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Foreword 
It became a sort of tradition to equate a PhD to a ‘long and arduous journey’ 

– but it certainly was in this case. The work comprising this thesis spans 9 

years, two countries and two research institutions where I have lived and 

worked in this period: the FCSH-UNL (Lisbon, Portugal) and the EC-JRC (Ispra, 

Italy).  

My interest in modeling population distribution was born in the previous 

millennium, during my time as graduate student at the University of Kansas 

(USA). There on the edge of the Great Plains I had the fortune of being exposed 

to the first version of LandScan global population grid (1998) and meeting its 

visionary author, Jerry Dobson. I was struck by the apparent simplicity and 

broad reach of the concept that characterize bright developments, and was 

hooked on the possibilities.  

After leaving KU I continued to develop my population models, and around 

2008 I also directed my interest to their applications, especially in Disaster 

Risk Management, as that seemed to me the domain where most societal 

benefits were to be gained. I did this mostly on my own time while working on 

other research projects and activities (e.g. teaching GIS), as I had no funding 

for this specific line of research. I tried as much as possible to connect topics 

and during those very productive years managed to develop several 

applications of improved population distribution across different domains. 

Having amassed some research experience and publications, around 2012 I 

started inquiring about the possibility of turning some of this body of work and 

publications into a PhD thesis, but this was deemed not viable. I moved on, 

embracing a new challenge at the EC-JRC in Italy. 

In 2015, with more than 100 scientific publications under my belt (and having 

contributed to two PhDs) an opportunity appeared that could lead to earning 

that degree that is a necessary (but not sufficient) step for a researcher to 

improve his job prospects. Through Richard Sliuzas, whom I had met earlier, I 

applied to the PhD program at the ITC Faculty, University of Twente (a perfect 

fit for my topic), submitted a proposal, and formally enrolled in 2016. At this 

point I assumed it would be rather straightforward to build a decent PhD thesis 

as an external student by combining my ongoing research at JRC with that 

already published.  

I was wrong, of course – being with small children in a foreign country, having 

a wife with frequent business travels, and an absorbing job, this was in 

hindsight not a bright idea, and one that I regretted often. Paradoxically, a 

truly smart person would have chosen otherwise than going for a PhD. This 

diverted much energy, time, and patience from important activities and 

persons, and represented a high cost for an unknown benefit. And yet here I 
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am, nearing completion. In the process, I confirmed that earning a PhD is as 

much a proof of research skills as it is a trial of endurance, resilience, and 

stamina (the fact that many fail this test, enduring mental or physical damage, 

would warrant more attention from those involved in awarding these degrees).  

As I write this in Lombardy, we are in the middle of the COVID-19 pandemic, 

which started just when I was in the home stretch of finalizing this thesis. 

Besides prompting a worldwide lockdown and crisis without an end in sight 

(and postponing my well-deserved vacation), this epidemic tragically 

underlines the importance of disaster risk management and how much work 

remains to improve it.  
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1.1. Introduction and Significance 
Geospatial information on population distribution and densities is one of the 

most fundamental and critical datasets to study human presence and 

settlement, interactions, impacts, and vulnerabilities (Leyk et al. 2019), in 

applications spanning the domains of research, decision and policy-making. For 

example, in the context of policy support, the post-2015 international 

development agreements (i.e. Sendai, Sustainable Development Goals-SDGs, 

Paris Agreement/COP21, UN New Urban Agenda) place great demands and 

responsibility on geospatial data, and in particular on that related to 

population. As human life is the most important value to protect from disasters, 

assessing population exposure to actual or potential disasters is key to Disaster 

Risk Management (DRM) and Reduction measures (DRR). Consequently, 

suitable population distribution data can benefit all phases of the disaster 

management cycle, e.g. baseline risk analysis and impact assessment, 

mitigation, preparedness (including early warning and evacuation), response 

and rehabilitation (Freire 2010).  

Risk results from the intersection, in space and time, of hazard, exposure, and 

vulnerability. However, human exposure is dynamic and has been increasing 

in potential magnitude and complexity due to population growth and the 

expansion of human activities to hazardous areas, as a result of strong 

clustering of people in settlements (e.g. from megacities to small villages), due 

to increasing population mobility and dynamics (especially high frequency: for 

work and study, but also due to tourism, migration, and displacement). Despite 

its importance for risk management,  mapping of human vulnerability and 

population exposure has traditionally lagged behind hazard modeling efforts 

(Pelling 2004), in terms of accuracy, detail, and currency (Smith et al. 2019). 

Simultaneously, the risk and disaster landscape is becoming ever more 

complex and interconnected (UNDRR 2019), and anthropogenic actions are 

changing the very concept of ‘natural’ disaster (Peduzzi 2019). Against this 

evolving background, assessing potential or actual human population exposure 

requires geo-information on population distribution at a range of spatial and 

temporal scales, as disasters can occur at any time, and their spatial effects 

may range from local to global scales.  

There are significant challenges and trade-offs affecting spatio-temporal 

population modeling. For effective support to DRM, geospatial population data 

should be reliable, up-to-date, have sufficient resolution (spatial, temporal, 

thematic), and be readily available (i.e. either produced beforehand or be 

rapidly computable on-demand). Such population data are still lacking for 

many countries and regions, both rich and poor, and conducting DRM at global 

scale would certainly benefit from complete, consistent, and integrated 

population exposure datasets.  
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If well-developed, such population datasets are multi-purpose and yield cross-

disciplinary benefits in a range of application domains: these include spatial 

planning (urban, regional, infrastructure, public facilities), environmental 

assessment, health and epidemiology, and GeoMarketing.  

This thesis comprises contributions of population distribution modeling to 

advancing Disaster Risk Management and Reduction efforts by: 

(i) developing geospatial models that improve population distribution datasets 

at a range of relevant spatial and temporal scales and resolutions; 

(ii) applying those data to (real) disaster risk scenarios by combining geospatial 

population layers with geophysical hazard maps; 

(iii) using spatial analysis for quantitatively and qualitatively assessing human 

exposure to specific hazards and levels and for cartographic representations 

and visualization, and 

(iv) discussing the findings, their impacts as well as contributions to DRM. 

While the focus is on the spatio-temporal dynamics of human exposure, the 

research considers related aspects such as population definition, geospatial 

data and technology, spatio-temporal scales, hazard types and their 

characteristics, and the specific population related information requirements 

throughout the Disaster Risk Management Cycle. 

In this initial chapter we present the main concepts involved in this thesis, 

discuss the relevance and implications of mapping and assessing human 

exposure to hazards and disasters, and list efforts, challenges, and 

contributions of the geospatial modeling population distribution for Disaster 

Risk Management (DRM). Additionally, we provide some context and 

background on spatio-temporal population modeling. 

1.2. Context and Background 

1.2.1 Population exposure and risk landscape, governance, and 
trends 

Disasters, either resulting from natural or man-made hazards (technological 

accidents, terrorism) frequently occur with little or no warning and can 

potentially affect people at local, continental, or even at global scales (Gill and 

Malamud 2014). According to EM-DAT (EM-DAT 2018), globally between the 

years 2000 and 2017 an average of at least 193 million people per year were 

affected by disasters1.  

                                                
1 This figure is likely underestimated owing to the combination of impact 
threshold adopted in definition for disaster and the fact that it includes only 
climate-related and geophysical events. 
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Geospatial information on population distribution (e.g. mapping inhabited vs 

uninhabited areas) and densities (i.e. people/km2) is one of the most 

fundamental and critical datasets to study human presence and settlement, 

interactions, impacts, and vulnerabilities (Leyk et al. 2019). Various post-2015 

international development agreements (i.e. Sendai, SDGs, Paris 

Agreement/COP21, UN New Urban Agenda) place great demands and 

responsibility on geospatial data, and in particular on that related to 

population. Of the seven global targets in the Sendai Framework for Disaster 

Risk Reduction 2015-2030 (UNISDR 2015a), three explicitly focus on 

population and require population data for their monitoring and assessment: 

Target (a) Substantially reduce global disaster mortality by 2030, aiming to 

lower average per 100,000 global mortality rate in the decade 2020-2030 

compared to the period 2005-2015. 

Target (b) Substantially reduce the number of affected people globally by 

2030, aiming to lower average global figure per 100,000 in the decade 2020 -

2030 compared to the period 2005-2015. 

Target (g) Substantially increase the availability of and access to multi-hazard 

early warning systems and disaster risk information and assessments to the 

people by 2030. 

With the recognition of the interactions and interdependencies between DRR 

and development (i.e. the “risk-global change-sustainability nexus”2) in all 

other post-2015 International agendas some elements of DRR are included, 

and DRR objectives have ties with SDG goals 1.5, 11.5, 11.B, 13.1 (UNISDR 

2015a). The implementation of these International Frameworks provides an 

opportunity to address underlying risk drivers and encourage a deeper 

understanding of socioeconomic and environmental vulnerability. They also 

create opportunities to generate and improve data and statistical capacity for 

monitoring and decision-making, without which the SDGs may fail (Espey 

2019). Disaggregated data sets and statistical data, previously scarce in the 

disaster risk realm, are now prerequisites for measuring risk-informed 

sustainable development, with improvements in data availability, quality and 

accessibility being expected (UNDRR 2019). 

Disaster risk has several definitions3 and there exist various approaches for its 

assessment and mapping, even in the context of natural hazard research and 

practice (Adger 2006; Birkmann 2006; Villagrán 2006). Until 2009 the United 

Nations (UN), for example, defined disaster risk as a function of hazard 

probability and vulnerability, the latter resulting from a combination of 

                                                
2 As in Peduzzi 2019: The Disaster Risk, Global Change, and Sustainability 
Nexus. Sustainability, 11, 957. 
3 An inventory was compiled by Thywissen 2006:  Components of Risk. A 
Comparative Glossary, UNU Institute for Environment and Human Security. 
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(population) exposure and ability to cope (UNDP 2004). One practical definition 

currently widely accepted conceptualizes risk as resulting from the product of 

three main elements: hazard, exposure, and vulnerability (Dao and Peduzzi 

2003). The conceptualization of the Risk Triangle proposed by Crichton (1999) 

sees these elements as connected sides which enclose and determine a risk 

space or area. These conceptualizations have at least two important 

implications, namely that (i) risk is null in the absence of one component, and 

that (ii) wrongly estimating one of these components necessarily affects the 

accuracy of the overall risk mapping and analysis. While it is generally assumed 

that all components must be spatially coincident for a risk to exist (e.g. 

Tomlinson, 2011), this understanding overlooks the importance of time. 

However the components of risk are also highly sensitive to spatial and 

temporal variation (Cutter 2003; Aubrecht et al. 2012a; Aubrecht et al. 2013). 

Therefore and more accurately, one can say there is risk if all components 

coincide in space and time. While risk is spatial, requiring spatially-explicit data 

for mapping and assessment, it is also temporal and dynamic in nature, 

requiring regular re-assessment (Peduzzi 2019).  

Exposure4 in this context essentially refers to the “people, property, systems, 

or other elements present in hazard zones that are thereby subject to potential 

losses” (UNISDR 2009), while population exposure refers more strictly to the 

human occupancy of hazard zones (Cutter 1996). People are unquestionably 

the most important element to protect from hazards and threats, and the 

distribution and density of the overall population is a rather basic geographical 

indicator. Therefore, in the early 2000’s, a progressive recognition started that 

accurately estimating population exposure was a fundamental component of 

catastrophe loss modeling, one element of effective risk analysis and 

emergency management (Chen et al. 2004; FEMA 2004). Some studies even 

indicate that exposure data have the greatest influence on loss estimation from 

risk models (Chen et al. 2004; Lavakare and Mawk 2008).  

Results from the Mortality Risk Index (MRI) conducted for GAR 2009 (UNISDR 

2009) showed that the intensity of hazard, level of exposure, poverty, and bad 

governance were the main underlying factors of risk, and that exposure was 

the main factor in higher intensity hazards (Peduzzi et al. 2009a; 2012). In a 

convergence of findings by different risk communities, also the 2012 IPCC 

Special Report on Extreme Events states that ”increasing exposure of people 

and economic assets has been the major cause of long-term increases in 

economic losses from weather- and climate-related disasters (high 

confidence)” (IPCC 2012). It is safe to say that generally, while the importance 

                                                
4 Definition was again recently modified to “the situation of people, 
infrastructure, housing, production capacities and other tangible human assets 
located in hazard-prone areas (UNISDR 2017)”. 
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of vulnerability decreases with hazard intensity, the relevance of exposure 

increases (Cardona et al. 2012).  

Increases in global exposure to natural hazards have largely been driven by 

population growth and urbanization rates (Huppert and Sparks 2006; 

Neumann et al. 2015; Bowman et al. 2017). Not only human exposure has 

been increasing in potential magnitude but also in complexity due to population 

growth and expansion to hazardous areas, due to the strong clustering of 

people in settlements (e.g. megacities), which become highly concentrated 

locations of exposure (Chester 2000, Gu et al. 2015). When large settlements 

are affected by a disaster, losses can be disproportionately large (e.g. 

Hurricane Katrina in New Orleans in 2005). Also, increasing population density 

and mobility has been contributing to growing vulnerability of social systems 

(EEA, 2010), and growing population dynamics (especially high frequency 

movements: for work and study, but also due to tourism, migration, and 

displacement) (Kellens et al. 2012) are putting more people at risk, often 

unbeknown (Wieland et al. 2012). Population mobility spans the globe. For 

instance, the 2004 Indian Ocean earthquake and tsunami disaster highlighted 

how significant numbers of international tourists can be affected by hazards 

(Satake 2014).  

Furthermore, evidence indicates that not only exposure of persons and assets 

is increasing, but that in both higher and lower income countries it has 

increased faster than vulnerability has decreased, thus generating new risks 

(UNISDR 2015a; UNDRR 2019). This is likely to continue, as “an increase in 

exposure induced by population and economic growth has been identified as 

the main factor inflating disaster risk in the near future” (Peduzzi 2019). In a 

recent prospective study of human exposure to dangerous heat in African cities 

under multiple scenarios, Rohat et al. (2019) concluded that future exposure 

is predominantly driven by changes in urban population alone or by concurrent 

changes in climate and urban population.  

Despite its importance, efforts to asses and map exposure, have lagged 

behind. This has its roots in the early perception of risk as being hazard-based, 

implying that traditionally modeling and analysis of disaster risk has been 

undertaken by physical scientists whose work is more focused on the physical 

processes of hazard than on the vulnerability and exposure components, 

especially the human components (Smith et al. 2019). In the context of risk  

of river floods, these authors admit “this is concerning, as arguably we know 

even less about the location of people and assets, and the impact of hazards 

on them, than we do about the frequency and nature of the flood hazard 

events” (Smith et al. 2019, p. 2). Also, until not long ago the availability and 

integration of socioeconomic variables into geospatial risk models implemented 

within a Geographic Information System (GIS) remained a challenge (EC 

2010). Perhaps the smaller amount of attention devoted to the importance, 

gaps and challenges in modeling exposure is reflected in the very definition of 
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risk proposed by the UN, mentioned above (UNDP 2004), where exposure was 

embedded within vulnerability and did not emerge as an autonomous 

component of the risk equation. This component has progressively received 

more attention in last decade, with the realization that exposure modeling has 

a critical role to play in risk assessment, and that needs and challenges 

associated with this component are far from being solved (GFDRR 2014). These 

challenges include need for information on exposure that is up-to-date, 

detailed, covers wide geographical areas with spatial and temporal 

consistency, and accounts for dynamics of exposure (Wieland et al. 2012; 

GFDRR 2014).  

Simultaneously, the risk and disaster landscape is becoming ever more 

complex and interconnected (UNDRR 2019): many ‘classical’ hazards increase 

in frequency and intensity, triggering cascading effects, and are joined by new 

forms of terrorism and ‘invisible’ threats (e.g. epidemics, but also cyber 

terrorism), while anthropogenic actions are changing and challenging the very 

concept of ‘natural’ disaster (Peduzzi, 2019). The Sendai Framework has 

widened the view of the world’s risks, by considering natural and man-made 

hazards, stressing the need for action in the four priority areas at local, 

national, regional and global levels (UNISDR 2015a). Those actions should be 

supported by more detailed and data-driven understanding of disaster risk, at 

three geographical scales: global, national, and local. The combination of 

differences in levels of risk governance, actors, scope, and purposes, suggests 

a need for multi-level geospatial information to support improved decision 

making and to enable modeling of potential impacts on social systems 

(Aubrecht et al. 2012a).  

1.2.2 Mapping exposure for assessing populations at risk  

As stated above, exposure is a core component of disaster risk, without which 

there would be no impacts from hazards. Also, for some types of natural 

hazards (tectonic), risk can only be significantly reduced by decreasing 

exposure and vulnerability, as the hazard component of the equation is quite 

unresponsive to human intervention. For example, earthquakes and volcanic 

eruptions are still difficult to predict and we cannot reduce the magnitude of 

events. Therefore accurately modeling, mapping, and quantifying population 

exposure becomes an especially critical first step for supporting DRM and DRR.  

In exposure modeling and analysis, population distribution maps (grids) are 

important for the estimation of population exposure, and, in addition, these 

maps (grids) are often used to model the distribution of other socio-economic 

and exposure assets, such as GDP (e.g. Jongman et al. 2012). Also, population 

density is a relevant indicator of (social) vulnerability to hazards (UNDRR 

2019). 
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Typically, the analysis and quantification of population exposure to hazards can 

follow a deterministic or probabilistic approach. Deterministic approaches 

typically quantify maximum potential exposure for a single “what if” hazard 

scenario (often worst case), for lack of magnitude-frequency information. The 

increased availability of such information has enabled a progressive shift 

towards probabilistic assessment, whereas ‘physical population exposure’ can 

be computed as the average annual population exposed to a hazard, when the 

annual frequency of a given magnitude event [event/year] is known (Peduzzi 

et al. 2009a).  

As well as hazard, exposure is dynamic, varying at different spatial and 

temporal scales. Regarding the dynamics of exposure, some authors 

distinguish between chronic exposure and acute exposure as an extension of 

their concept of acute and chronic hazards (Tobin et al. 2011). In this proposal, 

an ‘acute hazard’ is “a sudden-onset event with a limited duration (typically 

weeks or less) and not regularly repeated”, whereas a ‘chronic hazard’ is “an 

event that is of unforeseen duration (e.g., volcanic activity) or that is 

regular/repeated (e.g., yearly floods)” (Tobin et al. 2011, pp. 701). 

Evaluating population exposure for global disaster risk assessment is 

challenging, being limited by the availability and quality of geophysical and 

socio-economic data (Lerner-Lam 2007; Peduzzi et al. 2009a). In fact, 

estimations of human exposure to hazards have been mostly conducted for 

limited areas, from parts of cities to small regions (e.g. Wieland et al., 2012; 

Fraser et al. 2014; Yuan et al. 2019). When such studies were conducted for 

large areas, such as continents or the globe, they usually did not incorporate 

a temporal dimension (e.g., Small and Naumann 2001; Dilley et al. 2005). 

However, analyzing past and present variation of exposure enables 

identification of dynamics and trends and may provide insight into future 

changes in risk. Given high urbanization rates and increasing spatio-temporal 

variability in many present-day cities, exposure information is often out-of-

date, highly aggregated or spatially fragmented (Wieland et al. 2012). 

Early efforts at assessing global exposure provided estimates of human 

exposure to drought, earthquakes, floods, and tropical cyclones (UNDP 2004). 

These efforts increased in the present decade, with a number of global (e.g. 

GAR) and international initiatives aimed at DRR producing global exposure 

databases containing information on settlements and population distribution. 

These include the Global Exposure Database (GEG) initially developed for GAR 

2013, reporting population from LandScan 2007 at 5 km spatial resolution (De 

Bono and Mora 2014). For GAR 2015, Pesaresi and Freire (2014) developed 

and provided an improved global grid reporting the percentage of built-up 

areas per 30 arc-second cell. For GAR 2019, the exposure model has been 

improved with more accurate measurement tools (UNDRR 2019). Developed 
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for and in the frame of GED4GEM5, the Global Exposure Database (GED) 

contains aggregate information on population and the number/built 

area/reconstruction cost of residential and non-residential buildings at a 1 km 

resolution.  

These global databases have been mostly aimed at baseline risk assessment 

and inter-country comparison, with their ‘operational’ value for subsequent 

DRM phases being very limited due to coarse spatial resolution6, lack of 

temporal component, and lack of consistency. For example, the United States 

Geological Survey (USGS) estimates population exposure to significant global 

earthquakes which occurred since 1973 (Allen et al. 2009). However, the 

analysis departs from a static representation of population distribution, i.e., a 

layer representing a single date. Improving retrospective analyses of human 

exposure requires not only spatially explicit demographic data (NRC 2007), but 

also population datasets having an historical dimension and consistent 

modeling approach that enable their comparison (e.g. Freire et al. 2015c).  

Other global platforms have been developed to support disaster risk and impact 

assessment of hazards by quickly estimating human exposure to specific 

hazards. The USGS’ PAGER7 (Prompt Assessment of Global Earthquakes for 

Response) system innovated in 2007 by immediately estimating after an event 

the number of people and settlements exposed to shaking by using the coarse 

‘ambient’ population distribution surface from LandScan (Dobson et al. 2000). 

Other such operational global platforms and services include: 

 INFORM8: Index for Risk Management, provides worldwide national and 

selected sub-national (baseline) risk indices for management of 

humanitarian crises and disasters, using average annual population 

exposed to several hazards (earthquakes, floods, surge from tropical 

cyclones, tsunamis), being updated annually; 

 GDACS9: Global Disaster Alert and Coordination System, providing early 

estimates and projections of potential population exposure to actual 

disaster events and their impacts (e.g. Hurricane Dorian, Aug. 2019) 

(GDACS 2019); 

                                                
5 https://storage.globalquakemodel.org/what/physical-integrated-
risk/exposure-database/ 
6 One serious side effect of coarse spatial resolution is that entire nations are 
not ‘gridded’ and hence not represented at such scales; this often includes the 

most exposed to certain hazards, such as small Island Nations (e.g. cyclones, 
sea level rise). 
7 https://earthquake.usgs.gov/data/pager 
8 https://drmkc.jrc.ec.europa.eu/inform-index 
9 https://www.gdacs.org 



Introduction, Context and Objectives 

10 

 Copernicus EMS10: rapid mapping prior, during, and after disaster 

events, mapping areas affected and assessing initial impact of events 

(including population exposed). 

On the ground, three major disasters highlighted limitations in DRM and gaps 

in population exposure modeling: 2004 Indian Ocean Tsunami - lack of early 

warning/evacuation, and of modeling the presence of non-residential 

population in affected areas (i.e. tourists) that composed a large and 

unprecedented share of the victims; 2010 Haiti Earthquake - lack of detailed 

and updated geospatial data on built-up and population, prompting massive 

efforts at ‘rapid mapping’ via VGI/crowdsourcing; 2011 East Japan Earthquake 

and Tsunami - the possibility of major NATECH cascading event was 

overlooked. 

One persistent challenge for global DRM is thus “to find innovative, efficient 

methods to collect, organize, store and communicate exposure data on a global 

scale, while also accounting for its inherent spatio-temporal dynamics” (Pittore 

et al. 2017). While until recently, global scale was synonymous with coarse 

resolution for exposure data, that has been rapidly changing due to 

developments in geospatial technologies (including information extraction 

methods) and data availability and access, in particular that derived from 

Remote Sensing. These enhancements are making more advanced exposure 

models possible (UNDRR 2019), and even in data rich environments, the use 

of bottom-up approaches can further improve and update detailed data on 

human and structural exposure (Freire et al. 2011a).  

While many current threats and hazards have a worldwide scope and large 

disasters can affect entire regions or countries, impacts are fundamentally 

local, affecting people where they live and conduct their daily activities. Risk-

related policies may be decided at high administrative levels (e.g. national, 

provincial), but disaster risk reduction and mitigation demand measures 

implemented at local level, which requires understanding of vulnerabilities at 

compatible scales (Lerner-Lam, 2007). This is also valid for the preparedness 

phase, especially in remote locations, as disaster risks have local and specific 

characteristics that should be understood (UNISDR 2015a). Concerning the 

assessment of human exposure and DRM activities, this implies the need for 

more detailed population data capable of supporting local scale analyses and 

decision-making11 (Freire 2010).  

Given the obvious social relevance of DRR, this need has been a major driver 

of research efforts to improve population modeling and related DRM 

                                                
10 https://emergency.copernicus.eu 
11 Nonetheless, there are significant challenges and trade-offs affecting the 
modeling, mapping, and assessment of population exposure. These are 
essentially related to the modeling of population distribution discussed in 
section 1.2.4. 
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applications, especially at national, sub-national, and local scales. These efforts 

have increased spatio-temporal resolution and therefore accuracy of 

population exposure assessments demonstrated for a number of hazards, 

including bombing/explosion (Ahola et al. 2007), tsunami (Taubenbock et al. 

2009; Freire et al. 2011b), coastal storm surge (Kellens et al. 2012; Aubrecht 

et al. 2015), river flooding (Smith et al. 2016; Renner et al. 2018), volcanic 

hazard (Bhaduri et al. 2002; Freire et al. 2015b), earthquake (Taubenbock et 

al. 2008; Freire & Aubrecht 2010; Osaragi 2016), and heat waves (Hu et al. 

2019). Hu et al. (2019) have innovated by tackling a hazard displaying 

significant variation in the daily cycle and coupling with the respective 

dynamics of population for improving spatio-temporal characterization of 

human exposure in the city of Chicago, USA. 

For support to local-level analyses and actions, baseline population exposure 

should be ideally conducted at the level of individual buildings, as a focus of 

human life where most human activities take place (per CAPRA12 exposure 

levels). However, higher detail may be useful for specific hazards and large 

buildings, as demonstrated in study of tsunami threat in Lisbon (Freire et al. 

2011a; 2012).  In the context of river flooding risk and actual impacts, Freire 

et al. 2015c have demonstrated (i) the importance of producing and using high 

resolution exposure data for more accurate DRM, and (ii) how recent 

advancements in geospatial data and modeling enable attaining wide coverage 

with high spatial resolution, approaching the local scale. This work illustrates 

and improves a common problem in spatial DRM: the scale mismatch of hazard 

and exposure data, whereas hazard maps are frequently of higher resolution 

than exposure data, creating problems for the correct assessment of exposure.  

Different types of hazards such as earthquakes, tsunamis, landslides, or fires 

display different characteristics whose consideration is important for exposure 

assessment and risk analysis and more broadly for DRM13 (Aubrecht et al. 

2013). Hazard types vary in regards to their main causal processes (natural 

vs. man-made), their geographical impact, and timescale: onset and impact 

duration (Figure 1). But also important for risk analysis are their recurrence 

intervals or return periods (see ‘physical population exposure’ above), as 

changes in the hazard frequency and timing of hazard occurrence during the 

year will have a strong impact on the ability of societies and ecosystems to 

cope and adapt to changes (Cardona et al. 2012). 

Modeling and mapping population exposure is especially important for those 

hazards whose element most under direct threat is typically life or health (e.g. 

tectonic, technological accidents, conflict), while some other hazards directly 

threaten food or water on which ultimately humans depend.  

                                                
12 https://ecapra.org 
13 This section introduces the topic of role of hazards characteristics, which is 
further discussed throughout this thesis when relevant. 
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Figure 1 A typology of hazards and respective characteristics14. Source: 

UNEP/GRID Arendal (http://maps.grida.no/go/graphic/typology_of_hazards). 

Particularly relevant for the current discussion are hazards’ potential impacts, 

which can occur at spatial and temporal scales that span several orders of 

magnitude (Gill and Malamud 2014). For example, while ground collapse 

typically affects very localized areas in the span of seconds to minutes, climate 

change has a global scope that spans from decades to millennia (Gill and 

Malamud 2014).  

Regarding the temporal scale, human dynamics in the short term (daily and 

weekly patterns) can strongly affect the quantification of human exposure in 

cases of extreme natural events with rapid onsets, such as earthquakes, 

landslides or tsunamis (Pittore et al. 2017). Not accounting for socioeconomic 

dynamics in exposure and risk assessment, especially in case of time-specific 

or future events, causes mismatches in temporal scales (Lorenzoni et al. 2000; 

Rohat 2018). Therefore sudden or rapid hazards are those for which analysis 

stands to benefit the most from increased temporal resolutions of population 

exposure and consequently such hazards have driven most recent research 

efforts to improve population modeling, as mentioned above. Conversely, slow 

onset hazards (e.g. droughts) are more tolerant to the use of a single 

                                                
14 Other classifications of hazards exist, such as Integrated Research on 
Disaster Risk, 2014. Peril Classification and Hazard Glossary (IRDR DATA 
Publication No. 1). Beijing: Integrated Research on Disaster Risk. 
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temporally-averaged measure of population for baseline exposure, such as 

‘residential’ or ‘ambient’ population (discussed in more detail in section 1.2.3).  

Concerning the spatial characteristics and scale, hazard zones of river floods 

or tsunami are typically much more specific (due to close dependence on 

topography) and have a ‘hard’ edge, requiring compatible detailed and precise 

data for exposure and DRM; on the other hand, other climatic hazards 

(cyclones, droughts) are less spatially specific and display ‘soft’ edges, 

tolerating exposure data having lower spatial resolution and precision. Sudden 

and highly localized hazards such as landslides or tornadoes are space- and 

time-specific events which are especially stringent regarding the characteristics 

of population data to support exposure analysis and DRM, requiring detailed 

exposure data in both space and time.  

Hazards also vary in complexity. Volcanic eruptions are especially complex 

phenomena capable of causing human casualties from several different 

hazards and cascading effects (Chester et al. 2000; Brown et al. 2017). 

Cascading disasters, especially if affecting the same area, are capable of 

inducing dramatic changes to population distribution and exposure during the 

development of the events, becoming especially challenging for modeling of 

human exposure.  

In brief, conducting spatially-explicit risk assessment requires modeling and 

mapping population exposure with sufficient resolution. Assessing potential or 

actual population exposure to hazards requires geo-information on population 

distribution at a range of spatial and temporal scales. As stated in GAR2019, 

“disaggregated data sets and statistical data, previously scarce in the disaster 

risk realm, are now becoming prerequisites for measuring risk-informed 

sustainable development; further improvements in data availability, quality 

and accessibility are anticipated”  (UNDRR 2019). 

1.2.3 Beyond exposure: the relevance of population in integrated 
DRM 

Disaster Risk Reduction (DRR) is the outcome of effective (integrated) Disaster 

Risk Management (DRM). DRM generally refers to “the application of disaster 

risk reduction policies and strategies to prevent new disaster risk, reduce 

existing disaster risk and manage residual risk, contributing to the 

strengthening of resilience and reduction of disaster losses” (UNISDR 2017). 

Disaster Risk Management15 is a complex multi-scale and multidisciplinary 

activity involving many actors and stakeholders, and as planning framework 

for DRR involves multiple dimensions of social and natural systems and their 

interactions (Neal 1997). 

                                                
15 Referred to as “Emergency Management” in some geographical contexts, 
e.g. in USA and Australia. 
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DRM has been commonly regarded as a multi-stage process (Johnson 1992; 

Mileti 1999), conceptualized as a cycle or a spiral (Figure 2) (Aubrecht et al. 

2013; van Westen 2013). The process typically comprises the main 

interconnected phases/ components of (i) planning or risk analysis, (ii) 

mitigation, (iii) preparedness, (iv) response, and (v) recovery and 

rehabilitation16 (see Lettieri et al. 2009 for a review).  

 

Figure 2 DRM process and phases, conceptualized as cycle and spiral. Source: 
Aubrecht et al. 2013 

One advantage of unrolling the cycle into a spiral is highlighting the need to 

adopt and ‘repeat’ a structured approach to DRM through time, that 

progressively shifts the focus from response and recovery to prevention and 

preparedness (van Westen 2013) – or from reacting to disasters to preventing 

them. What is often overlooked is the need to re-analyze risk after mitigation 

measures are implemented, in order to assess to which extent risk was 

mitigated and to quantify the remaining (or residual) risk. Aiming at 

standardization, the recent ISO 31030 (ISO 2018) provides a general approach 

to the risk assessment process, comprising three stages: risk identification, 

risk analysis and risk evaluation.  

Regardless of the conceptualization of DRM, throughout this process spatial 

information has a crucial role (van Westen 2013), and this is especially true 

regarding population. In people-centric DRM, (updated and detailed mapping 

of) population distribution data is relevant for decision support in (practically) 

every phase of the disaster risk management cycle (Freire, 2010), if produced 

at appropriate spatial and temporal scales (Sutton et al. 2003). Since human 

beings are the most vital element to protect, adequate planning, mitigation, 

and reaction to disasters requires knowing the location of people and their 

                                                
16 The number, sequence, and designation of DRM phases have been a matter 
of proposals and debate among researchers and practitioners, but such 
discussion is beyond of the scope of this thesis. 
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characteristics. Table 1 shows in a non-exhaustive way the usefulness of 

population geospatial demographic data in each phase of DRM, including its 

potential role and type of questions addressed17.  

Table 1 Usefulness of geospatial demographic data (with focus on total 
population counts and density) in DRM phases. Source: author own elaboration 

DRM phases Role of geospatial 
population data (total 

pop.) 

Questions 
addressed/answered 

Planning (Risk 
analysis & 
assessment) 

 

Mapping of (potential) 
population exposure; 

Assessment/quantification 
of population exposure; 

Identification of human 
exposure hot spots; 

Visualization, 
communication of 
distribution of human 
exposure for risk awareness; 

Establishing a baseline 
situation for assessing risk. 

Where are the potentially 
exposed people? 

How many people are potentially 
exposed? 

What are their densities, are 
there exposure hotspots? 

 

Mitigation Assessment and planning of 
mitigation measures; 

Preparation of population 
awareness and self-
protection campaigns; 

Location and quantification 
of people targeted for 
mitigation measures;  

Where are mitigation measures 
most needed? 

Is there a need for 
relocation/resettlement of 
population? 

How many people will be affected 
by mitigation actions? 

Preparedness 
(incl. early 
warning) 

Informing the placement of 
means and resources 
according to potential 
exposure of people and their 
vulnerabilities; 

Indicating to whom and 
where to direct early 
warning; 

Where and how many supplies 
are needed in case of hazardous 
events (e.g. water & food)? 

Where should shelters be 
located, and what should be their 
capacity? (e.g. for tsunami) 

How many people should be 
evacuated and to where? What 
are the evacuation routes and 
their capacity? 

Where to locate personnel and 
resources for best response? 
(e.g. firemen, ambulances) 

                                                
17 Regarding their relation with a specific hazardous event, Planning, 
Mitigation, and Preparedness are pre-impact, while Response and Recovery are 
post-impact activities. 
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Response  

 

Locating and estimating 
affected people (victims) is 
essential to tailor response 
and rescue efforts;  

Location and quantification 
of people potentially 
affected; Matching of 
resources required for 
effective response; 

How many people were affected 
and where are they? 

How can they be reached and 
rescued? 

How many potential victims?  

Rehabilitation 
and Recovery  

Estimating all activities and 
people affected, even if 
indirectly, facilitates the 
recovery process; 

How was the baseline (pre-
event) population distribution 
and how can that be recovered or 
improved upon? 

How to build back better, 
planning settlements to reduce 
and mitigate future risk? 

 

Although not exhaustive, Table 1 shows that geospatial population data has a 

useful role to play in all phases of DRM and that it can potentially provide 

answers to a range of relevant questions, informing decision-making and 

action. It becomes clear some of the many ways geospatial population data 

can contribute to baseline risk analysis and potential impact assessment, 

mitigation activities, preparedness measures (including early warning and 

evacuation), response, and rehabilitation (Freire, 2010). 

In integrated DRM, Planning should be the necessary (but not sufficient) initial 

phase, determining the need for and informing specific actions required in sub-

sequent phases. Central to the Planning phase is Risk analysis, which includes 

the identification of risk and its quantification. The mapping and assessment of 

population exposure and potential impacts should have a central role in 

informing actions on the ground, required in sub-sequent phases.  

Analysis of pre-event population distribution is necessary for establishing a 

base-line situation for assessing risk, and pre-event maps are often needed 

during the response phase (Zerger and Smith, 2003). In the Mitigation phase, 

geospatial population data can help locate, quantify and rank areas targeted 

for measures. During Preparedness, these data can inform the placement of 

means and resources according to potential exposure of people and their 

vulnerabilities, and indicate to whom and where to direct early warning.  

Despite the importance of Mitigation and Preparedness phases in reducing 

impacts of hazards, it is usually Risk Analysis and Response that receive the 

most attention. Response requires population totals that are spatially 

disaggregated for estimating the number of casualties and conducting safety 

and emergency relief (Tenerelli et al. 2015). 
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While DRM is inherently a spatial problem (Goodchild 2006), after a disastrous 

event the focus quickly turns to time, concerning both the time at which the 

event has occurred or started to unfold and the so-called ‘golden hour’ for 

search and rescue operations (Zerger and Smith 2003; Goodchild 2006). The 

emergency of the response phase is a strong argument recommending that 

suitable population distribution data be produced beforehand or rapidly 

computable on-demand.  

The frequent lack of such suitable data leads to the need for rush mode 

mapping of both pre-event situation and affected areas post-disaster (as in 

Copernicus EMS) and collaborative mapping via crowdsourcing/VGI, such as 

HOT-Humanitarian OpenStreetMap18 and MapAction19. In this respect, the 

2010 Haiti earthquake can be considered a landmark event (Norheim-Hagtun 

and Meier 2010).  

Despite efforts at devising efficient population estimation techniques that could 

be employed in real-time once a disaster occurs (Dobson 2003, 2007), for 

planning and simulation purposes and to ensure a timely response, adequate 

population distribution data should be produced and made available 

beforehand whenever possible. This is especially true for sudden and rapid 

onset hazards such as those discussed in this thesis (earthquakes, tsunamis, 

volcanic eruptions) where emergency responders and exposed population are 

typically caught by surprise or where lead-time is very short.  

Another pressing challenge for the DRM/DRR community is the provision of 

free and open models and data, as “dissemination of exposure data is the key 

to empowering end-users and communities and for allowing and encouraging 

risk evaluation” (Pittore et al., 2017), leading the UN to cultivate and promote 

the generation and use of open data for DRM (GFDDR 2014), as that provided 

in PREVIEW Global Risk Data Platform20.  

1.2.4 Background: Modeling and mapping of population distribution 
in space and time (for exposure analysis and DRM)21 

For modeling, mapping, and assessing human exposure (and in general as 

support to DRM) population data is a basic necessity, with its quality and level 

of detail having a direct effect on response and lives saved (NRC 2007). The 

NRC states that is “preferable in every situation to have [demographic] data 

at finest possible spatial resolution, especially when dealing with emergency 

situations” (NRC 2007, p. 31). In the above described context, the need to 

                                                
18 https://www.hotosm.org 
19 https://mapaction.org 
20 https://preview.grid.unep.ch 
21 Parts of this section are based on Leyk et al. 2019. The spatial allocation of 
population: a review of large-scale gridded population data products and their 
fitness for use. Earth Syst. Sci. Data, 11, 1385–1409, of which I am co-author. 
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map population distribution suitable for assessing human exposure to hazards 

has recently been growing in attention and importance.  

The way population data is collected and represented in risk assessment has 

typically depended on the scale of analysis and the availability of information 

(Rhind 1991) (in van Westen et al 2013). Census campaigns and other ground 

surveys are usually the main source of population/demographic data. In 

georeferenced censuses, counts of resident population are assigned to census 

reporting units or zones, which vary widely in shape, size, and population 

densities. While population distribution in space is discontinuous and 

heterogeneous, maps purely based on census data assume (i) an exhaustive 

distribution (i.e. there is population in the whole census zone), and (ii) a 

homogeneous distribution (i.e. density is constant in each zone). Collection of 

high-quality census data involves significant cost and technical expertise, and 

such data is usually updated every ten years with longer and irregular updates 

in many countries (UNDESA 2009). These and other challenges contribute to 

make the quality, detail, age, and reliability of census data quite 

heterogeneous among countries (Balk et al. 2006; Leyk et al. 2019). Such 

shortcomings propagate to derived population grids and their applications.  

For accurate spatio-temporal modeling of population distribution, geospatial 

census data comprise mainly two types of challenges/issues. One is more 

conceptual, tied to the complex nature of population as a geographical variable 

(i.e. a discrete quantitative variable, having finite and known counts), the 

semantical concept (definition of ‘residential’ population22) and technical 

specifications (enumeration vs. reporting units, their reference period, scale, 

etc.); and another is more practical, tied to the quality and reliability of data. 

While the first challenge and how to overcome it has received considerable 

attention by applied research, the latter one has remained largely ignored in 

production of global population grids and we have addressed it in Chapter 5. 

Geospatial modeling allows to overcome or mitigate some of these 

characteristics and limitations and to address main requirements and 

challenges for increasing the usefulness of geospatial population data (e.g. 

higher spatio-temporal resolutions, consistency, quality, currency). 

However, modeling the spatio-temporal distribution of population has been 

typically subject to a number of trade-offs between geographical coverage, 

spatial resolution, temporal resolution, and uncertainty. These trade-offs are 

mostly due to data availability and quality, and modeling capacity. To illustrate 

                                                
22 It should be noted that data on resident populations as provided by censuses 

are themselves a convention (concept of ‘usual residence’), whose distribution 
never occurs at any specific moment in time (de jure census population) or if 
it does occur (de facto, location at the time of the census) that distribution may 
not be representative of a different situation or lose meaning in the 
medium/long term (i.e., a year) (Leyk et al. 2009). 
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these trade-offs, let us consider the global population represented at world 

scale, where the globe or planisphere are the only unit or cell (resolution = 

world). In this unit and for a given reference day of the year we can model or 

estimate with high certainty the total amount (count) of daytime and nighttime 

population, as these are essentially the same for both periods and equal the 

world’s population. However, as we ‘zoom in’ or start to subdivide the 

planisphere into smaller units, such as continents, countries, and cities (i.e. 

increasing the spatial resolution), the amount of people in those units starts to 

diverge between each of those periods (as a function of human dynamics), and 

uncertainty will increase as a reflex of (i) frequency of movement and their 

spatio-temporal domain23, and (ii) our lack of knowledge to fully model those 

human activities and their locations.  

Regular grids (raster or vector) are now well established and widely used 

spatial structures to model and report population attributes due to their 

flexibility and advantages24 (Martin and Bracken 1991; Deichmann et al. 

2001). Making population data available as fine grids facilitates analyses, 

increases flexibility and interoperability with other spatial datasets, and 

mitigates MAUP (Openshaw and Taylor, 1981). This includes easier integration 

with hazard data, whose spatial footprints do not conform to administrative 

boundaries (Smith et al. 2016).  

Within the concept and spatial resolution adopted, population grids 

simultaneously estimate and depict two components of population distribution: 

(i) where people are (i.e. inhabited vs. uninhabited areas) and (ii) how many 

there are per unit area (i.e. their densities). To accomplish the estimation of 

both these aspects, population distribution grids rely on two major types of 

input datasets in their construction: (i) georeferenced population statistics 

(e.g. census or microcensus) and (ii) geospatial proxies associated to the 

presence of population at the selected spatio-temporal scale (covariates).  

For a given spatial unit, population distribution grids can be produced by 

disaggregating or gridding available population counts (top-down approach) or 

by estimating that count at the grid cell level through combining sampling with 

ancillary data, typically remotely-sensed (bottom-up method) (e.g. Sutton 

2001; Harvey 2002; Wardrop et al. 2017). For top-down approaches, obtaining 

positive values and preserving the total volume of people – Tobler’s 

‘pycnophylactic condition’ (Tobler 1979) – are basic requirements to produce 

realistic representations. For population grids that are generated by 

                                                
23 Human activity and dynamics have different spatio-temporal patterns, e.g. 
from high-frequency and spatially confined daily commuting between place of 

residence and workplace, to lower-frequency and less confined seasonal 
movement for summer holidays. 
24 However, at local level other spatial units and data structures can be very 
useful, e.g. 2-D or 3-D vector representation of buildings, as shown in context 
of tsunami risk in e.g. Freire et al. 2011a; 2012). 
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disaggregating available statistics (top-down) while preserving their volume, 

output accuracy (with respect to ground truth data) is largely dependent on 

the spatial detail and quality of input geospatial layers (Freire et al. 2018a).  

In the spatial refinement of existing population statistics (top-down), many 

approaches have been tested and used (Wu et al. 2005), but most are 

variations of the classical dasymetric mapping technique (Semenov-Tian-

Shansky 1928; Wright 1936). Dasymetric mapping is a simple yet powerful 

cartographic technique that allows limiting the distribution of a variable to the 

zones where it is present by using related ancillary information in the process 

of areal interpolation (Eicher and Brewer 2001). The technique has been 

progressively revived and refined in last two decades, namely with 

development of ‘intelligent dasymetric mapping’ variants (Mennis 2003; 

Mennis and Hultgren, 2006).  

In dasymetric mapping of population, the quality of the proxy variable(s) is 

more important than the choice of the downscaling method/algorithm (Martin 

et al. 2000). Hence, all other factors being equal, the factors determining the 

output accuracy of the final map (grid) can be ranked as follows:  

1. Detail (resolution) and quality of source zoning population (i.e. census 

statistics), 

2. Quality of proxy variable (covariate) for population disaggregation, 

3. Specific methodology applied for disaggregation from source zones to 

target zones. 

Then for disaggregating global population grids based on dasymetric mapping 

(either using one or more covariates as input), the challenge can be narrowed 

to two aspects: (i) obtaining reliable geospatial population statistics, and (ii) 

creating an appropriate proxy (target) layer associated to the presence of 

population at the selected spatio-temporal scale (i.e. covariate). In most 

population disaggregation approaches, significant effort and cost is expended 

preparing, combining and modeling geographic variables in order to obtain an 

appropriate proxy layer or probability surface to support population 

disaggregation (e.g. WorldPop25). In developing more detailed multi-temporal 

global population grids, this thesis (Chapter 5) has focused instead on aspects 

(1) and (2) mentioned above.  

1.2.4.1 Global Population Grids  

At global level, starting in the 1990s the increased availability of digital spatial 

data combined with improved capabilities of Geographic Information Systems 

(GIS) have enabled the development of several global population distribution 

grids, such as the GPW (Tobler et al. 1995), HYDE (Goldewijk and Battjes 

                                                
25 https://www.worldpop.org 
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1997), LandScan (Dobson et al. 2000), and GRUMP (Balk et al. 2005)26. These 

grids vary in regards to population concept, data sources, and modeling 

approach – for a detailed review of current large-scale gridded population data 

products, see Leyk et al. 2019. 

Although global population grids have been available for more than two 

decades, constraints have limited their usability for some applications (Hay et 

al. 2005; Linard and Tatem 2012; Mondal and Tatem 2012). Among these are 

their coarse spatial resolution (maximum was 30’’), use of dichotomous maps 

of built-up in their construction, and coarse, limited, and incomplete 

discrimination of urban areas and settlements (especially smaller ones) (Potere 

and Schneider 2007; Potere et al. 2009). Better and finer global analyses of 

population-environment interactions require enhanced geoinformation on 

population distribution and densities, in particular concerning temporal and 

spatial resolution and capacity for change assessment. For global change 

detection and assessment, having a clear and coherent spatio-temporal 

production model is important to ensure users’ confidence and allow 

comparisons in space and time (Freire et al. 2016a). Because even if conducted 

at global scale, exposure assessment to some hazards is highly sensitive to 

spatial resolution of population grids: e.g. tsunamis, river floods, landslides. 

In the modeling of population distribution, geo-information science and Earth 

observation play an increasingly important role (Leyk et al 2019). These 

technologies have been contributing in several ways to improving population 

modeling for decades (Tenerelli et al. 2015), but more recent developments in 

imagery and methods for information extraction have been evolving towards 

constituting a more detailed, objective and independent data source on human 

presence on the Earth surface. The combination of new cost-effective, 

automated and fully replicable data classification methods (e.g. machine 

learning) with the synoptic capacities of satellite Earth Observation imagery, 

made accessible in a public, full open-and-free frame, can contribute to fill 

information gaps. This is especially true in poor, remote, unsafe, disputed, very 

large, and/or highly dynamic areas of the globe where conventional data 

gathering and updating is challenging (Freire et al. 2018a).  

At global level, these developments have enabled global mapping of built-up 

areas and settlements with unprecedented spatio-temporal detail, consistency, 

and temporal coverage – in essence capturing the local scale with global 

coverage. These new remotely-sensed global datasets include the Global 

Human Settlement Layer (GHSL) (Pesaresi and Ehrlich 2009; Corbane et al. 

2017), mining both optical and radar imagery in the period 1975-2016, and 

                                                
26 These were the only global gridded population data products available when 
work for this thesis was initiated. 
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the Global Urban Footprint (GUF) for 2012, generated from radar satellite 

constellation of TerraSAR-X and TanDEM-X (Esch et al., 2017). 

Making these datasets available open and free, as in the case of GHSL, helps 

to increase access, promotes transparency, and ensures accountability of the 

information produced. GHSL’s enhanced spatio-temporal mapping of buildings 

and density of built-up areas offers a suitable proxy for the location of people 

and, as such, is being used for enhancing multitemporal global population 

grids, such as GHS-POP (covering the period 1975-2015) and WorldPop 

(covering years 2000-2020), and to create time series of population estimates 

that can be used to fill in data gaps between national census surveys that are 

commonly taken at decadal intervals (Nieves et al. 2018). In the case of 

WorldPop, built-up areas are being used in combination with other spatial 

covariates to create population grids (Stevens et al. 2015).  

Box 1.1 The GHS-POP gridded population time series 
The Global Human Settlement Population Grid (GHS-POP) depicts the 
distribution and density of the total population as the number of people per 

grid cell (at 250 m spatial resolution) for nominal epochs 1975-1990-2000-
2015. Using dasymetric mapping, residential population estimates (counts) 
per smallest census unit available, provided by CIESIN GPWv4 for the years 
of interest, are disaggregated to grid cells informed by the distribution and 
density of built-up areas as mapped by GHSL (GHS-BUILT) for matching 
epochs (Freire et al. 2016a; 2018).  
At time of first public release (2016) GHS-POP was the highest resolution 

gridded global population time series and remains the only detailed such 
dataset spanning the last 40 years. Respect to previous global time series, 
GHS-POP innovated by increasing spatial resolution by a factor of 16 (from 

~1 km to 250 m) while improving temporal depth respect to other global 
gridded series (GPW, GRUMP), and by representing both population counts 
and densities by using an equal-area projection (World Mollweide). It is the 
only disaggregated global dataset relying on a single, time-specific, and 

consistent proxy (built-up areas), limiting the risk of circularity and 
endogeneity in analyses. For latest release, areas declared as unpopulated 
were revised critically and the representation of population along coastlines 
was improved (Freire et al. 2018a). In order to increase their usability (Lewis 
2014), since 2019 these grids are also provided in two different coordinate 
systems (addition of WGS84), and can be downloaded as bulk or in regular 

tiles. 
Global mapping of built-up areas was performed through the Global Human 
Settlement Layer (GHSL) project using Landsat imagery collections for 
nominal epochs 1975, 1990, 2000 and 2014 (Pesaresi et al. 2013; 2016). 
The GHSL approach is grounded on the concept that buildings and their 
agglomerations (i.e., settlements) are nowadays the main visible and direct 
manifestation of human presence (and activity) on the Earth’s surface.  

GHS-POP is part of an integrated suite of geospatial products, aiming to 
constitute a detailed and consistent time series of lightly modeled population 
distributions that is based on reproducible methods for sustainable data 
production (Melchiorri et al. 2019) and can be used in policy support in 
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numerous domains (Ehrlich et al. 2018a), including monitoring exposure 

trends (Ehrlich et al. 2018b). These grids are created using consistent, open 
and free input data integrated using a clear and transparent approach and 
are also freely accessible and downloadable at 
https://ghsl.jrc.ec.europa.eu/ghs_pop2019.php (last access: 30 September 
2019). 

 

At continental level, new big earth data analytics are also enabling sustained 

mapping of built-up areas at high spatial resolutions, such as the European 

Settlement Map (ESM) (Ferri et al. 2014). Detailed mapping of built-up areas 

(at 10 m) from ESM was combined with an enhanced LULC map to disaggregate 

detailed census 2011 data for producing the most detailed pan-European grid 

of resident population (100 m) spanning 43 countries (Freire and Halkia 2014). 

For several countries a model was developed to increase the spatial resolution 

of source census data and population was gridded at 10 m, to fully preserve 

the maximum resolution of census data. Also, a new disaggregation approach 

was developed with two levels, where land use land cover determines 

reallocation of population within source zones, and built-up density determines 

specific densities at the grid cell level. The latter population grids showed 

promise for improving DRM operations at local scale, namely in frame of 

Copernicus EMS Mapping27 activities (Freire et al. 2015c). ESM is now in its 

third version, with Symbolic Machine Learning (SML) supervised classifier, the 

PANTEX and the morphological image features being employed to map 

buildings for 39 countries from multi-sensor very high resolution optical 

imagery (multispectral and panchromatic)  for reference year 2015, totaling 

~127TB of data (Sabo et al. 2019). An added-value to the previous versions is 

the improved automatic detection of buildings, automatic extraction of water, 

extraction of building typology (residential vs. non-residential) and an 

information layer allowing to derive city indicators (Corbane and Sabo 2019). 

These data are expected to benefit modeling of population distribution.  

Other developments in population and settlement mapping are progressing on 

a country basis, such as the High Resolution Settlement Layer (HRSL) (Tieke 

et al. 2019). CIESIN is producing and providing population distribution grids at 

a resolution of 1 arc-second (~30 m) for 2015, based on settlement extents 

extracted from very high-resolution (0.5 m) satellite imagery by the 

Connectivity Lab at Facebook, using convolutional neural networks (CNN). 

1.2.4.2 Increasing temporal resolution and integrating unconventional data sources 

Census figures register where people reside and usually sleep28, although their 

spatial distribution varies widely over daily, seasonal and long term time scales 

                                                
27 https://emergency.copernicus.eu/mapping/ems/emergency-management-
service-mapping 
28 Within the definition of ‘usual residence’ for resident population concept; 
resident population is usually taken as an approximation of nighttime 
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(Sutton et al. 2003). This variation in both space and time can be seen as the 

static and the dynamic components of population distribution. In this view the 

static component typically refers to the number of inhabitants per mapping 

unit (and their characteristics), whereas the dynamic component results from 

their activity patterns, and their distribution along the spatial and temporal 

dimensions (van Westen et al. 2013). Due to the diverse locations of human 

activities (e.g. work, study, leisure) and the displacements they induce, the 

spatial distribution of population is strongly time-dependent, particularly in 

metropolitan areas, characterized by intense commuting flows29 (Foley 1952; 

1954; Schmitt 1956). However, these high frequency dynamics are often not 

captured by available population data sources at needed spatio-temporal 

scales, and typically require geospatial modeling for their representation as 

spatially-explicit data. Especially for disaster risk management in urban areas, 

it is the population variation during the daily cycle that is particularly relevant, 

and in this respect the most important determination is whether an incident 

occurs at night or during the day (Dobson 2007; Alçada-Almeida 2009).  

Incidentally, a number of prominent contemporary disasters occurred during 

the daytime period, e.g.: 9/11 attacks (USA, 2001) between 8:46 – 10:28 am; 

2010 Haiti Earthquake, at 4:53 pm; 2011 Great Tohoku Earthquake and 

Tsunami, at 2:46 pm (all local times). These events occurred when a large 

share of the population was in workplaces, schools, etc. This implied that even 

detailed, accurate and current population distribution maps based on census 

data (i.e. resident population), if available, were rendered mostly operationally 

useless for Emergency Management (Response).  

Modeling population distribution at high temporal resolution (e.g. day vs. 

night) is especially challenging regarding the two main tasks or steps involved, 

i.e. (i) obtaining or estimating stocks of population groups for given zones and 

time periods, and (ii) disaggregating or allocating these population counts to 

respective target units or place of activity (Martin et al. 2015). For very 

localized areas of interest (AOI) and limited temporal events (e.g. a stadium 

during a football match) this is relatively straightforward, as the problem is 

limited to mapping the expected population (i.e. attendance volume) present 

at the event in the area of the event. However, it becomes increasingly 

challenging as the study area increases, given the need to balance the 

population budget and correctly subtract the attendance from the surrounding 

areas it originated from and where it is not present during the event (e.g. using 

an origin-destination matrix). To further complicate matters, daytime 

                                                

population, in what is clearly a simplification of a more complex reality of 
population distribution during that period. 
29 It should be noted that also residential population is subject to dynamics and 
displacement, and that these can be especially quick and intense in case of 
conflict or other crises (e.g. in Syria, see Corbane et al. 2016). 
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population distribution can be considerably different in a working or a weekend 

day or holiday.  

Twenty years ago, the LandScan project (Dobson et al. 2000) has incorporated 

the temporal dimension in global population distribution by mapping ‘ambient’ 

population30, an “average population distribution over a 24-hour period” 

(Badhuri et al. 2002) that “integrates diurnal movements and collective travel 

habits into a single measure” (Dobson et al. 2000). Conceptually, by straying 

away from residence-based population density, this representation may be 

more adequate for assessing exposure for daytime hazard events or those 

having slow onset, affecting populations over a wide temporal window (e.g. 

pollution, epidemics, toxic release). The latter case is especially fitting owing 

to the low temporal specificity of LandScan Global data. However, LandScan’s 

spatial resolution (30 arc-seconds, ~1 km at Equator), while acceptable for 

most global and national analyses, is insufficient for most sub-national 

requirements. Furthermore, ambient population corresponds to a compromise 

between daytime and nighttime distributions that strictly represents neither 

period.  

Meeting the need for more temporally-explicit representations, two subsequent 

population distribution databases having higher temporal and spatial detail 

were developed for the territory of the USA: a team at Los Alamos National 

Laboratory mapped day- vs nighttime and indoor and outdoor populations at 

250 m (McPherson and Brown 2004; McPherson et al. 2004), and LandScan 

USA started modeling day- vs night populations (Bhaduri et al. 2002), then 

evolving into mapping their distributions also on weekends and special events 

(Bhaduri et al. 2007). Outside of the US, a few ad-hoc efforts succeeded in 

providing such important improvements, most at local level and even fewer at 

national scale: these include models for Helsinki (Ahola et al. 2007), the UK 

Population 24/7 project (Martin et al. 2010), work for Lisbon (Freire 2010; 

Freire et al. 2012; 2013), the DynaPop model (Aubrecht et al. 2014), and a 

series of models for Tokyo (Osaragi 2009; 2016). Such models typically rely 

on intensive geospatial and/or statistical databases on time usage, which are 

usually only available for selected areas and often at a high cost. This raises 

the issue of the sustainability of approaches, an important requirement for 

continued support to DRM activities. Building on the high resolution European 

Settlement Map (ESM) built-up layer (Ferri et al. 2014), Freire et al. (2015b) 

have proposed an approach based on available free data (the ‘NDPop’ model) 

enabling the refinement of the spatial distribution of resident population and 

the addition of a temporal dimension to population data (day- vs night), 

wherever a LULC map is available (e.g. whole Europe). However, in this model 

                                                
30 Despite this distinct definition, the concept is commonly abused in scientific 
literature as representing ‘residential’ population. 
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the discrimination of daytime population is dependent on the quality of 

LandScan global grid of ambient population.  

In recent years, a number of emerging data sources and technologies were 

explored for direct mapping of population or as alternative proxies for its 

disaggregation, but mainly as proof-of-concept. These include mobile phones 

(Deville et al. 2014), crowdsourcing/Volunteered Geographic Information 

(VGI) (Bakillah et al. 2014), and location-based social media (LBSM) (Aubrecht 

et al. 2011; 2017). LBSM appears especially valuable for dynamic population 

distributing modeling by providing information both on time usage and on 

target zone characterization (Aubrecht et al. 2017a). However promising, a 

number of issues involve these types of data and technologies, e.g.  

sustainability of approaches, data access and ownership, privacy and 

anonymity of social media users, and representation bias (Zhang and Zhu 

2018). The main challenge for developers and users is how to scale up highly 

localized approaches to wide geographical areas (continents, world) and 

provide datasets open and free. 

Considering the trade-offs mentioned above, mapping the dynamics of 

population is especially challenging for large, multi-national areas and typically 

involves intensive work of identifying, mining, combining and matching 

heterogeneous statistical and spatial data from disparate sources. This requires 

significant investment in data integration and harmonization, to improve and 

supplement limitations of single remote sensing and conventional map sources 

(Lloyd et al. 2019). The combination of conventional (remote sensing data, 

LULC maps) with unconventional big geospatial data sources (VGI, POIs) is 

allowing overcoming some of the previous challenges and gaps, such as 

improving accuracies, increasing temporal resolution, while covering wide 

geographical areas (Ye et al. 2019; Yang et al. 2019). The project ENACT31 

(ENhancing ACTivity and population mapping) succeeded in producing the first 

continent-wide (28 countries of EU), consistent, seamless, high-resolution and 

validated population density grids that take into account both daily and 

seasonal variations: day- and nighttime grids per month of the year were 

produced at 1 km resolution32, for 2011 (Batista e Silva et al. 2018), accounting 

for workers, students, and visitors. This effort was aided by technical advances 

and increased availability and access to various big data sources that enabled 

the detailed mapping of land use and activities (Rosina et al. 2018). In the 

context of risk analysis and DRM, we have combined the ENACT population 

                                                
31 https://ghsl.jrc.ec.europa.eu/enact.php 
32 Although in ENACT it was possible to decrease the trade-off between 

geographical coverage and temporal resolution, there remains the typical 
trade-off between spatial and temporal resolution: although the latter 
resolution has increased 24-fold, this was only possible at 1 km spatial 
resolution, or 100 times lower detail than previous best-available Pan-
European resident population grids (100 m), by Freire and Halkia (2014). 
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grids with the most recent pan-European hazard data on flood and seismic 

hazard, in order to map and quantify variations of population exposure, to 

study their spatio-temporal patterns, and to identify potential daily and 

seasonal exposure hot spots (Freire et al. 2018b; Schiavina et al. 2018).  

In brief, for effective support to DRM, geospatial population data should be 

accurate, trusted and reliable (UNDRR 2019). Furthermore, it should be up-to-

date, have sufficient resolution (spatial, temporal, thematic), and be readily 

available (i.e. produced beforehand or rapidly computable on-demand) 

through sustainable and reproducible methods. Such population data are still 

lacking for many countries and regions, both rich and poor, and conducting 

DRM at global scale would benefit from complete, consistent, and integrated 

datasets.  

1.3 Objectives and structure of the Dissertation 
The mapping of human distribution and population exposure has generally 

lagged behind hazard modeling and mapping, in terms of accuracy, detail, and 

currency. The main objective of this research was to develop methods to 

improve the mapping of population distribution across multiple spatio-temporal 

scales in support of Disaster Risk Management. This thesis comprises 

contributions of population distribution modeling to advancing Disaster Risk 

Management and Reduction efforts by: 

(i) developing several geospatial models that improve (in detail, 

currency, quality) representation/mapping of population distribution at 

a range of spatial and temporal scales (Chapters 2, 3, 5),  

(ii) applying those data to real disaster risk scenarios for different 

hazard types by combining geospatial population layers with hazard 

maps (Chapters 2, 3, 4, 6), 

(iii) using spatial analysis for assessing human exposure, including 

quantitative and qualitative analyses, map representations and 

visualization (Chapters 2, 3, 4, 6). 

We progress from local to global coverage, following specific modeling capacity 

and requirements at local level with increasing ability to bring improvements 

to the global domain. The research supporting this work, still ongoing, has 

taken place over a period of 9 years (concurrent with other research activities 

and topics) and has so far comprised more than 50 scientific and technical 

publications. The five core chapters are published as peer-reviewed 

publications, four of them as articles in different ISI-indexed journals.  

With each model development and application, we aim to contribute to 

answering a set of questions, as presented in Error! Reference source not f

ound.. This table also shows the overall objectives and the range of different 

issues addressed in each chapter.  



Introduction, Context and Objectives 

28 

Table 2 Overview of Chapters in this Thesis 

Chapters Objectives Key Questions Issues 
Addressed 

2. Modeling of 
spatio-temporal 
distribution of 
urban population 
at high-resolution 
– value for risk 
assessment and 
emergency 
management 

To demonstrate 
and discuss the 
value for risk 
assessment and 
emergency 
management of 
modeling the 
distribution of 
urban population 
at higher spatial 
and temporal 
resolutions, to 
enable local-level 
analyses.  

Is the spatial 
distribution of 
urban population in 
the daily cycle 
relevant for risk 
analysis 
(exposure) at local 
scale? 

How can more 
detailed modeling 
of spatio-temporal 
distribution of 
urban population 
contribute to DRM, 
considering its 
cycle? 

Relevance of 
spatially-explicit 
population data for 
DRM/emergency 
management. 

Approaches to map 
population 
distribution in 
space and time. 

Uses and benefits 
of detailed day and 
nighttime 
population 
distribution grids 
are illustrated for 
four different 
disaster scenarios, 
natural and man-

made. 

Spatio-temporal 
characteristics of 
disaster 
development for 
population 
exposure. 

3. Integrating 
population 
dynamics into 
mapping human 
exposure to 
seismic hazard 

To improve 
earthquake risk 
analysis at regional 
level (metropolitan 
area) to benefit 
decision support 
for disaster and 
emergency 
management by (i) 
modeling and 
mapping nighttime 
and daytime 
population 
distribution at high 
spatial resolution, 
(ii) investigating 
spatio-temporal 
population 
exposure to 
earthquake hazard 
and (iii) classifying 
exposure levels 
through the 
combination of 

Can new geospatial 
data on spatio-
temporal 
distribution of 
population, derived 
by scaling-up a 
costly local-based 
approach, be 
combined with an 
earthquake hazard 
map to improve 
human exposure 
mapping and 
assessment in a 
metropolitan area? 

What is the 
estimated variation 
in population 
exposure by 
seismic level in the 
Lisbon 
Metropolitan Area 

Importance of 
population 
dynamics for 
disaster risk 
assessment.  

GISc research 
needs in DRM. 

Development and 
testing a high 
resolution data-
based model to 
map the nighttime 
and daytime 
population 
distributions at 
metropolitan level, 
by scaling up a 
local-level model. 

Mapping and 
assessing human 
exposure to 
different seismic 
hazard levels in 
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Chapters Objectives Key Questions Issues 
Addressed 

population 
densities with 
seismic hazard 
levels to derive and 
propose new fine-
scale composite 
human exposure 
maps. 

To improve 
modeling and 
mapping of 
population 
distribution for 
enhanced 
assessment of 
population 
exposure to 
hazards at regional 
level (metropolitan 
area). 

 

(LMA) in day- and 
nighttime periods? 

day- vs nighttime 
periods, 
demonstrated with 
real seismic 
scenario in Lisbon 
Metropolitan Area 
(Portugal). 

Visualization and 
communication of 
human exposure. 

Potential 
implications of 
results for DRM. 

4. Advancing 
tsunami risk 
assessment by 
improving spatio-
temporal 
population 
exposure and 
evacuation 
modeling 

To improve the 
assessment of 
tsunami risk and 
contributing to 
more efficient and 
effective DRM by 
considering the 
time dependence 
(daily cycle) of 
population 
exposure and 

evacuation from 
this hazard in a 
metropolitan area. 

How is the spatio-
temporal 
distribution of 
population in the 
daily cycle in a 
metropolitan area 
relevant for 
population 
exposure to and 
evacuation from 
tsunami hazard? 

Tsunami hazard, 
population 
exposure, and risk. 

Modeling and 
mapping 
evacuation time in 
day and nighttime 
periods. 

Potential 
implications of 
results for DRM. 

5. Enhanced data 
and methods for 
improving open 
and free global 
population grids: 
putting ‘leaving no 
one behind’ into 
practice 

To test data and 
methods to 
mitigate 
deficiencies 
affecting global 
collections of 
census data, for 
improving open 
and free global 
population 
distribution grids. 

How can some 
major 
shortcomings in 
geospatial 
population 
statistics be 
detected, 
assessed, and 
mitigated with 
remote sensing 
information and 
automated 
approaches, while 
preserving the 
statistic’s integrity 
for policy making? 

Characteristics and 
requirements of 
population data 
and grids for 
international policy 
support. 

Taxonomy of 
shortcomings 
affecting 
geospatial 
population 
statistics. 

Potential sources of 
detected anomalies 
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Chapters Objectives Key Questions Issues 
Addressed 

and 
inconsistencies. 

Shortcomings 
present in global 
collections of 
census data, by 
introducing, 
applying, and 
discussing novel 
procedures aimed 
at investigating 
and detecting 
some of those 
major anomalies.  

Automated 
detection of some 
detected 
inconsistencies 
using high 
resolution 
geospatial data 
derived from 
remote sensing.  

Automated 
mitigation of 
inconsistencies 
using the ‘split and 
merge’ approach. 

6. An Improved 
Global Analysis of 
Population 
Distribution in 

Proximity to Active 
Volcanoes, 1975–
2015 

To characterize 
with 
unprecedented 
detail the spatio-

temporal changes 
in the distribution 
of human 
population in 
proximity to 
historically active 
volcanoes by 
combining detailed 
geospatial grids of 
global population 
densities for the 
1975–1990–2000–
2015 periods with 
the latest data on 
distribution of 
volcanoes on 
Earth, considering 
both Holocene 
volcanoes and 
those having 

How has resident 
population 
distribution and 
density been 

varying at global 
and regional scales 
(South East Asia, 
and Central 
America) in 
proximity to 
historically active 
volcanoes in period 
1975-2015, and 
what is the current 
situation? 

To what extent 
does a new model 
and data on spatio-
temporal 
distribution of 
population 
(decadal cycle) 
improve global and 

Volcanic hazards, 
population 
exposure, and risk.  

Data requirements 

for assessing 
population 
exposure and how 
to narrow gaps. 

Contribution of 
GHSL to DRM. 

Technical challenge 
of measuring 
accurately both 
distances and 
areas in global 
maps. 

Variation of 
population 
distributions with 
distance to 
Holocene 
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Chapters Objectives Key Questions Issues 
Addressed 

significant 
eruptions.  

To conduct more 
updated and 
refined global and 
regional  
assessments of 
population 
distribution in 
proximity to 
historically active 
volcanoes based on 
new and improved 
multi-temporal 
(long cycle, inter-
annual) global 
population grids, 
and investigate 
and estimate 
globally the recent 
evolution (over 40 
years) and current 
distribution of 
population in 
relation to historic 
volcanism. 

regional 
characterization of 
population living in 
proximity to 
volcanoes and the 
assessment of 
population 
potentially affected 
by their hazards? 

volcanoes and 
those with 
significant 
eruptions, 1975-
2015. 

Potential 
implications for 
DRM. 

 

To summarize the chapter contents, Chapter 2 sets the stage for the thesis 

by demonstrating and discussing the value for risk analysis and emergency 

management of modeling the distribution of urban population at higher spatial 

and temporal resolutions, to enable local-level analysis. Uses and benefits of 

detailed day- and nighttime population distribution grids are illustrated for four 

different disaster scenarios (using fictitious hazard data), either natural and 

man-made, at municipal level.  

Chapter 3 departs from the population distribution model from Chapter 2 and 

scales it up to regional level (the Lisbon Metropolitan Area) to improve 

modeling and mapping of population distribution for enhanced assessment of 

population exposure to earthquake hazard, which is quite relevant in the study 

area. The chapter discusses how to benefit decision support for disaster and 

emergency management by (i) modeling and mapping nighttime and daytime 

population distribution at high spatial resolution, (ii) investigating spatio-

temporal population exposure to earthquake hazard and (iii) classifying 

exposure levels through the combination of population densities with seismic 

hazard levels to derive and propose new fine-scale composite human exposure 

maps. This constitutes the first known integration of explicit and detailed 
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spatio-temporal population dynamics into mapping human exposure to seismic 

hazard in a metropolitan area. 

In Chapter 4 we address improvements to the assessment of tsunami risk and 

contributions to more efficient and effective DRM by considering the time 

dependence (in the daily cycle) of population distribution in a metropolitan 

area, where this hazard is rather significant. In addition to assessing variation 

of human exposure, we conduct a simulation of evacuation from this hazard in 

day- and nighttime periods. This work provides a pioneering example of the 

integration of spatio-temporal population dynamics to assess exposure to 

tsunami for a whole metropolitan area.  

Chapter 5 is more policy focused, concerned with characteristics and 

requirements of population data and grids for supporting requirements of post-

2015 international development agreements (e.g. SDGs, Sendai) and 

respective indicators. In this chapter we develop /explore/propose new 

automated approaches to detecting, assessing, and mitigating some of the 

major deficiencies present in global geospatial population statistics using 

remotely sensed data and geospatial modeling. 

Finally, in Chapter 6 we use the multi-temporal global population grids 

enhanced with developments from Chapter 5 to conduct more updated and 

refined global and regional assessments of population potentially affected by 

volcanism. Based on these improved multi-temporal (long cycle, inter-annual) 

population grids, we investigate and estimate globally the recent evolution 

(1975-2015) and current distribution of population in relation to historic 

volcanism. 

In a concluding chapter (Chapter 7) we summarize the main contributions of 

the approaches presented in previous chapters, in relation to respective 

research objectives and questions, and discuss ongoing and future 

developments in modeling population distribution to support Disaster Risk 

Management and Reduction. 

All chapters (articles) develop and apply new methodologies to solve problems 

related to modeling and mapping population distribution and exposure to 

hazards, aiming to improve assessment of potential human exposure in their 

respective study areas and fields of application (i.e. earthquake, tsunami, 

volcanism). Regarding population distribution modeling for DRM, this thesis is 

concerned with the total number of people present in a given area. This focus 

has the following reasons: 

a) For many hazard events, especially sudden ones or those above certain 

magnitude, all human beings are approximately equally vulnerable 

(Villagrán 2006); 
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b) Worldwide and in specific regions, the total population count of a 

geographical area is still affected by issues and significant uncertainties 

(see Chapter 5), therefore benefiting from improvements; 

c) If the most simple, basic, and neutral demographic variable (total 

population) is still affected by significant uncertainties, it is likely these 

are even greater for more complex and sensitive variables (e.g. sex, 

age, ethnicity) ; 

d) Other attributes of population (e.g. sex, age) are often only available 

at coarser scales (i.e. higher administrative levels) than total 

population33, and disaggregation and gridding of these variables is 

typically conducted applying the ratio from source zones to all 

disaggregated total population cells in each zone – therefore 

propagating the errors in mapping total population. In this scenario, 

improving grids of total population will also benefit mapping of related 

demographic attributes. 

Each chapter puts these developments in their respective context, justifies why 

new data is needed and demonstrate its usability and contribution to analysis 

of human exposure and DRM. In addition, Chapters 2, 3, 4, and 6 show 

development of improved population distribution grids and their application to 

specific hazard scenarios, natural and man-made. These population grids were 

produced using variations of the ‘dasymetric mapping’ approach, and these 

layers were previous unavailable for the respective study areas at these spatio-

temporal resolutions.  

With the exception of Chapter 2, which uses fictitious hazard data, all analyses 

assess population exposure by relying on best-available hazard maps and data 

for the respective study areas. Table 3 summarizes the main characteristics of 

chapters in this thesis in relation to main research topics and concepts.  

  

                                                
33 As confirmed in CIESIN GPWv4.11 metadata: 
https://sedac.ciesin.columbia.edu/downloads/docs/gpw-v4/gpw-v4-
documentation-rev11.pdf 
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Table 3 Main characteristics of chapters in this thesis in relation to main 
research topics and concepts; main innovative aspects highlighted in bold 
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Table 4 (cont.) Main characteristics of chapters in this thesis in relation to main 
research topics and concepts; main innovative aspects highlighted in bold 
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Chapter 2. Modeling of spatio-temporal 

distribution of urban population at 

high-resolution – value for risk 

assessment and emergency 

management34 
  

                                                
34 This chapter is published as:  

Freire, S., 2010. Modeling of spatio-temporal distribution of urban population 
at high-resolution – value for risk assessment and emergency management. 
In: Konecny, M., Zlatanova, S., Bandrova, T.L. (eds.), Geographic Information 
and Cartography for Risk and Crisis Management. Lecture Notes in 
Geoinformation and Cartography. Springer Berlin Heidelberg, pp. 53-67. 
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Abstract  
Knowing the spatiotemporal distribution of population at the local scale is 

fundamental for many applications, particularly in risk analysis and emergency 

management. Because of human activities, population counts and their 

distribution vary widely from nighttime to daytime, especially in metropolitan 

areas, and may be misrepresented by census data. This study uses a 

dasymetric mapping approach to refine population distribution in Portugal. The 

most recent census enumeration figures and mobility statistics are combined 

with physiographic data to allocate nighttime population to residential areas, 

and workplaces and workforce are georeferenced to model daytime 

distribution. Main results represent expected maximum daytime population 

and maximum nighttime residential population for each 25-m grid cell in the 

study area. Since the same spatial reference base is used to allocate 

population, day and night distributions are directly comparable, as is 

demonstrated in sample applications in the context of emergency 

management. Verification and validation procedures and demonstrations 

indicate that the approach suits the objectives.

2.1 Introduction 

2.1.1 Population distribution and emergency management  

Natural or man-made disasters, either resulting from natural hazards, 

technological accidents, or terrorism, usually occur without warning and can 

potentially affect people from a local to a continental scale. Risk is usually 

defined as a function of hazard probability and vulnerability, the latter resulting 

from a combination of exposure and ability to cope (UNDP 2004). 

Misestimating one of these components necessarily affects the accuracy of the 

overall risk assessment and mapping.  

Human life is unquestionably the most important asset to protect, and the dis-

tribution and density of the overall population is a rather basic geographical 

indicator. Therefore accurately estimating population exposure is recognized 

as a key component of catastrophe loss modeling, one element of effective risk 

analysis and emergency management (FEMA 2004, Chen et al. 2004, NRC 

2007). However, until recently, assessment and mapping of human 

vulnerability has been lagging behind hazard analysis efforts (Pelling 2004), 

and potential loss derived from exposure has served as a quantitative proxy 

for risk (Lerner-Lam 2007). Also, updated and detailed mapping of population 

distribution is important for decision support in practically every phase of the 

emergency management cycle, if produced at appropriate spatial and temporal 

scales (Sutton et al. 2003), e.g., central to the planning stage is the 

assessment of population exposure and vulnerability in the hazard zone; 

mitigation includes reducing vulnerability and exposure (namely by displacing 

population or other measures); preparedness may involve fitting and placing 
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means and resources according to vulnerability, for more efficient response in 

case of disaster; during and after the event, locating and estimating victims is 

essential to tailor response and rescue efforts, including allocating emergency 

personnel, hospital beds, etc.; and finally, estimating all activities and people 

affected, even if indirectly, facilitates the recovery process.  

Despite recent efforts by Dobson (Dobson 2003, 2007) at devising a population 

estimation technique that could be employed in real time once a disaster 

occurs, for planning and simulation purposes and to ensure a timely response, 

adequate population distribution data should be produced and made available 

beforehand whenever possible. 

2.1.2 Population in space and time  

The increased availability of digital spatial data combined with improved 

capabilities of Geographic Information Systems (GIS) have allowed for the 

development of several global population distribution databases, such as the 

GPW, HYDE, and LandScan (Tobler et al. 1995; Goldewijk and Battjes 1997; 

Dobson et al. 2000). However, their spatial resolution is still too coarse to 

adequately support analysis at the local level and most do not represent the 

dynamics of population distributions. Dobson acknowledges that “even finer 

resolutions are needed for many types of disasters”, namely those that can 

“impact areas as small as a neighborhood, city block, or single building” 

(Dobson 2002). Data sets may be produced globally, but people are always 

affected locally.  

Due in part to the complex nature of population as a geographical variable, 

several approaches have been adopted to estimate their spatial distribution, 

including statistical modeling (correlation), surface modeling, and cartographic 

methods (Fisher and Langford 1996; Wu et al. 2005). However, many of these 

methods require assumptions that over-simplify the reality or disaggregate 

population totals based on heuristic or empirical parameters. Additionally, 

obtaining positive values and preserving the total volume of people—Tobler’s 

“pycnophylactic condition” (Tobler 1979)—are basic requirements to produce 

realistic representations. Dasymetric mapping is a cartographic technique, 

originally used for population mapping, which aims at limiting the distribution 

of a variable to the areas where it is present, by using related ancillary 

information in the process of areal interpolation (Eicher and Brewer 2001).  

Population distributions are not static in time, varying over daily, seasonal, and 

long term time scales (Sutton et al. 2003) due to a number of human activities, 

such as work and leisure. For emergency planning in urban areas, it is the 

population variation during the daily cycle that is particularly important to be 

able to estimate the number, age, and socioeconomic classes affected by an 

impact (Alçada-Almeida 2009). In Portugal, as in most countries, existing 

population distribution maps and vulnerability or exposure analyses are 
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normally based on census data, often aggregated at the commune level (e.g., 

Oliveira et al. 2005). Census figures register where people reside and usually 

sleep, although their spatial distribution varies widely between night and day, 

especially within metropolitan areas. Due to daily commuting alone, the 

daytime population of municipalities in the metro areas of Lisbon and Porto can 

differ by more than 50% of the official census figures (INE 2003). Also, the 

availability of a total count for census or administrative areas creates problems 

for analysis (e.g., MAUP, ecological fallacy), being generally assumed that the 

distribution is constant and exhaustive in those areas, or represented by their 

centroid.  

Making population distribution data available as a high-resolution raster data-

base facilitates rapid GIS analysis at the local level and for any zoning. 

Therefore, when disaster strikes or is imminent, knowing how many people are 

likely to be in the affected area can be invaluable information for adequate 

emergency response and evacuation planning. The LandScan project (Dobson 

et al. 2000) successfully incorporated the temporal dimension in population 

distribution by mapping “ambient population”, a temporally averaged measure 

of population density that accounts for human activities (such as sleep, work, 

study, transportation, etc.). This representation may be more adequate for 

certain applications (such as emergency management) than residence-based 

population density. However, LandScan’s spatial resolution (30 arc-seconds), 

while adequate for national to global analyses, is insufficient for most practical 

uses in Portugal. Furthermore, ambient population corresponds to a 

compromise between daytime and nighttime distributions that strictly 

represents neither period. Therefore, population distribution databases having 

higher temporal and spatial detail are being developed for the territory of the 

USA (McPherson and Brown 2004, Bhaduri et al. 2002).  

This study is aimed at developing and testing a data-based model to map the 

nighttime and daytime population distributions in Portugal at high resolution 

to enable local-level analysis. This effort correlates with recent 

recommendations to improve vulnerability analyses (Cutter 2003, Balk et al. 

2006, Birkmann 2007). 

2.2 Methods  
Pre-processing and modeling of geographical data were conducted in ESRI® 

ArcGIS 9.1, a GIS application. GIS offers the necessary tools and flexibility to 

implement raster or vector-based dasymetric methods, and was used to verify, 

correct, and integrate geographic data sets, and for modeling, analysis, and 

mapping the results for presentation.  

Because some data sets were made available on a municipal basis, each mu-

nicipality was modeled separately. For each municipality, 25-m raster grids 

were created representing different types of population distribution. The raster 
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structure provides uniform and flexible units that facilitate the reaggregation 

for any zoning, thus being suitable for modeling and analysis. A spatial 

resolution of 25 m was adopted to approximate the size of a single-family 

residence (half block). Also, when the model was tested for sensitivity to cell 

size, an increase in resolution to 12.5 m yielded marginal gains in the accuracy 

of results.  

2.2.1 Study area  

The official administrative limits of the municipalities (concelhos) of Cascais 

and Oeiras in 2001 constitute the study area for this research. These are two 

of the 18 municipalities that comprise the Lisbon Metropolitan Area (LMA), the 

main metropolitan area in Portugal (Figure 3).  

Cascais and Oeiras occupy 97 and 46 km2, respectively, and have a combined 

resident population of 332,811; this results in an average population density 

of 2,332 inhabitants/km2, well above the national average density of 112 

inhabitants/km2. However, population density varies widely throughout the 

study area, from high density in multistory residential apartments to low 

density in rural areas. Even at the census block group level, some polygons 

are quite large and do not reflect their uneven population density.  

This area was selected for several reasons: (a) its characteristics, namely with 

regard to urban and suburban character, and strong economic activity, (b) the 

availability and access to input data, and (c) personal familiarity with the area, 

which facilitates data verification and field work.  
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Figure 3 Location of the study area in Portugal and in the Lisbon Metro Area 
(LMA) (Source: CAOP). 

2.2.2 Data sets  

In this study, the spatial detail of census zones whose counts are to be 

disaggregated should be met in scale, resolution, and accuracy by ancillary 

data sets used for disaggregation. Input variables used for modeling include 

both physiographic and statistical data. In the first group are census tracts, 

street centerlines, and land use and land cover (LULC), while the second 

includes census counts (INE 2001), data on workforce by workplaces, and 

commuting statistics (INE 2003) for the study area. These data were obtained 

from various sources and in different formats which are listed in Table 5.  
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Table 5 Main input datasets used for modeling nighttime and daytime 
population 

Data set  Source  Date  Data type  

Street centerlines  Private  2004  Vector polyline  

LULC (COS90; CLC2000)  Public  1990; 2000  Vector polygon  

Census block groups  Public  2001  Vector polygon  

Census statistics  Public  2001  Database (MS 
Access)  

Workplaces and 
employment  

Public 2001  Table  

Commuting statistics  Public  2001  Table (O/D matrix)  

 

In general, temporal consistency among data sets was very high, with the 

exception of street centerlines whose reference date was 3 years subsequent 

to the model target date (2001). For this reason and owing to the importance 

of this data set in the model, it was decided to modify it in order to better 

represent the reality of the target date. The LULC data originated from two 

maps and was also corrected and improved upon within the study area. 

2.2.3 Model  

The modeling of population distribution is based on dasymetric mapping using 

street centerlines as spatial reference unit to allocate population counts. The 

most recent statistical and census data (2001) provide the population counts 

for each daily period, while physiographic data sets define the spatial units 

(i.e., grid cells) used to disaggregate those counts. This general approach was 

successfully implemented by the Los Alamos National Laboratory (New Mexico, 

USA) to map daytime and nighttime population distributions in the United 

States at 250-m resolution (McPherson and Brown 2004), and is adapted and 

applied to Portugal.  

An overview of tasks involved in this modeling process is presented in Figure 

4. Input data are noted in light gray, secondary products previously unavailable 

in Portugal are noted in bold, and main results are noted in bold and darker 

gray.  
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Figure 4 Flowchart of main tasks involved in the model: input data are noted 
in light gray, secondary products in orange, and main results noted in bold and 
red 

The map of nighttime population distribution was obtained by using a grid bi-

nary dasymetric mapping method to disaggregate residential population from 

census zones to residential streets. First, available digital LULC maps were 

improved, relevant classes selected, and combined, in order to identify 

residential land use. Street centerlines were also modified in order to better 

represent the road network existing in 2001. Then, freeways are removed from 

consideration and the resulting eligible streets are combined with residential 

land use classes from LULC data to obtain residential streets. These are 

subsequently rasterized at 25 m and the population from census block groups 

(source zones) are interpolated to the respective residential street cells (target 

zones) using areal weighting.  

The daytime population distribution results from the combination of two com-

ponents (as illustrated in Figure 4): (a) the daytime population in their places 

of work or study—the workforce population surface, and (b) the population 

that remains home during the day—the daytime residential population grid. 

The latter is obtained by multiplying the nighttime distribution by the 

percentage of resident population who, according to official statistics (INE 

2003), do not commute to work or school. In the absence of other information, 

it is assumed that non-commuters remain in their residences in the daytime 

period. This implies that this study is not including the potential effects of 
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leaving home for shopping and several other activities on daytime population 

distributions.  

The workforce population surface was created by georeferencing 4,316 work-

places and schools and respective workforce and students in the study area; 

1,395 of these were georeferenced manually using ancillary data and field 

work. The remainder workplaces were geocoded to the street centerlines in 

ArcGIS using their addresses. Total daytime population surface results from 

the sum of workforce population with daytime residential population on a cell-

by-cell basis. The ambient population distribution is estimated by computing a 

weighted average of nighttime and daytime distributions, considering the 

proportion of nighttime and daytime periods occurring in a typical 7-day weekly 

cycle.  

2.3 Results  
Main results consist of raster surfaces of nighttime (residential) population, 

daytime residential population, daytime worker and student population, total 

daytime population, and ambient population. These have the number of people 

in each 25-m cell in 2001, thus representing population density by 625 m2. 

Nighttime and daytime distributions represent maximum expected density on 

a typical workday, assuming that everyone is at home at night and all workers 

and students are in their workplaces and schools, and the remainder in their 

residences. Although still a simplification of reality, it is preferable than 

computing a zonal average by census polygon alone.  

2.3.1 Verification and validation  

Validation of daytime population distribution was limited by unavailability of 

compatible reference data sets for Portugal. However, this limitation can be 

considered less relevant since daytime population distribution originates from 

a combination of the nighttime distribution surface (subject to formal 

validation) with mostly official statistical data, as opposed to being derived 

from heuristic or empirical weights. Still, the daytime population distribution 

was subject to verification in several ways: (a) input data (especially 

workplaces’ addresses) were verified through cross-checking with other 

sources and field work, regarding location of workplaces (firms), (b) results 

were verified with high-resolution imagery to confirm positional accuracy of 

distributions, and (c) it was checked that the total number of workers provided 

and other statistics (census and mobility) were not contradictory.  

The nighttime population distribution was subject to a formal accuracy assess-

ment process, using the higher-resolution census blocks as reference (i.e., 

ground truth) in a correlation analysis. Cell values in modeled distributions 

were aggregated by census block in ArcGIS and compared against the 

respective census count. Correlation coefficients (Pearson’s r) of 0.84 were 
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obtained for the municipality of Cascais and 0.79 for the municipality of Oeiras. 

Even when the 36 blocks that coincide with block groups are not considered, 

the coefficients decrease only slightly to 0.79 and 0.75, respectively. This 

indicates that model performance is rather good, in light of its high resolution 

and considering the large number of samples used for validation (2,433 census 

blocks in Cascais, 1,456 in Oeiras).  

2.4 Sample applications  
Three fictitious case study scenarios are presented as sample applications of 

model results in the context of risk analysis and emergency management. 

Situations are examples of technological hazards, natural disasters, and 

terrorist attack. These scenarios illustrate the usefulness of improved 

population distribution mapping for planning or response to actual events.  

2.4.1  Case study A: technological hazard (airborne toxic plume 
release)  

A truck transporting highly toxic chemical products is involved in a serious 

accident on the off-ramp of a busy freeway in Oeiras, at 11:00 hours (AM). An 

airborne toxic plume is released and the dominant winds slowly push it 

southwards. Figure 5 represents this scenario, showing the plume and the 

daytime population distribution overlaid on orthophotos from 2004.  
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Figure 5 Case study A: airborne toxic plume release in Oeiras (Source: IGP; 
TeleAtlas). 

2.4.2 Case study B: natural disaster (earthquake)  

The Lisbon Metro Area is located in a high seismic risk area, having suffered 

destructive earthquakes in the past (e.g., 1755). Around 15:00 hours a strong 

earthquake strikes the town of Cascais, causing major damage around 

downtown and along the coast. Figure 6 represents this scenario, showing the 

area most seriously affected by destruction and collapse of buildings, and the 

daytime population distribution overlaid on 2004 orthophotos.  
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Figure 6 Case study B: earthquake affecting downtown Cascais (Source: IGP; 
TeleAtlas). 

2.4.3 Case study C: terrorist attack (bombing of shopping center)  

Around 16:30 hours a powerful explosive is detonated in a large shopping mall 

in Cascais, causing great destruction and a fire. Figure 7 represents this 

scenario, showing the area most affected by the blast, and the daytime 

population distribution overlaid on 2004 orthophotos.  

Based on the scenarios presented above, it is relatively straightforward to use 

GIS analysis to calculate the affected (exposed) population in each event. Table 

6 quantifies and compares exposure based on direct use of census data versus 

use of appropriate model results. In all the scenarios there are important 

differences in the figures of total exposed population using census data 

compared to more appropriate model data. In these daytime scenarios, use of 

census data indicates significant under-estimation of affected population, more 

dramatic in Scenario C. This could possibly lead the authorities to under-

prepare the emergency response, resulting in an increase of more serious 

victims or unnecessary suffering. Also, use of daytime distributions to simulate 

and plan for daytime events also improves assessment of exposure and may 

contribute to better planning and mitigation measures.  
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Figure 7 Case study C: terrorist attack in a Cascais shopping center (Source: 
IGP; TeleAtlas). 

Table 6 Total exposed population in each case study 

Scenarios 
Census data 

(Block group) 

Model results 

(Daytime pop.) 

Difference 

[persons (%)] 

A 2,144 3,950 1,806 (84%) 
B 22,841 28,944 6,113 (26%) 
C 86 2,151 2,065 (2,400%) 

2.4.4  Case study D: planning of best route for hazardous materials 
transportation  

Scenario D illustrates the use of spatiotemporal population distribution in a 

planning stage as a criterion for truck routing of hazardous materials between 

the A5 freeway exit and a processing facility, in an industrial area of the 

municipality of Oeiras. Consideration of population distribution in this context 

allows two fundamental issues to be addressed simultaneously: what is the 

best period (day or night) and route in order to minimize population exposure 

along the way?  

In the example, population distribution in a 50-m wide buffer along the streets 

is considered as the cost impedance to select the route between two locations 

which minimizes overall population exposure. Best routes were computed for 

the nighttime period and for the daytime period, considering each period’s 
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respective population distribution resulting from the model as the sole criterion 

(Figure 8).  

 

Figure 8 Case study D: best route considering the population distribution 

(Source: IGP; TeleAtlas). 

Table 7 quantifies and compares overall population exposure along each route 
and in each period. 

Table 7 Total exposed population along each route and period 

Best routes 

 Exposed population 

Length 
[km] 

Nighttime Daytime Difference 
[persons (%)] 

Nighttime 4,9 345 3352 3007 (872%) 
Daytime 2,7 1001 2734 1733 (173%) 

 
Results show that consideration of spatiotemporal population distribution for 

routing leads to definition of quite different routes, having quite different 

lengths. Although the best route for the nighttime period is 4.9 km long, only 

345 people are within the affected zone, whereas in the daytime period 2,734 

people would be exposed along a shorter 2.7-km route. Additionally, total 

exposure along the best route for the nighttime period varies widely between 

night and day, increasing by 3,007 people to surpass the daytime’s best route 

exposure. Therefore, in order to minimize overall population exposure it is the 
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nighttime period and longest route that should be selected for truck routing of 

hazardous materials in the study area.  

2.5 Conclusions  
As the population is not static, it was demonstrated that emergency 

management activities would greatly benefit from the use of reliable population 

distribution data with increased spatiotemporal resolution for estimation of 

human exposure and vulnerability. GIS enables both the development and 

spatial analysis’ applications of these data sets. The adopted approach, based 

on official data, allows the mapping of nighttime and daytime population 

distribution at high spatial resolution, to support local-level analysis. This 

method also efficiently accommodates people that work at home, by not 

considering that all active population leaves their residences during the 

workday. The main value of these results includes the increased spatial resolu-

tion of nighttime distribution, the fact that both nighttime and daytime distribu-

tions share the same spatial reference basis, and that daytime distribution is 

better approximated. Furthermore, the combination of both distributions yields 

an approximate representation of ambient population. The dasymetric 

mapping technique and zonal interpolation meet the requirements for 

disaggregation of population counts—obtaining positive values and 

preservation of total mass—so the final distribution matches official statistics 

and counts.  

Given the availability of input data sets, this approach could be applied to all 

municipalities (19) comprising the Metropolitan Areas of Lisbon and Porto, that 

together contain 40% of Portugal’s population. Subsequent versions would 

benefit from a number of improvements: better modeling of “distributed 

activities” (e.g., cleaning, security), and accounting for people present in 

transportation networks, in hospitals and prisons, or involved in leisure and 

shopping activities; increased temporal segmentations of population 

distribution, so as to represent differences on a weekly basis (workdays vs. 

weekend) or on a seasonal basis (winter vs. summer); and the use of statistical 

sources beyond census demographics to consider tourism influx in areas and 

periods where that activity is significant. In the context of exposure and risk 

analysis, it would also be useful to model people who are indoors versus those 

involved in outdoor activities.  
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Abstract  
Disaster risk is not fully characterized without taking into account vulnerability 

and population exposure. Assessment of earthquake risk in urban areas would 

benefit from considering the variation of population distribution at more 

detailed spatial and temporal scales, and from a more explicit integration of 

this improved demographic data with existing seismic hazard maps. In the 

present work, “intelligent” dasymetric mapping is used to model population 

dynamics at high spatial resolution in order to benefit the analysis of spatio-

temporal exposure to earthquake hazard in a metropolitan area. These night-

and daytime-specific population densities are then classified and combined 

with seismic intensity levels to derive new spatially-explicit four-class -

composite maps of human exposure. The presented approach enables a more 

thorough assessment of population exposure to earthquake hazard. Results 

show that there are significantly more people potentially at risk in the daytime 

period, demonstrating the shifting nature of population exposure in the daily 

cycle and the need to move beyond conventional residence-based demographic 

data sources to improve risk analyses. The proposed fine-scale maps of human 

exposure to seismic intensity are mainly aimed at benefiting visualization and 

communication of earthquake risk, but can be valuable in all phases of the 

disaster management process where knowledge of population densities is 

relevant for decision-making.  

3.1 Introduction  

3.1.1 The importance of population dynamics for disaster risk 
assessment  

Even in the context of natural hazards, risk has several definitions and multiple 

approaches exist for its assessment and mapping (Adger, 2006; Birkmann, 

2006; Villagran, 2006). The United Nations, for example, define disaster risk 

as a function of hazard probability and vulnerability, the latter resulting from 

a combination of exposure and ability to cope (UNDP, 2004; UNISDR, 2009). 

Among the different types of elements that may be present in hazard zones 

(people, property, systems, etc.), human life is unquestionably the most 

important value to protect from disasters. The elements of vulnerability and 

population exposure are present in some form in all the conceptualizations of 

risk and natural disasters, and risk is not fully characterized without an 

assessment of those components, in addition to the hazard itself. However, 

assessment and mapping of social vulnerability has traditionally been 

overlooked in favor of hazard modeling studies (Pelling, 2004; Douglas, 2007). 

The development of sophisticated and detailed numerical-based modeling of 

hazard zones (e.g. seismic intensity zones, tsunami flood depth, chemical 

dispersion models) contrasts with the use of static, generalized, residence-

based representations of population exposure using census data. Nonetheless, 
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vulnerability is regarded as a greater contributing factor to disaster risk than 

the mere existence of hazards (Uitto, 1998; Alexander, 2006; EEA, 2010). 

Population exposure refers to the human occupancy of hazard zones (Cutter, 

1996), or the population present within the hazard area that would be 

potentially directly affected by an event. For many hazard occurrences, 

especially those above a certain magnitude or intensity, population exposure 

is arguably the greatest determinant of vulnerability and resulting losses and 

impacts. Therefore, it has progressively been acknowledged that the accurate 

estimation of population exposure as a vital component of catastrophe impact 

modeling is an essential element of effective risk analysis and emergency 

management (Chen et al., 2004; FEMA, 2004). Despite the study of exposure 

and vulnerability to hazards being increasingly at the core of hazards and 

disaster research, the inclusion of socioeconomic variables into geospatial risk 

models implemented within a Geographic Information System (GIS) remains 

a challenge (EC, 2010). Quantifying population exposure as a step for 

conducting spatially-explicit risk assessment requires mapping the spatial 

distribution of population with sufficient resolution. Population data is therefore 

a basic necessity for human exposure analysis, with its quality and level of 

detail having a direct effect on response and lives saved (NRC, 2007). Updated 

and detailed mapping of population distribution at appropriate spatial and 

temporal scales provides an important basis for decision support in every phase 

of the emergency management cycle (Sutton et al., 2003; Freire, 2010; 

Aubrecht et al., 2012a). Concerning the spatial dimension, disaster risk 

reduction and mitigation demand measures implemented at local level, which 

requires understanding of vulnerabilities at compatible scales (Lerner-Lam, 

2007). Since natural hazards can affect urban areas in a very selective manner, 

only fine-scale population data can provide an accurate estimate of the 

population affected (Deichmann et al., 2011) Analysis of pre-event population 

distribution is necessary for establishing a base-line situation for assessing risk, 

and pre-event maps are often needed during the response phase (Zerger and 

Smith, 2003). Also, due to limited real-time capability for mapping population 

distribution, such data sets should be prepared ahead of time, despite efforts 

by Dobson (2007) at developing a bottom-up population estimation technique, 

based on Building Occupance Tables, which could be employed once a disaster 

occurs.  

Increasing population density and mobility has been contributing to growing 

vulnerability of social systems (EEA, 2010). Due to the diverse locations of 

human activities and the displacements they induce, the spatial distribution of 

population is strongly time-dependent, especially in metropolitan areas. For 

the temporal shifting of population exposure, the most important 

determination is whether an incident occurs at night or during the day (Dobson, 

2007). However, temporal variations of risk, due to changes in the human 

component involving population and additional socioeconomic assets, are still 
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rarely included in pre-event assessments conducted by emergency managers 

(Kakhandiki and Shah, 1998). This striking fact may be due to both lack of 

appropriate data during the planning stage, and failure to perceive the 

dynamics of risks. In any case it contrasts sharply with decision makers’ shift 

to focus on temporal detail once a disaster strikes (Zerger and Smith, 2003; 

Goodchild, 2006). Therefore, Geographic Information Science research needs 

to include improved integration of physical processes and socioeconomic 

models in disasters and emergency management. Required improvements also 

include visual depictions of risks and vulnerability that represent their spatial 

and temporal shifts at local level (Cutter, 2003; Aubrecht et al., 2012b). For 

improved analysis of human exposure in large urban areas and to facilitate 

integration with hazard zones, population distribution data should be available 

as high-resolution raster data sets depicting at least a day-night estimation of 

its variation (Freire, 2010).  

Motivated by concerns with homeland security and emergency management, 

two such nighttime and daytime population distribution databases were 

developed in the last decade for the US: LandScan USA, having a 90-m (3 arc-

s) cell size (Bhaduri et al., 2002; Dobson et al., 2003), and 250-m resolution 

day and nighttime grids produced by the Los Alamos National Laboratory 

(McPherson and Brown, 2004). 

3.1.2 Population exposure to seismic hazard  

For efficient and effective risk management, hazard and vulnerabilities should 

be assessed before a disaster strikes (Birkmann, 2007), which requires the 

creation and maintenance of baseline data as part of geospatial preparedness 

activities (Emrich et al., 2011). This is especially relevant in the case of 

earthquakes, whose damaging effects are compounded by the impossibility of 

accurate and timely forecasting (Geller, 1997; Buchanan, 2001; Guo, 2010). 

Earthquakes are rapid-onset, short-duration, time-specific and potentially 

high-consequence events, having long been the prototype for a major disaster. 

They have local to regional geographical impact (Peduzzi et al. 2009b), often 

causing significant secondary hazards and cascading impacts such as fire, 

flooding, and release of hazardous chemicals (Rashed and Weeks, 2003). 

Population density, together with building type and event magnitude, is one of 

the main factors determining damage from an earthquake (Ambraseys and 

Jackson, 1981). In an assessment of health effects of past earthquakes, 

Alexander (1996) notes that the risk of injury varies significantly between night 

and day, which leads to the recommendation that vulnerability and exposure 

should be assessed in this temporal cycle. 

Contrary to other hazards (e.g. forest fires), earthquake risk cannot be 

addressed by taking actions that lower the hazard component (i.e. location, 

geographic scope, frequency, duration, and magnitude); instead, only by 
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decreasing the vulnerability (of structures and people) can this risk be mit-

igated. For implementing those measures, modeling, mapping, and quantifying 

population exposure forms an essential first step. On a local scale, Taubenbock 

et al. (2008) have illustrated for a single district in Istanbul, Turkey, the impor-

tance of considering population dynamics for assessing the spatial distribution 

of risks in case of earthquake. Aubrecht et al. (2011) have demonstrated how 

high-resolution population data, disaggregated to building level, can improve 

pre-event estimation of human exposure to potential earthquake hazard in an 

urban area. On a global scale, the USGS’ PAGER (Prompt Assessment of Global 

Earthquakes for Response) system estimates after an event the number of 

people exposed to shaking by using the coarse population distribution surface 

from LandScan (Dobson et al., 2000). However, most studies on population 

exposure to earthquake hazard only consider census-based resident population 

(i.e. nighttime) and often fail to integrate population distribution data with 

actual seismic hazard maps. Therefore, there is an essential need to advance 

current state-of-the-art exposure assessment by: (i) accounting for spatio-

temporal variation of population distribution in urban areas, and (ii) combining 

more explicitly and in more detail the best demographic data on the potentially 

affected population with existing seismic hazard maps.  

The main objectives of the present work are to improve earthquake risk 

analysis at regional level to benefit decision support for disaster and 

emergency management by (1) modeling and mapping nighttime and daytime 

population distribution at high spatial resolution, (2) assessing spatio-temporal 

population exposure to earthquake hazard and (3) classifying exposure levels 

through the combination of population densities with seismic hazard to derive 

and propose new fine-scale composite human exposure maps. The approach 

is presented using the Lisbon Metropolitan Area as the test site. 

3.2 Study area and data  

3.2.1 Study area  

The test site for this study encompasses the eighteen municipalities that 

currently compose the Lisbon Metropolitan Area (LMA), the main metropolitan 

area in Portugal (Figure 9). 
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Figure 9 Study area - Lisbon Metropolitan Area (LMA) 

This region is characterized by a moderate seismicity with a diffuse pattern, 

having been affected by historical earthquakes that caused many victims, 

severe damages and economic losses (Carvalho et al., 2006). These impacts 

are the outcome of seismic activity occurring in the collision of the Iberian and 

African plates, resulting in a historical seismicity which includes events 

originating both in the interplate region (distant source) and in the nearby 

faults of the intraplate region, including the Lower Tagus Valley. Moderate to 

large earthquakes originating in this area include those in 1344, 1531 (M = 

7.2), and 1909 (M = 6.3) (Oliveira, 2008). The famous 1755 event (M = 8.5–

9.0), regarded as probably the greatest seismic disaster to have affected West-

ern Europe, occurred around 09:40 a.m., when many people were not in their 

residences, causing between 60,000 and 100,000 casualties and much 

destruction (Chester, 2001). A 1755-type event, seen as worst-case scenario 

for the LMA region, is estimated to have a return period of between 3000 and 

4000 yr. In the Lower Tagus Valley, earthquake return periods vary between 

less than 100 yr for M = 5 to about 1000 yr for M = 7. Estimation of 

vulnerabilities is still one of the main uncertainties for earthquake scenarios in 

Lisbon, and improved inventory of population in the daily cycle is required 

(Oliveira, 2008).  

A “Special Emergency and Civil Protection Plan for Seismic Risk” (PEERS-AML-

CL), approved in 2009, was produced for the LMA and adjacent municipalities 

(26 in total). The Plan, based on a seismic intensity map, was devised as an 

operational instrument for organizing response to an event, and is 
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automatically activated for an earthquake having a magnitude equal to or 

greater than 6.1 (Richter) or intensity level VIII (Modified Mercalli). However, 

the Plan only considers census’ resident population in vector format for the 

assessment of human exposure, therefore merely approximating affected 

population for a nighttime event.  

The LMA accounts for 36% of the country’s GDP and 30% of all national 

companies are located there. The 18 municipalities of Lisbon Metro occupy a 

total land area of 2,963 km2 (3.3% of Portugal) and are home to 2 661 850 

residents, 26% of the country’s population (INE, 2001). The total resident 

population has increased 5.6% from 1991 to 2001. Although the average 

population density is 898 inhabitants per square kilometer, these densities vary 

widely in space and time. Beyond the more urbanized core, the region still 

includes numerous rural areas with scattered settlements whose uneven 

population density is not adequately captured and represented by 

heterogeneous census polygons, which can be quite large even at the block 

level. Also, due to concentration of activities and daily commuting for work and 

study, the daytime distribution of the population in the municipalities of the 

LMA is significantly different from the nighttime period, and their totals can 

vary by more than 50% compared to the residential figures from the census 

(INE, 2003; Table 8).  

Table 8 Nighttime and daytime population in the municipalities of the Lisbon 
Metropolitan Area, in 2001 (derived from INE, 2001, 2003) 

Municipality  Nighttime  Daytime  Difference (%) 

Alcochete  13 010  11 374  −12.6  

Almada  160 825  146 987  −8.6  
Amadora  175 872  141 253  −19.7  
Barreiro  79 012  68 193  −13.7  
Cascais  170 683  151 115  −11.5  

Lisboa  564 657  898 840  59.2  
Loures  199 059  167 315  −15.9  
Mafra  54 358  49 862  −8.3  
Moita  67 449  51 895  −23.1  
Montijo  39 168  38 435  −1.9  
Odivelas  133 847  96 653  −27.8  
Oeiras  162 128  148 937  −8.1  

Palmela  53 353  54 286  1.7  
Seixal  150 271  115 779  −23.0  
Sesimbra  37 567  32 921  −12.4  
Setubal  113 934  115 854  1.7  
Sintra  363 749  291 421  −19.9  
Vila Franca de 

Xira  

122 908  103 719  −15.6  

Total  2 661 850  2 684 839  0.9  

 
The characteristics of the area and the availability of a recent Seismic Hazard 
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Intensity map, in the context of the above-mentioned Special Emergency and 

Civil Protection Plan, provide an appropriate context for the effort presented in 

this paper, i.e. contributing to improved risk assessment for that particular 

hazard type. 

3.2.2 Data sets  

The main data sets produced and used in the course of the presented analyses 

were population distribution surfaces and a seismic intensity map, respectively 

(Figure 10).  

 

Figure 10 Seismic Intensity map for the study area (background from Google 

Earth). 

Input variables used for modeling population distribution include both 

physiographic and statistical data. The first group comprises street centerlines 

and land use/land cover (LULC) maps, while the second includes census counts 

(INE, 2001), data on workforce, and commuting statistics (INE, 2003) for the 

study area. These data were obtained from various sources and in different 

formats, as listed in Table 9. COS90 is a digital LULC map at the scale 1:25 

000, covering almost the entire country using a very detailed legend, however 
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it dates from 1990. CORINE Land Cover 2000 (CLC2000) was a pan-European 

project mapping LULC at the scale 1:100 000 using a hierarchical nomenclature 

with 44 classes in the most detailed level (level 3). Therefore, to ensure 

temporal consistency among input data sets, it was decided to update the 

COS90 base by adding new Artificial Surfaces from the more recent CORINE 

Land Cover database for the year 2000. That way, high temporal uniformity of 

the input data set is achieved, which is usually a challenge in geographic 

modeling. The seismic intensity map was produced for the above-mentioned 

“Special Emergency and Civil Protection Plan for Seismic Risk” (PEERS-AML-

CL) and represents maximum Seismic Intensity (Modified Mercalli scale) for 

the area based on the following situation: earthquake events of M = 6.6/6.7 

with epicenter in the lower valley of the Tagus river. Based on this scenario, 

Seismic Intensity in the LMA is expected to vary between levels VI and IX 

(Figure 10). 

3.3 Methodology  
All processing and modeling of spatial and spatially-related data was conducted 

in a Geographic Information System application. GIS offers the necessary tools 

and flexibility to implement raster and vector-based dasymetric methods, and 

is used for modeling, analysis, and validation as well as for mapping and 

illustrating the results. 

3.3.1 Modeling spatio-temporal population distribution  

The modeling of population distribution for the LMA is based on raster 

dasymetric mapping using street centerlines as spatial reference units to re-

allocate population counts.  

Table 9 Main input data sets used for modeling population distribution 

Data set Date Data type 

Street centerlines 2004 Vector polyline 
Land use/cover maps 
(COS90; CLC2000) 

1990; 2000 Vector polygon 

Census block groups 2001 Vector polygon 
Census statistics 2001 Database (MS Access) 

Commuting statistics 2001 Table (O/D matrix) 
Daytime worker/student 
population distribution 

2001 Raster (25m) 

 
Dasymetric mapping is a cartographic technique that allows limiting the 

distribution of a variable to the zones where it is present by using related 

ancillary information in the process of areal interpolation (Wright, 1936; Eicher 

and Brewer, 2001). Raster based dasymetric mapping with adequate resolution 

can be effective at bridging the gap between visualization-oriented choropleth 

maps and analysis-oriented areal interpolation. A top-down approach is 
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employed to spatially disaggregate and refine the population from official 

census and statistics for nighttime and daytime periods. The most recent sta-

tistical and census data available (2001) provide the population counts for each 

daily period, while physiographic data sets define the spatial units (i.e. grid 

cells) used to disaggregate those counts. The model combines the approach 

proposed by McPherson and Brown (2004) with the innovative use of 

“intelligent” dasymetric mapping (Mennis and Hultgren, 2006) to disaggregate 

official population counts to target zones.  

Four raster population distribution surfaces were produced, at 25 m resolution: 

(1) nighttime (residential) population, (2) daytime residential population, (3) 

daytime worker and student population, and (4) total daytime population. The 

basic methodology was presented and tested previously for Cascais and Oeiras, 

two municipalities of the LMA (Freire, 2010). However, due to being very labor-

intensive and exceedingly costly, the original methodology had to be adapted 

and improved to expedite the modeling of a much larger area with sufficient 

accuracy. The nighttime population distribution surface was obtained by 

allocating resident population from census zones to residential streets. First, 

relevant classes were selected from the LULC maps and combined, in order to 

identify residential land use. Some rules were applied to minimize the effect of 

errors present in the LULC data. Two residential classes were considered and 

sampled, using the containment method as proposed by Mennis and Hultgren 

(2006) to derive the respective density weights: “Continuous Urban Fabric” 

and “Discontinuous Urban Fabric”. Then, freeways were removed from 

consideration and the resulting eligible streets were intersected with residential 

land use from LULC data to obtain residential streets. Subsequently, these 

were rasterized at 25 m resolution and the population from census block 

groups (source zones) was interpolated to the respective residential street cells 

(target zones) according to the density weights.  

The total daytime population distribution results from the sum of two surfaces 

on a cell-by-cell basis: (1) the daytime population in their places of work or 

study – i.e. the workforce population surface, and (2) the population that 

remains home during the day – i.e. the daytime residential population grid. 

The latter is obtained by multiplying the nighttime distribution by the ratio of 

resident population who, according to official statistics (INE, 2003), does not 

commute to work or school in each municipality. The workforce population 

surface was created by allocating commuters to selected “labor” streets, in a 

fashion similar to the one used for modeling nighttime distribution. Two classes 

of varying workforce density were also defined and sampled, using the 

previously generated detailed workforce population surface for Cascais (Freire, 

2010) to derive density weights. The resulting 25-m population grids were 

aggregated to 50-m cells for analysis and visualization purposes, thus 

representing densities by 2500 m2 (0.25 ha).  

Nighttime distribution was validated using the higher-resolution census block 
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units as reference (i.e. ground truth) in a correlation analysis. The 

corresponding correlation coefficient (Pearson’s r) was 0.85. Validation of 

workforce distribution was limited by lack of an independent and reliable 

reference data set covering the whole LMA study area. Correlating the new 

workforce surface in Oeiras with the database previously generated for that 

municipality yielded a coefficient of 0.60. Additional details on population 

distribution modeling are provided in Freire (2011). 

3.3.2  Assessing population and classifying human exposure to 
seismic hazard  

The Seismic Intensity map was obtained from the PEERS-AML-CL (ANPC, 2007) 

in image format and was manually digitized and clipped for the study area 

(Figure 10). Using the Modified Mercalli Intensity Scale (USGS, 2009) it 

represents the expected intensities generated by magnitude 6.6/6.7 

earthquakes with epicenter in the lower valley of the river Tagus. In order to 

improve the assessment of human exposure as a contribution to better 

characterization of seismic risk in the LMA, two analyses are implemented: (1) 

quantification of population potentially affected by seismic intensity levels in 

nighttime and daytime periods, and (2) classification and mapping of human 

exposure to seismic hazard in nighttime and daytime periods. Population 

potentially affected by seismic intensity levels is assessed using zonal analysis 

to summarize nighttime and daytime population surfaces by seismic zone of 

the earthquake intensity map. Figure 11 and Figure 12 illustrate the varying 

population distribution and densities in nighttime versus daytime periods in 

each intensity zone.  
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Figure 11 Nighttime population density and seismic zones (background from 
Google Earth). 

 

 

Figure 12 Daytime population density and seismic zones (background from 

Google Earth). 

The second analysis involves defining major classes for seismic intensity and 

population density and corresponding subsequent reclassification. Combining 
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these two variables, human exposure levels are derived, mapped, and 

quantified. Ranking human exposure by using just a few categories helps in 

having a clear perspective of its distribution. Avoiding cognitive overload is 

considered highly beneficial in visual risk communication (Lundgren and 

McMakin, 2009) and can assist in prioritizing areas for mitigation and response 

actions. Therefore, in order to reclassify the two variables (i.e. population 

density, seismic intensity) into a common and easily understandable ordinal 

scale, four main categories are defined: (1) Very High, (2) High, (3) Moderate, 

and (4) Low.  

The class breaks for population density (in persons/ha) are derived based on 

histogram analysis and adjusted by rounding. For the seismic hazard, the 

whole Modified Mercalli scale, varying from I to XII, is reclassified based on 

intensity levels and definitions (see USGS, 2009) and by using a cautious 

approach, i.e. by including level IX in the highest category. Referring to the 

manner in which the earthquake is felt by people, the lower six levels are 

grouped in the Low and Moderate categories. The higher six levels, referring 

to observed structural damage, are classified as High and Very High. Figure 13 

shows original levels and classes, corresponding categories, and combined 

human exposure classes. In the study area, the seismic intensity levels vary 

from VI to IX (cp. Figure 10).  

 

Figure 13 Classification approach to categorize human exposure levels 

The reclassified seismic intensity map is rasterized at 50 m resolution and 

combined with the reclassified nighttime and daytime population density maps, 

resulting in maps of human exposure to seismic hazard for each of those 

periods. We use the two-color grading for symbolization, as recommended by 

Gaspar-Escribano and Iturrioz (2011) for this type of risk communication 
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(Figure 14 and Figure 15). Total population and area are then summarized for 

the resulting human exposure categories in the LMA. 
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Figure 14 Map of nighttime human exposure to seismic hazard 

 

Figure 15 Map of daytime human exposure to seismic hazard 
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3.4 Results and discussion  
The modeled population surfaces represent maximum expected densities on a 

typical workday, assuming that everyone is at home at night and all workers 

and students are in their workplaces and schools, and the remainder in their 

residences during the daytime period. While this is a simplification of reality, it 

is a major improvement over residence-based data sets that can benefit 

analyses from regional to local scale. Although in each surface only total 

population is modeled, it is an essential baseline indicator for first assessment 

of exposure to any type of (natural and/or man-made) hazard. After the 

disaggregation process, the model preserves the official population counts 

used as input.  

Table 10 quantifies the total population potentially exposed to each seismic 

intensity level in the nighttime and daytime periods. It shows that from night 

to day the population exposed to the two highest seismic levels increases, while 

the number of persons exposed to the two lower levels decreases. More 

specifically, exposure to the highest seismic level (i.e. level IX) increases by 

22% to affect 5% of the total daytime population (137,222 people). Even more 

important, from the nighttime to daytime period an additional 204 786 persons 

are exposed to the levels VIII and IX, which then contain 52% of the daytime 

population. This is due to the shift in population distribution and the 

concentration of daytime activities in areas of higher seismic intensity. The 

level VIII zone concentrates the largest share of the population both in 

nighttime and daytime periods, while not occupying the largest share of the 

surface of the LMA.  

The area and total population in each human exposure level in nighttime and 

daytime periods are presented in Table 11. It shows that most of the area and 

population of the LMA are in Moderate or High exposure classes in both time 

periods. However, while only 3% of the populated area is classified as Very 

High exposure, this class includes 23% of the total population in the daytime 

period. This represents an increase of 48% (203,641) in population and also 

31% in area from nighttime to daytime. It also indicates a significant increase 

in population density in that exposure class between those periods. Despite 

the high temporal consistency of input data sets, the main source of 

inaccuracies for the total daytime population distribution surface lies in the 

daytime worker and student population grid, with the model propagating error 

and uncertainties present in the input data. The locations of active commercial 

and industrial sites can easily become outdated, as these activities are usually 

more dynamic than residential areas, and “hybrid” LULC maps based on remote 

sensing data are notoriously problematic at capturing effective land use. Also, 

there is no indication of workers’ density in these land use patches, and 

disaggregating the population based on the surface of their street network 

leads to inaccuracies. One major limitation is the availability of mobility 

statistics (and derived number of workers and students) only at the municipal 
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level, resulting in uncertainty as to their actual distribution within the 

municipality. Finally, density weights used for interpolating the workforce to 

“labor” land use classes are obtained from one municipality (Cascais) that may 

not be similar to others in the LMA.  

Table 10 Population exposed to seismic intensity levels in nighttime and 
daytime periods in the study area 

Earthquake intensity Population  
[M. Mercalli S.]          Absolute [Pers.]         Relative [%]  

IX 112,826 4 

N
ig

h
t 

VIII 1,076,180 41 

VII 887,493 34 
VI 569,940 22 
Total 2,646,439 100 

IX 137,222 5 

D
a
y
 

VIII 1,256,570 47 
VII 746,992 28 
VI 535,767 20 
Total 2,676,551 100 

IX 24,396 22 D
iffe

re
n
c
e
 

VIII 180,390 17 
VII -140,501 -16 
VI -34,173 -6 
Total 30,112 1 

Relative differences are relative to the night numbers. Sums can add up to 
more than 100% due to rounding. 

Table 11 Total surface and population in each human exposure class in 

nighttime and daytime periods in the study area 

Human Exposure Area Population  
 Abs. [ha] Rel. [%] Abs. [Pers.] Rel. [%]  

VH 884 3 423,112 16 N
ig

h
t 

H 6,390 21 1,308,780 49 
M 22,617 76 914,550 35 

Total 29,891 100 2,646,442 100 

VH 1,154 3 626,753 23 

D
a
y
 

H 6,022 17 1,062,020 40 
M 27,611 79 987,772 37 
Total 34,787 100 2,676,545 100 

VH 270 31 203,641 48 

D
iff. 

H -368 -6 -246,760 -19 
M 4,994 22 73,222 8 
Total 4,896 16 30,103 1 

VH (very high), H (high), M (moderate), L (low) 

Relative differences are relative to the night numbers 
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3.5 Conclusions  
An approach was developed that enables modeling and mapping of spatio-

temporal population distribution and density in the daily cycle at high spatial 

resolution to advance analysis of earthquake exposure and eventually improve 

risk assessment. Benefits of this approach were illustrated with application to 

a large metropolitan area prone to this type of hazard. By combining land use 

data sets and demographic census and mobility statistics, the population model 

yields mapping of earthquake risk. Analysis of exposure to seismic levels in the 

LMA shows that there are considerable differences from nighttime to daytime, 

with significantly more people potentially at risk in the daytime period. This 

fact implies that conducting exposure analysis based on census data alone may 

result in misestimating risk for a daytime event, such as the great 1755 

earthquake, with possible serious consequences for response and evacuation 

activities. 

Since population density is a crucial factor determining earthquake losses, the 

refined spatio-temporal population surfaces were combined with a recent 

seismic intensity map to derive new spatial representations of human 

exposure. The new maps are spatially-explicit four-class-composites of human 

exposure to seismic intensity mainly aimed at benefiting visualization and 

communication of earthquake risk, which can eventually contribute to better 

decision-making in a disaster management context. Results show that very 

little of the populated area is classified as Very High exposure and yet it 

includes almost a quarter of the daytime population. Although the best-

available seismic map for the study area has lower spatial detail than the 

population surfaces, their raster structure allows enhanced flexibility, rapid 

assessment of exposure and easy integration with improved hazard maps, 

when compared to the typical vector-based census data. Additionally, such 

population distribution data sets can be combined with different hazard maps 

to improve spatio-temporal exposure assessment and mapping for any type of 

hazard, natural or man-made, and at any scale. This effort is a contribution to 

address recent recommendations to enhance vulnerability analyses (Cutter, 

2003; Balk et al., 2006; Birkmann, 2007; NRC, 2007). Such an improved 

characterization of vulnerability and risk can benefit all phases of the disaster 

management process where human exposure should be considered, namely in 

emergency planning, risk mitigation, preparedness, and response to an event. 

Despite their inherent uncertainties, addressed above, these results can be 

used at the planning stage to improve characterization of potential population 

exposure in the hazard zones, and detailed population surfaces can also be 

used as input in earthquake simulators for modeling of human casualties in 

different hazard scenarios. Risk mitigation measures might include lowering 

human exposure levels by decreasing population densities in future urban 

planning decisions, for which a critical assessment of current exposure is 

needed. During the preparedness stage, means and resources needed for 
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response can be placed according to exposure levels, or these areas can be 

prioritized for evacuation training. After the event, a quick estimation of 

affected people and potential victims is vital for tailoring response and rescue 

efforts, including allocating emergency personnel, hospital beds, and other 

resources (Freire, 2010). Population models can be further improved by using 

more up-to-date and detailed land use/land cover data detailing functional use, 

ideally by city block or building (Aubrecht et al., 2009). This improvement was 

already demonstrated for part of the study area in the context of exposure to 

tsunami (Freire et al., 2012). The availability of finer-level commuting statistics 

(e.g. at the level of commune) would greatly reduce uncertainties in the 

daytime scenario. Concerning temporal resolution, it would be important to 

represent weekly and seasonal cycles, which affect population distribution in 

many urban areas. This development is limited by the unavailability of mobility 

statistics that enable characterization of these cycles. Future work should also 

focus on evolving from mapping of human exposure to social (and economic) 

vulnerability, thus incorporating certain indicators picturing social and 

economic characteristics, a great challenge at such detailed resolution. Perhaps 

a less daring development would be to combine structural vulnerability of 

buildings, when available, with estimates of population present to better 

approximate potential human losses in case of an earthquake.  
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Chapter 4. Advancing tsunami risk assessment 
by improving spatio-temporal population 
exposure and evacuation modeling36 
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assessment by improving spatio-temporal population exposure and evacuation 
modeling. Natural Hazards, 68:1311-1324. 



Advancing tsunami risk assessment by improving spatio-temporal population exposure 

and evacuation modeling 

74 

Abstract  
Tsunamis are among the most destructive and lethal of coastal hazards. These 

are time-specific events, and despite directly affecting a narrow strip of 

coastline, a single occurrence can have devastating effects and cause massive 

loss of life, especially in urbanized coastal areas. In this work, in order to 

consider the time dependence of population exposure to tsunami threat, the 

variation of spatio-temporal population distribution in the daily cycle is mapped 

and analyzed in the Lisbon Metropolitan Area. High resolution daytime and 

nighttime population distribution maps are developed using ‘intelligent 

dasymetric mapping,’ that is, applying areal interpolation to combine best-

available census data and statistics with land use and land cover data. 

Workplace information and mobility statistics are considered for mapping 

daytime distribution. In combination with a tsunami hazard map, information 

on infrastructure, land use and terrain slope, the modeled population 

distribution is used to assess people’s evacuation speed, applying a geospatial 

evacuation modeling approach to the city of Lisbon. The detailed dynamic 

population exposure assessment allows producing both daytime and nighttime 

evacuation time maps, which provide valuable input for evacuation planning 

and management. Results show that a significant amount of population is at 

risk, and its numbers increase dramatically from nighttime to daytime, 

especially in the zones of high tsunami flooding susceptibility. Also, full 

evacuation can be problematic in the daytime period, even if initiated 

immediately after a major tsunami-triggering earthquake. The presented 

approach greatly improves tsunami risk assessment and can benefit all phases 

of the disaster management process. 

4.1 Introduction 
Tsunamis are sudden-onset natural hazards having a short duration, yet 

capable of producing lasting impacts of local to regional geographical scope 

(Peduzzi 2004). Despite being relatively rare events, large tsunamis are among 

the most destructive and lethal of coastal hazards, with a single occurrence 

having the potential to cause huge loss of life (Nirupama 2009), as recently 

again demonstrated, for example, in December 2004 in the Indian Ocean and 

in 2011 in Tohoku, Japan.  

Comprehensive assessment and mapping of communities’ risk to natural 

hazards, such as tsunamis, requires estimation of social vulnerability, of which 

population exposure is considered one of the most critical variables and pre-

assessment requisites (Aubrecht et al. 2012b). However, more effort has been 

put into understanding of tsunami hazard than into estimating potential 

impacts on people and infrastructure (Wood 2007; Jelinek et al. 2012), despite 

quantitative assessment of tsunami risk being necessary to support spatial 

planning and for local authorities to provide population protection (Lima et al. 

2010). Therefore, step one of tsunami preparedness includes assessing and 



Chapter 4 

75 

mapping concentrations of population present (NSTC 2005; IOC 2008), since 

for practical purposes, one can consider all human beings to be equally 

vulnerable in case of direct tsunami impact (Villagran de Leon 2008). 

Population data are a basic necessity for assessing potential human exposure, 

with its quality and level of detail having a direct effect on response and lives 

saved (NRC 2007). Furthermore, updated and detailed mapping of population 

distribution is important for decision support in practically every phase of the 

emergency management cycle, if produced at appropriate spatial and temporal 

scales (Sutton et al. 2003).  

On November 1, 1755, following a large earthquake (M = 8.5), the city of 

Lisbon was hit by a major tsunami having 6-m high waves that caused much 

loss of life (Baptista et al. 1998; Chester 2001). This very destructive event 

occurred during the daytime period, sometime after 10 a.m., lasting for only a 

few minutes. Tsunamis are quick-onset hazards usually having a short 

duration, whose lead time is strongly dependent on the existence of an early-

warning system.  

The spatial distribution of population, and hence exposure to hazards, is also 

time dependent, especially in large urban areas. Due to human activities and 

mobility, the distribution and density of population vary greatly in the daily 

cycle. Therefore, a more accurate assessment of population exposure and risk 

analysis requires going beyond residence-based census maps and figures 

(Aubrecht et al. 2012a). The development of the LandScan Global Population 

Database (Dobson et al. 2000) represented a great improvement over 

residence-based population data sets. However, its spatial resolution (30 arc-

seconds) is still too coarse to adequately support analyses at the local level, 

and the representation of ‘ambient population’ corresponds to a temporal 

averaging that is not ideal for using in time-specific hazards, such as a tsunami, 

which can strike a limited area at any time of day or night. To address these 

limitations, generic population distribution databases having higher temporal 

and spatial detail are being developed for the territory of the USA (Bhaduri et 

al. 2002; McPherson and Brown 2004). In the context of the development of a 

tsunami early-warning system for Indonesia, Taubenbock et al. (2009) have 

improved risk analysis for Padang, West Sumatra, by assessing hazard and 

vulnerability, including population and evacuation modeling, however adopting 

a bottom-up, survey-based extrapolation. Results showed a difference in 

population exposure from nighttime to daytime, even if only a slight increase 

(4.5%). Since tsunamis are time-specific events which usually directly affect a 

narrow strip of coastline, advanced assessment of human exposure and 

integrated risk analysis requires spatially detailed demographic data which 

account for population dynamics typical of urban areas (Freire et al. 2011). 

The Lisbon Metropolitan Area (LMA), Portugal, is subject to considerable 

likelihood of tsunami, as confirmed by the occurrence of numerous events in 

the past, including several minor ones in the twentieth century (Baptista and 
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Miranda 2009). Although the probability of occurrence is lower than other 

natural hazards, impacts can be extremely high and tsunamis are a major risk 

for Lisbon coastal areas (Baptista et al. 2006). Tsunami hazard is usually 

represented by inundation maps that identify areas and depths of tsunami 

flooding or run-up. The Regional Plan for Territorial Management for the Lisbon 

Metropolitan Area (PROTAML), recently under discussion, includes a Tsunami 

Inundation Susceptibility map for the area, showing that significant urbanized 

areas may be at risk (CCDR-LVT 2010). However, no assessment of 

vulnerability or human exposure to this hazard was conducted in the 

framework of the plan.  

The present work aims at improving the assessment of tsunami risk and 

contributing to more efficient and effective emergency management (EM) by 

considering the time dependence of population exposure to this hazard in a 

large urban area. Population density is modeled in high spatial and temporal 

detail following a top-down approach to disaggregate data from official 

statistics. The resulting population distribution surfaces are integrated with the 

above-mentioned tsunami hazard map (from PROTAML) to estimate potential 

human exposure. Additionally, the population’s speed of evacuation is modeled 

and analyzed in the nighttime and daytime periods to investigate whether there 

are significant differences and what consequences these might have for EM. 

4.2 Data and study area 

4.2.1 Study area 

The study area for modeling spatio-temporal population distribution and 

assessing its exposure to tsunami is the Lisbon Metropolitan Area (LMA) (Figure 

16).  
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Figure 16 Study area – Lisbon Metropolitan Area (LMA) 

The LMA is the main metropolitan area in Portugal and includes eighteen 

municipalities. About 30% of all national companies are headquartered in this 

region, which is responsible for 36% of the country’s GDP. The LMA has been 

experiencing growing urbanization along its coastline, with artificial surfaces 

increasing by 36% in the 20-km coastal zone between circa 1990 and 2000 

(Freire et al. 2009). The LMA occupies a total land area of 2,963 km2, and its 

resident population has increased by 5.6% from 1991 to 2001, to a total of 

2,661,850 residents, 26% of the country’s population (INE 2001). This results 

in an average population density of 898 inhabitants per square kilometer, but 

these densities vary significantly in space and time. Beyond the more 

urbanized core and densely populated zones, the LMA still includes vast rural 

areas with dispersed settlements whose uneven population density is not 

adequately captured and represented by census polygons. Some of these 

population enumeration units can be quite large even at the block level, which 

is the smallest census reporting unit. Moreover, the daytime population of 

municipalities in the metro area of Lisbon can surpass by more than 50% the 

residential figures from the census, due to significant daily commuting for work 

and study (INE 2003). The geographical situation and characteristics of the 
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LMA, bordering the Atlantic Ocean and the large estuary of the Tagus River, 

and being prone to tsunamis, provide an appropriate context for this research. 

4.2.2 Data sets 

The main data sets produced and used in the course of the presented analyses 

were population distribution surfaces and a Tsunami Inundation Susceptibility 

map (Figure 17). Input variables used for modeling population distribution 

include both physiographic and statistical data.  

 

Figure 17 Tsunami Inundation Susceptibility map for the LMA (background 
from Google Earth) 

The first group comprises street centerlines and land use and land cover (LULC) 

maps; the second set includes official census counts (INE 2001), data on 

workforce, and commuting statistics (INE 2003) for the study area, produced 

by Statistics Portugal. Commuting statistics were obtained in the form of an 

origin/destination matrix of daily commuters at municipal level for the LMA, 

from which the number of workers and students present in each municipality 

was derived. The used data were obtained from various sources and in different 

formats which are listed in Table 12. It was assured that all data sets were in 

the same projected coordinate system. COS90 (Carta de Ocupação do Solo, 

i.e., land cover map) is a digital LULC map at the scale 1:25,000 covering 

almost the entire country; however, it dates from 1990. Therefore, to ensure 
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near-perfect temporal consistency among input data sets, it was decided to 

update it to some extent using the more recent CORINE Land Cover database 

for the year 2000 (CLC2000). This updating consisted in adding the new 

patches of artificial surfaces appearing between 1990 and 2000. 

Table 12 Main input data sets used for modeling population distribution 

Data set Source Date Data type 

Street centerlines Private 

vendor 

2004 Vector polyline 

Land use/cover maps  

(COS90; CLC2000) 

Public 1990; 

2000 

Vector polygon 

Census block groups Public 2001 Vector polygon 

Census statistics Public 2001 Database 

(MS Access) 

Commuting statistics Public 2001 Table 

(O/D matrix) 

Daytime worker/student 

population distribution for 

Cascais and Oeiras 

Previous 

study (Freire 

2010) 

2001 Raster (25 m) 

 

The map of tsunami hazard for the LMA was produced for the Regional Plan for 

Territorial Management for the Lisbon Metropolitan Area (PROTAML) report 

(CCDR-LVT 2010) and was obtained in digital vector format. This map results 

from modeling an event similar to the 1755 occurrence as a worst-case 

scenario and depicts areas susceptible to inundation by tsunami (i.e., 

inundation extent). Susceptibility is represented using two classes or levels, 

High and Moderate, with the former including low-lying coastal areas and the 

latter referring to adjacent low-elevation areas farthest from the coast, with 

decreasing likelihood of inundation by tsunami (Figure 17). This map can be 

considered to represent maximum generic tsunami hazard for the LMA, given 

that small variations in the characteristics of the tsunami source may not be 

too significant for impact assessment (Lima et al. 2010). 

4.3 Methodology 

4.3.1 Modeling nighttime and daytime population distribution 

Detailed population distribution for the LMA is modeled based on raster 

dasymetric mapping using street centerlines as spatial reference units to 

reallocate population counts. Dasymetric mapping is a cartographic technique 
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which enables limiting the presence of a variable, such as population, to zones 

where it is present, as defined by related ancillary data (Wright 1936). In this 

model, the most recent statistical and census data available (2001) provide 

the population counts to be disaggregated, while physiographic data sets are 

selected and combined to define the spatial units (i.e., grid cells) used to 

disaggregate those counts. The approach applied by McPherson and Brown 

(2004) is combined with the innovative method of ‘intelligent dasymetric 

mapping’ proposed by Mennis and Hultgren (2006) in order to transfer 

population counts from original source zones to target zones. To obtain the 

nighttime (residential) population distribution surface, the existing detailed 

census data (INE 2001) is further refined by reallocating residential population 

to effective residential areas. This procedure was initiated by identifying and 

selecting strict residential land use from the updated LULC map. Two 

residential classes (‘Continuous Urban Fabric’ and ‘Discontinuous Urban 

Fabric’) were considered and sampled to derive the respective population 

density weights, using the containment method proposed by Mennis and 

Hultgren 2006. Then, eligible streets (i.e., all except freeways) were 

intersected with residential land use from LULC data to obtain residential 

streets, which were rasterized at 25-m resolution. Finally, the population from 

census block groups (source zones) was interpolated to the respective 

residential street cells (target zones) according to the density weights. 

The total daytime population distribution grid results from the sum of two 

surfaces on a cell-by-cell basis: (1) the daytime population in their places of 

work or study—the workforce population surface—and (2) the population that 

remains home during the day— the daytime residential population grid. This 

latter grid is obtained by applying to the nighttime (i.e., residential), the ratio 

of people who do not commute for study or work, in each municipality, 

according to the population mobility statistics (INE 2003). The workforce 

population surface is produced by interpolating the total number of workers 

and students in each municipality (source zone) to rasterized streets within 

‘labor’ and mixed ‘labor-residential’ land-use polygons (target zones). While 

‘labor’ polygons were simply extracted by selecting appropriate LULC classes, 

the mixed ‘labor-residential’ class was defined by applying simple rule-based 

decisions to the census data and the LULC map. The empirical parameters used 

for interpolation of this surface are obtained from a previous modeling effort 

for part of the study area, which is based on precise geocoding of workplaces’ 

addresses and workforce (Freire 2010). Finally, the obtained 25-m population 

density grids were aggregated to 50-m cells for subsequent analysis and 

visualization purposes. Although this approach was developed and presented 

in more detail in Freire and Aubrecht (2010, 2012 – Chapter 3), both the input 

data and modeling rules were refined, increasing final accuracy: 

Misclassification of a few areas in the LULC map were corrected, and rules used 

to define the mixed ‘labor-residential’ class were improved. 
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4.3.2 Assessing population exposure to tsunami 

In order to improve the assessment of human exposure and tsunami risk in 

the LMA, two analyses were implemented: (1) quantification of population 

exposed to tsunami inundation levels in nighttime and daytime periods, and 

(2) modeling evacuation in nighttime and daytime periods for a subset of the 

study area. Population exposure to tsunami in the LMA was assessed in a GIS 

environment using zonal analysis to summarize nighttime and daytime 

population surfaces by each susceptibility zone of the Tsunami Inundation 

Susceptibility map. Figure 18 illustrates in 3-D for part of the study area the 

varying population distribution and densities in nighttime (A) versus daytime 

(B) periods in each tsunami susceptibility zone. 

 

Figure 18  Nighttime (A) and daytime (B) population density and Tsunami 
Inundation Susceptibility zones (background from Google Earth) 

The modeled population surfaces represent expected maximum densities on a 

regular workday. In the absence of additional information, it was assumed that 

at night all residents are at home, and during the daytime period all workers 

and students are in their workplaces and schools, while the remaining 

population stays in their residences. Although this is still a simplification of a 

more complex reality concerning population distribution, it is a major 

improvement over existing approaches and data sets (i.e., residential census) 

that can benefit analyses from regional to local scale. 

4.3.3 Tsunami evacuation modeling 

An additional analysis, aimed at informing the EM planning, departs from the 

spatiotemporal population distribution patterns and potential tsunami 

inundation zones to model and estimate evacuation speed in nighttime and 

daytime periods. This demonstration is conducted for three freguesias 

(communes) of the municipality of Lisbon, susceptible to inundation by 

tsunami, which are located in the western part of the city: Santa Maria de 

Belem, Ajuda and Alcantara (Figure 19). These communes are rather 

heterogeneous regarding land use and joint presence of residential areas and 
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economic activities, therefore providing a good test bed for this demonstration. 

The evacuation analysis assesses the time needed, after a full evacuation is 

initiated, for the population to reach safe areas, that is, areas immediately 

outside of the inundated zone, assuming they are traveling by foot. Part of the 

methodology was developed in the framework of the German-Indonesian 

Tsunami Early Warning System (GITEWS) project (Post et al. 2009; Strunz et 

al. 2011; Wegscheider et al. 2011). The evacuation modeling is performed 

using GIS-based geospatial analysis and relies on a cost-weighted distance 

approach. The best (i.e., the fastest) evacuation route from any given location 

to a safe area is defined, and the time needed to reach it is calculated.  

 

Figure 19 Study area for Tsunami evacuation modeling 

The output of the model, that is, the time needed for evacuation toward a safe 

area, is based on several parameters: (1) extent of the hazard impact area 

(i.e., potential inundation area), (2) characteristics of the evacuation paths 

(slope, land cover, street network), (3) (time-specific) population density and 

(4) location of critical facilities (i.e., facilities with people of reduced or lacking 

abilities to evacuate, such as hospitals). For more details see Post et al. (2009) 

and Wegscheider et al. (2011). Data from the Urban Atlas 

(www.eea.europa.eu/data-and-maps/data/urban-atlas) that recently became 

available were used as source of land cover information. The Urban Atlas 

project maps land cover and land use for selected European cities (i.e., 

including the part of the LMA chosen for the tsunami evacuation modeling case 

study) using 19 thematic classes and has a minimum mapping unit of 0.25 ha 
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(for ‘Artificial surfaces’). While not being available for the entire LMA, it is a 

more detailed and updated source of LULC info for intra-urban analysis than 

COS90 + CLC2000. The derived evacuation time surfaces are used, in 

combination with the detailed population distribution grids, to calculate the 

number of successful evacuees after certain time intervals. 

4.4 Results and discussion 
Using the above-described intelligent dasymetric mapping methodology, four 

raster population distribution surfaces were produced, at 50 m resolution: (1) 

nighttime (residential) population, (2) daytime residential population, (3) 

daytime worker and student population, and (4) total daytime population. The 

nighttime population distribution is finer than the one provided by the original 

census data, and the other three population grids were previously unavailable. 

The new nighttime and workforce distribution grids were validated using 

correlation analysis with higher-resolution reference data, that is, block-level 

census and the previous’ model distribution for Oeiras, respectively. 

Correlation coefficients (Pearson’s r) of 0.86 and 0.64, respectively, were 

obtained for each of these two population grids.  

Concerning the population distribution model, an additional source of 

uncertainties lies in the spatial nature and dynamic character of activities used 

to produce the daytime worker and student population grid, combined with the 

unavailability of mobility statistics more detailed than at the municipal level. 

Still, the usefulness of earlier versions of similar spatio-temporal population 

distribution surfaces for the LMA, which are multi-purpose, was illustrated for 

Disaster Risk Management applications, specifically in improving earthquake 

risk assessment (Freire and Aubrecht 2010, 2012). Population surfaces at such 

high resolution prove more appropriate for local-level quantification of human 

exposure, enabling a more detailed and thorough assessment of potential 

effects and impacts. Results of the analysis of exposure to tsunami in the LMA 

show that the population potentially exposed to some level of tsunami 

inundation hazard significantly increases from nighttime to daytime periods 

(Table 13). The majority of the population exposed is associated with the ‘high 

inundation susceptibility’ zone. Particularly these ‘high hazard’ areas also 

feature a significant increase in population from nighttime to daytime, both in 

absolute and in relative terms (i.e., as proportion of total population within the 

inundation zone). While during nighttime around 60% of the potentially 

exposed population is located in areas having a high tsunami hazard level, 

daytime population movement results in more than 200,000 persons 

additionally exposed in that area, corresponding to a factor of increase greater 

than 2.5. Considering the total population of the Lisbon Metropolitan Area, 16% 

of the daytime population is potentially exposed, compared to 8% of the 

resident population during the nighttime period. While population exposure to 

the moderate hazard level remains relatively stable at 3%, a considerable 
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increase from 5% during nighttime to 12% during daytime is observed in the 

highly susceptible areas. These results reflect the location of human economic 

activities closer to the coastline and highlight the more intensive occupation of 

these areas during the daytime period. 

Table 13 Population exposed to Tsunami inundation levels in nighttime and 
daytime periods in the LMA 

Tsunami hazard Population 

 [Inundation levels] Abs. 

[Pers.] 

Rel. 

[%] 

High 125,730 59 N
ig

h
t 

Moderate 86,929 41 

Total 212,659 100 

High 334,000 78 

D
a
y
 

Moderate 93,444 22 

Total 427,444 100 

High 208,270 166 D
iffe

r
. 

Moderate 6,515 7 

Total 214,785 101 

*Relative differences are relative to the night 

numbers 

Regarding the modeling of tsunami evacuation, Figure 20 shows the modeled 

surfaces of evacuation time and access points to safe areas (i.e., outside of the 

inundation zone), for the nighttime (A) and daytime (B) periods, respectively. 

The differences for nighttime and daytime evacuation times become intensified 

by the fact that densely populated areas are slower to evacuate, as a higher 

‘traffic volume’ of evacuees slows down the speed of every individual (Klupfel 

2005; Rogsch 2005). This is also considered in the modeling process. 

Therefore, longer evacuation periods are observed in daytime, since about 

40,000 people are estimated to be present in the hazard zone in the three 

communes in this period, compared to 8,000 residents in nighttime.  
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Figure 20 Nighttime (A) and daytime (B) Tsunami evacuation modeling 

Results of the evacuation modeling analysis reveal significant differences in the 

magnitude and speed of evacuation between night and day (Table 14). 

Differences are especially striking in the commune of Alcantara, due to the 

configuration of hazard zone and population distribution. Overall in the study 

area, all resident (nighttime) population is able to evacuate to safety within 10 

min. In daytime, although more than 95% of the population has reached safety 

after 20 min, it takes as long as 90 min for a full evacuation. This duration is 

longer than the travel time to this location for the devastating 1755 tsunami 

(approx. 50–70 min; Baptista et al. 1998), implying that for a similar scenario, 

there could be approximately 700 people in the study area who would not reach 

safe areas on foot, according to the modeled results. This is assuming that 

everyone present in the hazard zone would initiate evacuation to closest safe 

areas immediately following a large earthquake (greater than M = 6.5) or 

tsunami warning, but no early-warning and evacuation system for tsunamis is 

yet implemented in Lisbon. Therefore, it would be important to consider other 

safety measures, such as vertical evacuation, that would shorten travel time 

to safety. Also, this analysis would be improved by further considering 

nonresidents and nonstudents/workers (e.g., tourists) present and involved in 

leisure activities, which are especially relevant in the Alcantara (nightlife) and 

in the Belem (daytime museums and monuments) communes. For this 

exercise, we are not considering the specific effects in the area that a triggering 

earthquake might cause in people, buildings and other structures, impacting 

the ensuing evacuation from tsunami, since such a detailed and spatially 

explicit modeling is not available.  

Table 14 Population remaining in hazard zone and successful evacuees after 
different time intervals of tsunami evacuation 

Commune Elapsed 

time 

Population 

 

 [min] Remaining Evacuees 
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Santa 

Maria de 

Belém 

0 4,300 0 N
ig

h
t 

5 1,600 2,700 

10 0 4,300 

Santa 

Maria de 

Belém 

0 25,800 0 

D
a
y
 

5 19,900 5,900 

10 4,600 21,200 

15 500 25,300 

20 400 25,400 

75 0 25,800 

Alcântara 

0 3,800 0 N
ig

h
t 

5 300 3,500 

10 0 3,800 

Alcântara 

0 17,700 0 

D
a
y
 

5 9,200 8,500 

10 900 16,800 

15 200 17,500 

20 200 17,500 

90 0 17,700 

Ajuda 
0 200 0 

N
ig

h
t 5 0 200 

Ajuda 
0 200 0 D

a
y
 5 0 200 

4.5 Conclusions and outlook 
This work is an initial approach toward considering the spatio-temporal 

population distribution to assess risk of tsunami in a large metropolitan area. 

The region is prone to this hazard and was severely affected by this type of 

event in the past. Improved high-resolution data sets of nighttime and daytime 

population density were developed and combined with existing Tsunami 

Inundation Susceptibility zones to estimate potential population exposure in 

those periods in the Lisbon Metropolitan Area. In addition, evacuation speed 

was modeled and analyzed for both scenarios in a subset of the study area. 

Results show that potential population exposure to tsunami is significantly 

time-dependent, displaying a strong variation from nighttime to daytime. The 
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analysis indicates that a significant amount of population is at risk, and its 

numbers increase dramatically from nighttime to daytime, especially in the 

zones of high susceptibility (i.e., lower elevation and closer to the coastline). 

Evacuation modeling reveals that full horizontal evacuation may be problematic 

in the daytime period, even if initiated immediately after an early warning or a 

major tsunami-triggering earthquake event. This finding recommends that 

additional measures be considered as alternatives, such as vertical evacuation.  

As with any similar exercise, this model implies a number of uncertainties that 

can affect the specific results of population distribution, exposure and 

evacuation. However, the analyses provide valuable information for further 

development of scenarios leading to evacuation planning and management 

measures, yet to be implemented in the study area. This improved 

characterization of vulnerability and risk can benefit all phases of the disaster 

management process where human exposure should be considered, namely in 

emergency planning, risk mitigation, preparedness and response to an event. 

Considering the large variations between nighttime and daytime population 

exposure that become apparent in the presented case study model, it is clear 

that integration of this kind of information in a pre-event assessment stage 

would favor preparation for actual hazardous events and thus be a huge step 

toward improved mitigation and eventually saving lives. The new population 

surfaces can also be used as input in loss simulators for modeling of human 

casualties resulting from different types of hazards and threats, such as 

earthquakes, flash floods, landslides or chemical accidents. Given the 

availability of input data sets, this approach could, for example, also be applied 

to the Oporto Metropolitan Area, further encompassing nine municipalities and 

1,260,680 inhabitants.  

Planned future developments include conducting a more detailed spatial 

modeling of population distribution and exposure assessment to tsunami at the 

building level considering its function, height and elevation (Aubrecht et al. 

2010). This will also enable modeling of vertical evacuation, that is, evacuation 

to a safe structure or floor above the inundation level. Subsequent analyses 

would also benefit from assessing likely population exposure in additional 

temporal cycles, relevant for population dynamics in large urban centers (e.g., 

rush hour, week-ends, etc.). Especially useful for tsunami risk assessment 

would be to account for seasonal differences, given that human occupation of 

beaches is usually very high in warm summer days. 
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Abstract  
Data on global population distribution are a strategic resource currently in high 

demand in an age of new Development Agendas that call for universal 

inclusiveness of people. However, quality, detail, and age of census data varies 

significantly by country and suffers from shortcomings that propagate to 

derived population grids and their applications. In this work, the improved 

capabilities of recent remote sensing-derived global settlement data to detect 

and mitigate major discrepancies with census data is explored. Open layers 

mapping builtup presence were used to revise census units deemed as 

‘unpopulated’ and to harmonize population distribution along coastlines. 

Automated procedures to detect and mitigate these anomalies, while 

minimizing changes to census geometry, preserving the regional distribution 

of population, and the overall counts were developed, tested, and applied. The 

two procedures employed for the detection of deficiencies in global census data 

obtained high rates of true positives, after verification and validation. Results 

also show that the targeted anomalies were significantly mitigated and are 

encouraging for further uses of free and open geospatial data derived from 

remote sensing in complementing and improving conventional sources of 

fundamental population statistics. 

5.1 Introduction 
Accurate geospatial data on global population distribution and characteristics 

are increasingly required and relied upon for analysis and modelling in an 

expanding range of disciplines (Gaughan et al. 2014; Wardrop et al. 2018). 

These data are also crucial in the frame of the Digital Earth perspective in the 

path towards decision-making (Shupeng and van Genderen 2008). In the 

context of evidence-based assessment for policy support, the recent wave of 

post-2015 international development agreements (including the Sendai 

Framework for Disaster Risk Reduction 2015–2030 (adopted March 2015); 

United Nations (UN) 2030 Agenda for Sustainable Development (SDGs, 

September 2015); COP 21 Paris Agreement on Climate Change (November 

2016); UN New Urban Agenda (December 2016)) places great demands and 

responsibility on geospatial data, and in particular on that related to 

population. 

Public information about the characteristics and spatial distribution of 

population is a strategic resource supporting the monitoring and 

implementation of international frameworks. Information about population 

density per uniform spatial sampling schemas (e.g. grid cells) are necessary 

for modelling critical aspects of human-environment interaction, such as: 

Exposure (to hazards, pollutants); Access (to resources, services, facilities); 

and Impacts, in both perspectives of (i) the impact of human activities on the 

planet and (ii) impact of the environment on the people living on the Earth’s 

surface (natural disasters, environmental change) (UNISDR 2015a; UNDESA 
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2016; UNECOSOC 2016). The Sustainable Development Goals (SDG) indicators 

are ‘action oriented, global in nature and universally applicable’ and should be 

themselves sustainable and comparable across space and time (UNECOSOC 

2016, 7). Ideally, the indicators supporting the international development 

agenda should be based on geospatial population data that is up-to-date, 

sufficiently detailed, accurate, consistent, cost-effective (i.e. sustainable), 

transparent (i.e. using clear methods), and accessible to all. These 

development agreements, their targets and monitoring needs (i.e. indicators) 

present an opportunity not only for producing more data, but also for improving 

existing datasets. The reliability of international statistics is periodically called 

into question (e.g. Wolff, Chong, and Auffhammer 2011), and the recent surge 

in initiatives aimed at producing more accurate and detailed statistics (e.g. by 

UN (UNDP 2018), World Bank (WB 2018), Bill & Melinda Gates Foundation and 

UK Department of International Development) are a realization that statistical 

capacity must be strengthened (UNECOSOC 2016). 

Regular grids (raster or vector) are now well established and widely used 

spatial structures to model and report population attributes, and their 

advantages are largely recognized (Deichmann, Balk, and Yetman 2001). 

Several global gridded population datasets are currently produced. They are 

differentiated by the underlying population concept (e.g. ‘resident’ vs. 

‘ambient’ population), gridding method, and distribution policy (for reviews and 

recent developments see Linard and Tatem 2012; Stevens et al. 2015; Freire 

et al. 2016a). For a given spatial unit, population distribution grids can be 

produced by disaggregating (e.g. gridding) population counts (top-down 

approach) or by estimating that count at the grid cell level through combining 

sampling with ancillary data (bottom-up method) (Wardrop et al. 2018). Global 

population grids aiming to support policies and international agreements in 

global forums are typically based on available statistics whose national totals 

match, or are adjusted to match, those used in UN population estimates (e.g. 

UNDESA 2015). UN estimates are used as a standard in order to produce more 

accurate and harmonized datasets for countries where census data are 

considered to be less reliable, and because of the extensive work done by the 

UN Population Division to adjust and correct census data post enumeration. 

Examples of such grids include Gridded Population of the World (GPW) 

(Deichmann, Balk, and Yetman 2001; Doxsey-Whitfield et al. 2015) the Global 

Rural-Urban Mapping Project (GRUMP) (Balk et al. 2006), and the Global 

Human Settlement Population (GHS-POP) (Freire et al. 2016a). For population 

grids that are generated by disaggregating available statistics (top-down) while 

preserving their volume, output accuracy (with respect to ground truth data) 

is largely dependent on the spatial detail and quality of input geospatial layers. 

In addition to their spatial detail, population census-like layers vary widely in 

quality concerning their geometry, attributes, reliability, and currency. 

Incidentally and unfortunately, the quality and reliability of statistics’ are 
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particularly low in many developing countries (Tatem et al. 2007), at whom 

the post-2015 development agenda is especially directed.  

Production of global grids relies on population sources that are somewhat 

heterogeneous in respect to these characteristics. These sources include 

provisional or final censuses originating in National Statistical Offices (NSOs) 

as well as estimates and projections provided by Non-governmental (NGOs) 

and other organizations. Despite valuable efforts to collect, integrate, and 

improve global census data obtained from disparate sources (e.g. GPW), some 

important requirements remain unsolved. Addressing the universal 

inclusiveness requisite associated with the UN ‘leaving no one behind’ 

imperative of the new sustainable development agenda (UNDESA 2016) 

requires that all people are counted and accounted for in the place they live. 

However, census enumerations often do not meet this requirement (even 

sometimes by design as in de facto census), and any statistical sampling 

inherently lacks information about marginal and uncounted populations.  

Perhaps surprising and unknown to some users, available population statistics 

also suffer from error and uncertainty that affect even the most basic of 

demographic variables (i.e. total population). While uncertainty is difficult to 

assess and communicate, error often propagates unimpeded to downstream 

analyses and applications. The main deficiencies and shortcomings affecting 

geospatial population statistics can be summarized in the following basic 

taxonomy: 

1. Issues affecting geography (census reporting units): a) Lack of spatial detail 

(i.e. too coarse or generalized, related to spatial precision) b) Low spatial 

accuracy (i.e. units partially displaced or completely misplaced)  

2. Issues affecting attributes (population counts in present case) a) 

Undercounting and/or underreporting (i.e. underenumeration) b) Over-

counting and/or over-reporting (i.e. overenumeration) 

These issues have been unnoticed or unaddressed due to the lack of external 

accuracy assessment related to a shortage in independent compatible high-

resolution reference data. Notable exceptions are the works of Hay et al. 

(2005) and Mondal and Tatem (2012) that discuss deficiencies in the 

representation of population distribution along coastlines, and Linard and 

Tatem (2012) that address these in frame of infectious disease research. In 

contrast to remote sensing-based maps where validation is expected to rely on 

independent reference data, typically collected from ground truthing (see 

Congalton and Green 2009), quality assessment of population grids is usually 

limited to internal consistency of model performance (i.e. population data used 

for validation is the same that was used for modelling, just finer). Also, the 

relative coarse resolution of global grids produced until recently (i.e. ∼1–5 km) 

mitigated the impact of some deficiencies that now become apparent as cell 

sizes approach ∼100 m.  
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Significant improvements to the quality of population grids are to be gained by 

addressing some of these shortcomings. Detection and mitigation of 

deficiencies in population statistics require independent, reliable, higher-

resolution data. Remote sensing imagery and methods have been evolving 

towards constituting a more detailed, objective and independent data source 

on human presence on the Earth surface. The combination of new cost-

effective, automated and fully replicable data classification methods (e.g. 

machine learning) with the synoptic capacities of satellite Earth Observation 

imagery, made accessible in a public, full open-and-free frame, can contribute 

to fill information gaps and supplement existing statistics by mitigating some 

major shortcomings in population data. This is especially true in poor, remote, 

unsafe, disputed, very large, and/or highly dynamic areas of the globe where 

conventional data gathering and updating is challenging.  

Current methods and processing capacity allow for global mapping of built-up 

areas and settlements with unprecedented spatio-temporal detail and accuracy 

– in essence capturing the local scale with global coverage, finally starting to 

fulfil a long-standing promise of remote sensing technology. Making these 

datasets available open and free helps to increase access, promotes 

transparency, and ensures accountability of the information produced. Global, 

consistent and updated geospatial data such as that made openly available in 

the framework of the Global Human Settlement Layer (GHSL) (Pesaresi and 

Ehrlich 2009) are already providing an effective contribution and improving the 

disaggregation of census data into derived population grids (Freire et al. 

2015d; Linard et al. 2017; Nieves et al. 2017). However, it remains to be 

tested in large scale if such remotely sensed data can also assist in assessing 

and mitigating major deficiencies present in geospatial population statistics.  

This article addresses shortcomings present in global collections of census 

data, by introducing, applying, and discussing novel procedures aimed at 

investigating and detecting some of those major anomalies. It then 

demonstrates mitigation of some inconsistencies using high-resolution 

geospatial data derived from remote sensing. The focus is on deficiencies in 

mapping coastlines and declared unpopulated areas, as extreme instances of 

deficiencies 1a) and 1b) and 2a) in the taxonomy mentioned above. Making 

use of open and free high-resolution global settlement layers derived from 

contemporary satellite imagery, the approaches are illustrated with GHSL in 

the frame of producing GHSL-based new global population grids (release 

2018).  

5.2 Materials and methods  
Two main types of geospatial data were used in this work: vector-based census 

data reporting on estimated total population counts for the target year of 2015 

(http://sedac.ciesin.columbia.edu/ gpw), and raster layers reporting on built-

up presence for 2013/2014 derived from Landsat image collections in the 

http://sedac.ciesin.columbia.edu/gpw
http://sedac.ciesin.columbia.edu/gpw
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frame of the GHSL project (http://ghslsys.jrc.ec.europa.eu/index.php). Some 

aspects of these two datasets are compared and combined, with remote 

sensing data being used to identify anomalies in the geospatial census data. 

These anomalies are mitigated with the support of the remote sensing-derived 

data after verification and validation.  

5.2.1 Data sets  

5.2.1.1 Geospatial data on census population  

As a source of census population data, a database assembled by the Center for 

International Earth Science Information Network (CIESIN) in the frame of the 

Gridded Population of the World project (Tobler et al. 1997) was used. For 

more than two decades, GPW has been collecting, combining, and harmonizing 

available population census and estimates into what is considered the most 

complete, detailed and coherent census-based geodatabase available globally. 

This database is periodically updated with more recent and improved data, with 

GPW employing clear and transparent methods to create open and free 

residence-based population grids for different reference years (Doxsey-

Whitfield et al. 2015). Despite these efforts, the GPW databases are subject to 

availability and quality of source (national) population statistics, and therefore 

inherit their gaps and shortcomings, as reliability and currency of population 

data is quite heterogeneous among countries (for GPW metadata see CIESIN 

2017a).  

The GPW data used consisted in country-based layers (one for each of 241 

countries) of census and administrative polygons containing estimated 

residential population for the GHSL target years 1975-1990-2000-2015, 

adjusted to country-level estimates of UN World Population Prospects 2015 

(UNDESA 2015). Due to the development of the work and the updating 

schedule of GPW data, two versions from the same release were used: GPWv4, 

released in 2016 (CIESIN 2016), was used for detection of inconsistencies 

along coastlines; GPWv4.10, available in late 2017 (CIESIN 2017b), was used 

for revision of unpopulated areas. GPWv4.10 is a revision of GPWv4 with 

boundary or population updates for 64 countries. More details about these data 

can be found here: http:// sedac.ciesin.columbia.edu/data/collection/gpw-v4.  

5.2.1.2 Built-up areas from remote sensing  

In the frame of the Global Human Settlement Layer (GHSL) project, global 

built-up (BU) areas were recently mapped with unprecedented spatial detail, 

consistency, and temporal coverage (Pesaresi et al. 2016). The GHSL has 

developed and employed novel and automated approaches to produce a time 

series of raster layers reporting on the presence of building structures, defined 

as ‘all constructions above ground intended for human or animal sheltering or 

for the production of economic goods’ (Pesaresi et al. 2013). These data were 

derived from Landsat image collections spanning four periods: 1975, 1990, 

http://ghslsys.jrc.ec.europa.eu/index.php
http://sedac.ciesin.columbia.edu/data/collection/gpw-v4.
http://sedac.ciesin.columbia.edu/data/collection/gpw-v4.
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2000 and 2013–2014 and are made available open and free. Quality assurance 

was conducted to validate these data against a heterogeneous set of available 

layers mapping building footprints (Pesaresi et al. 2016). More recently, 

independent spatio-temporal quality assessment of the GHSL built-up time 

series was performed for the USA showing very encouraging accuracy that 

generally increases over time (Leyk et al. 2018). Most relevant for the present 

work, these built-up areas exhibited strong correlation with population 

distribution and density, and suitability for population disaggregation and 

modelling (Freire et al. 2015d, 2016; Linard et al. 2017; Nieves et al. 2017). 

In this effort, global layers mapping built-up areas for the latest epoch (2013–

2014), at spatial resolutions of 38 and 250 m, were used as an indication of 

the presence of human settlements. Due to the development timeline of this 

work and the updating schedule of GHSL products, data from different releases 

were used: the GHS-BUILT data released in 2015 (GHS_BUILT_LDSMT_GLO-

BE_R2015B) were used for combination with census data from GPW for initial 

flagging and systematic detection of discrepancies (Pesaresi et al. 2015a); 

while the latest and improved GHSBUILT data 

(GHS_BUILT_LDSMT_GLOBE_R2018A), produced in Fall 2017 (Corbane et al. 

2017), to be publicly released in Fall 2018, were used for population 

disaggregation and creation of final population grids. All geospatial layers were 

projected to World Mollweide projection (EPSG 54009), the equal-area 

projection adopted for production of the GHSL global population grids. This is 

also important for the processing undertaken and described here, which is 

mostly based in quantification and comparison of surfaces. 

5.2.2. Revision of ‘unpopulated’ units  

An extreme case of issue 2a) of the taxonomy of census anomalies proposed 

in Section 1. is the reporting of areas as ‘unpopulated’ or ‘uninhabited’ or 

otherwise as containing no population. During the early stages of production 

of GHSL global population grids, it was observed that some units declared as 

having no population in census data in fact contained settlements and 

significant areas of built-up according to the GHS-BUILT data. Consequently a 

spatial analysis procedure was designed to (i) check for the presence of 

(resident) population in census units where no population was reported, and 

(ii) mitigate these issues while minimizing changes to the input census data 

(conservative approach). Units deemed as ‘uninhabited’ or otherwise 

unpopulated in the census data were critically assessed for the presence of 

significant residential population, based on ancillary data (e.g. coordinates of 

populated places) and very high resolution (VHR) imagery. Such census units 

were then selected based on their size and the extent of built-up surface in 

2014 as an indication of the likely presence of settlements. Due to the 

experimental nature of the work, a sequential approach was adopted in order 

to inspect, control, and calibrate the assumptions made at each step. Adopting 
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a conservative approach was important to quickly narrow the selection to the 

main issues and limit the rate of false positives. For selection of potentially 

problematic census units, a simple semi-heuristic rule-based approach was 

followed. From the set of census units in GPWv4.10 having no population 

(238,029 units), most non-residential zones were filtered out by selecting 

polygons larger than 300 ha (3 km2). This threshold was adopted because it 

is the mean size of non-residential built-up patches (i.e. industrial, commercial, 

and service facilities) in the CORINE Land Cover (CLC) 2012 vector map, 

v18.5.1 (EEA 2016). CLC2012 currently covers 39 countries and 5.8M km2 in 

Europe, and this threshold may not be the best one to use in other contexts.  

From these 47,508 census units larger than 300 ha, units were selected that 

contained a total surface of built-up in 2014 (according to GHS-BUILT R2015B) 

greater than 10 ha, to increase confidence in presence of significant resident 

populations. As the resulting set of 2,717 units was still too large a number for 

visual inspection with available resources, and after confirming it would include 

a high rate of false positives in countries that have both detailed and accurate 

censuses, countries deemed, based on our in-depth empirical knowledge of the 

data, as having reliable census (14 of the 45 countries in set) were excluded. 

This led to the identification of potentially problematic census units in 31 

countries, to be visually inspected for verification and validation of the 

approach. These units were inspected using VHR imagery from web mapping 

services (Esri World Imagery service through the ArcMap application). After 

collecting sufficient visual evidence that some units were inhabited (i.e. 

presence of residential-type buildings with signs of habitation), that anomaly 

had to be mitigated. A decision was taken to adopt the most conservative 

approach that would imply minimal changes to the GPW’s geospatial census 

dataset and still ensure that some population would be accounted in those 

areas, to be then disaggregated to the mapped BU areas in the creation of 

GHS-POP grids. To implement this, a ‘smart’ geoprocessing approach was 

devised and automated (hereafter called ‘split and merge’) to assign population 

to those previously unpopulated areas without altering the boundaries and the 

total population of the upper administrative level. The approach involves 

splitting and merging the confirmed problematic polygons, based on 

geographical proximity to those ones adjacent and containing population, and 

merging the split parts to the latter.  

Figure 21 shows the main steps involved in the application of the ‘split and 

merge’ approach. This method consists in spatially dividing the problematic 

polygons according to a proximity rule accounting for adjacent populated 

polygons belonging to the same administrative unit. This task is performed by 

(i) re-projecting the polygons to an equidistant projection, more suitable for 

measuring distances (i.e. World Equidistant Cylindrical), (ii) rasterizing to a 

sufficiently fine resolution (i.e. a trade-off between accuracy and computational 

demand) with an all-touched approach, (iii) applying a nearest-neighbour 
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nibbling technique (only considering populated neighbouring units), (iv) 

polygonising the resulting part and finally (v) re-projecting back to the original 

projection. The polygons obtained are then cleaned of geometric artefacts by 

clipping them to the original boundary. Each generated part of the problematic 

polygon is then dissolved with the related populated neighbouring unit, in this 

way ‘populating’ the whole original problematic area.  

 

 

Figure 21 Flow chart of the ‘split and merge’ approach 

5.2.3 Harmonization of population and settlement data along 
coastlines  

Seashores and waterfronts can be especially intense and dynamic zones, due 

both to natural processes and their attractiveness for settlement and building 

of infrastructure (EEA 2006; McGranahan, Balk, and Anderson 2007; Freire, 

Santos, and Tenedório 2009). These strong and fast dynamics contribute to 

making census or administrative geometries outdated or inaccurate. Moreover, 

the geospatial census data are not produced with globally harmonized technical 

specifications, thus including different nominal scales and spatial tolerance 

characteristics. The characteristics of the GHSL layer mapping built-up areas 

(i.e. seamless coverage, uniform technical specs, decametric-scale spatial 

detail, currency) have revealed discrepancies with GPW along coastlines 

(including inland water bodies). Most of these consisted in the coastline from 

GPW being inland respect to that actually detected by GHSL, implying in 

practice that no population would be disaggregated to those mapped built-up 

areas in GHSL that were water bodies in GPW (i.e. spatial mismatch between 

source and target zone). This would cause changes to the population density 
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and extent of coastal settlements or omit them entirely in the resulting 

population grids. Therefore, a systematic procedure was developed aiming at 

identifying globally the main inconsistencies between the two datasets along 

coastlines, and efforts were undertaken to reconcile them. This procedure was 

aimed at harmonizing population and settlement data along coastlines, but 

does not intend to harmonize the delineation of water bodies themselves. The 

high-resolution (38 m) GHSL layer on built-up areas for 2014 (GHS-BUILT from 

R2015B), available at the time of work, was used to detect the significant 

human presence (i.e. BU) beyond GPWv4 censuses coastlines. The process of 

detecting inconsistencies included the following three main steps: (i) creation 

of a layer depicting the built-up areas outside of the GPW landmass, (ii) 

identification of potentially inhabited patches containing built-up, and (iii) 

visual inspection and validation of the patches. It is well known that full 

automatic detection of built-up areas from satellite imagery is prone to com-

mission errors in sandy or rocky landscapes, and, as a result, part of the built-

up area pixels in coastal areas might be false positives. Therefore, a visual 

inspection was required. It should be noted that the term coastline here refers 

to inland water bodies as well as seashores, and the level of detail at which 

coasts are outlined varies widely across countries (e.g. the inland water bodies 

in the USA are depicted with high detail while in most other countries only the 

large ones are outlined with low detail).  

During step (i), first a water mask derived from the country polygons of GPWv4 

data was rasterized at approximately 38 m, and only within the data domain 

of the GHSL layer as defined by the GHSL Datamask product (Pesaresi et al. 

2015b). Then, this coastal water layer was intersected with the GHS-BUILT 

layer, producing the built-up areas not overlapping with any GPW country poly-

gons. In total, these areas have amounted to 6,142 km2 of surface. The 

procedure for selecting and validating potentially inconsistent patches included 

three steps: (1) vectorizing connected cells classified as built-up surface (using 

4-connectivity rule) into individual polygons (nearly 800,000 patches, with a 

mean surface of 7700 m2, corresponding to 5/6 contiguous pixels), (2) 

selecting all patches larger than 1 km2 (287 selected), and (3) visual inspection 

using GIS software and very high resolution (VHR) satellite imagery from web 

mapping service (Google Maps) to confirm presence of buildings. The 1 km2 

size threshold was chosen to balance importance and potential impact of 

inconsistencies with resources available for verification and validation. Figure 

22 shows examples of built-up patches located beyond the coastline of GPW in 

Japan, Tunisia, China, and Romania, assessed during visual inspection. For the 

selected patches (those larger than 1 km2) in which visual inspection 

confirmed presence of built-up surfaces, mitigation consisted in reconciling the 

outline of GPW census units with built-up patches by manually extending the 

units on the coast to include these areas.  
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Figure 22 Examples of detected discrepancies (patches larger than 1 km2) 
between GPWv4 (blue line) and GHS-BUILT 2014 (orange) along the coasts of 
(A) Japan (JPN), (B) Tunisia (TUN), (C) China (CHN), and (D) Romania (ROU) 

After conducting automatic detection and during visual inspection of the main 

coastal discrepancies between GPWv4 and GHSL, systematic or additional 

inconsistences were identified. These systematic inconsistencies between the 

more recent and improved GHS-BUILT P2018 and GPW4.10 layers were still 

present in some countries: Japan, Ukraine, Switzerland, and France. Therefore, 

an automated approach to mitigate these issues that appear to be caused by 

the coarser scale (low spatial detail) and/or positional errors (poor 

georeferencing) of census reporting units was developed and applied. For 

inconsistences detected in lakes (i.e. Switzerland and France) the ‘split and 

merge’ approach (described in Section 2.1) was directly applied to polygons 

representing lakes in order to split them and dissolve each part with the 

nearest neighbour polygon. In coastal areas, such as in Ukraine and Japan, the 

GPW coastline was first extended seawards using a 2-km external buffer. Next, 
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this buffer was split according to proximity to the original census units by using 

the split and merge approach, and then assigned each part of the buffer to a 

census polygon (see Figure 28). In this case, the whole set of census polygons 

was used, without selecting only the populated areas. 

5.3 Results and discussion  

5.3.1 Revision of unpopulated units  

The implementation of the semi-automated rule-based procedure to the initial 

238,029 census units deemed as uninhabited in GPW geospatial census data 

resulted in the selection of 128 units in 31 countries as potentially containing 

significant resident population (Figure 23).  

 

 

Figure 23 Global distribution of census units without population in GPWv4.10 
data and those flagged based on the automated procedure developed (USA not 
considered). Note that existence of unpopulated units is merely a feature of 
census design and not of the landscape 

All of these 128 units were validated visually with VHR imagery from web 

mapping services (Esri/Bing, Google maps). This was both to proceed with 

confidence in such a sensitive issue, and to assess the validity of the semi-

heuristic rule-based approach used for selection of problematic units. The 

validation with VHR imagery revealed the presence of significant residential 

areas having clear signs of habitation in 76 census units, belonging to 19 

countries (Table 15), resulting in a success rate of the automated procedure of 

around 59% (of polygons). These 76 problematic units have a combined area 

of 297,090 km2, of which 624 km2 are reported by GHSL to be covered by 

building structures in 2014. If this built-up surface is accurate and all of it is 

dedicated to residential function, using a low occupancy rate of 100 m2 of built-

up surface per person would put a conservative estimate of under-reported 
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population in these units at more than 6 million people. Some recent estimates 

put the value of ‘missing’ (i.e. undercounted) people in urban slums at 369 

million worldwide (Carr-Hill 2017). 

Table 15 List of countries in which problematic polygons were selected 

Country  N  
Area 

(km2)  

BU area 2014 

(km2)  

Afghanistan  1  76.7  0.1  
Armenia  1  53.2  2.0  
Democratic Republic of 
the Congo  

7  99,575.9  154.9  

Colombia  1  514.1  0.1  

Cyprus  1  4.4  0.4  
Egypt  16  184,254.7  283.2  
Georgia  2  2005.2  1.8  
Guyana  1  918.6  0.7  
India  1  116.4  70.3  
Iraq  4  8459.9  65.7  
Lebanon  4  56.1  0.7  

Mali  2  53.5  14.0  
Malawi  14  121.1  4.7  
Nepal  1  163.9  1.7  
Philippines  1  86.6  0.9  
Rwanda  1  37.7  0.2  
Serbia  16  214.5  7.5  

Thailand  1  306.4  2.1  
Ukraine  1  71.1  12.6  

Total  76  297,090  623.7  

Note: For each country the number of polygons (N), the sum of the area of 
such polygons and the total built-up (BU) surface accounted by GHSL built-

up layer in 2014 is reported. 
 
Mitigation of these anomalies was carried out using the ‘split and merge’ 

approach, which was applied to a total of 58 units covering about 296,670 

km2, in the following countries: Afghanistan, Armenia, Democratic Republic of 

the Congo (DRC), Colombia, Cyprus, Egypt, Georgia, Guyana, Iraq, Lebanon, 

Mali, Malawi, Nepal, Rwanda, Thailand, and Ukraine. Among them, the 

Democratic Republic of the Congo and Egypt are the most problematic, with 

the surface of incorrectly labelled ‘unpopulated’ units reaching 99,576 km2 and 

184,255 km2, respectively. In Egypt some problems seem to be caused by the 

coarse spatial detail and spatial inaccuracy of census polygons.  

Figure 24 shows the results of the application of the ‘split and merge’ approach 

in Guyana and Lebanon. In Guyana, the declared unpopulated polygon (Figure 

24 (A1)) is split into seven parts and is then dissolved with adjacent polygons 

belonging to the same administrative level (Figure 24 (A2)). In Lebanon the 

setting is more complex: the target polygon (Figure 24(B1)) is split into four 

parts which are then dissolved with the neighbouring administrative units, 
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three of which are to the East of a unit (in grey) correctly declared as 

uninhabited. The resulting polygons, preserving their respective population 

counts, replace the problematic one in the census database that is used as one 

of the inputs (source zones) in the production of population grids (Figure 

24(B2)). 

 

Figure 24 Examples of application of the ‘split and merge’ approach to census 
units incorrectly deemed as unpopulated in (A) Guyana and (B) Lebanon, 
before (1) and after (2) the procedure is applied. Orange filling and red dashed 
boundary represent the original problematic polygon; blue solid line delineates 
borders of upper administrative level; grey solid polygons are correctly 

declared unpopulated polygons; solid coloured areas are the resulting 
polygons; areas outside the processed administrative unit are shaded. 

Ultimate results and benefits for population disaggregation are illustrated in 

Figure 25, for the same areas in Guyana and Lebanon, showing that final 

population distribution grids for year 2015 include populated cells in areas 

previously deemed as uninhabited. The procedure for mitigating and ‘re-
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populating’ units previously unpopulated was implemented while limiting 

changes to the original geospatial census data. While in practice a new census 

geometry was created, the approach effectively minimizes changes to the 

source census database by:  

(a) Minimizing modifications to the original geometry,  

(b) Retaining the census hierarchy,  

(c) Maintaining the regional distribution of population,  

(d) Preserving the overall population counts.  

The adopted approach is conservative: it decreases the population density in 

the zones corresponding to the original neighbouring populated units by 

expanding their area, while preserving their population. This approach is most 

suitable for the case when the population in the problematic unit was 

enumerated but re-assigned to other neighbouring units on reporting, thus 

retaining an accurate country population. However, if these populations were 

not enumerated to begin with, the country total will be inherently incorrect, 

which constitutes a more challenging case. Mitigation of the latter anomaly 

would require estimation of population actually residing in the unit using a 

bottom-up approach (see Wardrop et al. 2018 for options and discussion). 

Moreover, sources of population counts are notoriously old and outdated for 

some countries (e.g. Lebanon, DRC). It is possible that some units became 

populated or were settled after the census or estimates were conducted, as 

may be the case with refugee camps in Lebanon. It is also conceivable that 

some units, at the time the enumeration or estimates were produced, included 

settlements which were uninhabited (for a number of reasons, including war 

or other crises). Some areas are obviously densely populated (e.g. Sadr City 

in Baghdad, Iraq); their omission is most probably due to political and/or 

religious conflicts.  

Problems of coverage and completeness in censuses are not new and their 

causes may be multiple and varied, including practical and political reasons 

(Carr-Hill 2013), and would certainly deserve more investigation that is beyond 

the scope of this paper. While there is some research reporting the general 

problem of undercounts (see Carr-Hill 2017 for summary), especially of 

particular groups, there is much less on the causes for complete and flagrant 

omission of population in large areas. In any case, the process of projecting 

population counts for a recent target year and subsequent adjustment to UN 

estimates, as done by GPW, does not ‘populate’ a census unit originally devoid 

of resident population because the adjustment is accomplished at the national 

level.  
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Figure 25 Illustration of resulting 250-m population grids for 2015 in (A) 
Guyana and (B) Lebanon 

5.3.2 Harmonization of population and settlement data along 
coastlines  

The semi-automated procedure to detect discrepancies between census data 

in GPWv4 and GHSL along coastlines (including inland water bodies) resulted 

in the detection of 287 patches having at least 1 km2 built-up area based on 

GHSL BU 2014 (totalling nearly 760 km2). The systematic visual inspection 

using VHR imagery revealed that 197 patches (containing 591 km2 or 77% of 

the inspected built-up area) had correctly identified areas with significant built-

up structures, located in 25 countries across the globe. In the remaining 90 

patches, built-up structures could not be identified or their presence was not 

significant. Figure 26 shows the location of the 197 patches where built-up 

presence was confirmed, showing issues clustered in Europe and in E Asia. As 

reported in Section 2.3, two procedures were followed for mitigating the 

confirmed discrepancies along coastlines, one manual and another automated. 

Initially the manual procedure was adopted, but the automated ‘split and 

merge’ procedure became more expeditious when the issue was found to be 

more systematic than initially assessed, as in case of Japan and the coast of 

the Ukraine.  
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Figure 26 Visually confirmed coastline discrepancy patches larger than 1 km2. 

Manual harmonization was carried out in the following countries: Albania, 

Austria, Azerbaijan, Bulgaria, Bahrain, Germany, Denmark, Dubai, Finland, 

Guinea-Bissau, Iceland, Republic of Korea, Malaysia, Netherlands, Norway, 

Romania, Russia, Singapore, Sweden, Tunisia, USA, Venezuela, and Viet Nam. 

Figure 27 illustrates the outcome of manual harmonization of coastline in 

Russia.  

 

 

Figure 27 Example illustrating situation (A) before and (B) after manual 

harmonization of a stretch of Caspian Sea coastline in Russia. Solid black lines 
enclose original census units; black pixels denote mapped built-up areas 
(shaded: already within census boundaries; solid: outside original census 

areas). 

The automated ‘split and merge’ approach was employed to modify and 

reconcile coastlines in Switzerland, France, Ukraine and Japan. Figure 28 shows 
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the automated harmonization of coastlines applied along a stretch of Black Sea 

coast in Ukraine.  

 

Figure 28 Example of automated approach to mitigate inconsistencies along 
the coastline of Ukraine. This example shows the generation of a 2-km buffer 
that was split using the ‘split and merge’ approach. Solid black lines enclose 
original census units; solid blue line represents the extended boundary into the 

sea through 2-km buffer; solid red lines represent the splitting of buffer into 
parts assigned to the nearest neighbouring unit; black pixels represent mapped 
built-up areas (shaded: already within census boundaries; solid: outside 
original census areas). 

Although the detected anomalies may be significant for some applications such 

as the present one, and relevant from the perspective of data consistency, not 

all necessarily constitute errors in the original source data. Both in the case of 

coastline deficiencies and for units declared as unpopulated, the discrepancies 

may be due to anachronism between data sources. Coastal zones are typically 

attractive and dynamic areas from a settlement perspective, and geospatial 

data on administrative divisions used to support population estimates may not 

reflect the current land extents and settlement expansion obtained by land 

reclamation. Significant settlement expansion through land reclamation has 

been taking place in Asia (especially in China) and in the Middle East and it is 

important that time series of population grids capture and represent that 

process. Also, settlements can extend over water bodies such as floating 

settlements thus being located beyond the formal coastline. These can and are 

captured by GHSL, as no land mask is imposed a priori to limit detection of 

built-up. Instead of adopting the classical approach rooted in topography (e.g. 

Anderson et al. 1976) of following a hierarchical top-down procedure in 

abstracting the Earth surface into categories, GHSL adopts a people-centric 

approach that departs from the detection of human presence, and only then 

classifies phenomena into higher abstraction levels such as settlement classes 

(Pesaresi and Ehrlich 2009) (for explanation of GHSL family of products and 
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analysis see Melchiorri et al. 2018). This approach may be a better match for 

the census paradigm, which aims to first identify where all people are so they 

can be surveyed and characterized. In this capacity, perhaps GHSL mapping 

of built-up could assist in planning census campaigns, especially in remote 

areas of countries having dynamic population trends that have not conducted 

a census in a long time.  

Regarding the many discrepancies observed along coastlines, it is possible that 

these originate in differences in scale and level of detail among datasets, and 

at times can be introduced by the coarser detail of the database of Global 

Administrative Areas (GADM 2011) when boundaries are adjusted to a global 

framework in the GPW workflow.  

Finally, it is important to note that the built-up structures detected and mapped 

could include abandoned or seasonal settlements, or otherwise non-residential 

facilities (e.g. ports, industrial areas). Ideally, a combination of census’ spatial 

detail and attributes or ancillary data would allow further discrimination of land 

use according to application needs. In practice, the two addressed anomalies 

can be regarded as an expression of the same underlying issue, i.e. complete 

omission of population counts (due to undercounting/under-reporting or poor 

census geography) against contradicting evidence. It has been shown that a 

similar approach can be used to automatically mitigate systematic issues of 

both types. 

5.4 Conclusions  
Global population distribution grids are increasingly required and relied upon 

for many applications. These datasets are mostly produced by gridding or 

disaggregating counts from official population census and estimates. Despite 

the continuous advancements in population gridding methods, these usually 

do not address ex-ante issues affecting input population statistics. Availability, 

quality and detail of national data reporting on population is highly 

heterogeneous, and the best available global geospatial census data is not 

immune to shortcomings. These propagate to derived population distribution 

grids and may negatively impact their applications, in an age of new 

Development Agendas whose effective monitoring relies heavily on accurate 

and reliable geospatial population data and calls for universal inclusiveness of 

people. Exploring the improved capacities of recent global settlement data 

derived from remote sensing, we have sought to improve the mapping of popu-

lation distribution by addressing some of these shortcomings.  

New automated procedures to detect and mitigate major discrepancies and 

anomalies occurring in geospatial census data were developed, tested and 

implemented, while minimizing changes to the original data. Global and 

consistent remote sensing-derived data reporting on built-up presence was 

used to revise census units deemed as ‘unpopulated’ and to harmonize 
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population distribution along coastlines. The two procedures employed for the 

detection of deficiencies in global geospatial census data obtained high rates 

of true positives, after validation and confirmation. The results also show that 

the targeted anomalies were significantly mitigated and that the baseline 

census database has improved, potentially benefitting other uses of the same 

statistical base. These outcomes are encouraging for further uses of free and 

open geoinformation derived from remote sensing. However, it must be 

recognized that assessing and monitoring progress of the new Development 

Agendas involves measuring many other population characteristics beyond 

population counts, for which proper census and surveys will remain invaluable 

sources, and that even accurate total population counts will ultimately continue 

to rely on high-quality enumerations and estimates.  

This work illustrates the value and possible contribution of detailed, updated, 

and independent remote sensing data to complement and improve 

conventional sources of fundamental population statistics. While we 

acknowledge that the proposed procedures reduce the independency in the 

production of the involved variables (population and built-up distribution), 

which may be desirable for subsequent combination and production of 

population grids, these processes contribute in other ways by closing data 

gaps, improving data quality, and will ultimately benefit global mapping of 

population and its downstream applications. Future developments will focus on 

improving the automated detection and mitigation of deficiencies present in 

geospatial census data, including addressing additional anomalies (e.g. over-

reporting of population and extremely high population densities). The multi-

temporal nature of the data involved further increases the complexity of issues 

and adds challenges that should also be tackled, such as the estimation of 

population counts across epochs. For mitigation of areas incorrectly labelled as 

unpopulated, alternatives to the ‘split & merge’ approach should be explored, 

namely contextual bottom-up approaches that take into consideration the local 

patterns of settlement.  

Acknowledgements: The term country also refers, as appropriate, to territories 

or areas, and does not imply recognition of borders or legal status by the 

European Commission. 

 



 

109 

Chapter 6. An Improved Global Analysis 

of Population Distribution in Proximity 

to Active Volcanoes38 
  

                                                
38 This chapter is published as:  
Freire, S.; Florczyk, A.J.; Pesaresi, M.; Sliuzas, R., 2019. An improved global 
analysis of population distribution in proximity to active volcanoes, 1975–2015. 
ISPRS Int. J. Geo-Inf., 8(8), 341. 
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Abstract:  
Better and more detailed analyses of global human exposure to hazards and 

associated disaster risk require improved geoinformation on population 

distribution and densities. In particular, issues of temporal and spatial 

resolution are important for determining the capacity for assessing changes in 

these distributions. We combine the best-available global population grids with 

latest data on volcanoes, to assess and characterize the worldwide distribution 

of population from 1975–2015 in relation to recent volcanism. Both Holocene 

volcanoes and those where there is evidence of significant eruptions are 

considered. A comparative analysis is conducted for the volcanic hot spots of 

Southeast Asia and Central America. Results indicate that more than 8% of the 

world’s 2015 population lived within 100 km of a volcano with at least one 

significant eruption, and more than 1 billion people (14.3%) lived within 100 

km of a Holocene volcano, with human concentrations in this zone increasing 

since 1975 above the global population growth rate. While overall spatial 

patterns of population density have been relatively stable in time, their 

variation with distance is not monotonic, with a higher concentration of people 

between 10 and 20 km from volcanoes. We find that in last 40 years in 

Southeast Asia the highest population growth rates have occurred in close 

proximity to volcanoes (within 10 km), whereas in Central America these are 

observed farther away (beyond 50 km), especially after 1990 and for Holocene 

volcanoes. 

6.1 Introduction  
Volcanic eruptions are among the most powerful and destructive natural 

hazards on Earth, capable of causing widespread human suffering and 

extensive economic losses, both from direct impacts and through the 

disturbances to livelihoods arising from indirect or cascading effects (e.g., via 

disruptions of air transport, through originating tsunamis, etc. (UNISDR 

2015b). Severe eruptions can cause rapid global changes by modifying weather 

patterns, disrupting climate, and, as in the past, induce mass extinctions of 

species (National Academy of Sciences, 2017). Although moderate to large 

volcanic eruptions are infrequent, these are potentially high-consequence 

incidents, especially for nearby populations due to lava flows, ash deposition, 

pyroclastic events, and other phenomena (Dilley et al. 2005). Still, the 2010 

eruption of Eyjafjallajökull volcano in Iceland demonstrated that even modest 

eruptions in relatively remote locations can have global impacts (National 

Academy of Sciences, 2017, Ragona et al. 2011). Volcanic activity can have a 

disproportionate effect on livelihoods and economy because of high systemic 

vulnerability (Poljanšek et al. 2017).  

Volcanoes located in densely populated areas, however, do not need to have 

powerful eruptions to produce devastating effects. In such settings, even 

small-to moderate-sized eruptions may constitute severe threats, by 
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generating multiple hazards which can affect areas from the immediate vicinity 

up to hundreds of kilometres distance (for detailed discussion see Chester et 

al. 2000, Brown et al. 2017). In a study of past disasters, residents make up 

the largest number of fatalities (Brown et al., 2017). 

Beyond their destructive power, volcanoes and volcanic activity can also 

benefit humans and their livelihoods. Among their major beneficial effects are 

the provision of nutrients to the surrounding soil, favoring agricultural 

productivity—an important aspect in agrarian societies—but also economic 

activities such as resource extraction (e.g., Sulfur mining), tourism, and 

geothermal energy (National Academy of Sciences, 2017). Such benefits help 

to explain population concentrations in their vicinity. In addition, tropical 

volcanoes provide climatic advantages relative to surrounding regions (Small 

et al., 2001), which may have promoted human settlement and the clustering 

of people. Such clustering in proximity to active volcanoes creates exposure 

levels with changes that vary in space or time (Strader et al., 2015). This 

exposure combines with existing vulnerabilities to generate risk and the 

potential for losses. Evidence indicates that exposure of persons and assets in 

all countries has increased faster than vulnerability has decreased, thus 

generating new risks (UNISDR, 2015).  

Evaluating potential or actual human exposure for global disaster risk 

assessment is as essential as it is challenging, being limited by the availability 

and quality of geophysical and socio-economic data (Lerner-Lam, 2007, 

Peduzzi et al. 2009a). As a result, previous estimations of human exposure 

were typically conducted for small areas and without a temporal dimension, or 

merely approximated with coarse population geoinformation (~1 km grids). 

However, the rapid increase in exposure of population and assets is currently 

a major driver of growing disaster risk (UNISDR, 2013), requiring adequate 

global geoinformation layers depicting the distribution and densities of 

population. Such geoinformation is valuable throughout the emergency 

management cycle, but for timely and efficient response it should be prepared 

and made available beforehand (Freire, 2010). After a disaster event, the 

quality and granularity of population data have a direct effect on response and 

lives saved (National Research Council, 2007). Although global population grids 

have been produced since the 1990s, they have suffered from some issues 

which limit their usability (Linard et al. 2012, Mondal et al. 2012). Among these 

are their coarse spatial resolution, incomplete discrimination of settlements 

(especially smaller ones), and the use of dichotomous maps of built-up in their 

construction. Also, for change detection and analysis, a coherent and robust 

spatio-temporal production model is required to allow objective comparisons.  

Concerning volcanic risk, Andredakis et al. 2015 highlight that risk elements 

are on the rise, most notably population exposure. The shifting focus of 

urbanization from developed to developing countries taking place in recent 

decades is also increasing global exposure to natural hazards, including 
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volcanism (Chester et al. 2000). Volcanic activity remains a constant threat 

globally and the number of people at risk from volcanism is rising with 

increased urbanization and population growth (National Academies of Sciences 

2017, Chester et al. 2000, Brown, et al.  2017, Ewert 2004). However, volcanic 

risk analysis and assessment at the global scale is not as advanced as for other 

hazards such as flooding, earthquakes and tropical cyclones (Poljanšek et al. 

2017), being limited by the availability and quality of data (Pan et al. 2015), 

especially regarding their consistency and detail. Similarly to earthquakes, 

volcanic eruptions are difficult to mitigate technologically (Riede, 2016), in that 

the hazard component can hardly be decreased by human action. While 

expected losses may be lower than those from other hazards at a global scale, 

in affected regions, they can be very significant. Since 1950, an average of 31 

volcanoes have erupted each year (United Nations, 2015), and at any one time 

at least 20 are erupting (Siebert et al. 2010, Siebert et al. 2015). Given this 

context, major gains to disaster risk reduction are to be obtained through 

reductions in vulnerabilities and especially in exposure, requiring improved 

assessments of these components. 

6.1.1 Potential Global Population Exposure to Volcanic Hazard —
Narrowing Data Gaps  

Several assessments of potential worldwide population exposure to volcanic 

hazard have been conducted using globally-available population grids, e.g., 

(Dilley et al. 2005, Small and Naumann 2001, Aspinall et al. 2011, Brown et 

al. 2015). However, most such studies are now relatively outdated, or use 

coarse population geoinformation. Often, assessments are based on data that 

are neither open nor free. Small and Naumann (Small and Naumann 2001) in 

their landmark work quantified human proximity to both Holocene and 

historically active volcanoes for 1990, but underlined that the spatial resolution 

of population data used (GPWv2) imposes limitations on the analysis and is not 

adequate for detailed assessment of potential volcanic risk. Ewert and Harpel 

(Ewert et al. 2004) have proposed a Volcano Population Index (VPI) to make 

objective estimates and comparisons of the number of people at risk from 

volcanic hazards. Within a given radius of a volcanic vent, the index quantifies 

one component of risk—population—from one volcano to another. The authors 

have noted that the 1-kilometer grid size of the population grid used 

(LandScan) was the principal limiting factor in making precise estimates of 

population at risk (Ewert et al. 2004). The Population Exposure Index (PEI) 

(Aspinall et al. 2011) is one of the prominent indices used in assessing volcano 

risk. It is based on the population within 10, 30, and 100 km of a volcano, 

which is then weighted according to evidence on historical distributions of 

fatalities within a given distance from volcanoes. The PEI is divided into seven 

levels, from sparsely to very densely populated areas. The authors have stated 

that the main drawback of such methods is that they rely on a number of 

parameters having high uncertainty or that are simply unknown for many 
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volcanoes. This limits application of the method mainly to those with good 

historical records (Scandone et al. 2016). As a simpler and more direct way to 

compare different volcanoes or volcanic areas, (Scandone et al. 2016) have 

proposed a volcanic risk coefficient (VRC) using the number of people that may 

be affected by the maximum expected eruption as a main variable. In addition 

to the estimation of this specific hazard information, this still requires detailed 

and comparable population distribution data. 

Common to all these efforts is the need for up-to-date and spatially-explicit 

population distribution data, which are globally-consistent and have sufficient 

resolution to support detailed analyses and comparisons. This is especially 

important as databases of locations and features of potential volcano hazard 

(i.e., GPV) are also subject to frequent revisions and updates, thereby inviting 

parallel re-assessments of global and regional potential population exposure.  

Improved modeling and mapping of global population distribution can be 

achieved with remote sensing imagery and methods, which have been evolving 

towards a more detailed, objective and independent data source on the human 

presence on the Earth surface (Freire et al. 2018a). The multiscale synoptic 

perspective is considered one of the core strengths of remote sensing when it 

comes to questions of urban and socio-economic development and in regards 

to the closely interlinked disaster risk domain (Aubrecht et al. 2017b). In the 

specific case of population exposure to volcanic hazard, (Brown et al. 2017) 

point out that “moderate resolution satellite imagery, such as that provided by 

the Landsat series, could provide more spatially explicit quantifications of 

settlement patterns in the vicinity of potentially active volcanoes. More 

recently, (Pittore et al. 2017) advocate for full exploitation of rapid, large-scale 

data collection based on remote sensing, while also stressing that 

dissemination of exposure data is key to empowering end-users and 

communities and for allowing and encouraging risk evaluation. 

6.1.2 The Contribution of the Global Human Settlement Layer (GHSL) 
to DRM  

The recent application of new cost-effective, automated and fully replicable 

data classification methods (e.g., symbolic machine learning) to contemporary 

open and free global satellite imagery collections have enabled the emergence 

of a new generation of geospatial data derived from remote sensing, led by the 

Global Human Settlement Layer (GHSL) (Pesaresi and Ehrlich 2009). These 

developments allowed the global mapping of built-up areas and settlements 

with unprecedented spatio-temporal detail and accuracy (Pesaresi et al. 2009, 

Pesaresi et al. 2013, Pesaresi et al. 2016), under a set of pragmatic 

requirements and principles summarized in (Melchiorri et al. 2019). Among 

other uses, these new datasets are providing an effective contribution to 

population disaggregation and other population distribution modeling efforts, 

especially due to a combination of:  
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 Semantic robustness and interoperability  

 Currency of data  

 Spatial detail  

 Global coverage  

 Temporal depth  

 Provision of open and free data  

GHSL’s enhanced spatio-temporal mapping of buildings and density of built-up 

areas offers a suitable proxy for the location of people and, as such, is being 

used to improve the disaggregation of census data into derived population 

grids (Freire et al. 2015d, Freire et al. 2016a, Linard et al. 2017, Nieves et al. 

2017, Balk et al. 2019).  

From its inception, development of GHSL was driven by requirements for post-

disaster and post-conflict damage, needs and reconstruction assessment, 

including refugee camps and temporary, rapidly-changing human settlement 

monitoring (Pesaresi et al. 2015c). Therefore Disaster Risk Management and 

Reduction is a major field of application of GHSL data, and among the uses of 

its population distribution grids (GHS-POP) are the baseline estimation of 

multi-temporal exposure to global hazards (Pesaresi et al. 2017, Ehrlich et al. 

2018b) and assessment of impacts from climate hazards (Ehrlich et al. 2018a), 

including the current and future projections of risk of river flood (Alfieri et al. 

2017) (https://www.efas.eu; http://www.globalfloods.eu), and support to 

creation of risk indices for management for humanitarian crises and disasters 

(e.g., INFORM—Index for Risk Management (http://www.inform-index.org).  

The GHSL layers and especially population distribution data enable conducting 

more updated, refined, and longitudinal assessments of population potentially 

affected by different types of natural hazards (Ehrlich et al. 2018b), including 

threats posed by volcanoes (Freire et al. 2016b). Due to their characteristics, 

it is expected that these new population data can further advance, update, and 

detail assessment of population distribution in the vicinity of active volcanoes 

and contribute to enhance estimations of potential exposure to this type of 

hazard.  

In this article, we aim to characterize with unprecedented detail the changes 

in the distribution of human population in proximity to historically active 

volcanoes, focusing on the last 40 years. We do that by combining detailed 

geospatial grids of global population densities for the 1975–1990–2000–2015 

period with the latest data on distribution of volcanoes on Earth, considering 

both Holocene volcanoes and those having significant eruptions. We 

investigate the recent evolution and current distribution of population in 

relation to historical volcanism and discuss how overall potential population 

exposure and density patterns have been varying with distance. More detailed 

attention is dedicated to Southeast Asia and Central America, where 

concentrations of people in vicinity of volcanoes are greater than in other 
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volcanic regions. This work details and updates preliminary research done by 

Freire et al. 2016b and shows the value of using the more recent datasets in 

future assessments of volcanic risk.  

6.2 Materials and Methods  
In Section 6.2.1., we present and discuss the datasets used, including a 

description of the production and features of the global population grids that 

made this study possible, and the global datasets of volcanoes. In Section 6.2.2 

we present the methodology that was applied for assessing global population 

distribution in relation to historical and significant volcanism.  

6.2.1 Data  

6.2.1.1 Global Population Distribution Grids 1975–2015  

In order to assess population distribution in relation to distance to volcanoes, 

we have used population grids for 1975, 1990, 2000, and 2015 produced in 

the frame of the Global Human Settlement Layer (GHSL) project. These grids 

(GHS-POP), reporting the distribution and density of total resident population 

per 250-m cell, are created by using maps of density of built-up areas (Pesaresi 

et al. 2016) for matching epochs as proxy for disaggregating best-available 

population estimates (Freire et al. 2016a).  

GHS-POP is based on population estimates provided by CIESIN’s Gridded 

Population of the World (GPW) v4.10 for matching periods (CIESIN, 2016), 

with national figures adjusted to UN World Population Prospects (Doxsey-

Whitfield, 2015). CIESIN collects and integrates the most recent and finest 

resolution census data available, and the CIESIN-GPWv4.10 input dataset 

includes the latest round of censuses (2010–2011) and comprises more than 

12 million census or administrative units, with average spatial resolution 

varying widely by country.  

The GHS-POP population grids effectively harmonize and increase the 

resolution of this variable in space and time by using consistent ancillary data 

and methods. Among the specific methodological features of these grids are:  

(i) the use of a single spatially and temporally-explicit proxy (built-up 

areas from GHSL);  

(ii) this proxy is mostly of higher spatial resolution than census data and 

is derived with a consistent approach;  

(iii) the employment of a simple, transparent and consistent methodology 

for population disaggregation.  

GHS-POP is also unique among current global population grids in that cell 

values represent both counts and densities of population, by using as native 

projection the World Mollweide equal-area projection. The latest release of 

GHS-POP used in this study (made publicly available in 2019), mitigates 
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important shortcomings of previous population grids by improving 

representation of distributions along coastlines and critically revising areas 

declared as ‘unpopulated’ but where significant evidence of human habitation 

existed (Freire et al. 2018a). Therefore GHS-POP is especially suited for 

supporting Disaster Risk Management (DRM) tasks by refining distribution of 

resident population to known places of human shelter and activities (i.e., 

buildings), where most people spend the majority of their time. Due to these 

characteristics and given that GHS-POP is currently the only global dataset that 

spans the last 40 years with comparable, detailed, open, and free data on 

distribution of population in settlements, it allows investigating population 

distribution in proximity to volcanoes in this period. 

6.2.1.2 Global Geographical Distribution of Volcanoes  

The proximal analysis of population was conducted considering two widely used 

global datasets of volcanoes, available online: the Holocene Volcano List v. 

4.7.6 (Volcanoes of the World 4.7.6.) of the Smithsonian Institution’s Global 

Volcanism Program (GVP) (Global Volcanism Program, 2013) and the NOAA 

Significant Volcanic Eruption Database (NOAA, 2019), this one also based on 

GVP.  

The Holocene Volcano List (HV in this article) is a global listing of volcanoes 

believed to have been active during the Holocene period (the last ~10,000 

years). This database includes information on the latitude, longitude, elevation, 

type of volcano, and last known eruption. The HV database is frequently 

updated and v. 4.7.6 used in this work includes 1432 volcanoes, of which 118 

are submarine volcanoes and 83 correspond to volcanic fields.  

The Significant Volcanic Eruption Database (SV in this article) is a global listing 

of over 500 significant eruptions. The current version used here lists 826 

eruptions for 265 volcanoes. This database includes information on volcanoes 

(i.e., latitude, longitude, geographic location, elevation, type of volcano), their 

eruptions (date of eruption, the assigned Volcanic Explosivity Index (VEI) and 

associated events, such as tsunami and/or earthquake), and impact (fatalities, 

estimated economical damage, etc.). A significant eruption is defined as one 

that meets at least one of the following criteria: caused fatalities, produced 

moderate damage (approximately 1 million USD or more), had a Volcanic 

Explosivity Index (VEI) of 6 or larger, caused a tsunami, or was associated with 

a major earthquake (NOAA, 2019). Figure 29 shows the global distribution of 

volcanoes from the above databases that were considered in this study.  
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Figure 29 Distribution of the two global datasets of volcanoes used in this 
study: Holocene Volcano List v4.7.6 (HV) and Significant Volcanic Eruption 

Database (SV) (World Mollweide projection). 

6.2.2 Assessing Global Population Distribution and Volcanism  

We analyzed global population distribution as a function of distance to 

volcanoes in 1975, 1990, 2000, and 2015, using the 250 m population grids 

(GHS-POP) for the respective epochs. Using GIS software, population 

distribution was analyzed up to a radial distance of 100 km from volcanoes, by 

buffering each volcano in 1 km steps and conducting zonal analysis of 

population grids. Given the global scope of this analysis and the challenges 

involved with measuring accurately both distances and areas (impossible in 

same cartographic projection), and the fact that population grids are produced 

in equal-area projection (thus representing both counts and densities), we 

devised the following procedure: 

(1) Calculation of distance buffers from volcanoes in World Equidistant 

Cylindrical projection;  

(2) Merging the resulting buffers by distance (i.e., dissolve by distance 

function);  

(3) Re-projection of the distance buffers to World Mollweide projection;  

(4) Rasterization to the working grid (i.e., 250 m World Mollweide aligned 

with the GHS global grid), and calculation of landmass surface and 

population counts per each buffer in World Mollweide.  

This approach tries to minimize distortions in distances, areas, and population 

counts. The considerable effort expended to maintain the accuracy of 

underlying databases is an aspect that is absent (or omitted) from previous 

global analyses (Dilley et al. 2005, Small and Naumann 2001, Aspinall et al. 
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2011, Brown et al. 2015), therefore constituting a relevant new feature of the 

current analysis.  

For discussing the results, four distances from volcanoes were selected as 

being especially relevant: 10, 30, 50, and 100 km. Aspinall et al. (2011) 

adopted 10 and 30 km in their PEI proposal. Moreover, 10 km is a frequently 

used distance for evacuation after moderate to large eruptions. Regarding the 

50 km mark, (Brown et al. 2017) have identified that close to 100% of volcanic 

fatalities registered have occurred within this distance from volcanoes. 100 km 

is considered relevant as a maximum distance from volcanoes for assessing 

the direct effects of volcanic eruptions, since lethal pyroclastic flows and surges 

(Nakada, 2000), and lahars (Rodolfo, 2000) may occasionally extend to these 

distances. Among twelve destructive phenomena associated with volcanic 

eruptions, it is estimated that seven can potentially reach such a distance 

(Chester et al. 2000). Given the observation by (Small and Naumann 2001) 

that higher population densities in Southeast Asia and Central America lie in 

closer proximity to volcanoes than in other volcanic regions, we conduct a more 

detailed analysis of results for these regions. As in that work, volcanic regions 

are considered to be those with a significant number of persistently active 

volcanoes.  

6.3 Results and Discussion  

6.3.1 Global Population Distribution from 1975 to 2015 in Relation to 
Volcanism  

This section presents and discusses the global distribution of population from 

1975 to 2015 in relation to volcanism, considering both overall population in 

each period and annual growth rates by distance to both HV and SV. While the 

first part focuses on significant distance ranges up to 100 km of volcanoes, a 

second part analyses the specific spatio-temporal patterns of population 

density within 50 km of volcanoes in more detail.  

Table 16 shows total accumulated population within selected distance ranges 

(radial distances) from Holocene volcanoes (HV), for each period considered. 

Results show that the total population living in proximity of Holocene volcanoes 

(HV) is very significant and that this amount has been increasing steadily in 

last 40 years. In 2015, more than 1 billion people, 14.3% of the global 

population, are estimated to live within a range of potential direct impact of 

volcanic eruptions (i.e., within 100 km). Close to 60 million people are 

estimated to live within potential evacuation range worldwide (i.e., within 10 

km).  
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Table 16 Population (in millions and as percentage of World total) by radial 
distance from Holocene volcanoes (HV) in 1975, 1990, 2000, and 2015. 

 1975 1990 2000 2015 

Dist. 
(km) 

Pop. 
[106] 

% 
Pop. 
[106] 

% 
Pop. 
[106] 

% 
Pop. 
[106] 

% 

10 29 0.7 41 0.8 49 0.8 59 0.8 
30 176 4.3 243 4.6 284 4.6 340 4.6 
50 301 7.4 415 7.8 489 8 592 8.1 
100 566 13.9 751 14.1 870 14.2 1054 14.3 

Global 4,061 100 5,310 100 6,127 100 7,349 100 

 

Concerning population growth rates in vicinity of Holocene volcanoes (HV) 

(Table 17), these are generally decreasing with time, accompanying global 

population trends. These rates were especially high from 1975 to 2000, and 

were increasing with proximity to HV. However, despite slowing down with 

time, rates in vicinity of HV were largely above the global average in all periods.  

Table 17 Compound annual growth rate of population by radial distance from 
Holocene volcanoes (HV) for each time interval. 

Distance 
(km) 

1975–
1990 

1990–
2000 

2000–
2015 

1975–
2015 

10 2.29 1.76 1.27 1.78 

30 2.19 1.58 1.19 1.66 
50 2.17 1.64 1.29 1.71 
100 1.90 1.48 1.29 1.57 

Global 1.80 1.44 1.22 1.49 

 

Table 18 and Table 19 refer to variation of population within selected distances 

of volcanoes with significant eruptions (SV). Results show that this population 

has also been increasing steadily and amounts to 616 million in 2015, or 8.4% 

of global population. Also very significant are the 21 million people living within 

10 km of these volcanoes. 

Table 18 Population (in millions and percentage of World total) by radial 

distance from volcanoes with significant eruptions (SV) in 1975, 1990, 2000, 
and 2015. 

 1975 1990 2000 2015 

Distance 
(km) 

Pop. 
[106] 

% 
Pop. 
[106] 

% 
Pop. 
[106] 

% 
Pop. 
[106] 

% 

10 12 0.3 16 0.3 18 0.3 21 0.3 
30 87 2.2 115 2.2 130 2.1 150 2 
50 169 4.1 222 4.2 254 4.1 297 4 
100 333 8.2 444 8.4 515 8.4 616 8.4 

Global 4,061 100 5,310 100 6,127 100 7,349 100 
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Table 19 Compound annual growth rate of population by radial distance of 
volcanoes with significant eruptions (SV) for each time interval. 

Distance 
(km) 

1975–
1990 

1990–
2000 

2000–
2015 

1975–
2015 

10 1.90 1.43 1.03 1.45 
30 1.82 1.28 0.96 1.36 
50 1.86 1.36 1.05 1.43 
100 1.94 1.48 1.20 1.55 

Global 1.80 1.44 1.22 1.49 

 

Regarding population change with distance bands, growth rates are lower than 

in proximity to HV. Also differently from HV, population growth has been 

generally decreasing with time but also with proximity to SV volcanoes, except 

for the closest distance band (10 km). Only in the period 1975–1990 did 

population in these areas increase above the overall growth rate, having dipped 

below the global rate in the most recent period. In the period 2000–2015, 

population growth in these areas dipped below global growth, especially closer 

than 30 km from volcanoes. This may be related to: (i) the specific 

demographic trends of the countries and areas where SV volcanoes are located 

and/or (ii) with an increased awareness of the threat posed by these volcanoes 

and limitations to settlement in their vicinity.  

Figure 30 and Figure 31 show overall global cumulative population as a function 

of radial distance to Holocene volcanoes (HV) and volcanoes in Significant 

Volcanic Eruption Database (SV), respectively, for each period under analysis. 

The plots show that very large numbers of people live in proximity to 

volcanoes, and that this presence has increased from 1975 to 2015. 

Concerning HV, while 100 million people would be spread over a radial distance 

of 20 km in 1975, the same amount were concentrated in a radius of only 13 

km in 2015. This has noteworthy consequences for the variation of population 

densities in space and time, as shown in Figure 32 and Figure 33. 
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Figure 30 Cumulative population as a function of radial distance to Holocene 
volcanoes (HV), in 1975, 1990, 2000, and 2015. 

 

Figure 31 Cumulative population as a function of radial distance to volcanoes 
in Significant Volcanic Eruption Database (SV), in 1975, 1990, 2000, and 2015. 
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Figure 32 Average population density as a function of radial distance to 
Holocene volcanoes (HV), in 1975, 1990, 2000, and 2015. 

 

Figure 33 Average population density as a function of radial distance to 
volcanoes in Significant Volcanic Eruption Database (SV), in 1975, 1990, 2000, 
and 2015. 

Differently from some previous analyses (e.g., Small and Naumann 2001), we 

have considered all volcanoes listed in the databases regardless of their type 

or location, as e.g., submarine volcanoes may still affect populations on land 

upon erupting, as many are located in proximity to inhabited areas. This is 

especially relevant for remote archipelagos (such as Tonga, French Polynesia, 
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Solomon Islands Guam, Hawaii, Mariana Islands), where potential exposure 

and risk is typically overlooked in global analyses and where DRM poses specific 

challenges. In fact, we think this may be a ‘hidden’ source of potential exposure 

and risk that should deserve more attention in future research. Of 118 

submarine volcanoes in the HV list, 76 have documented eruptions. 

Figure 32 and Figure 33 show the average population densities (over land) by 

radial distance to volcanoes. These charts show that relatively high population 

densities occur in the vicinity of all volcanoes, especially of those with 

significant eruptions (above the overall global densities over land, which are 

27 and 49 people/km2 in 1975 and 2015, respectively); and these densities 

increase sharply away from volcanoes but in very close proximity, especially 

from SV, in whose vicinity densities are significantly higher. Moreover, while 

maintaining the overall pattern, those densities have been increasing 

considerably since 1975, particularly in the period 1975–1990. However, it is 

at a distance of 10 to 20 km from Holocene volcanoes that the absolute 

increase in population density has been greatest (additional 75 persons/km2), 

from 1975 to 2015.  

In all periods, population density generally increases with close proximity to 

volcanoes, peaking at around 15–20 km away, and then decreases sharply in 

their immediate vicinity, but still maintaining relatively high densities. This 

sharp decrease may be due to presence of steep slopes, volcanic activity, or 

enforcing of exclusion zones for settlement. This pattern is even more striking 

for volcanoes with significant eruptions (SV), where overall population 

densities are higher (up to 270 people/km2), with obvious implications for 

exposure, risk analyses, and potential impacts. This pattern is dissimilar from 

the monotonically decreasing densities reported by Small and Naumann 2001. 

This difference may be the outcome of sharper analyses enabled by the 

characteristics of the new population grids, i.e., effective disaggregation to 

built-up areas and higher spatial detail.  

These results further detail, revise and update previous estimates, such as that 

of UNISDR 2015b that states “... at present, more than 800 million people in 

86 countries live within 100 km of a volcano that could potentially erupt (GVM, 

2014a)”, and that “... over 29 million people worldwide live within just 10 km 

of active volcanoes, and around 800 million people live within 100 km” (Brown 

et al. 2015). Likely reasons for such disagreement include their reliance on 

conceptually different population grids (e.g., LandScan versus GHS-POP), and 

their reliance on older census data. Also, LandScan does not depart from or 

aim to model distribution of residential population, from which population living 

in proximity can be estimated with more confidence, but instead maps ambient 

population. 
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6.3.1.1 Sources of Uncertainty 

As with all global data, both the volcano datasets and the population grids are 

affected by error and uncertainty. This analysis is performed using a 250 m 

population grid, which also makes it sensitive to uncertainty in spatial 

precision. The uncertainties in GHS-POP mostly result from the quality and 

reliability of censuses and the capacity to fully detect built-up in diverse 

landscapes using heterogeneous Landsat image archives (Pesaresi et al. 

2016). Such issues typically worsen with temporal distance from the current 

period (for a more detailed discussion, see reference (Freire et al. 2018a). 

Despite the mitigation procedures implemented in the production of the current 

population grids, some issues remain unsolved in global population data, which 

should not be used for pixel level assessments.  

Issues of spatial accuracy and precision also affect the GVP datasets in which 

volcanoes are represented through points (coordinate pairs), and a single point 

frequently refers to a group of volcanoes or craters (e.g., volcanic fields) or 

giant calderas (e.g., Yellowstone, USA); for some of these, due to their size 

and extent, an areal feature (polygon) would be a better representation for the 

potential hazard source. Also, the geographical coordinates (decimal degrees) 

are often coarse with precision sometimes limited to the first decimal, which 

corresponds to a real world precision of about 5.5 km. This is clearly insufficient 

for detailed analyses in close proximity to volcanoes. This vagueness and low 

spatial precision reduce accuracy and discourage more detailed analyses. 

These and other uncertainties introduce limitations for studies: while these are 

usually mitigated when aggregated assessments such as this one are 

conducted, they can become apparent when analyses are carried out for 

individual volcanoes or at very fine scale (e.g., very close proximity).  

6.3.2 Population Distribution from 1975 to 2015 in Relation to 
Volcanism, in Southeast Asia and Central America  

This section analyzes in more detail results for two important volcanic regions, 

Southeast Asia and Central America. The first region comprises the countries 

of Indonesia, Philippines, and East Timor, while the second includes Mexico, 

Guatemala, Belize, Honduras, El Salvador, Nicaragua, Costa Rica, and Panama. 

Figure 34 shows location of Holocene volcanoes in these regions and the 

selected distances under analysis. SE Asia and Central America together 

represent 40% of the total global population living within 100 km of volcanoes, 

but with different contributions and patterns of population by radial distances 

(Table 20).  
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Figure 34 Selected distances from Holocene volcanoes in (A) Southeast Asia 
and (B) Central America. 

 

Table 20 Population (in millions and percentage of region total) by radial 
distance of Holocene volcanoes (HV) and volcanoes in Significant Volcanic 
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Eruption Database (SV) in 1975, 1990, 2000, 2015, in Southeast Asia and 
Central America. 

 1975 1990 2000 2015 

Dist. 
(km) 

HV SV HV SV HV SV HV SV 

Southeast Asia 

10 
11 

(6.6%
) 

[4 
(2.5%)

] 

18 
(7.3%

) 

[7 
(2.8%)

] 

22 
(7.5%

) 

[8 
(2.9%)

] 

27 
(7.4%

) 

[10 
(2.9%)

] 

30 
73 

(42.5
%) 

[42 
(24.2%

)] 

109 
(44.6
%) 

[59 
(24.3%

)] 

129 
(44.3
%) 

[69 
(23.7%

)] 

153 
(42.5
%) 

[81 
(22.4%

)] 

50 
118 

(68.4
%) 

[80 
(46.2%

)] 

171 
(69.9
%) 

[113 
(46.1%

)] 

202 
(69.6
%) 

[132 
(45.4%

)] 

243 
(67.7
%) 

[157 
(43.6%

)] 

100 
143 

(82.8
%) 

[132 
(76.2%

)] 

207 
(84.9
%) 

[189 
(77.4%

)] 

247 
(85.1
%) 

[225 
(77.4%

)] 

301 
(83.7
%) 

[272 
(75.8%

)] 
Regi
on 

173 (100%) 244 (100%) 290 (100%) 359 (100%) 

Central America 

10 
6 

(7.1%
) 

[2 
(3%)] 

8 
(6.9%

) 

[3 
(2.7%)

] 

9 
(6.8%

) 

[3 
(2.5%)

] 

11 
(6.4%

) 

[4 
(2.3%)

] 

30 
29 

(35.3
%) 

[11 
(14.1%

)] 

40 
(34.6
%) 

[16 
(13.9%

)] 

47 
(34.1
%) 

[19 
(13.8%

)] 

57 
(32.8
%) 

[23 
(13.4%

)] 

50 
41 

(50.3
%) 

[22 
(27%)] 

56 
(49.1
%) 

[30 
(26.4%

)] 

67 
(48.3
%) 

[36 
(25.9%

)] 

81 
(46.7
%) 

[43 
(24.9%

)] 

100 
57 

(70.6
%) 

[44 
(53.9%

)] 

81 
(70.3
%) 

[60 
(52.2%

)] 

97 
(70%) 

[71 
(51.2%

)] 

120 
(69.4
%) 

[86 
(49.7%

)] 
Regi
on 

81 (100%) 115 (100%) 139 (100%) 173 (100%) 

 
In SE Asia the population within 100 km of HV has increased from 143 million 

in 1975 to 301 million in 2015, representing 84% of the region’s inhabitants. 

In Central America the population within this distance increased from 57 million 

in 1975 to 120 million in 2015, comprising 69% of the region’s inhabitants. 

Especially striking in SE Asia are the 10 and the 27 million people currently 

living within 10 km of SV and HV, respectively, accounting for almost half of 

the global population within this range of recently active volcanoes. This short 

distance is especially problematic in small inhabited islands which are 

completely contained within this range, where fast evacuation can be 

particularly challenging.  

However, while in SE Asia the share of total population within 100 km of HV 

has increased (albeit slightly) between 1975 and 2000, in Central America this 

value has been decreasing, and even more so when SVs are considered.  
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Concerning the annual growth rates of population by radial distance of HV and 

SV, Table 21 shows important differences between and within these regions.  

Table 21 Compound annual growth rate of population by radial distance of 
Holocene volcanoes (HV) and volcanoes in the Significant Volcanic Eruption 
Database (SV), for each time interval, in Southeast Asia and Central America. 

 1975–1990 1990–2000 2000–2015 1975–2015 

Dist. (km) HV SV HV SV HV SV HV SV 

Southeast Asia 
10 3.05 [3.15] 2.10 [2.16] 1.36 [1.34] 2.17 [2.22] 
30 2.66 [2.37] 1.69 [1.49] 1.15 [1.05] 1.85 [1.65] 
50 2.48 [2.32] 1.71 [1.59] 1.25 [1.15] 1.82 [1.7] 
100 2.51 [2.44] 1.77 [1.74] 1.32 [1.29] 1.88 [1.83] 

Region 2.34 1.75 1.43 1.85 

Central America 
10 2.14 [1.67] 1.67 [1.31] 1.07 [0.84] 1.62 [1.27] 
30 2.21 [2.25] 1.75 [1.84] 1.21 [1.28] 1.72 [1.78] 
50 2.19 [2.19] 1.74 [1.74] 1.24 [1.19] 1.72 [1.7] 
100 2.31 [2.13] 1.88 [1.71] 1.41 [1.27] 1.86 [1.7] 

Region 2.34 1.91 1.47 1.91 

 

While in SE Asia the highest growth rates have occurred in close proximity to 

HV and SV volcanoes (within 10 km), in Central America the strongest rates 

are observed farther away (beyond 50 km), especially after 1990 and for HV. 

Also, whereas in SE Asia much of this growth has occurred at rates well above 

the regional ones between 1975 and 2000 (especially for HV), in Central 

America increases stayed below regional rates for all distances and periods, 

suggesting that areas more distant from volcanoes were favored for 

settlement. While explaining the observed variations is beyond the scope of 

this paper, we can offer some hypotheses for the underlying causes:  

(a) Pressure for space in a context of relatively weak planning, causing 

settlement to encroach on volcanoes (overall average population 

densities are much higher in SE Asia than in Central America);  

(b) More recent dates of eruptions and variations in risk perception.  

Additional research is needed to test these and other hypotheses that may 

explain settlement patterns.  

Regarding variation of population densities in these regions in proximity of HV 

and SV, Figure 35 and Figure 36 show some differences. For both volcano sets, 

population densities are generally higher in SE Asia, especially in 2015 where 

these can be more than twice those in Central America (HV). In SE Asia, 

population densities increase faster with distance from HV and remain 

relatively high (>400 persons/km2) up to 44 km away. Beyond 4 km, density 

surpasses the overall mean for the region (78 and 163 persons/km2 in 1975 

and 2015, respectively). There is a pronounced peak in densities around a 

distance of 18–22 km that has intensified since 1975. Because this is 
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essentially a mountainous landscape, this may also reflect the average distance 

of valley floors (or the mid-distance between consecutive mountains), where 

conditions for settlement are more favorable. Figure 37 illustrates the situation 

in 2015 in the Island of Java (Indonesia), showing the locations of Holocene 

volcanoes, main cities, and the population distribution.  
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Figure 35 Average population density in Southeast Asia (SEAsia) and Central 
America (CAm) as a function of radial distance of Holocene Volcanoes (HV), in 
1975 and 2015. 

 

Figure 36 Average population density in Southeast Asia (SEAsia) and Central 

America (CAm) as a function of radial distance of volcanoes in Significant 
Volcanic Eruption Database (SV), in 1975 and 2015. 
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Figure 37 Island of Java (Indonesia), showing selected distances from Holocene 
volcanoes, main cities, and population distribution in 2015 from GHS-POP 
(World Mollweide projection). 

Regarding SV volcanoes (Figure 36), in Central America densities increase 

dramatically up to 6–8 km and remain high up to 16 km, decreasing markedly 

after that distance. SE Asia displays a similar proximal pattern for both HV and 

SV, with very high densities observed around 20 km from SV (700 people/km2) 

and remaining high until 50 km away. These results suggest that the overall 

settlement patterns observed, although specific for each region, were mostly 

defined prior to 1975, especially in Central America. These spatio-temporal 

patterns of settlement have consequences for DRM. This analysis confirms and 

characterizes increases in the exposure of population. Due to the large size, 

densities, and trends of population potentially exposed to volcanic activity, 

coupled with structural vulnerabilities, SE Asia and Central America constitute 

hot spots of exposure and risk. In both regions, the high densities of 

inhabitants in the immediate vicinity of volcanoes poses widespread challenges 

for DRM, in particular for evacuation though also the sheer scale of response 

and recovery operations can become quite daunting in case of large eruptions. 

In this context, effective monitoring of volcanic activity, emergency 

preparation and early warning can significantly reduce local risk and potential 

impacts from eruptions. Furthermore, these new population data and results 

have implications for exposure indices, such as the VPI (Ewert et al. 2004) and 

PEI (Aspinall et al. 2011). Due to their reliance on and sensitivity to population 

distribution data, such indices should use the latest population grids available 

and be regularly updated to accurately reflect the current exposure and risk 

situation. 
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6.4 Conclusions  
Where human population grows there is an increasing pressure to settle on 

more hazardous areas, including in areas subject to volcanic activity. Active 

volcanoes generate diverse hazardous phenomena which can affect 

populations in their immediate vicinity but also farther away. Volcanic 

eruptions are not yet influenced by human activity nor can their time, location, 

or magnitude be mitigated by human capacity and ingenuity. Therefore, the 

available approaches for effective DRR are risk estimation, monitoring, 

awareness raising, implementation of impact mitigation measures, and 

preparation for events. These require detailed knowledge of potential human 

exposure through improved geoinformation on population distribution and 

densities, in space and time. As a contribution to this effort, we have 

characterized globally the geographical distribution of human population with 

proximity to historically active volcanoes, and its recent evolution from 1975 

to 2015. We have combined recently produced detailed and multi-temporal 

geospatial grids of global population densities with the latest data on 

distribution of Holocene volcanoes and those with evidence of significant 

eruptions. This analysis updates and refines earlier estimates and introduces a 

previously unavailable spatio-temporal dimension to analysis of human 

settlement in proximity of volcanoes.  

We find that population is not evenly distributed across geographical space 

around volcanoes and that concentrations have been increasing since 1975. 

Results concerning the overall global situation indicate that in 2015 more than 

600 million people (8.4% of total) lived within 100 km of a volcano with at 

least one significant eruption, and more than 1 billion people (14.3% of the 

total) within that distance of a Holocene volcano. This last amount has 

increased by 1.57% per year since 1975, above the global population growth 

rate for the period. Especially significant have been the growth rates and total 

population living within 10 km, which in 2015 totals 59 million for Holocene 

volcanoes and 21 million for those with significant eruptions. Almost half of this 

population lives in Southeast Asia. Population densities in vicinity of volcanoes 

are also higher than global average densities, and those have been increasing 

with time in last 40 years. We find that overall spatial patterns have been 

relatively stable in time but that their variation with distance is not monotonic, 

with density generally increasing with proximity to volcanoes, peaking at 

around 15–20 km away, and then decreasing sharply in their immediate 

vicinity.  

Despite both regions having high potential exposure to volcanoes, we find 

differences between Southeast Asia and Central America: in SE Asia the share 

of total population within 100 km of HV has increased (albeit slightly) between 

1975 and 2000, and the highest growth rates occur in close proximity to HV 

and SV volcanoes (within 10 km); in Central America the share of population 

within 100 km of HV and SV has been decreasing, and the strongest rates are 
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observed farther away from volcanoes. In inhabitable land, especially in fertile 

tropical climates, volcanoes seem to have exerted a noticeable ‘pull-and-push’ 

effect on humans that contributed to determining the specific settlement 

patterns we currently observe.  

Not only do these more detailed and comprehensive analyses update and 

revise earlier estimates and findings, but they also enable monitoring of 

patterns and detection of changes with time. This work also illustrates how 

emerging open and free geospatial datasets can narrow gaps in population 

distribution data and knowledge for supporting Disaster Risk Management and 

Reduction activities. In this domain, these new population grids could benefit 

a global volcano warning system, by improving estimation of potential human 

impacts (Andredakis et al. 2015). In case of volcanic eruption preparedness, 

such geo-information could be used for baseline evacuation planning and 

estimation of resources needed for adequate response. While this work has 

focused on volcanism, these population grids can also be combined with any 

type of hazard, enabling improved modeling and analyses throughout the 

emergency management cycle.  
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7.1 Introduction 
This chapter summarizes the main contributions of the approaches presented 

in previous chapters, including challenges, and discusses ongoing and future 

developments in modeling population distribution to support Disaster Risk 

Management and Reduction.  

The main objective of this thesis was to develop methods to improve the 

mapping of population distribution at a range of spatial and temporal scales for 

benefiting analyses of population exposure and related DRM activities. 

7.2 Main results: Modeling population distribution in 
space and time to support Disaster Risk Management 
This PhD research involved addressing challenges in modeling, scaling-up 

approaches, data availability and quality. In brief, the main points and 

contributions of this thesis are the following: 

1) Since impacts of hazards and disasters are place and time dependent, 

several DRM and DRR phases and activities would benefit from relying on more 

spatially-detailed and time-specific assessments of population exposure, at a 

range of relevant spatio-temporal scales (local to global). 

2) Improving population distribution data for human exposure assessment 

requires addressing challenges present in input data and geospatial modeling. 

While at local scale in data rich environments more detailed and sophisticated 

models can be developed with acceptable uncertainty, scaling up such 

approaches to the global domain requires addressing different challenges while 

accepting some limitations39 in data availability, quality, and concepts so as 

not to compromise policy support and maximize the range of uses of population 

data, especially for supporting International Frameworks.  

3) Geospatial information on population distribution constitutes crucial baseline 

data for risk analysis and DRM across a range of hazards and threats, and 

                                                
39 An example of such concessions is the fact that GHS-POP currently allocates 

resident population to all mapped built-up areas (buildings) located within 
populated source zones from census, and therefore also to those that lack 
residential function. This is a contingency imposed by lack of consistent and 
complete worldwide mapping of functional use of buildings. In practice, in 
populated units that contain non-residential buildings (i.e. horizontal mixed-
use), GHS-POP allocates some population counts to these buildings while 

subtracting them from residential ones (ensuring volume preservation). In this 
respect, it can be argued that GHS-POP approaches a more spatially-restricted 

representation of ‘ambient’ population (as LandScan) where ‘ambient’ 
population is constrained to buildings. However, in cases where a single 
population grid is produced such representation might be more suitable for 
certain DRM applications, as confirmed by INFORM (http://www.inform-
index.org). 
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investing in improving data benefits exposure assessment by detailing and 

revealing a sharper picture, with the aim of ‘leaving no one behind’; improved 

population data are simultaneously relevant and generic as to enable improved 

modeling and analyses throughout the emergency management cycle and in 

all domains where the spatio-temporal distribution of people is pertinent. This 

last point is illustrated in the next section (7.3), showing applications of the 

produced population distribution data in diverse domains and for different 

purposes.  

Below we summarize the main contributions and findings of each chapter, 

considering their specific research objectives and questions, as well as 

strengths and weaknesses of the approach followed.  

7.2.1 Chapter 2: Modeling of spatio-temporal distribution of urban 
population at high-resolution – value for risk assessment and 
emergency management  

Chapter 2 addressed two main questions:  

(i) Is the spatial distribution of urban population in the daily cycle relevant for 

risk analysis (exposure) at local scale?, and  

(ii) How can more detailed modeling of spatio-temporal distribution of urban 

population contribute to DRM, considering its cycle? 

The research has shown that at local scale there is significant variation of 

population in the daily cycle, and the quantification of variation in population 

exposure to different hazard types, natural and man-made, demonstrated the 

relevance the new data makes for sharpening risk analyses. We have 

illustrated for different DRM scenarios that use of census data (resident 

population) can cause significant errors in the estimates of potentially affected 

population due to daytime events, suggesting the temporal matching of 

population exposure data to the hazard event. With this knowledge, the 

chapter provides a first known attempt at systematizing and suggesting 

contributions of detailed population distribution data for decision support 

according to main phases of the DRM cycle: planning, mitigation, 

preparedness, response, and recovery.  

The population model includes several limitations and assumptions. These 

include its relatively stringent data requirements, and the use of what is usually 

a commercial input data set (the workplaces and employment database) -- 

despite coming from a public source. The fact that data is neither open nor free 

constrains their accessibility and applications. The geocoding of workplaces’ 

specific street addresses makes the model more spatially accurate and precise, 

but this is a time-consuming task that increases cost of final data production. 
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Moreover, the concept of workplace40 limits correct assignment of workers in 

spatially ‘distributed activities’ such as cleaning and security services.  

Due to the absence of information on building volume or floor space, population 

counts from source zones were disaggregated to residential streets (target 

zones) using areal weighting. Also one single parameter per municipality was 

available to derive daytime residential population for a workday, and the 

assumption that all workers are in their workplaces and non-commuters remain 

in their residences in the daytime period is obviously a simplification of a more 

complex reality. In the frame of DRM applications and scenarios discussed, 

modeling of outdoor population would be especially relevant and valuable for 

scenarios A-technological hazard (airborne toxic plume release) and D-

planning of best route for transportation of hazardous materials.  

On the positive side, the consistency among input data sets – especially 

temporal currency – was quite high, which becomes increasingly difficult as the 

geographical scale (scope) of models expands. The adopted modeling approach 

supports local-level analysis, while also efficiently accommodating people that 

work at home, by not considering that all active population leaves their 

residences during the workday. In addition to surfaces of nighttime 

(residential) and daytime population, this approach yields detailed grids of 

workers/students and daytime residential population, that can be useful in DRM 

applications. Also, an ‘ambient’ population grid can be derived in a transparent 

way by computing a weighted average of nighttime and daytime distributions. 

Consideration of spatio-temporal population distribution in this context has 

allowed two fundamental issues to be addressed simultaneously in scenario D: 

what is the best period (day or night) and route in order to minimize population 

exposure along the way? 

The main value of these results includes the increased spatial resolution of 

residential (~nighttime) distribution, the fact that both nighttime and daytime 

distributions share the same spatial reference basis, and that daytime 

distribution and potential population exposure is better estimated than was 

previously possible using residential population.  

7.2.2 Chapter 3: Integrating population dynamics into mapping 
human exposure to seismic hazard  

Chapter 3 sought to answer two questions:  

(i) Can new geospatial data on spatio-temporal distribution of population, 

derived by scaling-up a costly local-based approach, be combined with an 

                                                
40 In the workplace database all workers are assigned to the locations of the 
employing companies/services, although their activities may be conducted 
elsewhere (e.g. professional drivers). 
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earthquake hazard map to improve human exposure mapping and assessment 

in a metropolitan area?, and 

(ii) What is the estimated variation in population exposure by seismic level in 

the Lisbon Metropolitan Area (LMA) in day- and nighttime periods? 

Regarding the first question, in this chapter an approach was developed that 

enables modeling and mapping of spatio-temporal population distribution and 

density in the daily cycle at high spatial resolution for Metro Areas in Portugal. 

The day- and nighttime population grids were produced for the Lisbon Metro 

Area (LMA) by scaling-up a previous local-based approach (presented and 

applied in chapter 2). The population model generated a nighttime (resident) 

raster distribution at a higher resolution than census data and a comparable 

daytime population surface, previously unavailable for the study area. The 

refined spatio-temporal population surfaces were successfully combined with a 

recent seismic intensity map to map and estimate population exposure in the 

daily cycle and derive new spatial representations of this exposure, i.e. 

spatially-explicit four-class-composites of human exposure to seismic 

intensity. Results show that, although in the standard approach very little of 

the populated area is classified as Very High exposure, this zone includes 

almost a quarter of the daytime population in the LMA. The work confirms that 

population exposure analysis based on census data alone may result in 

significant underestimates of risk for a daytime event. Furthermore, it has 

shown that the introduced spatio-temporal refinements in modeling population 

densities enabled a more thorough assessment of potential human exposure 

in the LMA.  

Concerning the second question, the analysis of population exposure to seismic 

levels in the LMA showed that there are considerable differences from 

nighttime to daytime, with significantly more people potentially at risk in the 

daytime period. Results indicate that from night to day the population exposed 

to the highest seismic level (i.e. level IX) increases by 22% to affect 5% of the 

total daytime population of LMA (137,222 people). Even more important, from 

the nighttime to daytime period an additional 204,786 persons are estimated 

to be exposed to the levels VIII and IX, whose zones then contain 52% of the 

daytime population.  

Regarding shortcomings of this work, sources of uncertainties in population 

model are in the spatial nature and dynamic character of activities used to 

produce the daytime worker and student population grid, combined with the 

unavailability of mobility statistics more detailed than the municipal level. 

Quality assessment of the workforce grid in the test area revealed modest 

correlation with detailed reference data. This may be caused by errors or 

inconsistences in mapping “labor” classes in the available land use maps (i.e. 

Industrial, Commercial, and Service areas), combined with lack of indication of 

workers’ density in these 2-D land use patches, and inaccuracies generated by 
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disaggregating the population based on the raster surface of the street 

network.  

Turning to the strengths of this work, the requirements and availability of input 

data sets would allow extending the population modeling approach to the 

Oporto Metropolitan Area, further encompassing nine municipalities and 

1,759,524 inhabitants (2011). The proposed modeling approach proved to be 

sustainable (repeatable) for these areas as required input data matching the 

2011 census was made available and even improved, now covering the whole 

country of Portugal. Due to their characteristics, such population distribution 

datasets can be combined with different hazard maps to improve spatio-

temporal exposure assessment and mapping for any type of hazards, as shown 

in chapter 4 with tsunami. In the case of seismic risk, potentially the detailed 

population surfaces could be used as input in earthquake simulators for 

modeling of human casualties. The approach to mapping and assessing human 

exposure can be applied to other areas where similar data is available, 

highlighting hotspots of exposure to seismic hazard or other threats where 

population density is a relevant measure of vulnerability, and may assist in 

prioritizing areas for mitigation, preparedness and response actions.  

7.2.3 Chapter 4: Advancing tsunami risk assessment by improving 
spatio-temporal population exposure and evacuation modeling  

The main question related to this chapter was: 

How is the spatio-temporal distribution of population in the daily cycle in a 

metropolitan area relevant for population exposure to and evacuation from 

tsunami hazard? 

The research considers the spatio-temporal population distribution in assessing 

risk of tsunami in a metropolitan area. Considering the variation of population 

distribution in the daily cycle at high spatial resolution, both the potential 

population exposure in each of those periods and speed of evacuation were 

modeled and analyzed. Results show that potential population exposure to 

tsunami is significantly time-dependent in the metropolitan area if commuting 

dynamics are considered, displaying a strong variation from nighttime to 

daytime, thus confirming the importance of accounting for human dynamics in 

this cycle for DRM and reduction of impacts.  

In case of tsunami, the analysis indicates that a significant amount of 

population is potentially at risk, and its numbers increase dramatically from 

nighttime to daytime, especially in the zones of high hazard susceptibility. Due 

to concentration of economic activities and public and private services in the 

coastal hazard zone, the overall potential exposure doubles from nighttime to 

daytime, representing 16% of the population of the Lisbon Metropolitan Area. 

In areas of high hazard susceptibility to tsunami, population movement results 

in Daytime population being 2.5 times the number of residents. Evacuation 
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modeling shows significant differences in the magnitude and speed of 

evacuation between night and day, and how this may be affected by varying 

population density. Analysis reveals that full horizontal evacuation may be 

problematic in the daytime period, even if initiated after a potential tsunami-

triggering earthquake. This finding suggests that the consideration of 

alternatives for preparedness measures, such as vertical evacuation, should be 

considered. 

Main weaknesses of this work include the limitations and assumptions of the 

population distribution model, already mentioned in chapter 3, despite efforts 

undertaken to improve the quality of population grids. Estimation of potential 

population exposure and evacuation is based on a worst-case scenario, as the 

return period for hazard event was not available. In a large city and 

metropolitan area, modeling exposure in 2-D is likely to lead to over-estimation 

of potential impacts (including human) as many tall buildings and structures 

may afford greater protection from direct tsunami impacts41. For full 

assessment of tsunami risk, vulnerability of exposed elements should also be 

considered, especially in the absence of early warning. Structural 

vulnerabilities of buildings are particularly relevant in case of nighttime event 

when most people can be expected to be in their homes sleeping. 

Strong aspects of this work are the modeling of population and assessment of 

exposure at high spatio-temporal resolution. Tsunamis are time-specific, 

sudden hazard events whose risk management activities have a lot to benefit 

from availability of population models in daily cycle for planning, mitigation, 

preparedness, and response. Modeling population at very high spatial 

resolution is also important due to nature of water as fluid, which enables it to 

affect very specific and small areas.  

In addition to providing valuable information for planning and managing 

evacuation measures, the work suggests subsequent developments. These 

include conducting a more detailed spatial modeling of population distribution 

and exposure assessment to tsunami at the building level considering their 

characteristics and enabling modeling of vertical evacuation. A demonstration 

of detailed spatial modeling of population distribution and exposure 

assessment to tsunami at the building level considering its function, height and 

elevation for part of the same study area (Lisbon, Portugal) was carried out by 

Freire et al. 2011a. Building further on this work, feasibility of vertical 

evacuation was modeled and assessed for same three communes of the city of 

Lisbon (Freire et al. 2012), identifying 165 potential shelters for vertical 

evacuation and estimating that all exposed residents are able to evacuate to 

safety after 10 minutes if this alternative is considered.  

                                                
41 This issue was addressed in subsequent work where 3-D modeling of 
exposure was undertaken: Freire et al. 2012. 
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7.2.4 Chapter 5: Enhanced data and methods for improving open and 
free global population grids: putting ‘leaving no one behind’ into 
practice  

Chapter 5 sought to answer the question:  

How can some major shortcomings in geospatial population statistics be 

detected, assessed, and mitigated with remote sensing information and 

automated approaches, while preserving the statistic’s integrity for policy 

making? 

The research shows the value of detailed, updated, and independent global 

remote sensing information to complement and improve conventional sources 

of fundamental population statistics. New automated procedures to detect and 

mitigate major discrepancies and anomalies occurring in geospatial census 

data were developed, tested and implemented. Global and consistently-derived 

remote sensing information reporting on built-up presence from the Global 

Human Settlement Layer (GHSL) was used to revise census units deemed as 

‘unpopulated’ and to harmonize population distribution along coastlines, while 

minimizing changes to the original population data. To accomplish this, an 

automated method was proposed and applied: the ‘split & merge’ approach. 

Respecting the overall integrity of statistics is important, and is often a needed 

compromise to ensure its ‘acceptance’ for policy support by national 

institutional stakeholders. This mitigation approach illustrates the existing 

tension between producing the best data possible vs. using official data that is 

accepted by stakeholders (e.g. national authorities) as base for monitoring and 

informing policy in international agreements (e.g. SDGs). Results show that 

the targeted anomalies were significantly mitigated and that the baseline 

census database has improved, potentially benefitting other uses of the same 

statistical base. Outcome and benefits for population disaggregation were 

illustrated.  

Strengths of this approach are its use of open and free information from remote 

sensing, and the automated approach for detection and mitigation of 

anomalies, while harmonizing both data sets. Relying on open and free 

information and on an automated approach benefits transparency, 

repeatability and cost-effectiveness (i.e. sustainability) of procedures. The 

developed ‘split and merge’ approach proved effective at mitigating both types 

of detected anomalies, while minimizing changes to census geometry, 

preserving the regional distribution of population, and the overall counts at the 

upper administrative level. Another positive outcome is the improved 

representation of the process of settlement expansion through land 

reclamation from the sea, and accounting for human settlements extending 

over water bodies such as floating settlements.  



Chapter 7 

141 

In context of risk analysis and DRM activities, this contributes to improving the 

accuracy of exposure assessment in coastal areas, especially those more 

susceptible to sea level rise and coastal hazards (tsunamis, 

hurricanes/cyclones, storm surge). These grids were already used for 

assessing the proportion of urban residents and urban land less than 10m 

above sea level (CUT 2019).   

Still several of limitations can be identified: the semi-heuristic rule-based 

approach used for selection of potentially problematic census units can be 

further improved: the initial areal threshold for excluding units likely 

nonresidential was based on empirical evidence for Europe, and this threshold 

may not represent other geographical contexts. The success rate of this 

approach (59%), although encouraging, is likely not sufficient for automating 

this procedure, as it yields significant false positives. Narrowing the rules to 

capture more extreme anomalies would decrease the rate of false positives (at 

the expense of increasing omission), the main priority of such data-improving 

exercise.  

The ‘split and merge’ approach is conservative and suited for cases where the 

population in the problematic unit was enumerated but re-assigned to other 

neighboring units on reporting. This is a benevolent assumption on census data 

production that may not always hold true. Alternatives to the ‘split & merge’ 

approach should be explored, namely contextual bottom-up approaches that 

take into consideration the local patterns of settlement, i.e. estimating the 

population in the target ‘unpopulated’ unit based on the average occupancy 

rates of adjacent census units. Despite these limitations, the approach has 

merits that may warrant making it publicly-available as a free tool, possibly 

integrated with the open and free SmartDissolve tool developed for 

aggregating census data in a ‘smart’ and flexible way (Schiavina and Freire, 

2017).  

Within the present population disaggregation approach, relying solely on built-

up structures detected and mapped through remote sensing to inform 

harmonization with census is not without risks: resident population may be 

allocated to abandoned or seasonal settlements, or otherwise non-residential 

facilities (e.g. ports, industrial areas), misrepresenting the concept. Also, the 

proposed mitigation procedures reduces in those areas the independency in 

the production of the involved variables (population stats and built-up 

distribution), which may be desirable for subsequent combination and 

production of population grids and is a cornerstone of the GHSL approach.  

Challenges involved in creating improved global population grids using 
best-available census data 

The global database of censuses supporting GPW (and GHS-POP) is not yet 

fully open and free, with CIESIN unauthorized to re-share the census polygons 

for about 30 countries (including the two most populous, China and India). 
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Therefore the production of the GHS-POP global grids and mitigation of 

detected deficiencies (Chapter 5) involved logistical and practical challenges to 

produce complete global layers: the GHS-POP grids for those 30 countries were 

produced by connecting remotely and running scripts in CIESIN servers in NY, 

USA. This reinforces the importance and need for fully open and free census 

data.  

7.2.5 Chapter 6: An Improved Global Analysis of Population 
Distribution in Proximity to Active Volcanoes, 1975–2015  

Chapter 6 sought to answer two closely related questions: 

(i) How has resident population distribution and density been varying at global 

and regional scales (Southeast Asia, and Central America) in proximity to 

historically active volcanoes in the period 1975-2015, and what is the current 

situation? 

(ii) To what extent does a new model and data on spatio-temporal distribution 

of population (decadal cycle) improve global and regional characterization of 

population living in proximity to volcanoes and the assessment of population 

potentially affected by their hazards?  

Concerning the first question, this research shows that population is not evenly 

distributed across geographical space around active and historical volcanoes, 

and finds that overall concentrations of people in their vicinity have been 

increasing since 1975. In 2015 more than 600 million people (8.4% of world 

total) lived within 100 km of a volcano with at least one significant eruption, 

and more than 1 billion people (14.3% of the total) within that distance of a 

Holocene volcano. The latter amount has increased by 1.57% per year since 

1975, above the global population growth rate for the period. Especially 

significant have been the growth rates and total population living within 10 km, 

which in 2015 sums 59 million for Holocene volcanoes and 21 million for those 

with significant eruptions, with almost half of this population living in Southeast 

Asia. Population densities in vicinity of volcanoes are also higher than global 

average densities (over land), and those densities have been increasing with 

time in the period analyzed. In the period under analysis, we find differences 

between Southeast Asia and Central America: in SE Asia the share of total 

population within 100 km of HV has increased (albeit slightly) between 1975 

and 2000, and the highest growth rates occur in close proximity to HV and SV 

volcanoes (within 10 km). In Central America the share of population within 

100 km of HV and SV has been decreasing, and the strongest rates are 

observed farther away from volcanoes. 

Regarding the second question, this work introduces a previously absent 

spatio-temporal dimension to the analysis of human settlement in proximity to 

historically active volcanoes, focused on contemporary times. The work 

exploits the potential of the first detailed, consistent, spatially-explicit time 
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series of global population distribution spanning the period 1975-2015. The 

characteristics of the population grids developed and used (GHS-POP), namely 

the combination of high spatial resolution and decadal temporal scale, enable 

characterizing with unprecedented detail the changes in the distribution of 

human population in proximity to historically active volcanoes in last 40 years. 

This research also revises, details and updates previous analyses for current 

period, revealing different patterns from those previously described. The 

enhancements in population modeling reveal that global spatial patterns, 

despite being relatively stable in the temporal window considered, display a 

variation with distance that is not monotonic, with density generally increasing 

with proximity to volcanoes, peaking at around 15–20 km away, and then 

decreasing. This details and revises previous findings by Small and Naumann 

(2001). This work also illustrates how emerging open and free geospatial 

datasets can narrow gaps in population distribution data and knowledge for 

supporting Disaster Risk Management and Reduction activities. The revealed 

increase in potential human exposure may elevate disaster risk if not 

compensated by reductions in vulnerabilities (e.g. through preparedness, early 

warning).  

Regarding strengths, these results are based on open and free data and a 

simple and transparent population distribution model. “A corollary of the 

transparency rule is that simple or parsimonious model representations are 

better than more ‘sophisticated’ or complex models, when they are being used 

for policy impact assessments” (Saltelli and Funtowicz 2014). Also, GHS-POP 

is the first spatially-explicit global time series relying exclusively on a proxy 

actually mapped (and not estimated or hind-cast) for disaggregation of 

population estimates in the periods considered. Expanding previous analyses, 

both Holocene volcanoes and those where there is evidence of significant 

eruptions are considered. In addition, the research has considered all 

volcanoes listed in the databases regardless of their type or location, as e.g., 

submarine volcanoes may still affect populations on land upon erupting, as 

many are located in proximity to inhabited areas (Lindsay et al. 2005).  

In assessing population counts and densities in proximity of volcanoes, the 

work addressed the challenge of measuring accurately both distances and 

areas in global maps. The proposed approach tries to limit distortions in 

distances, areas, and population counts, improving over previous global 

analyses where this aspect is neglected (or omitted). These population grids 

can be combined with any type of hazard, enabling improved modeling and 

analyses throughout the emergency management cycle at regional and global 

scales.  

One important limitation of such global analysis is that both the datasets of 

volcanoes and the population grids are affected by error and uncertainty. The 

analysis is carried out using a 250 m population grid, which makes it sensitive 

to uncertainty in spatial precision, although this is mitigated by the aggregation 
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induced by using 2 km steps for distance. Uncertainties in GHS-POP mostly 

result from the quality and reliability of censuses and the accuracy of built-up 

detection in diverse landscapes using heterogeneous Landsat image archives. 

In volcanic rocky landscapes, commission error of built-up detection can 

occasionally result in misallocation of population. Such issues typically worsen 

with temporal distance from the current period. Despite the mitigation 

procedures implemented in the production of these population grids, some 

issues remain unsolved in global population data, such as: reporting units with 

unrealistically high densities, and reporting of population in uninhabited areas 

(i.e. over-reporting). Further, the GVP datasets (volcanoes) are affected by 

issues of generalization, low spatial accuracy and precision: (a) a single point 

frequently refers to a group of volcanoes or craters (e.g., volcanic fields) or 

giant calderas, for which an areal feature (polygon) would be a better 

representation for the potential hazard source; and (b) the geographical 

coordinates (decimal degrees) are often coarse with precision sometimes 

limited to the first decimal, which corresponds to a real world precision of about 

5.5 km. This is clearly insufficient for detailed analyses in close proximity to 

volcanoes and the combination of uncertainties from population and GPV 

discourages finer scale analyses, especially for individual volcanoes. Aware of 

these issues, we have tried not to convey a false sense of precision and 

communicate uncertainty by providing population numbers in millions (Saltelli 

and Funtowicz 2014). 

Future avenues for research in human exposure to volcanic hazard, as pointed 

out in the chapter, include (i) assessing the potential threat of submarine 

volcanoes, and (ii) a renewed and updated look at the potential exposure of 

nearby cities considering their spatial characteristics, an analysis now enabled 

by the recent release of the GHSL-based Urban Centre Data Base (UCDB, 

Florczyk et al. 2019).  

These population grids (GHS-POP) are being used for operational DRM (risk 

and impacts) in INFORM42, GDACS43, and Copernicus EMS44.  

7.3 Other research contributions: cross-disciplinary 
benefits and applications of the produced population 
distribution data for modelling, assessing impacts, 
and measuring access to services and resources.  
In addition to applications in the field of DRM, we have used the approaches 

and population models discussed in chapters 3 and 4 to advance research and 

knowledge in other application domains, such as:  

                                                
42 https://drmkc.jrc.ec.europa.eu/inform-index 
43 https://www.gdacs.org 
44 https://emergency.copernicus.eu 
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 Planning of public facilities – access to services (Freire et al. 2011c) 

 GeoMarketing analysis (Freire and Santos 2012) 

 Environmental noise pollution analysis – exposure, impacts (Freire and 

Gomes 2013) 

 Solar potential analysis (Santos et al. 2014) 

At global scale, and in the domain of data provision for policy support, the 

GHS-POP grids provide data for monitoring of SDGs, as in analysis of Land Use 

Efficiency (SDG goal 11.3.1) (Melchiorri et al. 2019).  

The consistent production of detailed and compatible time series of built-up 

and population grids has enabled developing the global modeling and 

classification of human settlements in space and time (i.e. the GHS-SMOD45) 

(Pesaresi and Freire, 2016). The SMOD ports in the global domain, using GHSL 

data, the ‘degree of urbanization’ method already adopted in Europe by the 

European Commission and EUROSTAT, and by the OECD (Dijkstra and Poelman 

2014). This harmonized global definition of Cities and Settlements is people-

based, i.e. supported by GHS-POP grids (Melchiorri et al. 2018) and has 

recently evolved to a more detailed classification of settlements in two levels, 

also called ‘refined degree of urbanization’ (Dijkstra et al. 2018). This definition 

is currently being proposed to the UN Statistical Commission for global 

adoption. Development of the GHS-SMOD has in turn enabled the production 

of the Urban Centre Database (UCDB), the most complete database on cities 

to date, publicly released as an open and free dataset. The UCDB represents 

the global status on Urban Centres in 2015 by providing information on cities 

location, their extent (surface, shape), and describing each city with a set of 

geographical, socio-economic and environmental attributes, many of them 

going back 25 or even 40 years in time (Florczyk et al. 2019).  

Since they were first released in 2016, GHS-POP grids have so far also 

supported the following research: Assessment of population affected by heat 

waves (Ceccherini et al. 2017); visualization of global population density as 

interactive multi-scale map (Smith 2017); the modeling of functional urban 

areas (FUAs) for the whole world (Moreno-Monroy et al. 2018); quantification 

of Carbon footprints of 13 000 cities (Moran et al. 2018); the determination of 

the Ranked Significance of Population Centers (Nelson and McKeon 2019); the 

study of the variability in urban population distributions across Africa (Tuholske 

et al 2019); assessment of trade-offs between urban change and food 

production (Wang et al. 2019); and the reporting on the demographic impact 

on urban growth (Gerten et al. 2019).  

                                                
45 https://ghsl.jrc.ec.europa.eu/ghs_smod2019.php 
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7.4 Challenges and Way Forward 
This research introduced and addressed temporal dynamics in modeling and 

assessing population exposure at high spatial resolution and related 

applications in DRM activities. Some of the developed approaches and 

population grids already made their way into being adopted for operational 

DRM systems and activities, however addressing different needs at different 

scales while providing global coverage (e.g. INFORM, GDACS, Copernicus EMS 

Mapping). While further integration of these population grids within other risk 

information systems is under development (e.g. EFAS46 and GloFAS47), several 

challenges and gaps remain.  

1) What is effective contribution of population distribution data to integrated 

DRM activities? 

In this research, some insight into the value of detailed geospatial population 

data for DRM has been provided, showing how these data can potentially 

contribute to all phases. Still more research is needed into the effective 

contribution of population distribution data to integrated DRM activities, 

considering their specific requirements and the many different stakeholders 

(e.g. risk analysts, public and private planning authorities, emergency 

responders, etc.) and levels involved in DRM phases.  

The research provided first-hand evidence to us that a closer coupling of 

researchers and DRM practitioners ‘on the ground’ (e.g. civil protection) is 

needed, both to inform the first group on the specific needs of operational DRM 

and to make the latter group aware of capacities and limitations of developed 

approaches to support those requirements. This necessitates continued efforts 

in further narrowing the gaps between research and development of solutions 

and DRM practice, to improve the ‘last-mile’ preparation for disasters 

(Taubenbock et al. 2009).  

While the increased availability of global and regional population distribution 

grids (especially those open and free) has widened the options for 

users/applications, it has also fueled confusion in the user domain regarding 

their underlying concepts and technical specifications, and their fitness for use 

(e.g. Calka and Bielecka 2019). Despite recent efforts by the producers of large 

scale population grids at clarifying these aspects (Leyk et al. 2019), more 

systematic evidence-based information is needed on how population variables, 

concepts, and technical specifications (quality) affect and fit scientific and 

applied uses, namely in DRM.  

2) Population dynamics of quick vs. slow-onset hazard events 

                                                
46 https://www.efas.eu/ 
47 https://www.globalfloods.eu/ 
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This research has addressed population exposure to a set of sudden or quick-

onset hazard events, where it can be reasonably assumed that the baseline 

population grids (in respective temporal cycles) approximate the actual 

distribution being impacted by disaster events, especially in the absence of 

effective early warning systems. However, slower onset or cascading events 

(e.g. 2011 Great East Japan Earthquake and Tsunami) might modify this 

baseline representation by inducing specific population dynamics during the 

development of the different hazard events, requiring further research 

factoring human behavior (i.e. agent-based simulations) for the modeling and 

assessment of this evolving exposure.   

3) Importance of overall population counts and need to go beyond these 

This research was mostly concerned with modeling distributions of population 

counts and densities48. Non-withstanding the primordial importance of total 

population in DRM analysis and as denominator of many indicators in post-

2015 development agendas, additional demographic variables are also 

relevant for several issues and there is increasing demand for their spatially-

explicit mapping. This calls for improved modeling of the distribution of these 

attributes, which can benefit from enhanced source data and modeling of total 

population, and also from development of specific modeling approaches and 

ancillary data.  

4) How to detect, assess, and mitigate (in an automated way) major 

deficiencies present in geospatial population statistics? 

This research has shown that improving (open and free) global population 

distribution grids requires attention to ex ante problems such as reliability and 

quality aspects of geospatial population statistics, such as completeness and 

spatial accuracy of censuses. Although these have been largely overlooked by 

the population modeling community, they acquired a new relevance in the 

frame of indicator-informed development agendas and the inclusiveness 

requirements of the UN pledge/commitment on ‘leaving no one behind’.  

Despite the detection and mitigation procedures we developed and 

implemented in the production of new global population grids (Freire et al. 

2018a-Chapter 5), other issues remain unsolved in global population data, and 

more work is required to address and mitigate problems such as the existence 

of reporting units with unrealistically high densities, and reporting of population 

in uninhabited areas (i.e. over-reporting). In meantime, downstream efforts to 

improve modeling of population distribution should go in parallel with (and 

contribute to) strengthening national institutional capacities to produce better 

data and making it freely available to all stakeholders.  

                                                
48 Although we have modeled the distribution of specific population groups 
(e.g. workers, students – Chapters 3 and 4). 
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5) How to improve population estimates for comparable time series? 

Related to the previous point, this research has created global time series of 

population grids spanning 40 years having unprecedented spatial detail (250 

m). While processing capacity and availability of detailed ancillary data (GHSL 

built-up areas at 30 m resolution) would allow modeling at higher spatial 

resolutions, this would be currently ill-advised in presence of significant 

inaccuracies and uncertainties, which in many cases would be made more 

conspicuous by the smaller cell size of population grids. In such a case, higher 

spatial resolution would be obtained while increasing uncertainty (i.e. trade-off 

between spatial resolution and confidence).  

In addition to the inaccuracies mentioned above, the established process of 

producing estimates for common target years for all census units and 

subsequent adjustment to UN national-level estimates (Doxsey-Whitfield et al., 

2015) is known to cause anomalous estimates, especially in small units and 

farther away from the census year, an issue we have signaled at an early stage 

of the work (Freire et al., 2016). Although this enormous harmonization task 

is beyond the scope of this research, improvements to this estimation and 

adjustment method would result in major benefits to such population grids and 

should be pursued. The presence of such issues discourages further increases 

in spatial resolution.  

Assessing, representing (mapping), and communicating uncertainty remain 

important challenges in population distribution modeling that require more 

attention. In the domain of DRM, more needs to be done to meet the call for 

understanding, quantifying, and communicating the uncertainties and 

limitations of risk information, and to ensure that risk information is credible 

and transparent (GFDRR 2014). This research is a contribution toward 

improving vulnerability and exposure estimations for risk assessment.  

6) Top-down vs. bottom-up approaches 

Connected to the previous point, this research has employed top-down 

methods to disaggregate available or estimated population counts from source 

units to target zones. However, bottom-up methods have shown promise in 

some geographical contexts where population censuses are highly unreliable 

or outdated (Wardrop et al. 2018). However, these approaches can be time-

consuming and costly for large and heterogeneous areas, and further research 

is needed to optimize and improve their cost-efficiency, and on best ways to 

integrate with top-down approaches. 

7) How to overcome classical trade-offs in modeling population distributions at 

high spatio-temporal resolutions? 

This research has listed and discussed a number of classical trade-offs in 

geographical population modeling that need to be addressed in order to map 

their distributions at high spatio-temporal resolution with global coverage. 
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Overcoming these challenges requires investing in combined improvements to 

input population statistics and spatial ancillary data (target zones), as we have 

illustrated in the ENACT project49 (Batista e Silva et al. 2018a; 2018b). 

Enhanced allocation of people to their estimated locations requires increasing 

the spatial and thematic detail of land use maps in order to better map human 

activities. 

In disaggregating available population counts to target zones (i.e. grid cells), 

this research has relied on a number of ancillary data sets. At local scale and 

especially in data rich environments these data have been increasing in spatial, 

temporal, and thematic detail, with obvious benefits for population modeling, 

and major improvements are now reaching the continental scale (e.g. Rosina 

et al. 2018; Sabo et al. 2019).  

Promising research paths involve combinations of conventional with 

unconventional data sources, including big data (from VGI, social media, 

mobile phones) (Aubrecht et al. 2017a; Aubrecht et al. 2018) but their use is 

not without problems (e.g. completeness, sustainability of approaches, data 

access and ownership, privacy and anonymity, representation bias) that 

deserve attention.  

At global scale, major improvements are expected from classifying building 

functions and estimating their height (in urban areas), and from better 

detection and mapping of dispersed settlement patterns (in rural areas). 

However, the actual contribution of these additional descriptors of built-up 

areas and their cost-benefit needs investigation: data on building height is 

likely more relevant in urban contexts where census units are coarse and 

building height displays high intra-unit variation; to complicate matters, in 

some contexts the consideration of building height without considering its 

function might result in misallocation of a larger number of residents to non-

residential buildings, if these tend to be the tallest (e.g. services, office 

buildings, commercial). Improvements in remote sensing data (e.g. Copernicus 

Sentinel) and information extraction methods (e.g. machine learning) are 

showing promise for supplying some of these data50, in open and free 

framework (e.g. Corbane and Sabo 2019) and should be further pursued.   

8) Need for more realistic representations and increased temporal resolution 

This research has modeled population distributions in nighttime vs. daytime 

periods. Although the resident population might be an acceptable 

                                                
49 https://ghsl.jrc.ec.europa.eu/enact.php 
50 Sabo et al. 2019 have conducted unprecedented mapping and classification 
of residential vs. non-residential built-up at high spatial resolution (10 m) with 
pan-European coverage, and the layers are freely available as the European 
Settlement Map from Copernicus Very High Resolution data for reference year 
2015, Public Release 2019. 
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approximation to nighttime population in many contexts, more realistic 

representations of specific time periods are needed. Increasing accuracy in 

representing nighttime population involves accounting for distributions of other 

groups and activities, such as the modeling of visitors we have conducted in 

the frame of ENACT (Batista e Silva et al. 2018a), but also of those in hospitals 

and prisons. Although important, this is quite challenging for large, multi-

national areas and typically involves intensive work of identifying, mining, 

combining and harmonizing heterogeneous data from different sources. 

Especially for improving daytime representations, due consideration should be 

made of activities beyond work and study and their locations: people present 

in transportation networks, or involved in leisure and shopping activities, as 

well as considering tourism influx in areas and periods where that activity is 

significant (e.g. beachgoers for tsunami exposure). It would be as important 

as challenging to model people who are indoors vs. those involved in outdoor 

activities at useful spatial resolutions, and this would be especially valuable 

and relevant for exposure and risk analysis in DRM.  

However, even when stocks of these population groups are successfully 

obtained or estimated, it has proven very challenging to derive weights (i.e. 

occupancy rates) for their correct disaggregation to target zones – i.e. how 

different is the occupancy rate of a beach in Portugal to another in Italy in a 

typical day of same summer month? Data from micro or specific surveys of 

obtained from mobile phones / LBSN may help, but their availability is still 

extremely limited and suffer from problems mentioned above.  

Although day- vs. night is considered the most relevant temporal cycle for 

DRM, better representation of population dynamics requires increased 

temporal segmentations of population distribution, so as to represent 

differences on a weekly basis (workdays vs. week-end) or on a monthly or 

seasonal basis (winter vs. summer), as again demonstrated in frame of the 

ENACT project and assessment of potential population exposure (Freire et al, 

2018b). Especially for response activities, the capacity for near real-time 

estimation of populations affected is in high demand and is likely to increase.  

In conclusion: for effective support to DRM and DRR, geospatial data on 

population distribution should: 

(i) be produced at a range of spatio-temporal scales,  using best-available data, 

(ii) be produced before disaster events and kept up-to-date, 

(iii) be made widely available and accessible (open and free). 

In our development of such data, we have tried to converge to the request 

from the disaster risk community for FAIR data: findable, accessible, 

interoperable and reusable (UNDRR 2019).  
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Summary 
Despite its importance for Disaster Risk Management (DRM), the mapping of 

human distribution and population exposure has lagged behind hazard 

modeling and mapping, in terms of accuracy, detail, and currency. As human 

life is the most important element to protect from disasters, assessing 

population exposure to actual or potential disasters can benefit all phases of 

the disaster management cycle, e.g. risk and impact assessment, mitigation, 

preparedness (including early warning and evacuation), and response. This 

assessment requires geo-information on population distribution at a range of 

spatial and temporal scales, as disasters can strike at any time and with little 

warning, and affect from local to global areas. However, there are significant 

challenges and trade-offs affecting spatio-temporal population modeling. For 

effective support to DRM, geospatial population data should be reliable, up-to-

date, have sufficient resolution (spatial, temporal, thematic), and be readily 

available (i.e. either produced beforehand or be rapidly computable on-

demand). Such population data are still lacking for many countries and regions, 

either rich or poor, and conducting DRM at global scale would benefit from 

complete, consistent, and integrated population datasets. Furthermore, if 

developed adequately, such population datasets are multipurpose and can 

serve a wide range of application domains, such as spatial planning (urban, 

regional, infrastructure, public facilities), environmental assessment, 

epidemiology, and GeoMarketing. 

This thesis comprises contributions of population distribution modeling to 

advancing Disaster Risk Management and Reduction efforts by: (i) developing 

geospatial models that improve population distribution datasets at a range of 

relevant spatial and temporal scales and resolutions; (ii) applying those data 

to (real) disaster risk scenarios by combining geospatial population layers with 

geophysical hazard maps; (iii) using spatial analysis for quantitatively and 

qualitatively assessing human exposure to specific hazards and levels, for 

cartographic representations and visualization, and for showing contributions 

to DRM.  In the core chapters of the thesis, new methodologies are developed 

and applied to solve problems related to modeling and mapping population 

distribution and exposure to different hazards, aiming to improve DRM 

activities. Key research questions include (i) How can more detailed modeling 

of spatio-temporal distribution of urban population contribute to DRM, 

considering its cycle? (Chapter 2); (ii) Can new geospatial data on spatio-

temporal distribution of population, derived by scaling-up a costly local-based 

approach, be combined with an earthquake hazard map to improve human 

exposure mapping and assessment in a metropolitan area? (Chapter 3); (iii) 

How is the spatio-temporal distribution of population in the daily cycle in a 

metropolitan area relevant for population exposure to and evacuation from 

tsunami hazard? (Chapter 4); (iv) How can shortcomings in geospatial 
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population statistics be detected, assessed, and mitigated with remote sensing 

information and automated approaches, while preserving the statistic’s 

integrity for policy making? (Chapter 5); and (v) How has resident population 

distribution and density been varying at global and regional scales (South East 

Asia, and Central America) in proximity to historically active volcanoes in 

period 1975-2015, and what is the current situation? (Chapter 6).  

While the focus is on the spatio-temporal dynamics of human exposure, the 

research considers related aspects such as population definition, geospatial 

data and technology, spatio-temporal scales, hazard types and their 

characteristics, and the specific population related information requirements 

throughout the Disaster Risk Management Cycle. We conclude that since 

impacts of hazards and disasters are place and time dependent, several DRM 

and Disaster Risk Reduction phases and activities would benefit from relying 

on more spatially-detailed and time-specific assessments of population 

exposure, at a range of relevant spatio-temporal scales (local to global). Also, 

improving population distribution data for human exposure assessment 

requires addressing challenges present in input data and geospatial modeling. 

While at local scale in data rich environments more detailed and sophisticated 

models can be developed with acceptable uncertainty, scaling up such 

approaches to the global domain requires addressing different challenges, such 

as limitations in data availability, quality, and concepts in order to maximize 

the range of uses of population data, especially for supporting ongoing 

international development agreements. Finally, geospatial information on 

population distribution constitutes crucial baseline data for risk analysis and 

DRM across a range of hazards and threats, and investing in improving data 

benefits population-related analyses by detailing and revealing a sharper 

picture, with the aim of ‘leaving no one behind’.  
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Samenvatting 
Hoewel belangrijk voor rampenrisicobeheersing is het in kaart brengen van de 

bevolkingsverdeling en -blootstelling achter gebleven bij het modelleren en in 

kaart brengen van risico’s, in termen van nauwkeurigheid, detail en up-to-date 

zijn. Omdat mensenlevens het meest belangrijk zijn bij het beschermen tegen 

rampen, is het beoordelen van de blootstelling van de bevolking aan actuele 

en potentiële rampen nuttig voor alle fasen in de cyclus van rampenbeheersing, 

namelijk de fasen van achtereenvolgens de beoordeling van risico’s en 

gevolgen, mitigatie, paraatheid (met inbegrip van vroegtijdige waarschuwing 

en evacuatie), en reactie. Deze beoordeling vereist geo-informatie van de 

bevolkingsverdeling in een reeks ruimte- en tijdschalen, gegeven dat rampen 

kunnen toeslaan op ieder moment en zonder enige waarschuwing, en hun 

invloed kunnen doen gelden variërend van lokale tot globale gebieden. Er zijn 

evenwel significante uitdagingen en trade-offs met betrekking tot het 

modelleren van de bevolking in ruimte en tijd. Voor een effectieve 

ondersteuning van rampenrisicobeheersing dienen geo-ruimtelijke 

bevolkingsgegevens betrouwbaar en up-to-date te zijn, een toereikende 

resolutie te hebben (ruimtelijk, temporeel, thematisch), en direct beschikbaar 

te zijn (d.w.z. van tevoren geproduceerd of snel te berekenen op aanvraag). 

Dergelijke bevolkingsgegevens ontbreken nog altijd in veel landen en regio’s, 

en het uitvoeren van rampenrisicobeheersing wereldwijd zou baat hebben bij 

complete, consistente en geïntegreerde bevolkingsdatasets. Bovendien kunnen 

dergelijke bevolkingsdatasets, mits op adequate wijze gegenereerd, meerdere 

doeleinden dienen en gebruikt kunnen worden op meerdere terreinen, zoals 

ruimtelijke planning (stedelijk, regionaal, infrastructureel, openbare 

faciliteiten), milieu-evaluaties, epidemiologie en geo-marketing. 

Deze dissertatie bevat bijdragen betreffende de modellering van de 

bevolkingsverdeling met als oogmerk de beheersing en reductie van 

rampenrisico’s te bevorderen door: (i) het ontwikkelen van geo-ruimtelijke 

modellen die bevolkingsdatasets verbeteren voor een reeks van ruimtelijke en 

temporele schalen en resoluties; (ii) het toepassen van deze data op 

(realistische) rampenrisico scenario’s door het combineren van geo-ruimtelijke 

layers van de bevolkingsverdeling met geofysische risicokaarten; (iii) het 

gebruiken van ruimtelijke analyses voor het kwantitatief en kwalitatief 

beoordelen van menselijke blootstelling aan specifieke gevaren en niveaus, 

voor het cartografisch representeren en visualiseren, en voor het illustreren 

van bijdragen aan rampenrisicobeheersing.  In de belangrijkste hoofdstukken 

van deze dissertatie worden nieuwe methodologieën ontwikkeld en toegepast 

om problemen op te lossen die gerelateerd zijn aan het modelleren en in kaart 

brengen van de bevolkingsverdeling en de blootstelling aan verschillende 

gevaren, met als oogmerk het verbeteren van activiteiten in het kader van 

rampenrisicobeheersing. De belangrijkste onderzoeksvragen omvatten (i) Hoe 
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kan meer gedetailleerde modellering van de ruimtelijk-temporele verdeling van 

de stedelijke bevolking bijdragen aan de cyclus van rampenrisicobeheersing? 

(Hoofdstuk 2); (ii) Kunnen nieuwe geo-ruimtelijke data over de ruimtelijk-

temporele verdeling van de bevolking, verkregen via opschaling van een 

kostbare lokale benadering, worden gecombineerd met een aardbevings-

risicokaart om het in kaart brengen en beoordelen van de menselijke 

blootstelling te verbeteren in een metropolitaan gebied? (Hoofdstuk 3); (iii) 

Hoe is de ruimtelijk-temporele bevolkingsverdeling in de dagelijkse cyclus in 

een metropolitaan gebied relevant voor de blootstelling en de evacuatie van 

de bevolking ingeval van een tsunami? (Hoofdstuk 4); (iv) Hoe kunnen 

tekortkomingen in geo-ruimtelijke bevolkingsstatistieken worden 

gedetecteerd, beoordeeld, en beperkt via remote sensing informatie en 

geautomatiseerde benaderingen, met behoud van de statistische integriteit 

voor beleidsvorming? (Hoofdstuk 5); en (v) Hoe is de variatie in 

bevolkingsverdeling en -dichtheid geweest op globale en regionale schaal 

(Zuidoost Azië, en Centraal Amerika) in de nabijheid van historisch actieve 

vulkanen in de periode 1975-2015, en wat is de huidige situatie? (Hoofdstuk 

6). 

Hoewel de focus van dit onderzoek ligt bij de ruimtelijk-temporele dynamiek 

van menselijke blootstelling, beschouwt het ook gerelateerde aspecten als de 

definitie van bevolking, geo-ruimtelijke data en technologie, ruimtelijk-

temporele schalen, gevaar typen en bijbehorende karakteristieken, als ook de 

specifieke vereisten die moeten worden gesteld aan bevolkingsinformatie in de 

volledige cyclus van rampenrisicobeheersing. Omdat de gevolgen van gevaren 

en rampen plaats- en tijdsafhankelijk zijn, concluderen we dat meerdere fasen 

van de beheersing en reductie van rampenrisico’s baat hebben bij het kunnen 

vertrouwen op een meer ruimtelijk gedetailleerde en tijd specifieke beoordeling 

van de blootstelling van bevolking, over een reeks van relevante ruimtelijk-

temporele schalen (lokaal tot globaal). Daarnaast vereist het verbeteren van 

bevolkingsverdeling data voor de beoordeling van menselijke blootstelling, dat 

uitdagingen worden aangepakt die aanwezig zijn in invoer data en geo-

ruimtelijke modellering. Terwijl op lokale schaal in data rijke omgevingen meer 

gedetailleerde en geavanceerde modellen kunnen worden ontwikkeld met 

acceptabele nauwkeurigheid, vereist het opschalen van zulke benaderingen 

naar het globale domein andere uitdagingen, zoals beperkingen in data 

beschikbaarheid, kwaliteit, en concepten om de reikwijdte van het gebruik van 

bevolkingsdata te maximaliseren, in het bijzonder ter ondersteuning van 

lopende internationale ontwikkelingsovereenkomsten. Tenslotte bevat geo-

ruimtelijke informatie over de bevolkingsverdeling cruciale baseline data voor 

risicoanalyse en rampenrisicobeheersing voor een scala aan gevaren en 

bedreigingen, en het investeren in het verbeteren van de data is van belang 

voor bevolkings-gerelateerde analyses door verdergaande detaillering en het 

creëren van een scherper beeld, met als ultiem doel om ‘niemand achter te 

laten’. 


