang et al., 2012; Armston et al., 2013). However,

for discrete return LiDAR, only the intensity of each individual return

is recorded. Due to various reasons (such as proprietary waveform de-

composition algorithms and lack of radiometric calibration), intensity

can be uninformative and uncertain (Höfle and Pfeifer, 2007; Hancock

et al., 2015). In these cases, Pgap is usually approximated by various

laser penetration rate variables including,

Pgap =
N last-ground

Ntotal
(4.1)
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Pgap = 1− Nfirst-vege

Ntotal
(4.2)

whereNtotal is the total number of all received/recorded pulses,N last-ground

is the number of pulses having the last return down to ground (Solberg

et al., 2009). Nfirst-vege is the number of pulses having the first return

hit by vegetation (Lovell et al., 2003; Morsdorf et al., 2006). Since the

airborne laser footprint size is usually larger than individual leaf size,

equation 4.1 tends to overestimate Pgap due to failure to account for

within-crown vegetation, while equation 4.2 causes underestimation of

the Pgap due to failure to account for within-crown gaps. Therefore, in

this research, the Pgap is calculated using a “weighted all return” method

which considers all returns in each pulse,

Pgap = 1−
∑

1/NOR
Ntotal

(4.3)

where Ntotal is the total number of all received/recorded pulses, NOR is

the number of returns for each pulse. 1/NOR is the weight assigned for

each return in this given pulse. It serves as a robust estimate of return

intensity.
∑

1/NOR is a weighted sum of all the returns hit by vegetation

(excluding ground returns). This equation was proposed in previous

research (Newnham et al., 2012; Armston et al., 2013) and proved to be

capable of producing near unbiased estimates of Pgap compared to a

waveform method (Armston et al., 2013). When calculating vertical Pgap
profile as a function of height,

Pgap(h) = 1−
∑

1/NOR(h)
Ntotal

(4.4)

where
∑

1/NOR(h) is a weighted sum of all the returns hit by vegetation

and locating above the height of h above ground. In this study, the

vertical Pgap profile was calculated using 0.2 m height bins (i.e., 0.2 m

height intervals). Based on the gap fraction model, in the case of a turbid

media with random spatial distribution of infinitely small leaves and

random leaf azimuth distribution, the Pgap in the direction θ can be

related to LAI using,

Pgap(θ) = e−G(θ)L/cos(θ)) (4.5)
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where G(θ) is the leaf projection function and equals the projection of a

unit area of plant constituents on a plane perpendicular to the direction,

averaged over elements of all orientations (Ross, 1981), L is the LAI. It has

also been demonstrated that even when the turbid medium assumptions

are not satisfied, Pgap can still be expressed as an exponential function

of LAI (Nilson, 1971; Weiss et al., 2004). In case of clumped canopies, a

modified expression is,

Pgap(θ) = e−G(θ)λL/cos(θ) (4.6)

k(θ) = G(θ)/cos(θ) (4.7)

where λ is the clumping index (Weiss et al., 2004), k(θ) is the extinc-

tion coefficient (Campbell, 1986). Equation 4.6 serves as the basis for

derivation of various other metrics such as LAI and clumping index.

2.6 Quantification of scan angle impact and statistical

analysis

Although multiple scan angle LiDAR data can be acquired from over-

lapped flight lines, it was impossible to achieve the LiDAR data at a series

of scan angles with small angular step. If a partition scheme like 0◦, 1◦,

2◦, 3◦, . . . , 38◦ or 0◦, 2.5◦, 5◦, 7.5◦, . . . , 37.5◦ were used, it would be

impossible for each sub point cloud to fully cover the plot. Therefore, in

this experiment, all LiDAR data was partitioned into three groups accord-

ing to the scan zenith angle of each point as follows: nadir (0◦-7◦), small

off-nadir (7◦-23◦), and large off-nadir (23◦-38◦), where each of the three

groups have approximately comparable pulse numbers. All Pgap and

vertical Pgap profiles were then calculated from each sub point cloud.

It is worth pointing out that for the same forest plot, the point density

may change with different scan angles, depending on scanning paramet-

ers and the underneath surface. An ideal comparison would be done

when pulse density is similar. It is possible to use pulse thinning to make

point clouds of different scan angles more comparable. But the thinning

procedure would bring more uncertainty. Therefore, raw data without

thinning was used in this research. In another unpublished experiment

by us, when pulse density was greater than 5 pl/m2, Pgap was barely

affected by increasing pulse density.
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To evaluate the accuracy of angular Pgap derived from airborne LiDAR,

the Pgap calculated from DHP was used as the validation reference. DHP

is one of the few equivalent techniques which can be used to validate Pgap
from airborne LiDAR and has been used in previous research (Hopkinson

and Chasmer, 2007; Zheng et al., 2017). Correspondingly, the Pgap
derived from DHP was also averaged for nadir (0◦-7◦), small off-nadir

(7◦-23◦) and large off-nadir (23◦-38◦) direction. Simple linear regression

analysis was then performed between the angular Pgap from LiDAR and

angular Pgap from DHP, respectively for each direction. Unlike Pgap,

the accuracy of vertical Pgap profile is very difficult to evaluate. The

most reliable approach might be to measure the Pgap at each height level

above ground. But this is too labor intensive and impractical in the field.

As a result, the accuracy of vertical Pgap profile was not validated.

To evaluate the scan angle impact, results of Pgap and vertical Pgap
profile from nadir (0◦-7◦), small off-nadir (7◦-23◦), and large off-nadir (23◦-

38◦) directions were compared. Only sub point clouds that fully covered

the plot were chosen for comparison, so as to achieve an objective and

unbiased comparison. If a sub point cloud only sampled part of the plot,

it was removed from further analysis. Paired-sample t-test between Pgap
from nadir, small off-nadir and large off-nadir directions were conducted,

to test if there is a statistical significant difference. The null hypothesis

was “there is no difference between the two Pgap values from two scan

angles". The alternative hypothesis was “there is difference between the

two Pgap value from two scan angles". The two-sided level of significance

was p <0.05. When the calculated t value is greater than the critical

value and p value is lower than 0.05, the null hypothesis was rejected

and conclude there is a difference in the two scan angles. Vertical Pgap
profiles from nadir, small off-nadir, and large off-nadir directions in

the same plot were first visually compared. To test whether scan angle

has a significant impact on the derived vertical Pgap profiles, the two-

tailed Mann Whitney U test was then conducted on the two vertical Pgap
profiles from two scan angles, in each plot. The reason the two-tailed

Mann Whitney U test was chosen was that the sample sets of each vertical

Pgap profile are not normally distributed. The null hypothesis was “there

is no difference between the two vertical Pgap profiles from two scan

angles". The alternative hypothesis was “there is difference between the
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two vertical Pgap profiles from two scan angles". The two-sided level of

significance was p <0.05. When calculated p value is lower than 0.05, the

null hypothesis was rejected and conclude there is a difference in the

two vertical Pgap profiles.

The quantification of scan angle impact on Pgap was represented using

Pgap difference, which was the difference between every two Pgap values

from two different directions of the same plot. A higher Pgap difference

indicated higher scan angle impact for Pgap in this plot. To quantify

the scan angle impact on vertical Pgap profiles, the root mean square

difference (RMSD) between every two Pgap profiles was used. A higher

RMSD indicates higher scan angle impact on vertical Pgap profiles in this

plot. In addition, the correlation coefficient was calculated between Pgap
difference and nadir Pgap, and between RMSD of Pgap profiles and nadir

Pgap . A positive close to 1 correlation coefficient would suggest a strong

positive correlation between the severity of scan angle impact and the

nadir Pgap in the plot.

3. Results

3.1 Pgap derived from DHP in different zenith angles

For the 30 plots in the fieldwork, Pgap derived from DHP at zenith angle

from 0◦ to 60◦ (2.5◦ interval) for each plot is presented (Fig 4.3). For the

coniferous plots, the observed Pgap was very sensitive to zenith angle.

A rapid decrease trend can be seen from 0◦ to 20◦. The Pgap value was

higher than 0.5 in 0◦ nadir direction but decreased to lower than 0.3 at

60◦ direction. The rapid decrease of Pgap was also apparent in the open

coniferous plots, but at a higher zenith angle ranging from 35◦ to 60◦.

Unlike coniferous plots, in deciduous beech plots, the observed Pgap was

relatively insensitive to zenith angle in the range of 0◦ to 60◦, except one

plot having a rapid decrease of Pgap from 0◦ to 10◦. The decrease of Pgap
from 0◦ to 60◦ direction was usually less than 0.15 in deciduous plots. In

mixed plots, more uncertainty and variability occurred. Change of Pgap
with zenith angle was pronounced in some mixed plots, but marginal in

others.
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4. Scan angle impact on gap fraction estimation from airborne LiDAR

Figure 4.3: Pgap of different angles measured from DHP at ground in
deciduous, coniferous and mixed forest plots

3.2 Pgap derived from LiDAR data of different scan angles

For all the 107 plots, after partition based on the scan angle, 321 datasets

were generated. Each sub point cloud was examined to see if it could fully

cover the plot. As a result, 26 plots were fully covered by all nadir (0◦-7◦),

small off-nadir (7◦-23◦), and large off-nadir (23◦-38◦) LiDAR data. 31 plots

were fully covered by nadir and small off-nadir LiDAR data. 29 plots were

fully covered by nadir and large off-nadir LiDAR data. 31 plots were fully

covered by small off-nadir and large off-nadir LiDAR data. Subsequently,

paired-sample t-test results between Pgap from different scan angles

are presented in Table 4.2. From the results, Pgap0−7 is significantly

higher than Pgap7−23 (t=6.035>1.671, p<0.01), and Pgap7−23 is further

significantly higher than Pgap>23 (t=7.888>1.671, p<0.01). This indicates

that Pgap is maximum when measured by airborne LiDAR at the nadir

direction, and observed Pgap decreases with increasing LiDAR scan angle.

Table 4.2: Paired-sample t-test between Pgap derived from LiDAR data of
different scan angles

Number of plots Degrees of
freedom (v)

t p

Pgap0−7, Pgap7−23 31 60 6.035 <0.001

Pgap0−7, Pgap>23 29 56 7.846 <0.001

Pgap7−23, Pgap>23 31 60 7.888 <0.001

Pgap0−7: gap fraction measured from LiDAR when scan angle ranges in 0◦-7◦

Pgap7−23: gap fraction measured from LiDAR when scan angle ranges in 7◦-23◦

Pgap>23: gap fraction measured from LiDAR when scan angle exceeds 23◦

critical value of t at 0.05 significance level: 1.671 (v=60), and 1.673 (v=56)

84



3. Results

3.3 Vertical Pgap profile derived from LiDAR data with

different scan angles

Since different Pgap changes with the zenith angle can be seen among

different forest types in section 3.1, the results of vertical Pgap pro-

files from different scan angles are also presented respectively for the

deciduous, coniferous and mixed stands.

Figure 4.4: Vertical Pgap profiles derived from airborne LiDAR data
of different scan angles in deciduous beech plots (red points: ground
returns). Note: there is one giant coniferous tree in plot T4-23

From Fig 4.4, in deciduous beech plots, vertical Pgap profiles are almost

the same from different scan angles in plot T4-23 (p=0.88), where beech

trees are very dense and there are few between-crown gaps. However,

as the between-crown gaps begin to increase in plot B1, T4-39 and T2-

52, vertical Pgap profiles from different scan angles begin to diverge

(p < 0.01 for B1, T4-39, and T2-52). At each height above ground, the
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4. Scan angle impact on gap fraction estimation from airborne LiDAR

observed Pgap is always higher at small scan angle than at large scan

angle. The height of Pgap divergence occurs at approximately the same

height as the densest position of the canopy. When it approaches the

ground, Pgap difference between scan angles are constant because of

little understory and fewer laser interception. The shape of the vertical

Pgap profile is almost the same.

Figure 4.5: Vertical Pgap profiles derived from airborne LiDAR data of
different scan angles in coniferous spruce plots (red points: ground
returns)

Unlike the deciduous plots, in the coniferous plots, whether there are

dense trees or sparse trees, Pgap profiles are always sensitive to LiDAR

scan angle (Fig 4.5). Even in a mature and dense plot as T1-42, the vertical

Pgap profile at large off-nadir direction differs greatly from the vertical

Pgap profile at nadir (p <0.01). At each height below 15 m, Pgap>23 is
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less than half of Pgap0−7. Similar to deciduous plots, the difference of

vertical Pgap profiles increases when there are more between-crown gaps

in the plot, such as T4-59 (p <0.01). The shape of vertical Pgap profiles

also changed.

Results of vertical Pgap profiles in the mixed plots are presented in Fig

4.6. The general trend of increasing vertical Pgap profile difference with

increasing between-crown gaps can still be observed, for instance the

large difference between vertical Pgap7−23 profile and vertical Pgap>23

profile in plot 3ad02 (p <0.01). When the tree density is high in the

plot T4-14, the vertical Pgap profile change is marginal (p=0.48). But in

another dense plot T4-21, vertical Pgap profiles are quite different from

different scan angles (p <0.01).

Figure 4.6: Vertical Pgap profiles derived from airborne LiDAR data of
different scan angles in mixed plots (red points: ground returns)
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4. Scan angle impact on gap fraction estimation from airborne LiDAR

3.4 Statistical analysis

3.4.1 Agreement of Pgap derived from DHP and LiDAR

Without considering scan angle, angle-averaged Pgap derived from LiDAR

and from DHP are correlated well with each other (Fig 4.7 a)). When

considering scan angle, the correlation between angular DHP Pgap and

LiDAR Pgap is best when scan angle ranges from 7◦-23◦ (Fig 4.7 c)), and

worst when scan angle exceeds 23◦ (Fig 4.7 d)). Regardless of the scan

angle, angular LiDAR Pgap is always lower than angular DHP Pgap. This

effect is most obvious for large off-nadir scan angles (>23◦). In nadir

direction (0◦-7◦), plots with low LiDAR Pgap have much higher DHP Pgap ,

while plots with high LiDAR Pgap have high DHP Pgap as well (closer to

the 1:1 line).

Figure 4.7: Correlation between the Pgap derived from DHP and the Pgap
derived from airborne LiDAR. a) without considering scan angle; b) scan
angle ranges from 0◦-7◦; c) scan angle ranges from 7◦-23◦; d) scan angle
exceeds 23◦. In each sub figure, N is the number of plots
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3.4.2 Correlation between nadir Pgap and scan angle impact on

Pgap , vertical Pgap profile

Results in Section 3.3 indicate that the scan angle effect differed between

deciduous beech plots and coniferous spruce plots. Furthermore, the

between-crown gaps can lead to large Pgap difference. We assume that

plots with more within-crown gaps or between-crown gaps will be more

sensitive to LiDAR scan angle. Therefore, the correlation between nadir

Pgap and scan angle impact is explored.

Scan angle impact on Pgap above ground level is quantified using Pgap
difference. A higher Pgap difference means observing the plot in different

LiDAR scan angles will end up in quite different Pgap values. Using the

91 paired-samples in Table 4.2, the correlation between Pgap difference

and the nadir Pgap in the plot is explored. From Fig 4.8, it is clear that

there is a strong positive correlation (r=0.71, p<0.001) between nadir

Pgap and Pgap difference.

Figure 4.8: Correlation between nadir Pgap and the difference of Pgap
measured from airborne LiDAR of different scan angles in deciduous,
coniferous and mix forest plots. (Pgap0−7, Pgap7−23 and Pgap>23: gap
fraction measured from LiDAR when scan angle ranges in 0◦-7◦, 7◦-23◦,
greater than 23◦ respectively)

Scan angle effect on vertical Pgap profile is quantified using the RMSD

between two vertical Pgap profiles derived from the same plot observed

by LiDAR from two different scan angles. A higher RMSD value suggests

large difference between the two vertical Pgap profiles and large scan

angle impact. From Fig 4.9, a moderate positive correlation (r=0.66,

89



4. Scan angle impact on gap fraction estimation from airborne LiDAR

p<0.001) is observed between nadir Pgap and the RMSD of vertical Pgap
profiles. This is a similar trend as shown in Fig 4.8. Scan angle impact on

the vertical Pgap profile is also more severe in plots with more gaps, and

less important in plots with fewer gaps. But the distribution of points

are more spread than in Fig 4.8.

Figure 4.9: Correlation between nadir Pgap and the RMSD of each two
vertical Pgap profiles derived from airborne LiDAR of two different
scan angles, in deciduous, coniferous and mix forest plots. (Pgap_prof0-7,
Pgap_prof7-23 and Pgap_prof>23: vertical Pgap profiles measured from LiDAR
when scan angle ranges in 0◦-7◦, 7◦-23◦, greater than 23◦ respectively)

4. Discussion

4.1 Agreement of Pgap derived from DHP and LiDAR

Without considering scan angle, the results suggest a good agreement

between angle-averaged LiDAR Pgap and DHP Pgap (Fig 4.7 a)). When

considering scan angle, generally a high correlation between angular

LiDAR Pgap and DHP Pgap can be observed for all scan angles (Fig 4.7 b),

c), d)). This demonstrates the potential of airborne LiDAR to accurately

map angular Pgap in different forest types. Compared to DHP, which

often have a higher variance and bias, airborne LiDAR is relatively more

stable.

It is also noteworthy that airborne LiDAR Pgap is always lower than DHP

Pgap, at all scan angles ( 0◦-38◦ in this research). This closely matches

90



4. Discussion

earlier findings when using terrestrial LiDAR (Hancock et al., 2014; Seidel

et al., 2012). Furthermore, comparing different scan angles, the under-

estimation of Pgap becomes more severe for large scan angle LiDAR

(Fig 4.7 d)). The most likely reason appears to be the large footprint of

airborne laser pulse and lower sensitivity of the laser sensor. Unlike DHP,

which can be very sensitive to a ray of light penetrating small canopy

gaps, laser pulses have a much larger footprint, lower energy density

in the footprint, and higher backscattered energy threshold to trigger

the recording of each return. Therefore, when a laser pulse penetrates

small gaps, the backscattered energy might be too low to trigger the laser

sensor to start recording the return. Even when the sensor is triggered,

these low amplitude energy spikes may not be preserved in the decom-

position processing from the raw waveform data. The loss of these small

gaps may be the main reason causing underestimation of LiDAR Pgap
compared to DHP Pgap . With scan angle increasing, a longer path for the

laser pulse penetrating the canopy as well as more challenging detection

of small gaps lead to more severe underestimation of Pgap.

Overall, airborne LiDAR provides the potential for mapping angular Pgap
over a large extent, but underestimation often occurs and is magnified

by an increasing scan angle. For this reason, it is recommended to avoid

using large off-nadir scan angle (>23◦) when estimating Pgap.

4.2 Scan angle impact on Pgap in different forest types

From the results of this research, the scan angle impact on Pgap differs

among different forest types.

In coniferous spruce plots, scan angle has a large impact on the measured

Pgap, both from airborne LiDAR (Fig 4.5) and from DHP (Fig 4.3). This

demonstrates the anisotropy of Pgap in coniferous spruce plots. From

0◦-20◦, the Pgap decreases rapidly with increasing scan angle (Fig 4.3

and Fig 4.5). Maximum Pgap is observed in nadir direction. This finding

is consistent with previous research in a mountain pine forest using

terrestrial LiDAR and DHP (Danson et al., 2007), and in a lodgepole pine

plot (Canham et al., 1990) also using DHP. This rapid decrease of Pgap
to scan angle in coniferous plots could be explained by the tall conical

crown shape and frequent between-crown openings in these forests
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(Canham et al., 1990).

Unlike in coniferous plots, scan angle has a negligible impact in dense

deciduous beech forest (i.e. deciduous forests behave as a isotropic sur-

face). For example, the Pgap value at ground level is relatively insensitive

to scan angle in plots T4-23 and B1 (Fig 4.4). A possible reason may

be the different canopy architecture due to leaf shape and leaf angle,

between deciduous and coniferous forest types. The sensitivity of Pgap
with scan angle in spruce plots, appears similar to the spherical or erecto-

phile leaf angle distribution case (Fig 4.10) (de Wit, 1965), implying the

spruce leaves and shoots grow more vertically than horizontally. This

can be observed from Fig 4.1 b. While in dense beech plots, stability

of Pgap to scan angle appears similar to the planophile or plagiophile

leaf angle distribution case (de Wit, 1965) (Fig 4.10), when beech leaves

tend to grow more horizontally than vertically and have small inclina-

tion angles. This can also be observed from Fig 4.1 a. Other sources

of the difference between coniferous and deciduous plots may be the

anisotropy of clumping index, i.e., λ is not constant in different scan

angles (Rautiainen and Stenberg, 2015). However, when between-crown

gaps arise in deciduous plots, the scan angle has a substantial impact

(for example, the Pgap value for plots T4-39 and T2-52 in Fig 4.4). This

appears similar to the findings in Piayda et al. (2015), where measured

Pgap decreased from 0.8 at nadir to 0.5 at 60◦ angle, in a savanna-type

cork oak forest.

A further useful finding from this research is the strong positive correla-

tion (r=0.71, p<0.001) between nadir Pgap and Pgap difference (Fig 4.8).

This supports the previous assumption, that LiDAR scan angle impact

on Pgap is more severe in plots with more gaps (either within-crown or

between-crown gaps), less important in plots with few gaps. It also offers

an easy and straight-forward approach to predict how much the Pgap
value of a plot is impacted by scan angle. If a plot is more “patchy”, such

as discontinuous coniferous plots or young sparse deciduous plantation,

it can be predicted that the nadir Pgap will be quite different from (higher

than) off-nadir Pgap using LiDAR. Although there is no directly related

LiDAR research, using DHP method, measured Pgap was found to be

sensitive to and decreasing with increasing zenith angle in five decidu-

ous plots after selection cutting (Beaudet and Messier, 2002). In contrast,
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Figure 4.10: Theoretical Pgap value change with zenith angle using pre-
defined planophile, plagiophile, spherical and erectophile leaf angle
distribution (de Wit 1965), when LAI = 1 and λ =1 (ALIA: average leaf
inclination angle)

measured Pgap was much more stable to zenith angle in 5 paired control

plots without cutting (Beaudet and Messier, 2002).

Statistical results in Table 4.2 suggests sensitivity to LiDAR scan angle

is the trend for most plots in this research. This may be caused by

the widespread gap existence in this study area, at 20 m radius plot

level (Lausch et al., 2013). Canopy gaps are quite common in woodland

ecosystems due to tree spacing, blowdowns, tree mortality and other

factors (Canham et al., 1990; Asner, 1998). Especially in this study area,

in order to protect wildlife biodiversity and the natural dynamic process

in the park, managers employed a non-intervention strategy in at least

75% of the park (Heurich et al., 2011). Wind-throw and bark beetle

infestation also adds to the formation of gaps.

4.3 Scan angle impact on the vertical Pgap profile in different

forest types

The capability of mapping large extent vertical Pgap profile is a major

advantage of airborne LiDAR, compared to other passive optical sensors,

ground-based DHP method, or terrestrial LiDAR. However, the results in

this study has demonstrated the sensitivity and possible large difference

of vertical Pgap profiles from different LiDAR scan angles.
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Similar to Pgap, the vertical Pgap profile is also more sensitive to LiDAR

scan angle in plots with more gaps such as discontinuous coniferous

plots and deciduous plots with between crown gaps (Fig 4.9). At all scan

angles, vertical Pgap profile from LiDAR is decreasing monotonically

from canopy surface down to ground, due to longer path of interception

by photosynthetic and non-photosynthetic elements. But when analyzing

at each height level, there is much uncertainty regarding how much the

difference is between Pgap from different scan angles. For instance, in

beech plot B1 and T2-52, vertical Pgap profiles are increasingly diverging

from canopy top to ground (Fig 4.4). But in plot T4-39, vertical Pgap
profiles first diverge from canopy top to 25m above ground, and then

start converging to each other. Without ground truth data on vertical

Pgap profiles, it is not clear what causes this variability, perhaps due

to the vertical heterogeneity of leaf area density, leaf spatial distribu-

tion and leaf angle inclination at different height levels. Further study

could investigate this with the ancillary terrestrial LiDAR data. When

in mix plots, the uncertainty in vertical Pgap profiles’ divergence and

convergence happens more, as shown in plot T4-21, T2-41 and 3ad02

(Fig 4.6). There is a high probability that the mixing of different species

and canopy architectures adds to the vertical structure heterogeneity.

This may lead to the uneven scan angle effect in different height levels.

4.4 Implications

First of all, LiDAR derived Pgap accuracy changes with scan angles. This

result can provide some guidance on LiDAR flight design for LAI mapping.

A growing number of studies have applied airborne LiDAR to map LAI

(Riaño et al., 2004; Morsdorf et al., 2006; Solberg et al., 2009; Alonzo

et al., 2015). The gap fraction method was shown to be more accurate

and robust than allometric methods (Richardson et al., 2009). Therefore,

an accurate measurement of Pgap is critical to accurate estimation of LAI.

According to results in 3.4.1, when the LiDAR scan angle strongly deviates

from 0◦, the agreement between LiDAR Pgap and DHP Pgap became worse

(Fig 4.7 d)). This implies that further LAI mapping should avoid LiDAR

flight at large off-nadir scan angles. Because of the limited number of

plots with DHP, a threshold scan angle cannot be recommended and
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further research is required to investigate a threshold scan angle to meet

a pre-defined (required) LAI accuracy.

Second, the results of this study demonstrated that scan angle has differ-

ent impacts on Pgap and vertical Pgap profiles in coniferous, deciduous

and mix plots. This leads us to question the commonly used spherical

leaf angle distribution assumption in previous research (Richardson et al.,

2009; Tang et al., 2012). On one hand, a small scan angle is preferred

to achieve more accurate Pgap. On the other hand, a small scan angle is

far from the 57.5◦ angle, when the leaf projection function G(θ) can be

considered as almost independent on leaf inclination (G(θ)=0.5) (Wilson,

1963). This implies special consideration and estimation of G(θ) has

to be taken for more accurate LAI estimation. Some researchers have

estimated G(θ) from ground collected DHP (Korhonen et al., 2011) or cal-

ibrated the airborne LAI model through regression of LiDAR Pgap against

ground measurements of LAI (Solberg et al., 2009). Another possible

solution, would be direct retrieval of leaf angle distribution g(θ) and leaf

projection function G(θ) from airborne LiDAR data (Ma et al., 2017).

The scan angle impact results on vertical Pgap profile, also points out the

importance of correcting for scan angle effect in forest vertical structure

analysis. For most research utilizing LiDAR to quantify forest vertical

structure, vertical Pgap profile is a prerequisite product, and then vertical

LAI profile is resolved based on the Beer-Lambert law. In recent years,

more quantitative metrics have emerged from the vertical LAI profile,

including vertical distribution ratio (Goetz et al., 2007), canopy Shannon

index (Stark et al., 2012), canopy strata (Wilkes et al., 2015a). Therefore,

without correcting for scan angle impact on vertical Pgap profiles, all

the subsequent vertical LAI profile and derivative metrics may not be

accurate or informative, especially when comparing datasets acquired

from multiple LiDAR flights with different scan angles.

More broadly, Pgap is one of the reasons causing canopy reflectance

variability. For coarse spatial resolution instruments, the existence of

within-crown and between-crown gaps expose understory and bare soil

to passive sensors, and cause spectral mixture in the signal (Asner,

1998). The sensitivity of Pgap to scan angle, leads to different portions

of understory and soil background entering the sensor field of view.
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This may be one of the reasons causing anisotropy behavior of canopy

reflectance, and angular dependence of vegetation indices (Myneni et al.,

1995; Middleton et al., 2016), as well as biochemical property inversion

results (Kempeneers et al., 2008). The potential of LiDAR to retrieve

leaf projection function G(θ) and model Pgap for any angle may help

resolve the anisotropy behavior of canopy reflectance (especially for

conifers), as well as correct the scan angle effect and refine the inversion

of biophysical and biochemical properties from passive multispectral or

hyperspectral data in the future.

5. Conclusion

In this research, the impact of off-nadir scan angle on Pgap and vertical

Pgap profile was evaluated, for several forest types. Pgap and vertical

Pgap profile were first calculated from multi angle airborne LiDAR data.

Digital hemispherical photographs (DHP) were then used as references

for validation. The results showed that angular Pgap from airborne

LiDAR correlates well with angular Pgap from DHP. But underestimation

of Pgap from LiDAR amplifies at large off-nadir scan angle. The scan

angle impact on Pgap and vertical Pgap profiles differed among different

forest types. The impact was more severe for plots with discontinuous

or sparse canopies. It was suggested that large off-nadir scan angle of

airborne LiDAR should be avoided to ensure a more accurate Pgap and

LAI estimation. The angular dependence of vertical Pgap profiles should

be accounted for, to improve the retrieval of LAI profiles, and other

quantitative canopy structural metrics.
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5Topographic normalization effect

on vertical LAI profile *

*This chapter is based on: Liu, J., Skidmore, A., Heurich, M., Wang, T., 2017. Significant
effect of topographic normalization of airborne LiDAR data on the retrieval of plant area
index profile in mountainous forests. ISPRS Journal of Photogrammetry and Remote
Sensing, 132, 77-87.
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Abstract

As an important metric for describing vertical forest structure, the ver-

tical leaf area index (LAI) profile is used for many applications including

carbon modelling and wildlife habitat assessment. Vertical LAI profiles

can be estimated with the vertically resolved gap fraction from airborne

LiDAR data. Most research utilizes a height normalization algorithm

to retrieve local or relative height by assuming the terrain to be flat.

However, for many forests this assumption is not valid. In this research,

the effect of topographic normalization of airborne LiDAR data on the

retrieval of vertical LAI profile was studied in a mountainous forest area

in Germany. Results show that, although individual tree height may

be retained after topographic normalization, the spatial arrangement

of trees is changed. Specifically, topographic normalization vertically

condenses and distorts the vertical LAI profile, which consequently alters

the distribution pattern of leaf area density in space. This effect becomes

more evident as the slope increases. Furthermore, topographic normal-

ization may also undermine the complexity (i.e., canopy layer number

and entropy) of the vertical LAI profile. The decrease in vertical LAI

profile complexity is not solely determined by local topography, but is

determined by the interaction between local topography and the spatial

distribution of each tree. This research demonstrates that when calculat-

ing the vertical LAI profile from airborne LiDAR data, local topography

needs to be taken into account. We therefore suggest that for ecological

applications, such as vertical forest structure analysis and modeling of

biodiversity, topographic normalization should not be applied in non-flat

areas when using LiDAR data.
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1. Introduction

A vertical leaf area index (LAI) profile is a quantitative description of

how leaves are distributed vertically, and is expressed as a function of

height (McElhinny et al., 2005; Bergen et al., 2009). In forest ecosystems,

the vertical distribution of leaves influence several processes, such as

radiation interception (Parker et al., 2001), patterns of infiltration and

evapotranspiration (Farid et al., 2008), soil erosion (Nanko et al., 2008),

and nutrient cycling (Tateno et al., 2004). In forest inventory, vertical

LAI profiles have been successfully used to estimate variables such as

biomass growth (Stark et al., 2012), canopy height (Lefsky et al., 1999),

and basal area (Lefsky et al., 1999), all important in forest inventory and

stand management. In forest ecology studies, vertical LAI profiles also

play an important role. The vertical distribution of foliage is one of the

most widely used variables in forest biodiversity research, especially in

wildlife habitat modeling, such as for bird and bat species (MacArthur

and MacArthur, 1961; Brokaw and Lent, 1999; Goetz et al., 2007; Vierling

et al., 2008; Muller et al., 2013). Vertical LAI profiles have also been used

for carbon stock modeling (Kotchenova et al., 2004; Lefsky et al., 2005;

Shugart et al., 2010), and mapping of forest succession stages (Falkowski

et al., 2009).

Canopy layering derived from a vertical LAI profile is a useful variable

in forest ecology. Canopy layering refers to the clumped vertical distri-

bution of vegetation within different height categories (Hollinger, 1989).

The number of canopy layers is a categorical variable describing the com-

plexity of forest vertical structure. It is a vital attribute that determines

habitat quality and quantity for many forest-dwelling organisms (Allee

et al., 1949; Franklin and Spies, 1991; Humphrey et al., 1999). In addition

to canopy layering, the entropy of a vertical LAI profile is a continuous

variable describing the complexity of the vertical forest structure. Some

researchers have used Shannon’s entropy to measure the vertical com-

plexity of a forest (MacArthur and MacArthur, 1961; Treuhaft et al., 2009;

Stark et al., 2012), and further used it to predict biodiversity (MacArthur

and MacArthur, 1961). Large entropy values indicate a more continuous

leaf area density across the profile (Stark et al., 2012). According to

the niche differentiation concept, more species could then be supported
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through partitioned niche space (Tews et al., 2004). A larger entropy

value may thus imply that more niches become available for biodiversity

(Bergen et al., 2009).

Mapping vertical LAI profiles is beyond the capability of traditional

airborne and spaceborne optical remote sensing techniques (Weishampel

et al., 2000; Morsdorf et al., 2010). However, LiDAR technology has the

advantage of estimating forest vertical structure (Hyde et al., 2005). Both

waveform LiDAR (Harding et al., 2001; Lindberg et al., 2012; Tang et al.,

2012) and discrete return LiDAR (Coops et al., 2007; Hilker et al., 2010)

have been successfully used to calculate gap fraction (Pgap) and LAI

profiles. This has been generally conducted through estimates of the

vertically resolved Pgap from airborne LiDAR data. The cumulative LAI

profile can then be estimated as a function of height from the vertical

Pgap profile based on the Beer’s law (Lovell et al., 2003; Tang et al., 2012).

The derivative of the cumulative LAI profile is then attained and serves

as the vertical LAI profile.

In many previous studies, prior to calculating vertical LAI profiles from

airborne LiDAR data, a topographic normalization was conducted (Coops

et al., 2007; Hilker et al., 2010; Palace et al., 2015). A normalized point

cloud is generated by subtracting the ground elevation from the original

ellipsoidal height (sea level height) of each return. Thus, a local or relat-

ive height is established. This process is quite similar to the generation

of normalized digital surface model (nDSM) or canopy height model

(CHM), through subtracting a digital terrain model (DTM) from a digital

surface model (DSM). Both the normalized point cloud or normalized

raster image nDSM are representations of objects rising from the terrain

approximately put on a plane (Haala and Brenner, 1999). However, local

topographic change is neglected, and a flat local terrain assumption is

implied for all the vegetation above. Unfortunately, in mountainous

forests, this assumption is often not valid. Previous research has shown

that neglecting topography will cause errors to LiDAR derived individual

tree metrics such as canopy height (up to 1.78 m) and tree top location

(up to 1.80 m), especially for trees with an irregular crown pattern and

weak apical dominance (Khosravipour et al., 2015; Véga and Durrieu,

2011). To date, no research has been conducted examining how topo-

graphic normalization will affect the retrieval of vertical LAI profiles and
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its derived metrics.

An illustration of how topography affects the vertical leaf area distribu-

tion can be seen in Fig 5.1. Tree shape and height are consistent across all

three plots, while the local topography as well as the spatial distribution

of trees are different. Since the total vegetation remains consistent in all

three plots, the total LAI of these three plots is the same. However, as

the leaf area has different vertical distribution, the vertical LAI profiles

are also different. In this case, the direct and diffuse radiation distribu-

tion, absorption of photosynthetically active radiation (PAR), and canopy

reflectance in these plots are also different (Wang and Li, 2013). The

dissimilar vertical distribution of direct radiation and diffuse radiation

further leads to different gross primary production (GPP) accumulations

and vertical biomass accumulation (Kotchenova et al., 2004). Therefore,

ecologically, the three plots in Fig 5.1 have different radiation regimes

and local climate. However, using topographic normalization, plot a)
and b) will be normalized and become equivalent to plot c) regarding

their vertical LAI profiles.

Figure 5.1: Schematic illustration of how local topography affects the
vertical leaf area distribution. Three plots (a), (b), and (c) with the same
trees and leaf area but different spatial distribution of leaves on different
local topography conditions. Differences in the vertical structure of the
three plots are eliminated after topographic normalization

The objectives of this chapter are to 1) determine the difference between

vertical LAI profiles before and after topographic normalization of LiDAR

data; 2) evaluate how the metrics derived from the vertical LAI profile

(i.e., vertical extent, canopy layer number and entropy) change due to

topographic normalization, and 3) explore the relationship between the

degree of change and local topography.
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2. Materials

2.1 Study Area

The study area is located in the Bavarian Forest National Park, a temperate

forest in southeastern Germany. This park was chosen as the study area

due to its diverse forest structure and airborne LiDAR data availability.

The park covers an area of 243 km2. The topography is largely comprised

of gentle slopes, with the elevation ranging from about 600 to 1450

m (Fig 5.2). The main land cover classes include coniferous forests

(young, medium, mature), deciduous forests (young, medium, mature),

mixed forests (young, medium, mature), meadows (cultivated, natural,

wetlands), lying deadwood, and standing deadwood areas. Dominant

tree species in the study area are Norway spruce (Picea abies) (67%) and

European beech (Fagus sylvatica) (24.5%). The study area encompasses

a mixture of forest types with high structural complexity, Above 1100

m subalpine spruce forests are found containing Norway spruce and

occasionally mountain ash (Sorbus aucuparia). Between 600 m and 1100

m, mature mountain mixed forests with Norway spruce, white fir (Abies

alba), European beech and sycamore maple (Acer pseudoplatanus) occur.

Wet depressions in the valleys harbor highly mixed forest with Norway

spruce, mountain ash and birches (Betula spp.) (Heurich et al., 2010).

2.2 Plot Selection

Vertical LAI profiles are generally calculated and analyzed at plot level.

In this study, 33 square plots of size 30m by 30m were selected from

293 established plots along four transects, spanning from the valleys to

the mountain tops, to represent the different types of forest structure

in the national park (Bässler et al., 2008) (Fig 5.2). A stratified random

sampling strategy based on aerial photo interpretation and previous

forest inventory information was employed. First, based on tree species,

the 293 plots were stratified into spruce dominated plots, beech domin-

ated plots, and mixed plots. The mixed plots contained both spruce and

beech, with also some other tree species like birch, fir, maple etc. Then,

the plots were further stratified based on slope gradient and standard

102



2. Materials

Figure 5.2: Study area (Bavarian Forest National Park) location in Germany
and the location of the 33 selected plots

deviation of slope gradient (0◦-3◦, 3◦-6◦, 6◦-9◦,...). The 33 selected plots

encompass a range of species composition, forest structures, and local

topography conditions. Details of each plot are presented in Table 5.1.

All subsequent analysis in this research was conducted in these 33 plots.

2.3 Airborne LiDAR data

From July 24 to 27, 2012, an airborne laser scanning campaign was

conducted across the Bavarian Forest National Park by Milan Flug GmbH.

The sensor on board was a Riegl LMS-Q680i laser scanner (wavelength

1550 nm; pulse repetition frequency 350 KHz; nominal point density

30-40 points per m2; nominal footprint size 0.32m; flight height 650 m

above ground). Both raw full-waveform data and point cloud data from

Gaussian decomposition (Wagner et al., 2006) were delivered by Milan

Flug. The discrete multiple return point cloud data was used for further

analysis in this experiment. The point cloud composed of planimetric
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Table 5.1: Basic information of the 33 plots in the study area

Plot Name Forest Type Slope [◦] Std of Slope [◦] Elevation
Range [m]

T4-39 Beech 11.65 3.1 6.89
T2-47 Beech 12.77 3.49 8.41
T3-39 Beech 13.4 4.52 7.31
T2-49 Beech 14.05 4.25 9.96
T2-2 Beech 14.18 5.54 9
T4-54 Beech 15.64 3.72 9.28
T2-52 Beech 17.69 4.68 12.39
T3-32 Beech 17.83 4.14 11.61
T3-30 Beech 18.1 5.89 12.53
T3-25 Mix 9.88 3.25 6.64
T4-1 Mix 10.41 3.63 5.68
T4-35 Mix 10.95 5.3 5.42
T2-41 Mix 11.25 4.95 6.07
T1-49 Mix 11.7 5.83 5.83
T2-12 Mix 11.92 3.5 7.02
T1-29 Mix 12.17 4.88 7.61
T2-20 Mix 13.09 3.66 9.59
T3-40 Mix 15.92 6.1 9.9
T2-35 Mix 16.27 3.92 11.86
T1-57 Mix 19.48 6.94 12.59
T4-51 Mix 21.35 6.22 12.77
T3-28 Mix 27.8 13.53 23.88
T2-23 Spruce 6.74 3.49 3.78
T3-5 Spruce 8.15 3.88 3.84
T4-81 Spruce 11.45 3.94 8.03
T1-5 Spruce 11.68 4.12 8.23
T3-50 Spruce 11.92 6.42 7.22
T1-52 Spruce 12.73 4.5 8.45
T4-59 Spruce 12.99 3.66 8.51
T3-47 Spruce 18.26 8.24 11.84
T1-63 Spruce 18.67 6.06 13.61
T1-61 Spruce 21.62 6.85 16.07
T2-65 Spruce 27.59 7.21 20.51

Std of Slope: standard deviation of slope in the plot
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coordinates (x and y) in the German local DHDN projection system

(EPSG:31468), ellipsoidal heights (z), echo width, return intensity, return

number, number of total returns for a laser shot, and GPS timestamp

(of the return). In the preprocessing of LiDAR data, spurious isolated

returns have been removed through noise filtering using the LAStools

software (Isenburg, 2012).

3. Method

In this experiment, the vertical LAI profile and its derived metrics were

calculated from both LiDAR point cloud data with and without topo-

graphic normalization. The results were then compared.

3.1 Separation of ground and vegetation returns

To calculate the vertical LAI profile, separation of ground returns versus

non-ground (vegetation) returns is necessary. In this research, the separ-

ation of ground versus non-ground (vegetation) returns was carried out

using the Cloth Simulation Filtering (CSF) algorithm (Zhang et al., 2016).

This is a method integrated in the open source software Cloud Compare

(Girardeau-Montaut, 2015) and hence accessible to any user (Zhang et al.,

2016), which separates out the ground points by simulating a physical

process where a virtual cloth drops down to an inverted (upside-down)

point cloud. There are limited parameters in the CSF algorithm. In this

study, the “relief scene” was selected, the cloth resolution was set to 0.5,

and the classification threshold was maintained at the default value of

0.5. In order to ensure classification accuracy, separation results were

visually checked for each plot. Spurious points and errors were manually

corrected by changing the classified label of the points.

3.2 Topographic normalization

All ground returns were used to calculate a Digital Terrain Model (DTM)

using an inverse distance weighting interpolation method, one of the

commonly used interpolation routines with a high accuracy (Su and Bork,

2006; Bater and Coops, 2009). The topographic surface elevation was
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then subtracted from all non-ground return heights. Thus, the relative

height to the corresponding perpendicular ground location, instead of

the ellipsoidal height to the sea level, was achieved.

Hlocal = Hraw − Eground (5.1)

where Hlocal is the raw ellipsoidal height of the vegetation point to the

sea level, Eground is the elevation height of the ground point with the

same x, y location as the vegetation point, Hlocal is the resulting local

height of the vegetation point.

3.3 Calculation of vertical LAI profile

The vertical LAI profile was then calculated based on the vertical Pgap
profile of the canopy (Lovell et al., 2003; Coops et al., 2007). Owing to the

inability to resolve the leaf angle distribution, clumping effect and woody

materials effect, the vertical LAI profile derived here is more precisely

referred to as an “apparent” vertical plant area index profile (Coops et al.,

2007). Using discrete return LiDAR, the probability of a gap from the top

of the canopy to a given height h, can be estimated through,

Pgap(h) = 1− Nvege(h)
Ntotal

(5.2)

where Nvege(h) is the number of laser pulses intercepted by vegetation

elements down to a height h, and Ntotal is the total number of emitted

laser pulses (Lovell et al., 2003; Riaño et al., 2004; Coops et al., 2007).

The cumulative LAI profile from the top of the canopy down to a height

h is then given by,

L(h) = −ln(Pgap(h)) (5.3)

where the first derivative of L(h) is the vertical LAI profile. In this study,

the vertical LAI profile was calculated using 0.5 m height bins (i.e., 0.5 m

height intervals in the vertical LAI profile). Other bin sizes, such as 1 m

or 2 m, could also be used, leading to LAI profiles of a different vertical

resolution.
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3.4 Metrics derived from the vertical LAI profile

To compare the results of vertical LAI profiles, three metrics derived

from the vertical LAI profiles were also calculated and compared.

* Vertical Extent

VE = Hmax −Hmin (5.4)

where Hmax is the maximum height of the vertical LAI profile, and Hmin
is the minimum height of the vertical LAI profile. This metric describes

the vertical extent of the foliage distribution. The higher this metric

is, the wider and more spreading the leaf area vertical distribution is.

The smaller this metric is, the more vertically condensed the leaf area

distribution is.

* Canopy Layer Number

Canopy layer number is a categorical metric derived from the vertical LAI

profile and can be used to quantify the complexity of the vertical forest

structure. The higher the canopy layer number is, the more complex

the vertical LAI profile and vertical forest structure is. Canopy layer

has been calculated in other research using either a pre-defined height

threshold (Whitehurst et al., 2013; Latifi et al., 2015) or automatic determ-

ination (Leiterer et al., 2015; Wilkes et al., 2015a). The pre-defined height

threshold method limits the determination of canopy layers to a max-

imum of three layers (i.e., under-story, middle-story, and upper-story). In

order to illustrate the subtle differences between plots of multiple (4, 5 or

more) layers, we therefore followed the automatic method (Wilkes et al.,

2015a). Firstly, the vertical LAI profile was smoothed to remove signal

noise. Secondly, the local maximum location of the vertical LAI profile

was calculated to be the location of each canopy layer. And thirdly, layers

with a leaf area of less than 5% of the maximum leaf area layer were

removed. Neighboring layers with a height distance of less than 2 meters

and leaf area density differences of less than 5% were merged into one

layer.

In the smoothing of the vertical LAI profile, Gaussian smoothing (σ = 0.8)

was used instead of the nonparametric cubic spline smoothing (Muss
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et al., 2011; Wilkes et al., 2015a). Gaussian smoothing was chosen be-

cause the results of our experiment showed that it could best preserve

the differences between vertical LAI profiles of point clouds with and

without topographic normalization. Nonparametric cubic spline smooth-

ing, on the other hand, severely over-smoothed the two profiles and

eliminated their differences.

* Entropy

In addition to the canopy layer number, the entropy of the vertical LAI

profile was also calculated. In information theory, Shannon’s entropy

is a measure of uncertainty and information formulated in terms of

probability theory (Rrnyi, 1961). In geoscience, it has been used to meas-

ure the degree of spatial concentration or dispersion of a geophysical

variable among n spatial units/zones (wards) (Foody, 1996; Jat et al.,

2008). Unlike the categorical metric “canopy layer number”, the entropy

is a continuous index describing the vertical complexity of leaf area

distribution. Compared to the canopy layer number, the entropy metric

is more generally applicable and comparable across different research

areas and different datasets, as well as less subjective to definitions.

Similar as for the canopy layer number calculation, Gaussian smoothing

(σ = 0.8) was applied to the raw vertical LAI profile prior to entropy

calculation, to reduce noise. Then, entropy was calculated through

Entropy =
∑
i
−pilnpi (5.5)

where pi is the proportion of leaf area in height bin i. The entropy

value increases with the vertical extent of the LAI profile and also with

a more equal distribution of leaf area density across the profile (Stark

et al., 2012). Large entropy values indicate a more continuous and

complex distribution of the vertical LAI profile in the plot and potentially

a more complex vertical structure as well as more niche space available

to support diverse species in the plot.

3.5 Statistical analysis

To evaluate whether topographic normalization would change the vertical

LAI profile and its complexity, three two-sample t-tests were performed

using the results of the vertical extent, the canopy layer number, and
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the entropy of the vertical LAI profile, respectively. The null hypothesis

is that there is no statistically significant difference between the above-

mentioned three metrics derived from either the topographic normalized

point cloud or the original point cloud data.

In addition, in order to explore how local topography affects the vertical

LAI profile after topographic normalization, linear regression was con-

ducted between the degree of vertical LAI profile change (i.e., vertical

extent change, canopy layer number change, and entropy change), and

parameters (i.e., mean slope and standard deviation of slope) represent-

ing local topography. Mean slope was utilized to represent the steepness

of the local topography. Standard deviation of slope was employed

to describe how rough the local topography was. This is an effective

measure of surface roughness, as it is simple to calculate, detects fine

scale/regional relief, and performs at a variety of scales (Grohmann et al.,

2011).

4. Results

4.1 Visual comparison

Examples of vertical LAI profiles for six plots with different local topo-

graphy (increasing average slope and standard deviation of slope) are

shown in Fig 5.3. There are many differences between the two vertical

LAI profiles with and without topographic normalization, respectively.

Firstly, the vertical extent of the LAI distribution is different. Before

topographic normalization, the LAI profile has a wider vertical extent

and a more continuous distribution. After normalization, the LAI profile

has a shorter vertical extent and appears to be condensed. Secondly, the

location and value of maximum leaf area density are also different. After

topographic normalization, the maximum leaf area density becomes

much higher than before (plots T2-23 and T2-65). Altogether, with in-

creasing slope and topography roughness (standard deviation of slope),

the vertical condensing effect is augmented.

In addition, regarding the curve shape of each vertical LAI profile, there

are differences (i.e., plots T2-23, T2-49, T4-51, and T2-65), with vertical
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LAI profiles having a very different trend, number of modes, and location

of modes. Generally, after normalization, the mode number is reduced.

Figure 5.3: Comparison between the vertical LAI profiles with and without
topographic normalization (bar: raw LAI profile; curve: smoothed LAI
profile).
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An example (plot T3-28) of the canopy layer number determination

from the vertical LAI profile is shown in Fig 5.4. Before topographic

normalization, six layers are detected. Except for the upper two layers,

the lower four layers have a high leaf area concentration and large gaps

between them. After topographic normalization, only three layers are

detected. And a large gap can only be discerned between the bottom

layer and the upper layers.

Figure 5.4: Comparison between canopy layers detected from vertical LAI
profiles with (in green) and without (in blue) topographic normalization

4.2 Quantitative comparison

The results of derived metrics from the vertical LAI profiles of each

plot are detailed in Table 5.2. After topographic normalization, the

vertical extent of the LAI profile decreases for all plots. The extent of this

decrease ranges from 2 m to 11 m. Since the plot size is only 30 m by 30

m, this decrease is quite significant. This shows that after topographic

normalization, the LAI profile is vertically condensed.

The other two metrics, entropy and canopy layer number, describe the

complexity of the vertical LAI profile and thus the complexity of the forest

vertical structure of each plot. For the continuous metric “entropy”,

31 out of 33 plots have a decreased entropy value after topographic

normalization. For the categorical metric “canopy layer number”, out of

the 33 plots, 2 plots have more layers, 7 plots have the same number of

layers, while 24 plots have less layers after topographic normalization.

Analyzing the average of all plots, before topographic normalization, the

averaged entropy is 3.81, while the average number of detected layers is

111



5. Topographic normalization effect on vertical LAI profile

5.59. However, after topographic normalization, the averaged entropy

value decreases to 3.49, and average number of detected layers decreases

to 4.09.

Table 5.2: The vertical complexity of canopy structure derived from the
vertical LAI profiles with (TN) and without topographic normalization
(noTN) and their differences (diff)

Plot
Name

Forest
Type

Vertical Extent [m] Canopy Layer Number Entropy
noTN TN diff noTN TN diff noTN TN diff

T4-39 Beech 47 44 3 9 7 2 4.3 4.3 0
T2-47 Beech 39 33 6 6 5 1 3.87 3.63 0.24
T3-39 Beech 37 31 6 3 3 0 3.77 3.62 0.15
T2-49 Beech 37 32 5 8 5 3 4.11 3.92 0.19
T2-2 Beech 41 36 5 5 4 1 3.81 3.63 0.18
T4-54 Beech 35 27 8 4 5 -1 3.72 3.55 0.17
T2-52 Beech 39 28 11 7 3 4 3.99 3.6 0.39
T3-32 Beech 40 34 6 5 5 0 4.09 3.92 0.17
T3-30 Beech 41 33 8 6 4 2 3.83 3.73 0.1
T3-25 Mix 50 45 5 7 6 1 4.18 4.16 0.02
T4-1 Mix 43 38 5 6 5 1 4.18 4.07 0.11
T4-35 Mix 45 42 3 10 7 3 4.11 4.07 0.04
T2-41 Mix 39 35 4 7 6 1 4.05 3.85 0.2
T1-49 Mix 32 30 2 5 5 0 3.88 3.76 0.12
T2-12 Mix 33 27 6 5 5 0 3.83 3.71 0.12
T1-29 Mix 35 30 5 5 4 1 3.72 3.53 0.19
T2-20 Mix 39 36 3 5 2 3 3.64 3.57 0.07
T3-40 Mix 37 35 2 6 5 1 3.86 3.83 0.03
T2-35 Mix 46 41 5 8 6 2 4.22 4.18 0.04
T1-57 Mix 34 25 9 6 3 3 3.68 3.35 0.33
T4-51 Mix 50 41 9 10 7 3 4.24 3.93 0.31
T3-28 Mix 43 35 8 6 3 3 4.02 3.7 0.32
T2-23 Spruce 31 29 2 3 1 2 3.06 2.4 0.66
T3-5 Spruce 14 12 2 1 1 0 2.98 2.88 0.1
T4-81 Spruce 15 12 3 1 1 0 3.01 1.86 1.15
T1-5 Spruce 43 40 3 6 7 -1 4.18 4.18 0
T3-50 Spruce 9 7 2 2 1 1 2.52 1.76 0.76
T1-52 Spruce 40 33 7 8 3 5 3.77 2.66 1.11
T4-59 Spruce 40 37 3 6 4 2 4.15 3.87 0.28
T3-47 Spruce 40 29 11 8 7 1 4.02 3.6 0.42
T1-63 Spruce 31 22 9 2 2 0 3.36 2.8 0.56
T1-61 Spruce 34 24 10 6 2 4 3.94 3.02 0.92
T2-65 Spruce 39 28 11 6 4 2 3.98 3.45 0.53

The t value of the three two sample t-tests is shown in Table 5.3. In this

study, with 64 degrees of freedom (33 plots), a t value greater than 1.669

or lower than -1.669 allows us to reject the null hypothesis at a 95%

confidence level. For all three metrics (i.e., the vertical extent, canopy

layer number, and the entropy of vertical LAI profiles), the t values are

greater than 1.669. Therefore, all three metrics are significantly higher,
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statistically, before topographic normalization than after topographic

normalization.

Table 5.3: Summary of the two sample t-test statistics for canopy vertical
complexity metrics with and without topographic normalization

t value
vertical extent 2.51
canopy layer number 2.88
entropy 2.28

The statistical results between the change of vertical LAI profile com-

plexity and local topography condition are shown in Fig 5.5. The mean

slope is found to have a stronger statistical relationship with the de-

crease of vertical extent of LAI profile, than the standard deviation of

slope (topography roughness). With increasing mean slope, topographic

normalization causes a greater decrease in the vertical extent.

Figure 5.5: (a) Relationship between the decrease of vertical extent and
mean slope; (b) Relationship between the decrease of vertical extent and
standard deviation of slope

For most plots, the canopy layer number decreases after topographic nor-

malization (Fig 5.6). However, while the canopy layer number decreases,

there is no significant statistical correlation between the decrease in

canopy layer number and either the mean slope (Fig 5.6 a)) or the stand-

ard deviation of slope (Fig 5.6 b)). Similar patterns are observed for the

entropy of the vertical LAI profile. For almost all plots, the entropy de-

creases after topographic normalization. However, there is no significant

statistical correlation between the degree of entropy decrease and either

mean slope (Fig 5.6 c)) or standard deviation of slope (Fig 5.6 d)).
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Figure 5.6: Relationship between a) canopy layer number decrease and
mean slope, b)canopy layer number decrease and standard deviation
of slope, c) entropy decrease and mean slope, d) entropy decrease and
standard deviation of slope

5. Discussion and conclusion

Our study shows that topographic normalization significantly changes

the vertical extent and curve shape of a vertical LAI profile. After to-

pographic normalization, the spatial distribution of the original LiDAR

point cloud will result in all trees being relocated on a flat plane. Al-

though the height of each individual tree maybe maintained, the spatial

arrangement changes. If the local topography is not flat, trees that are

“downhill” or in the “basin” will “rise” in the corrected plot, while trees

originally “uphill” or at the “summit” will “sink”, comparatively, in the

new plot (Khosravipour et al., 2015). This effect can be clearly seen in Fig

5.7, where the original LiDAR point cloud and topographic normalized

point cloud are both depicted. Previous research has found that both

tree crown shape and tree top location may be systematically distorted

in this process of topographic normalization (Khosravipour et al., 2015).

This research proves that the vertical LAI profile will also be distorted

and vertically condensed, and that the maximum leaf area density will
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be increased.

Figure 5.7: Comparison between point clouds of plot T3-28 with and
without topographic normalization, respectively. (Same viewing angle
and azimuth angle, red points are detected ground returns)

The results of the two-sample t-tests prove that after topographic nor-

malization, the complexity of vertical LAI profiles (described by canopy

layer number and entropy) also decreases. This means that topographic

normalization reduces the complexity of the original forest vertical struc-

ture. However, the degree of change in structural complexity is not

linearly related to topographic variables such as mean slope and stand-

ard deviation of slope. This indicates that, as the vertical LAI profile’s

complexity decreases, the degree of change is not solely determined by

the steepness and roughness of the local topography. Contrary to com-

mon expectation, more complex topography does not necessarily lead

to more change. Fig 5.8 shows a theoretical case, where two plots have

exactly the same local topography and the same vegetation. However,

how the plants are spatially distributed across the plots is different. This

leads to a different vertical structure, different vertical LAI profiles, and

different canopy layers. But after topographic normalization, the new

vertical LAI profiles are the same. As a result, the decrease in the vertical

LAI profiles’ complexity differs. This example clearly shows that the

change of the complexity of vertical LAI profile can be different even

when the local topography is the same.

Therefore, it can be concluded that, the local topographic condition

adds to the complexity of the forest vertical structure. In other words,
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topographic normalization can undermine the complexity of the vertical

LAI profiles. However, the degree of this change, is not a linear func-

tion of the mean slope or the standard deviation of slope in the local

topography, but is determined by the interaction of local topography

and how the trees are distributed across the landscape surface. There

are other terrain attributes such as slope aspect, profile curvature, and

planform curvature which can also affect the forest vertical structure.

But since the effect of topographic normalization on vertical LAI profiles

is not dependent solely on topography or solely on tree distribution (Fig

5.8 ), no further quantitative analysis is conducted in this experiment.

Figure 5.8: Illustration of different decrease of vertical LAI/PAI profile
complexity after topographic normalization, even with the same local
topography and same vegetation. The differences are caused by the
different spatial distribution of trees. (dashed line: estimated canopy
layer location)

The results of this research provide us with a better understanding of the

retrieval of vertical LAI profiles from airborne LiDAR data, which either
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have, or have not, been subjected to topographic normalization. The

vertical LAI profile derived from airborne LiDAR point cloud without to-

pographic normalization can inform us about the actual height of canopy

with the maximum leaf area concentration, the minimum and maximum

height of plants, as well as the number of layers and the complexity of

the vertical structure. All these information is ecologically important and

useful, especially for plot radiation regime analysis (Parker et al., 2001)

and species distribution modeling. For example, in mature forests, bat

activity is driven by vegetation density and presence of gaps (Muller et al.,

2013). A vertical LAI profile distorted by topographic normalization will

give a wrong estimate of vegetation density and gap presence in space,

and probably lead to errors in bat species distribution modeling. Also,

the vertical LAI profile without topographic normalization may serve

as a more accurate input parameter for estimating stand canopy bulk

density and forest fire modeling, because it preserves the spatial con-

nectivity between forest fuels. This allows more accurate modelling of

fire propagation, as well as assessment of fire-atmosphere interactions

(Contreras et al., 2012). The vertical LAI profile without topographic

normalization may also serve as a more accurate input for forest precip-

itation infiltration modeling, because it can preserve the original spatial

topology between vegetation layers, while topographic normalization

creates distortion and offsets in the vertical distribution of plants.

The vertical LAI profile derived from airborne LiDAR data with topo-

graphic normalization can change the forest vertical structure from an

ecological perspective. The height of maximum leaf area concentration,

canopy layer number and canopy layer location cannot be correctly es-

timated from a topographically corrected LAI profile. However, some

other information, such as the maximum tree height in a plot (Lovell

et al., 2003; Calders et al., 2014), canopy height quantile metrics, and

above ground biomass can still be directly retrieved with reasonable

accuracy. The reason is that topographic normalization mainly alters

the relative distribution among vegetation, not the relative distribution

of vegetation to the ground. This was also demonstrated in previous

research, where on a slope less than 15◦, there is no significant canopy

height displacement error after topographic normalization (Khosravipour

et al., 2015). Another possible application of vertical LAI profiles with
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topographic normalization is the modelling of soil erosion. In soil splash

erosion, the relative distance between the substrate and the vegetation

layer determines the likelihood of erosion (Nanko et al., 2008; Geißler

et al., 2012). Then vertical LAI profiles with topographic normalization

are preferred in this case, because they contain the relative location of

vegetation to ground, which is more important than the relative location

among different vegetation layers.

From this research, it is recommended whether topographic normaliz-

ation is applied or not, depends on for which application the vertical

LAI profile is further used. For ecological modelling, topographic nor-

malization should not be applied, when the ecological process is largely

determined by the three dimensional structure and the spatial topo-

logy of vegetation inside the plot. Because slope can create distortion

and vertical offset in the vertical LAI profiles. These applications in-

clude radiation regime analysis, species distribution modeling, and fire

propagation modelling. However, for forest inventory, including canopy

height and above ground biomass estimation, it is recommended that

the topographic normalization effect can be ignored below a certain

threshold of slope degree. Because in these applications, the accuracy of

height or crown diameter of individual tree is far more important than

the spatial topology of neighboring trees. Due to the limited plot number

in our study, and the relatively small range of slope degree in the study

area, further analysis in more complex topography areas is necessary to

recommend a definitive threshold, currently a figure around 15◦ seems

reasonable based the results of this study and the previous published

material (Khosravipour et al., 2015).
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1. Summary

Leaf area index (LAI) is a primary descriptor of vegetation structure. It

has been identified as an essential climate variable (Baret et al., 2013)

and an essential biodiversity variable (Skidmore and Pettorelli, 2015).

The vertical LAI profile is a more detailed description of the 3D leaf

area distribution inside the canopy. Due to the limitations of passive

optical sensors such as signal saturation and inability to resolve the

vertical distribution, LiDAR plays an indispensable role in mapping the

3D distribution of leaves in vegetation canopies. Nevertheless, accur-

ate 3D mapping of leaves is a challenging task for forests, owing to

the complexity of canopy structure, underlying topography, and LiDAR

settings.

This thesis evaluated several key factors in the LAI and vertical LAI pro-

file retrieval using LiDAR data at local and regional scale. These factors

include the leaf angle distribution (LAD), gap fraction (Pgap), LiDAR scan

angle (θ), and uneven topography, all of which were parameters in the

physically based gap fraction model to estimate LAI and vertical LAI pro-

file. Chapter 2 examined which in-situ technique produced more accurate

LAD estimate. Using field-based and simulation dataset, terrestrial LiDAR

was proved more accurate than DHP when estimating LAD in broadleaf

forests. Chapter 3 examined whether the spherical LAD assumption

was valid for natural European beech forests. Using terrestrial LiDAR,

large LAD variation was demonstrated both in different stands and in

different canopy layers. A uniform distribution rather than a spherical

distribution was a more valid LAD assumption. Chapter 4 evaluated

the effect of airborne LiDAR flight settings, in particular the scan angle,

on the retrieval of Pgap and vertical Pgap profile. The results proved

the underestimation of Pgap amplified at large off-nadir scan angle. It

implied that large off-nadir scan angle LiDAR data should be avoided

to ensure a more accurate Pgap and LAI estimation. Chapter 5 assessed

the effect of uneven topography and topographic normalization in the

vertical LAI profile retrieval. The findings demonstrated that topographic

normalization undermined the complexity of the vertical LAI profile.

For ecological applications, such as biodiversity modeling, topographic

normalization was suggested not to be applied.
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2. Retrieving LAI and vertical LAI profile at local scale

2.1 Urgency to identify the optimal in-situ LAI technique

A crucial step in LAI mapping is the collection of in-situ LAI reference.

Accurate LAI measurement at local scale is of crucial importance for cal-

ibrating and validating regional or global products. Existing LAI products

from passive optical sensors, for instance from MODIS, SPOT, and MERIS,

heavily rely on indirect methods (such as LAI-2000 and DHP) to collect

LAI ground reference.

Even though LAI from these indirect methods were considered as the

“true" reference, inconsistency in in-situ measurements were revealed

among different indirect methods (Garrigues et al., 2008). The uncer-

tainty and inconsistency is especially high in forests (Woodgate et al.,

2015; Calders et al., 2018). For example, LAI from terrestrial LiDAR

was found to be on average 55% higher than LAI from DHP in Eucalypt

forests (Woodgate et al., 2015). This is much higher than the targeted

5% uncertainty levels stipulated by the World Meteorological Organiza-

tion. Therefore, it is urgent to ascertain which in-situ indirect technique

measures LAI the most reliably and accurately.

2.2 Synthetic dataset to validate and benchmark in-situ

techinques

Because destructive sampling is very costly and sometimes impractical,

generating a synthetic dataset by computer simulation offers an alternat-

ive to validate and identify the most accurate in-situ LAI method. Chapter

2 demonstrated a good example. In order to compare either terrestrial

LiDAR or DHP measures LAD more accurately, the true inclination angle

of each leaf is required. This almost impossible task in real world forests,

can be easily achieved through computer simulation. The shape, area,

location and inclination of each leaf is known during the virtual forest

creation. As a result, a synthetic dataset enables comparison of the ab-

solute LAI accuracy from different in-situ techniques. Chapter 2 proved

terrestrial LiDAR gave much more accurate estimate of LAD than DHP in

broadleaf forests (R2: 0.79>0.12, RMSE: 6.41◦<16.40◦), as seen in Fig 6.1.

121



6. Synthesis: Mapping the 3D distribution of leaves in forests using LiDAR

Figure 6.1: a) terrestrial LiDAR (TLS) estimated the average inclination
angle θ much more accurately than b) digital hemispherical photography
(DHP) in the synthetic dataset

Terrestrial LiDAR holds great potential in acquiring in-situ LAI reference,

as well as validating products from passive optical sensors. Chapter

2 and Chapter 3 in this thesis showed that terrestrial LiDAR yielded

a much more accurate estimate of LAD compared to the conventional

device DHP, both at individual leaf level and at stand level. Previous

studies demonstrated the superiority of terrestrial LiDAR compared

to DHP or LAI-2000 in measuring gap fraction (Pgap), due to its active

feature and insensitivity to illumination conditions (Calders et al., 2018).

Furthermore, the differentiation of woody elements and foliage, which

used to be quite challenging in DHP or LAI-2000, has been accomplished

with high accuracy from terrestrial LiDAR (Li et al., 2018b; Zhu et al.,

2018a; Ferrara et al., 2018). Altogether, more accurate estimate of Pgap,

LAD and woody elements, in theory, will result in much more accurate

LAI estimate using terrestrial LiDAR than DHP or LAI-2000. Further

research will be explored to validate this inference.

3. Retrieving LAI and vertical LAI profile at regional scale

3.1 Superiority of airborne LiDAR in LAI mapping in dense

forest

Using the method described in section 3.1 of Chapter 1 , the regional

LAI map from the Bavarian Forest National Park in the year 2017 is
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retrieved in Fig 6.2. While LAI from passive optical sensors saturate

at dense forest when LAI is higher than 3 to 4 (Asner et al., 2003; Liu

et al., 2018b), LAI retrieved from airborne LiDAR can be as large as

9.2. This is a range exceeding current observation limits by passive

sensors (Tang, 2015). It demonstrates the superiority of airborne LiDAR

to map LAI in forests of dense vegetation. The results are consistent

with previous studies in forests of medium to high biomass in previous

studies (Jensen et al., 2008). Similarly, Vincent et al. (2017) proved full-

waveform airborne LiDAR can produce accurate estimates even when the

LAI value is reaching 10 or 13 in tropical forests.

Figure 6.2: The LAI map retrieved from airborne LiDAR data in the
Bavarian Forest National Park in 2017

Furthermore, the LAI estimated from airborne LiDAR was compared to

the LAI estimated from DHP (Fig 6.3). From the results, there is moderate

consistency of LAI estimated from airborne LiDAR and DHP (R2=0.53,

RMSE = 1.12). Since there is high uncertainty in the LAI estimated from

123



6. Synthesis: Mapping the 3D distribution of leaves in forests using LiDAR

DHP techniques in forests (Woodgate et al., 2015; Calders et al., 2018),

further results evaluation should be conducted using leaf collection

measurements.

Figure 6.3: Consistency of LAI estimated from airborne LiDAR and DHP

3.2 Irreplaceable role of airborne LiDAR in vertical LAI profile

mapping

Airborne LiDAR plays a unique and irreplaceable role in mapping the

vertical LAI profile of forests. For easier visualization, the vertical LAI

profile was displayed in RGB composite of LAI in three layers (top layer,

middle layer and bottom layer) as shown in Fig 6.4. Compared to the

LAI map in Fig 6.2, the vertical LAI profile map presents not only the

horizontal distribution, but also the vertical distribution of leaves in

forests. For instance, the area 1 and area 2 have similar LAI ranges and

horizontal LAI heterogeneity, as seen in Fig 6.5 a) and c). However, they

displayed distinct vertical structure in the vertical LAI profile map, as

seen in Fig 6.5 b) and d). Airborne LiDAR plays an irreplaceable role in

mapping the fine resolution vegetation 3D distribution in forests.
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Figure 6.4: The vertical LAI profile map retrieved from airborne LiDAR in
the Bavarian Forest National Park in 2017
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Figure 6.5: Two forest areas with similar LAI ranges but distinct vertical
LAI distribution pattern revealed by airborne LiDAR (for legend please
refer to Fig 6.2 and 6.4)

3.3 Factors to account for in LAI and vertical LAI profile

upscaling

3.3.1 Leaf angle distribution

Leaf angle distribution (LAD) is a major source of LAI uncertainty due to

its large variation in natural forests. Accurate LAD estimation becomes

much more important at regional scale than at local scale. This is caused

by the different scan patterns between terrestrial and airborne LiDAR.

Unlike terrestrial LiDAR which can use the convergent angle of 57.5◦

when G(θ) is approximated as 0.5, airborne LiDAR often uses smaller

scan angle (±10◦ - ±30◦), which is beyond the 57.5◦ range. Most existing

studies have overlooked the importance of LAD and assumed a spherical

LAD and a constant G(θ) of 0.5 for simplicity (Richardson et al., 2009;
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Tang et al., 2012; Fieber et al., 2015; Vincent et al., 2017). However,

Chapter 3 demonstrated large LAD variation in natural beech forests.

This finding proved the necessity to correct for LAD variation in regional

LAI mapping.

However, LAD is a parameter very challenging to upscale. The extension

of the LAD method at local scale (in Chapter 2 and 3) to regional scale

is not feasible. Because the LAD from terrestrial LiDAR was calculated

based on individual leaf reconstruction. While this is possible for dense

terrestrial point clouds with small footprint (e.g. 0.15cm - 1.05cm),

airborne LiDAR has much larger footprint (e.g. 0.32m - 25m) than normal

leaf size. Nevertheless, there are two possible solutions which may

alleviate the LAD variation problem. The first is to use terrestrial LiDAR

to collect LAD reference at local scale to calibrate the airborne model.

This is the strategy employed in this thesis. Based on findings in Chapter

3, instead of a spherical LAD, a uniform LAD type was used for young and

medium beech forests and a planophile LAD type was applied to mature

beech forests. An alternative approach may be to use canopy height to

predict LAD. As shown in Chapter 3, there is a high negative correlation

between median canopy height and plot average leaf inclination angle

(r=-0.70, p<0.001). This offers the potential to predict plot-specific LAD

using canopy height information acquired by airborne LiDAR.

3.3.2 Airborne LiDAR scan angle

Airborne LiDAR data with large off-nadir scan angle was suggested to be

avoided for regional LAI and vertical LAI profile mapping. The accuracy

of LAI and vertical LAI profile depends on the accuracy of Pgap and

vertical Pgap profile. However, Chapter 4 demonstrated the accuracy of

Pgap decreases with increasing off-nadir scan angle, and underestimation

of Pgap became more severe at large off-nadir angles. Selection of appro-

priate scan angle in airborne LiDAR is facing with a bit of dilemma. On

the one hand, according to findings in Chapter 4, close to nadir airborne

LiDAR data is preferred to ensure accurate and unbiased estimate of

Pgap (Liu et al., 2018a). On the other hand, Chapter 3 implies LAI errors

induced by lack of accounting for LAD variation is more severe at smaller

scan angles. As a compromise, in the LAI regional mapping in Fig 6.2
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and 6.4, only nadir (0◦-7◦) and small off-nadir (7◦-23◦) airborne LiDAR

data were used, while large off-nadir (>23◦) data were excluded.

Further research is expected to look for the optimal airborne LiDAR

flight settings for LAI and vertical LAI profile mapping. Especially for

forest change monitoring using multi-temporal LiDAR data, such as fire

severity or insect attack assessment (Solberg et al., 2006; Ma, 2018), it

is necessary to use similar flight settings or correct for the uncertainty

induced by different scan angles.

3.3.3 Other factors

Correcting for woody elements is more difficult for regional LAI mapping

using airborne LiDAR than for local LAI mapping using terrestrial LiDAR.

Although the differentiation of foliage and woody elements have been

accomplished with high accuracy for both broadleaf and coniferous trees

(Zhu et al., 2018a), extrapolation of the method to airborne LiDAR is

not viable. Due to the larger footprint size of airborne LiDAR, foliage

and woody materials are often mixed in the same return and insepar-

able. Therefore, more strictly speaking, the LAI and vertical LAI profile

in this thesis and many other studies are indeed PAI and vertical PAI

profile. Fortunately, the contribution of woody elements may not be

high. Results from a Monte Carlo simulation have proved when seeing

the canopy from nadir direction, the viewed leaf area is much larger

than woody components (Hancock et al., 2012). For deciduous trees, the

woody elements contribution may be corrected to a certain extent by

combination of leaf-on and leaf-off airborne LiDAR flights.

Pulse density is another factor which may affect the LAI and vertical

LAI profile retrieval. In this thesis, airborne LiDAR data with pulse

density lower than 3 pl/m2 were excluded. This threshold is above

the recommendation of 1 pl/m2 for canopy cover metrics mapping in

previous studies (Jakubowski et al., 2013).
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4. Retrieving LAI and vertical LAI profile at continental

or global scale

4.1 Integration of satellite LiDAR with passive optical

sensors

In order to acquire wall-to-wall or gridded mapping of LAI and vertical

LAI profile at continental or global scale, integration of satellite LiDAR

with passive optical sensors is inevitable. Unlike passive optical sensors,

satellite LiDAR has sparse coverage of the earth. An example of the GLAS

(on board the ICESAT) data coverage in California in 2005 is shown in Fig

6.6. The footprint size and spacing of GEDI, a high resolution spaceborne

LiDAR which was succesfully launched in Dec 2018, is displayed in Fig

6.7. The limitation of sparse coverage requires integration with ancillary

passive optical dataset such as MODIS or Landsat. A similar approach

has been utilized to generate several global canopy height maps (Lefsky,

2010; Simard et al., 2011) and biomass maps (Saatchi et al., 2011). It can

be employed in LAI and vertical LAI profile mapping as well.

Figure 6.6: The coverage of GLAS data in California from 2003-2007
(Tang et al., 2014b)
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Figure 6.7: The footprint size and spacing of GEDI (Dubayah et al., 2014)

4.2 Product validation using terrestrial and airborne LiDAR

LAI and vertical LAI profile retrieved from terrestrial LiDAR has been

used as reference for validating vertical LAI profile product retrieved

from satellite LiDAR (Tang et al., 2014a,b). The autonomously operating

terrestrial LiDAR enables efficient collection of hyper-temporal in-situ

reference (Eitel et al., 2016). In the absence of terrestrial data, airborne

LiDAR serve as an alternative for satellite product validation (Zhao and

Popescu, 2009; Tang et al., 2014a). The multiple free airborne LiDAR data

available in recent years offers the possibility of setting up a global valid-

ation network. Existing open airborne LiDAR data can be found through

the USGS 3D elevation program (Sugarbaker et al., 2014), the US national

ecological observatory network (Kampe et al., 2010), the European facil-

ity for airborne research (www.eufar.net) and the Australian terrestrial

ecosystem research network (https://www.tern.org.au/).

It should be noted that in validating satellite vertical LAI profile product,

topographic normalization is suggested to be avoided on reference val-

ues from airborne or terrestrial LiDAR data. In this thesis, Chapter 5

demonstrated the common preprocessing step of topographic normal-

ization, lead to large distortion and offset of the vertical LAI profile in

mountainous forests. Since satellite LiDAR has large footprint (∼25m

in diameter for GEDI), the local topography could not be resolved or

normalized. Similarly, topographic normalization should not be used on

airborne or terrestrial LiDAR data. Otherwise in rugged topography, the

offset of vertical LAI profiles may lead to poor validation accuracy. This
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may explain the poorer agreement between satellite and airborne LiDAR,

in the vertical LAI profile product (R2=0.36, RMSE=0.26) than in the LAI

product (R2=0.60, RMSE=0.82) (Tang et al., 2016).

5. Broader applications

5.1 Carbon stock modelling

A significant improvement in the estimation of terrestrial carbon and

water flux should be expected by incorporating the vertical LAI profile

rather than the LAI alone (Tang, 2015). This has been highlighted in a

pioneer study of gross primary production (GPP) modelling (Kotchenova

et al., 2004). It was proved the vertical LAI profile facilitates more

accurate modelling of incident direct and diffuse photosynthetically

active radiation (PAR, 400 - 700 nm). It also allows for more accurate

modelling of sunlit and shaded leaves distribution inside the canopy.

Furthermore, the vertical variation of LAD retrieved from LiDAR, can

be used as input parameter in multi-layered radiative transfer models,

to better estimate photosynthesis and evapotranspiration in vertical

heterogeneous canopies (Yang et al., 2017).

5.2 Forest dynamics monitoring

Using multi temporal LiDAR data, the changes of vertical LAI profile

enhance our capability to monitor forest 3D dynamics and understand

forest growth. For instance, the dry season green-up of Amazon forests

has been under debate about whether it is radiation induced forest

growth or just an illusion artifact due to changeable remote sensing

observation angles. Using vertical LAI profiles retrieved from satellite

LiDAR, Tang and Dubayah (2017) provided evidence of understory leaf

growth in dry season. Combined with environmental factors such as

temperature, elevation, precipitation and soil moisture, it was proved

the understory growth was driven by seasonal variations of light-regime

rather than precipitation. Using hyper temporal measurements, even the

rapid and subtle changes in vertical forest structure can be acquired. For

instance, using the vertical LAI profile product, different start of season
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(SOS) days were automatically observed for leaves at different canopy

layers (Calders et al., 2015), which is critical for forest phenology and

physiology study (Calders et al., 2015; Griebel et al., 2015).

5.3 Biodiversity modelling

In addition to LAI, the vertical LAI profile may be a potential essential

biodiversity variable. From the last century, biodiversity has been declin-

ing at an unprecedented rate as a complex response to human-induced

changes in the global environment (Barnosky et al., 2011). Reducing

the rate of biodiversity loss are international goals (Pereira et al., 2013).

In forest ecosystems, biodiversity indicators based on structures are

generating considerable interest both in their role as practical surrogates

and as a key to understanding the sources of biodiversity (McElhinny

et al., 2005).

Many species including birds (Walther, 2002; Siegel and DeSante, 2003),

primates (Davies et al., 2017), arthropods (Halaj et al., 2000), and rep-

tiles (Shine et al., 2002) were reported to have structural preferences

in forests. The vertical LAI profile product, can be used as an input

parameter for habitat modelling of these species. The complexity of

forest vertical structure can account for patterns of animal diversity

and richness (MacArthur and MacArthur, 1961; DeVries et al., 1997). In-

tensive studies have established the positive correlation between habitat

structure complexity and species biodiversity (MacArthur and MacAr-

thur, 1961; Clawges et al., 2008). The rationale for this is that more

structurally complex environments provide a variety of resources and

increased niche space, thus facilitating specialization and avoidance of

competition through spatial segregation (Cramer and Willig, 2005). A

mechanism of niche partitioning along the vertical axis has also been

proposed Kalko and Handley (2001). Therefore, the vertical LAI profile

map from LiDAR is promising to be applied in forest vertical structure

fragmentation and complexity modelling. The resulting complexity map

may greatly help identify biodiversity hotspots for conservation practice.

Overall, this thesis focused on improving the accuracy of LAI and vertical

LAI profile retrieval at local and regional scales. The method in this thesis
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can be transferred to other species and sites. In the broader context, the

three dimensional (3D) distribution of leaves retrieved from multiscale

LiDAR create numerous applications in carbon stock modelling, forest

dynamics monitoring, and biodiversity modelling.
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7Summary

In forests, leaves are the interface between the biosphere and the atmo-

sphere, where most of the energy fluxes exchange. The three dimensional

(3D) distribution of leaves strongly influence the interception and dis-

tribution of radiation, carbon and water. Leaf area index (LAI) and the

vertical LAI profile are important metrics describing the amount and

distribution of leaves. LAI has been identified as an essential climate

variable and an essential biodiversity variable. The vertical LAI profile

is a more detailed description of the 3D distribution of leaves inside

the canopy. Both metrics have been used in ecology, hydrology and

biodiversity modelling.

Remote sensing techniques provide a non-destructive, rapid and eco-

nomic way for estimating LAI and vertical LAI profile across a wide range

of spatial and temporal scales. However, passive optical sensors suffer

from limitations including signal saturation and inability to resolve the

vertical distribution. As a result, LiDAR plays an indispensable role in

mapping the 3D distribution of leaves in forests. Nevertheless, accurate

3D mapping of leaves is a challenging task for forest ecosystem, owing to

the complexity of canopy structure, underlying topography, and LiDAR

settings.

This thesis evaluated several key factors in the LAI and vertical LAI profile

retrieval using LiDAR data at local and regional scale. These factors

include the leaf angle distribution (LAD), gap fraction, LiDAR scan angle,

and uneven topography, all of which were parameters in the physically

based gap fraction model to estimate LAI and vertical LAI profile. At

local scale, the thesis first examined which in-situ technique produced

more accurate LAD estimate. Using field-based and simulation dataset,

terrestrial LiDAR was proved more accurate than DHP when estimating
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7. Summary

LAD in broadleaf forests. Then the thesis employed the proposed LAD

method to examine whether the spherical LAD assumption was valid

for natural European beech forests. Using terrestrial LiDAR, large LAD

variation was demonstrated both in different stands and in different

canopy layers. A uniform distribution rather than a spherical distribution

was a more valid LAD assumption. At regional scale, the thesis evaluated

the effect of airborne LiDAR flight settings, in particular the scan angle,

on the retrieval of gap fraction and vertical gap fraction profile. The

results proved that the underestimation of gap fraction amplified at large

off-nadir scan angle. It implied that large off-nadir scan angle LiDAR

data should be avoided to ensure a more accurate gap fraction and LAI

retrieval. Finally, the thesis assessed the effect of uneven topography

and topographic normalization in the vertical LAI profile retrieval. The

findings demonstrated that topographic normalization undermined the

complexity of the vertical LAI profile. For ecological applications, such

as biodiversity modeling, topographic normalization was suggested not

to be applied.

The new methodologies and findings in the study can be extended to

other forests on different sites or of different species. Further studies

are recommended to explore the application of LiDAR derived LAI and

vertical LAI profile product in modelling carbon stock, forest dynamics

and biodiversity.
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8Samenvatting

In bossen zijn bladeren het grensvlak tussen de biosfeer en de atmos-

feer, waar de meeste energiestromen wisselen. De driedimensionale (3D)

verdeling van bladeren heeft een sterke invloed op de onderschepping

en verspreiding van straling, koolstof en water. Bladoppervlakte-index

(LAI) en het verticale LAI-profiel zijn belangrijke meetwaarden die de ho-

eveelheid en verdeling van bladeren beschrijven. LAI is geÃŕdentificeerd

als een essentiÃńle klimaatvariabele en een essentiÃńle biodiversiteits-

variabele. Het verticale LAI-profiel is een meer gedetailleerde beschrijving

van de 3D-verdeling van bladeren in de overkapping. Beide metrieken

zijn gebruikt in de modellering van ecologie, hydrologie en biodiversiteit.

Remote sensing-technieken bieden een niet-destructieve, snelle en eco-

nomische manier voor het schatten van LAI en verticaal LAI-profiel op

een breed scala van ruimtelijke en temporele schalen. Passieve optische

sensoren lijden echter aan beperkingen, waaronder signaalverzadiging

en onvermogen om de verticale verdeling op te lossen. Als gevolg hier-

van speelt LiDAR een onmisbare rol bij het in kaart brengen van de

3D-verdeling van bladeren in bossen. Niettemin is het nauwkeurig 3D-

mappen van bladeren een uitdagende taak voor het bosecosysteem,

vanwege de complexiteit van de structuur van de luifel, de onderliggende

topografie en de LiDAR-instellingen.

Dit proefschrift evalueerde verschillende sleutelfactoren in het LAI en

het ophalen van verticale LAI-profielen met behulp van LiDAR-gegevens

op lokale en regionale schaal. Deze factoren omvatten de bladhoekver-

deling (LAD), spleetfractie, LiDAR-scanhoek en ongelijke topografie, die

allemaal parameters waren in het fysisch gebaseerde gap-fractiemodel

om LAI en verticaal LAI-profiel te schatten. Op lokale schaal onderzocht

het proefschrift eerst welke in-situ techniek een nauwkeurigere LAD-

165



8. Samenvatting

schatting opleverde. Met behulp van een veldgebaseerde en simulatieset,

bleek terrestrische LiDAR nauwkeuriger dan DHP bij het schatten van

LAD in breedbladige bossen. Vervolgens gebruikte het proefschrift de

voorgestelde LAD-methode om te onderzoeken of de sferische LAD-

aanname geldig was voor natuurlijke Europese beukenbossen. Met be-

hulp van terrestrische LiDAR werd grote LAD-variatie zowel in verschil-

lende stands als in verschillende luifellagen gedemonstreerd. Een meer

uniforme verdeling in plaats van een sferische verdeling was een meer

geldige veronderstelling van de LAD. Op regionale schaal evalueerde het

proefschrift het effect van in de lucht vliegende LiDAR-vluchtinstellingen,

in het bijzonder de scanhoek, op het ophalen van spleetfractie en ver-

ticaal gapfractieprofiel. De resultaten bewezen dat de onderschatting van

de gap-fractie versterkt werd bij een grote off-nadir scanhoek. Dit hield in

dat grote LDAR-gegevens van de dalpuntscan moeten worden vermeden

om een nauwkeuriger gap-breuk en LAI-terugwinning te garanderen. Ten

slotte beoordeelde het proefschrift het effect van ongelijke topografie en

topografische normalisatie in het ophalen van verticale LAI-profielen. De

bevindingen toonden aan dat topografische normalisatie de complexiteit

van het verticale LAI-profiel ondermijnde. Voor ecologische toepassin-

gen, zoals biodiversiteitsmodellering, werd geopperd om topografische

normalisatie niet toe te passen.

De nieuwe methodologieën en bevindingen in de studie kunnen worden

uitgebreid naar andere bossen op verschillende locaties of van verschil-

lende soorten. Verdere studies worden aanbevolen om de toepassing te

onderzoeken van LiDAR afgeleid LAI en verticaal LAI profielproduct in

het modelleren van koolstofvoorraad, bosdynamiek en biodiversiteit.
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