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Abstract

Accurate assessment of above-ground woody biorsasgportant for sustainable forest management
and to understand the role of forest as sourcenkra$ carbon. The best way of improving assessment
accuracy is to develop predictive equations baseldaally collected data. The use of remote sensing
(RS) techniques with limited field data, have gopwplarity in forest resource assessment over large
area in a cost effective manner. The absence @l Ibomass equations and the uncertainty of
estimates when using existing regional or globalagigns motivated this study towards developing
equations for biomass and carbon sequestrationrem lhasis for the cool temperate forest in
Wangging, north-east China. A ‘tree sub-samplingho@ was employed for the estimation of
biomass of 60 sample trees harvested in the ftedd $erved as the basis for the development of
equations. The method was found to be reliablermmdsensitive to branching pattern of the trees and
species. Three forms of biomass equations namdnpmial, power and combined variable were
developed. A weighted third-degree polynomial euatvas found to be the best alternative while
considering the small error margins and the probiertree height measurements. Comparing the
polynomial-based plot biomass estimates with thBmeses from existing Chinese and IPCC
equations revealed that the three estimates diffsignificantly. Field data from the growth ringdan
bark-thickness measurements of sample trees, ceahbiith the first derivate of the polynomial dry
biomass equation permitted the calculation of ahoabon sequestration. The estimated average dry
biomass density of the forest using the Polynon@dlinese and IPCC equations were respectively
81.88+5.63, 97.11+6.43 and 112.12+7.48 tons/ha9f&b confidence level). The average carbon
sequestration rate in the forest was estimatec tb.83+0.12 ton/ha.yr. For RS-based assessment, an
empirical relationship of forest plot biomass amthial carbon sequestration was sought with the
Landsat TM spectral data. Although poor, a sigaifiic linear relationship was observed with
corrected-NDVI for both the forest parameters thgrenplying that the existing level of biomass did
not show a saturation effect of the VI. The averigest biomass and annual carbon sequestration
estimated using the RS data were 65.36 ton/ha &&dtdn/ha respectively. The equations developed
in this study are area-specific, hence, should ydied at other locations only after verification.
Accurate assessments of biomass/ carbon from R& majuire further research incorporating
advanced techniques.

Keywords: above-ground biomass, biomass equati@asbon sequestration, remote sensing,
vegetation indices
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MODELLING AND MAPPING OF ABOVE-GROUND BIOMASS AND CARBON SEQUESTRATION

1. Introduction

1.1. Background

1.1.1. Assessment of above-ground biomass and carbon in forests

The subject of biomass assessment has receivettlemaide attention for quite sometime, especially
after pulpwood demand in 1960s and oil crisis iTA®Y (de Gier, 2003). Estimation of biomass of
forests is a usual practice to quantify fuel andevstock and allocate harvestable amount (Bias
al., 2006). Forest biomass assessment is importamidional development planning as well as for
scientific studies of ecosystem productivity, carludgets, etc (Hakt al, 2006; Parresol, 1999;
Zhenget al, 2004; Zianis and Mencuccini, 2004). Biomass isimportant element in the carbon
cycle, specifically carbon sequestration; it iscuse help quantify pools and fluxes of Green House
Gases (GHG) from the terrestrial biosphere to theaphere associated with land-use and land cover
changes (Cairnst al, 2003). The concentration of atmospheric carbaxide (CQ) which is the
major constituent of GHG, has increased from 278 ppthe pre-industrial era (1970) to 379 ppm in
2005 at an average of 1.9 ppm per year (IPCC, 200EP, 2007). With the increasing concern for
rising CQ concentrations, the role of forests, as a longrtearbon pool, for assimilation of
atmospheric C®is being increasingly realized; hence studiescareently afoot for assessing the use
of forest biomass sinks to sequester carbon aparglobal mitigation effort. The amount of canbo
stored in the biomass has gained special atterst#om result of the United Nations Framework
Convention on Climate Change (UNFCCC) and its Ky@totocol. Under these agreements, countries
are required to estimate and report,Gfnissions and removals by forests. The develogiabal
carbon markets, particularly because of the inaagan of a Clean Development Mechanism
(CDMY) in the Kyoto protocol, require accurate and t#iamethods to quantify the sources and sinks
of carbon in forest.

Forests play a major role in the global carbon letidiecause they dominate the dynamics of the
terrestrial carbon cycle. Forest biomass consstthe largest terrestrial carbon sink and accdiants
approximately 90% of all living terrestrial bioma&gan et al, 2007; Zhao and Zhou, 2005). Many
studies suggest that about 1-2 gigatons (Gt) (18tkg) carbon are sequestered annually in pools on
land in temperate and boreal regions (Daigal, 2003). Plant biomass constitutes a significant
carbon stock and is the main conduit for C@moval from the atmosphere primarily through
photosynthesis. For this reason, the UNFCC anllyitdo Protocol has recognized the role of forests

! CDM is a provision in the Kyoto protocol under which indiadized countries and economies under transition
(Annex B countries) caearn certified emission reduction (CER) creditsftording projects that reduce
greenhouse gas emissions in developing countries camtribute to sustainable development.
Countries with a commitment to reduce their greemsiBogas emissions by around 5% below 1990
levels (in terms ofCO, equivalent)by 2008-2012, buy CERs to cover a portion of themission
reduction commitments under the treaty.




MODELING AND MAPPING OF ABOVE GROUND BIOMASS AND CARBON SEQUESTRATION

in carbon sequestration. However, forest biomassad as either a source or sink for GHG. The
growth in forest biomass results in net atmosphesidon sequestration in the terrestrial biosphere
whereas the loss causes emissions to the atmosftereamount of carbon sequestered by a forest
can be inferred from the biomass accumulation saqmaroximately 50% of forest dry biomass is
carbon (Cairngt al, 2003; de Gier, 2003). Change in forest biomassdoon fluxes) are influenced
by natural succession, anthropogenic actions ssiciefrestation, harvesting, plantation, silvicrdtu
and natural disturbances by pests, fire and climbhginge (Brown, 1997; IPCC, 2006; Schroeeler
al., 1997). Thus biomass assessment is importantderatand changes in forest structure.

FAO (2005) has defined biomass as “the organic riahteoth above and below the ground, and both
living and dead, e.g., trees, crops, grasses, litee, roots, etc.” Above-ground biomass, below-
ground biomass, dead wood, litter, and soil organéter are the main carbon pools in any forest
ecosystem (FAO, 2005; IPCC, 2003; IPCC, 2006). Abground biomass (AGB) includes all living
biomass above the soil, while Below-ground biomé3&B) includes all biomass of live roots
excluding fine roots (< 2 mm diameter). Forest tAgmis measured either in terms of fresh weight or
dry weight. For the purpose of carbon estimation weight is preferred as dry biomass roughly
contains 50 % carbon (Brown, 1997; IPCC, 2003).dvlgj of biomass assessments are done for
AGB of trees because these generally account forgteatest fraction of total living biomass in a
forest and do not pose too many logistical problamntke field measurements (Brown, 1997). AGB in
this study is defined as the total amount of abgnaeind organic matter in living trees greater thén
cm diameter at breast height (dbh) and taller th&m excluding foliage and branches less than 2.5
cm, expressed as oven-dry weight. The AGB, thumeéedf often make the field work more practical
and reduces the risks of measurement errors (ewple counting or omitting of trees in sample
plots), especially in dense forests. Excludingfidleage biomass is justifiable as such biomassestor
carbon only temporarily.

Accurate estimation and mapping the distributiorfasést biomass is a prerequisite in answering a
long-standing debate on the role of forest vegmtaih the regional and global carbon cycle (Lu,
2006). Selection of appropriate biomass estimati@thod and use of reliable forest inventory data
are two key factors for this purpose (Zhao and Z#005). This study, implemented in the north-
eastern cool temperate forest of China, has focasdrlomass and carbon sequestration estimation at
landscape level in Wangqing forest. North-east €mimaintains a large area of forests and has been
experiencing the largest increase in temperatuee the past several decades in the country; oeer th
past two decades, the average temperature indienrkas increased at the rate of 0.8B&ear (Tan

et al, 2007). Since China occupies a pivotal positiaybglly as a principal emitter of G@nd at the
same time also as host to some of the world's $angdorestation efforts, and as a key player in
international negotiations aimed at reducing gloB&IG emissions (Chent al, 2007), therefore,
studying its forest biomass stock is importantdostainable use of the resources and understanding
the forest carbon budget. This study is in linehwite recently held {3meeting of the Conference of
Parties (COP) in Bali where parties realized thednf®r further methodological work on assessment
of the amount of reduction or increase in GHG emis§UNFCCC, 2007).
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1.1.2. Methods for assessment of forest biomass and carbon sequestration

Application of appropriate biomass estimation mdtand transparent and consistent reporting of
forest carbon inventories are needed in both s@iemterature and the GHG inventory measures
(Somogyiet al, 2006). Different approaches, based on field negsents, remote sensing and GIS
have been applied for AGB estimation (Lu, 2006).e Tinaditional techniques based on field
measurements only are the most accurate but hagepebdven to be very costly and time consuming
(de Gier, 2003). The use of remote sensing (R9)niguaes has been investigated, but as yet this
approach has met with little success for multi-agelti-species forests and only with limited susces
in forests with few species and age classes remtiiagea broad range of biomass distributions
(Schroederet al, 1997). Nevertheless, even where RS data arelUsefastimating forest biomass/
carbon, ground data is still necessary to devdlebtomass predictive model (i.e. calibration) #@ad
validation (Zianiset al, 2005); because remote sensing does not measomeass, but rather it
measures some other forest characteristics (eagtrap reflectance from the canopy). A sufficient
number of field measurements are a prerequisitedéveloping AGB estimation models and for
evaluating the AGB estimation results. GIS-basedhods require ancillary data such as on land-
cover, site quality and forest age to establishiralirect relationship for biomass in an area (Lu,
2006). Such methods are difficult to implement liseaof problems in obtaining good quality
ancillary data and the comprehensive impacts oirenmental conditions on biomass accumulation
(Brown, 2002; Lu, 2006).

Biomass assessments on an area basis are usualiy caut by using a multi-phase sampling design
(de Gier, 2003) as illustrated in Figure 1.1. Ihdaze simplified into three phases when we also
consider the integration of RS data into the figéda. The first phase of the design may use pixels
from optical satellite imagery as sampling unitenfr where spectral signatures can be extracted
easily. In the second phase, sample plots correlépgrio the pixels of first phase are established i
the field and all the trees inside it are measdoeddbh, among other things (these trees are not
measured for their biomass). In the third phaselatively small but representative sample ofdree
are selected and they are measured for biomagdditica to dbh, height, etc (Cunia, 1986a). These
sample trees are used to develop biomass equasedion tree variables like dbh and height. This
relationship is then applied to calculate biomassath tree in the sample plots of the second phase
the sum of which gives the total tree biomass eptot. To obtain a good regression equation, one
should randomly select an equal number of sampkstfrom each diameter class so that the entire
range of the diameters are covered (de Gier, 200Ben previously developed biomass equations
exist, the third phase is no longer required; hawew critical assumption in such a case would be
that the population for which the equations existl #he population being inventoried are similar
(Cunia, 1986a). This is a big assumption, sincenbigs equations from one location can not simply
be used in another location, even when they aréogically comparable (Cunia, 1986a; de Gier,
1999). Before applying any equation directly in fiedd, its suitability should be explored in teriwis

the range of dbh, cover-type, geographic locatiot the management system and also it should be
validated by felling a sufficient number of tre€Bhe application of existing equations without
validation is prone to a bias of unknown magnit(ae Gier, 2003).

If validation of existing equation is to be carriedt, felling of a sufficient number (>25) of
representative trees is indispensable (de Gierd)2@uch felled trees, however, might be betteduse
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to derive new biomass equations for the area copdersince these equations are always better than
the validated ones (de Gier, 2003; IPCC, 2003).

Satellite Populatlon
Study area |[<—» : biomass
image .
estimate
@ Sample pixels .| Spectral | RS regression
in image values/ VI equation
@‘ Field sample | Tree | Sample plot
plots variables biomass
@ Tree .
Sample trees . Tree biomass
. variables, i
in field . equation
Tree biomass

Figure 1.1 Multiphase sampling design for biomass asssment; 1, 2 and 3 indicate first, second and third
phases; (adopted from de Gier, 2003).

If existing equations are lacking, measurementaaiple tree biomass and its variables in the f&eld
necessary. While measuring the sample tree vasableasy and straight forward, measuring the
sample tree biomass is difficult. The existing noeih of sample tree biomass measurement can be
categorized into non-destructive and destructiviee Tion-destructive methods do not require tree
felling. Tree measurements are made either by dlightthe tree or taking photographs. These
methods, however, can give only the volume of tremsdestructively. To estimate the tree biomass
one has to rely on density values (which is alreadyproduct of destructive process) of tree
components from literature. The calculated bionmmsthese procedures can not be validated unless
the sample trees are still felled and weightedirSeffect purely non-destructive biomass sampling
does not exist. The conventional destructive methddlling down the sample trees and weighing it
totally with a scale. Total weighing can only benddor small trees as bigger trees can not fit anto
scale. In such cases, sectioning of bigger tretss parts/ components becomes obligatory. Such
measurements confine themselves initially with Hres green weight estimates, with or without a
minimum diameter limit (de Gier, 2003). While theegn biomass of the entire tree can be measured
without any appreciable error, the oven-dry biomafsa given tree component is usually estimated
based on haphazardly selected sub-samples thfitsirmeasured in the field for the fresh biomass
and then oven-dry biomass determined in labora®nsed to estimate the total biomass using ratio
estimator (Cunia, 1986b). Dry weight estimationsafmple trees based on such sub-samples of the
sections are, therefore, subjected to bias (de, Gd83). Field measurements are very demanding for
accurate biomass assessment, although requireisleaise amount of labour and cost.
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Sub-sampling method

In view of the lack of cost effective and unbiadéaimass estimation methods, de Gier (1989) adopted
a sub-sampling method as suggested by Valestiré,, (1984). Although destructive, this method is
found to be cost effective and overcomes many@fttinstraints identified in biomass measurements.
It also produces unbiased estimates of tree voldrash weight and dry weight (de Gier, 1999; de
Gier, 2003; Mabowe, 2006). The method uses theciples of randomized branch sampling (path
selection) and importance sampling (de Gier, 2008jhe first step a ‘path’ is selected through the
tree (see section 2.3.2), starting from the butd anding at a predetermined minimum branch
diameter. At every node of branching a decisiohais to be made about the continuation of the path.
The path continues towards the branch (segmenk) Righer probability that is proportional to the
size (base diameter;)dThe path selection terminates at the point wkeeminimum diameter is
reached. The minimum diameter is fixed to redueeaimount of work. The unconditional probability
of a segment (see formula in section 2.3.2) igéiselt of multiplication of the probabilities ofl &he
segments in the path from the butt end till thensmg concerned. Thus the last segment has lowest
probability. The second step of the method is irgpare sampling where by one randomly located
disk from the path is removed. At this stage, tathf the tree is considered to consist of amitei
number of infinitely thin disks, of which one islseted with a probability proportional to its diaime
squared (de Gier, 2003).

For volume calculation by the method, points acated along the path where change in taper occurs.
The diameters and corresponding distances fronbdlieare measured at each of these points. The
inflated areas at the points are calculated byddigi diameter squared by its unconditional
probability. The calculated inflated areas of twbsequent points and the distance between them are
used to calculate the inflated volume of the segmsing the Smalian formula (see section 2.3.2).
Adding all such volumes, of all sections, resulisan unbiased estimate of the total tree woody
volume (de Gier, 2003).

For the weight estimation, a disk (about 10 cmkhis removed from a random point along the path.
This point is determined by multiplying the estiedtotal tree volume with a random number. The
segment in the path at which this volume is readkeientified and the exact point within the
segment where the disk is to be removed is detedry interpolation. The weight per unit thickness
of the disk is determined and is divided by theanditional probability of the segment from where it
was removed. Multiplying this value with the esttethtotal tree woody volume and dividing it by the
square of the disk diameter gives the total woadgt biomass. The oven dry weight of the disk can
be used to calculate the total tree dry biomaskdrsame way as with fresh weight (de Gier, 20103).
the disk is large, it can be split into wedges and wedge is selected with a probability proposion
to weight. The weight of the selected wedge whetddd by its selection probability results in the
estimate of the disk weight.

The method has the strength to give on the spohatss of volume and fresh weight. After oven-
drying the disks or wedges, tree dry weight is wlalied. The path selection reduces much of the work
as the branches that are not included in the selguth, do not require measurements. Further there
is no need to weigh the whole tree, a small samdjgie’ wedge is enough. Hence it is time efficient
and cost effective. The equipments required inntle¢hod are mostly light-weight; the heaviest piece
is a power saw but that can also be carried by .hgiett work can be efficiently carried out by two
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people (de Gier, 2003). However, the procedure asesiderable amount of computations that makes
use of a hand-held computer necessary. De GieBJ280kled this problem by developing a ‘biomass
assessment’ program adapted for use with an iPAQ. PD

Biomass egquations

Most of the existing equations relate above grodrydbiomass of trees to its biophysical variables
such as dbh, height, etc (Zianet al, 2005). Using more variables in an equation rexguir
measurement of sufficient number of trees to cdker full range of the variables. This calls for
equations that use as few as possible variablesiuse necessary tree felling will be reduced (de
Gier, 2003). Incorporating more variables in theiamn does not necessarily improve the accuracy
of the estimate significantly; De Gier (1989), Smuer (1997) and Wang (2006) found that
incorporating the height did not significantly irope the models based on dbh alone. Further,
measurements of some of the variables (e.g. total lheight) in the field are more difficult, time
consuming and less accurate than measuring dbh dGetval, 1999). Hence, dbh is the most
common predictor in biomass equations (Jenkinal, 2003; Wang, 2006; Zherej al, 2004; Zianis
and Mencuccini, 2004). The method of least squezgeession is quite common in the development
of biomass equations (Furnival, 1961; Parresol919%hen biomass regressions are calculated by
statistical least squares methods, the randomgbastib-sampling error is automatically taken into
account (Cunia, 1986a). Unweighted least squardsnages are fully efficient only when
homoscedasticity exists or, in other words, onlyewhhe standard error of the residuals is constant
for all classes of the dependent variables (Fuknit@61). In reality, the standard error of the
residuals tend to vary with the size of trees;dargees deviate more from the regression curve tha
do small trees. So weighting of the regressionfents is important (Parresol, 1999); theoretical
weights should be employed that are inversely ptapaal to the variance of the residuals (Furnival,
1961).

Large number of biomass models exists in literatuamd it is really difficult to decide which model
form is most appropriate for a particular set ofaddlowever, the usual index of fit, the root mean
square error (RMSE), can be used to compare madtiels have the same dependent variable
(Furnival, 1961). Prediction errors, logical befmawi of the models, coefficient of determinatiorf)(R
and simplicity of the models are some other cidtéor choosing appropriate model (Schroeeteal,
1997). The commonly used mathematical models fombks studies take the form of the power
function (Fehrmann and Kleinn, 2006; Greenhal, 2005; Hallet al, 2006; Menget al, 2007;
Samalca, 2007; Ter-Mikaelian and Korzukhin, 199&stét al, 1997; Zianis and Mencuccini, 2004;
Zianis et al, 2005); polynomial function (Cunia, 1986a; de G003; Parresol, 1999; Ziani al,
2005) or combined variable models (de Gier, 2@B&goire and Williams, 1992; Parresol, 1999;
Zianiset al, 2005), as given below.

Power function, M =4db (1)
Combined variable model, M s-8aDH (2)
Polynomial model M s8aD + aD?+ aD3+.................. (3)

Where, M = biomass (kg); D = diameter at breasttite{dbh); H = tree height and = regression
coefficients that are reported to vary by specstand age, site quality, climate and stand density
(Fehrmann and Kleinn, 2006; Zianis and Mencuc@i4).
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The equation (1) is simple to use as it containly @me variable, dbh. It is solved by taking
logarithms on both sides and employing simple limegression techniques. But the problem with this
model is that the calculated coefficient ‘a’ frometlog transformed model is biased and the
relationship between biomass and dbh can not labledied because the correlation coefficient and
the coefficient of determination refer to the logrisformed equation, not to the power function (de
Gier, 2003; Parresol, 1999; Ziang al, 2005). The equation (2) can be solved by simjplear
regression technique. This model requires two & dbh and height. The polynomial equation (3)
also requires only one variable, dbh and it carsddged by multiple linear regression techniques.
Models (2) and (3) allow a correct calculation tsf precision, although usually require weighting (d
Gier, 2003). The problem of heteroscedasticity wittmass data is solved by weighing.

Biomass equations are preferred if one has acoeagépresentative sample of tree-wise data from
the target population (Somogwi al, 2006). The biomass estimates from local siteifipaxmjuations
are considered accurate in forestry applicatiom® Good Practice Guidance (IPCC, 2003) and the
guidelines for national greenhouse gas inventdiie€C, 2006) by the Intergovernmental Panel on
Climate Change (IPCC) prefer the selection andafisspecies-specific or similar-species allometric
equations in the priority order of local to natibt@global scale. So, development of a local bissna
eqguation can be helpful in the evaluation of thecimion of biomass estimates while using altereativ
models. Only the above mentioned three models\aiei@ed in this study because of their simplicity
and wide application.

Annual wood increment and carbon sequestration

Estimating the annual biomass or carbon incremardslive tree is an important component towards
understanding the carbon balance of forested etmags The measurements of annual growth rings
(if exists) in trees in conjunction with biomassuations is an established method for determining
above-ground woody biomass increment in live trgésath, 2000). Bouriaudt al., (2005) found
very strong relationships between basal-area inenérand annual wood accumulation in trees. The
growth rings of a tree can be measured either impving a disk or taking out a core from the trunk.
In the latter case, an instrument called increnbemér is drilled into the tree trunk and a cylirai
core of wood is extracted. In areas having a dis@nowing season, most species have equally well
defined annual rings. In a tree, the cambium (#iks ¢hat will become wood or bark) grows in a tigh
layer during late spring/early summer changing taek layer in later summer/early fall. The light
layer is early wood, formed when the tree is gragiapidly. The dark layer is late wood and is grown
more slowly. The growth occurs at the outside @& tunk, just under the bark, so that a light and
dark ring pair represents one year. The procedureading increment core data for the assessment of
annual biomass increment is explained by de Gi@8q)L Loetsclet al.,(1973), as cited by de Gier
(1989), derived a relation for annual tree volumerément based on tree volume equation and annual
over-bark diameter increment. The annual over-lshakneter increment is the sum of the annual
increments in under-bark diameter and bark-thickn&ke under-bark diameter increment and the
increment in bark-thickness can respectively benaged from the measurements of growth rings and
bark-thickness at the breast heights in samples tfeee the procedure in section 2.3.2). In a simila
way as for volume increment, a relation for anninatement of tree biomass (both fresh and dry) can
be obtained (de Gier, 1989). The tree biomass linen¢ equation can be used to estimate the plot




MODELING AND MAPPING OF ABOVE GROUND BIOMASS AND CARBON SEQUESTRATION

biomass increment based on available plot diantt. From that annual carbon sequestration can
be estimated since roughly 50 % of the dry bionmsarbon.

Lack of location specific biomass equations andnamn precision of estimates from existing
regional and global equations has inspired thiglystior a reliable estimation of biomass, annual
biomass accumulation and carbon sequestration lahdscape level in Wangging forest in Jilin
Province, Northeast China. This study has focuseddeveloping good quality local biomass
equations based on easily measurable tree vagable as dbh. The use of sub-sampling method for
the estimation of sample tree biomass and validadiits accuracy is also sought by undertaking
total weighing of some sample trees. The area-basghates from the newly developed equations
can then serve as a reference to assess the acofisimilar estimates while using existing regibna
or global equations. As North east China has distvinter and summer seasons and most of the tree
species bear annual growth rings, an attempt i®ertadse tree growth rings and barks thickness data
to develop a relation for carbon sequestrationresion.

Once the equations for tree biomass, annual woodnaglation and carbon sequestration are derived,
sample plot estimates can be obtained by applyiegeguations to the sampled plot tree diameter
data. These plot estimates can then be taken apéndent variables and related to satellite datha su
as vegetation indices, for large scale mapping.

1.1.3. Remote sensing for mapping of biomass and carbon

The traditional approach of biomass assessmenhgeheavily on field measurements is often time
consuming, labour intensive and difficult to implkemb, especially in remote areas. While for small
scale biomass assessment the conventional methagbad, they cannot provide the spatial
distribution of biomass over large areas. The ehgiihg issues of carbon sequestration require
biomass estimation over large area. Remote sertgicigniques has been extensively used for
vegetation mapping and monitoring (Bogtlal, 2002; Brownet al, 2000; Ingram, 2005; Let al,
2004; Maynardet al, 2007). Use of remote sensing data has been eatwplimy many studies on
biomass assessment (Dogigal, 2003; Foodyet al, 2003; Foodyet al, 2001; Heiskanen, 2006; lai

al., 2004; Maynarcet al, 2007; Muukkonen and Heiskanen, 2005; Steininge60; Zhenget al,
2004). Remote sensing may be the only feasibletavagcquire forest stand parameter information at
a reasonable cost, with acceptable accuracy, asibie effort because of its data advantages which
include repeated data collection, multi-spectral anlti-temporal images, synoptic view, fast digita
processing of large quantities of data, and corbpigyi with geographic information systems (GIS)
(Lu, 2006). Remote sensing also allows independentitoring of resources (de Gier, 2003). These
advantages of remotely sensed data, and obsengd durrelations between spectral data and
vegetation parameters in many cases make it timeapyi source for large scale AGB mapping. In
general, the AGB can be estimated using remoteatgexk data with different approaches, such as
multiple regression analysis, K-nearest-neighband neural network (Lu, 2006).

The most frequently used RS data continue to bm fitte optical moderate resolution sensors like
Landsat Thematic Mapper (TM) (Hadt al, 2006; Heiskanen, 2006; Ingram, 2005; Lu, 2006;eLu
al., 2004). Estimation of forest biomass over largsarfrom the analysis of such satellite data would
enable many additional questions about the ecdabdimctioning of natural or human modified
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landscapes to be addressed (Steininger, 2000)ieSthdve shown that TM data provide comparable
and in some cases, stronger predictions of cefta@st structural features when compared to radar
satellite systems or other optical sensors of airslpectral and spatial resolution (Ingram, 2005).
Biomass can not be directly measured from space,rbmotely sensed spectral signatures can be
used to estimate biomass (Doeitgal, 2003). The biomass measurements from sample gdotshen

be integrated into the RS techniques to get cdsctfe and large spatial information on AGB
distribution.

The possibility of estimating biomass by satellR& has been investigated in several studies at
various spatial scales and environments (Heiska2&96). Biomass estimation using RS has
remained a challenging task, especially in areath vdomplex forest stand structures and
environmental conditions (Lu, 2006). A good undeamsing of relationships between forest biomass
and remote-sensing spectral data is a prerequisiteleveloping appropriate biomass estimation
models (Steininger, 2000). Identifying the spectvalvelengths or wavelength combinations that are
most suitable to use to acquire information abospecific biophysical parameter in a given study
area is difficult (Luet al, 2004). Vegetation indices (VIs) and band ratiedshmodels are most
commonly used to produce estimates of biomass (Febdl, 2003; Hurcom and Harrison, 1998;
Schlerfet al, 2005; Zhenget al, 2004). A variety of ViIs have been developed, it most popular
ones using red and near infrared wavelengths tohasipe the difference between the strong
absorption of red electromagnetic radiation andstineng scatter of near infrared radiation. VIs are
used to remove the variability caused by canopyrgry, soil background, sun view angles, and
atmospheric conditions when measuring biophysicapgrties (Lu, 2006). Nonetheless, Vs are also
sensitive to internal (such as canopy geometryaiterfactors, species composition) and external
factors (sun elevation angle, zenith view anglenoapheric conditions) that affect vegetation
reflectance (Luet al, 2004). There is wide disagreement in literatlseregards the biomass- Vis
relationship. Many studies report a significantlysjtive relationship between the values of the Vis
and the biomass at least up to the reflectance @syenof the canopy (Boyet al, 1999; Heiskanen,
2006; Hurcom and Harrison, 1998; Maynagt al, 2007; Steininger, 2000; Zherey al, 2004);
however, some results have shown poor relation$tupdyet al, 2003; Schlerkt al, 2005).

The normalized difference vegetation index (ND\4gé€ formula in section 2.5) is one of the most
commonly used VIs in many applications relevaranalysis of biophysical parameters of forest. The
strength of NDVI is in its ratioing concept, whigleduces many forms of multiplicative noise
(ilumination differences, cloud shadows, atmosjih@ttenuation, certain topographic variations)
present in multiple bands (Huet¢ al, 2002). However, conclusions about its value vedgpending

on the use of specific biophysical parameters &edcharacteristics of the study area. Foetsl.,
(2003) tested several VIs and found that NDVI wagem among the top 10 indices defined in terms
of the strength of correlation with biomass of smplots. Although in some cases NDVI have
shown good correlation with leaf-area index (LAt)did not appear to be a good predictor of stand
structure variables such as height, basal areatal biomass in uneven age and mixed broadleaf
forests (Luet al, 2004). Zhengt al.,(2004) used five VIs and found best result withrected NDVI
(NDViIc) in predicting AGB. NDViIc is calculated frofRed, near-infrared (NIR), and middle infrared
(MIR). NDVIc can help account for understory effeaind is useful in secondary forests (Zhengl,
2004). Simple ratio, SR (ratio of NIR and Red) i®t#er commonly used VI for the study of forest
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biophysical variables (Schlegt al, 2005). Heiskanen (2006) and kual, (2004) found SR to be
significantly correlated with AGB.

Vegetation has a high near-infrared reflectance, uscattering by leaf mesophyll cells and a low
red reflectance, due to absorption by chlorophiginents. The value of the NDVI for vegetation will
hence tend to one. By contrast, clouds, water aod $1ave a larger red reflectance than near-irdrare
reflectance and these features thus yield neghtivél values. Rock and bare soil areas have similar
reflectances in the two bands and result in vatii@é¢éDVI near zero.

Previous studies have shown that middle-infrardtectance (TM band 5) have strongly negative
relationships with biomass (Boyet al, 1999; Lu, 2006; Steininger, 2000). Schletfal., (2005)
observed better relation between middle-infrared(MVI: ratio of NIR and MIR) and tree crown
volume than SR and NDVI and concluded that the N&d in combination with the NIR band
contain more information relevant to the charagtdidon of forest canopies than the combination of
Red and NIR bands.

Shortwave infrared (SWIR) modification to simpldioacalled Reduce Simple Ratio (RSR) (see
formula in section 2.5) can also be used to sthdyrélationship with biomass as it has been found b
sensitive to change in LAI; reduces the effectaékbground reflectance; negates the effect of mighe
NIR reflectance in deciduous canopies and unifesdlious and coniferous species in LAI retrieval
from RS data (Browrt al, 2000). The Enhanced Vegetation Index (EVI) wasetiged to optimize
the vegetation signal with improved sensitivity high biomass regions and improved vegetation
monitoring through a de-coupling of the canopy lgaokind signal and a reduction in atmospheric
influences (Huetet al, 2002).

A number of soil adjusted vegetation indices alsiste to reduce the effect of the soil background
reflectance. However, in the forested environmbathare soil is rarely visible and the definition o
soil line is difficult and the line is discontinueuHeiskanen, 2006). Hence application of soil
adjusted vegetation indices becomes futile.

Saturation issue

The saturation of the relationship between bionaassthe NDVI is a well-known problem (Mutanga,
2004). The most logical explanation is that as pgremver increases, the amount of red light that ca
be absorbed by leaves reaches a peak while NIBctafice increases because of multiple scattering
with leaves (Tenkabait al, 2000). Further, NIR reflectance also saturateh wicreasing leaf area
index (LAI) > 3 and so does NDVI (Schleet al, 2005). The imbalance between a slight decrease in
the red and high NIR reflection results in a slightinge in the NDVI ratio, hence yields a poor
relationship with biomass (Mutanga, 2004). Raug®5) reports that saturation level may depend on
the tree species and forest types as well as tendrsurface type (because, Imhoff (1995) found
saturation level at 40 tons/ha of dry biomass mperate forests in USA; Luckmaat al., (1998)
observed saturation level at 60 tons/ha in a teddmrest in Brazil; Fransson and Israelsson (1999)
observed the saturation at 14%/ma in a boreal forest in Sweden) [Note: as an@ppration, forest
stem volume (1tiha) in boreal forests can be converted into doyraiss (tons/ha) by multiplying the
stem volume estimate by 0.6, as cited by Raust85)20Steininger (2000) found that the canopy
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reflectance saturated when AGB approached aboug/if i.e. 150 tons/ ha in a tropical secondary
forest in Manaus, Brazil.

This study will try to identify the most likely Visr band ratio that best correlate with AGB of
Wanqing forest. The saturation issue of VIs willibeestigated for the existing level of biomasskto
in Wanggqing forest.

1.2. Problem statement

There is considerable interest today in estimatitgg biomass of forests for both practical forestry
issues and scientific purposes (Parresol, 1999; @aml, 2007; Wang, 2006). However, the
guantification of biomass or carbon pools of a $oreuffers from a number of methodological
problems. Accurate biomass estimation requires llocapplicable tree biomass equations.
Unfortunately, all forests do not have such equati®lthough a large number of biomass equations
exist in literature, their applicability to any &st is questionable. Very often it is unknown hoanm
trees of what kinds were used and how they werctal for the development of biomass equation
(de Gier, 2003; Zianigt al, 2005). The unclear description of the existingatpns regarding the
range of dbh, cover-type, geographic location amel management systems for which they are
applicable makes the use and estimate uncertaimd&s equations may vary by forest/ cover type,
age, site conditions, stand density and climateGe, 2003; Fangt al, 2001; Zianiset al, 2005).

So before applying any secondary equation, they nede validated by felling a sufficiently large
number of trees (> 25) (de Gier, 1999). But insteffklling trees for verification, they can bettss
used for the development of local equation. Theo&Practice Guidance (GPG) for Land Use, Land
Use Change and Forestry’ (IPCC, 2003) has show @f fflexibilities in terms of the use of existing
equations. The GPG has given priority for the ukallometric equations in the order of local to
nation to global scales in biomass calculation. ey, the effect on precision of biomass estimates
at the area concerned while using an equation dpedlat different geographic location, needs to be
tested.

Developing a biomass equation requires harvestimlj measurement of sample trees for their
biomass. True biomass of the sample trees canbenbybtained by total weighing using a scale. But
this method is very laborious and expensive. Oracehis tree sub-sampling which is time-efficient
and cost effective. Although the sub-sampling meétbbbiomass assessment is designed to substitute
the time consuming field measurement techniqudsased methods, the sub-sampling estimates still
needs to be tested for its accuracy. As this metvasinever tested in cool temperate forest suahm as
north-east China; its reliability can not be essdi#d without verifying by felling some trees and
subsequently measuring biomass by both sub-samplidgtotal weighing. The existing equations
(national or global) can also be tested for thell®f precision by comparing field measurements on
sample trees with the estimates from the equation.

The study area, Wangging forest in Jilin Provingerth-east China, maintains abundant forests
characteristic of cool temperate zone. Wang (20@6&) mentioned that only few biomass equations
exist for the tree species in Chinese temperatstsr The local forest management authorities do no
have information on the available and harvestateksof AGB in the area. At a time when the issue
of reducing GHG emissions is seriously growing, thebon sequestration potential of the forest is
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still unknown. The temperate region biomass equatisuggested by GPG (IPCC, 2003), hereafter
called IPCC equations, have originated from thedbtrees of eastern USA. Similarly, one existing
local Chinese equation evaluated in this studyaised on temperate forest in another province in
north-east China. This study is also meant to Begtecisions of the biomass estimates while using
the regional (local Chinese) and global (IPCC) ¢igua.

Measurements of growth rings can be applied foretsttmation of annual wood accumulation and
carbon sequestration (de Gier, 1989). But thismi@khas not been explored in the Wangqging forest.
Whether the relationship between diameter incrensmt annual wood increment exists for the
Chinese tree species; whether the relationshipbeacombined for all the trees species together;
whether it is feasible and accurate are some ofsthees that can be attempted from annual growth
ring measurements. If the method be establisheddéyeloping equations for annual wood
accumulation and carbon sequestration then it wgrddtly benefit the concerned stakeholders.

In RS based biomass assessment, biomass equatibill istal to estimate plot biomass which is
correlated with spectral data for large scale magppiree based biomass estimate is calculated by
applying the biomass equation to the individuakesreof randomly selected plots. The biomass
estimate of all trees in each plot is then aggesyad obtain the plot biomass estimate. €aml.,
(2007) has mentioned that no studies have been tomestimate the forest biomass for northeast
China by using remote sensing data. The generdl ddcspatial forest biomass data has been
considered one of the persistent problems at pddiegl for sustainable management planning. This
study is directed at the integrated use of RS a&ld fnventory data to map the spatially explicit
patterns of AGB distribution. Models derived frons Rind verified with ground data can be used
appropriately to predict AGB for a given landscafikso the problem such as saturation effect of VI
with RS data in mapping the distribution of AGB dsdo be explored; saturation effect of VI with
vegetation abundance is unknown for the study #ratacan be explored. This study is intended to
look into the accuracy levels of different biomassessment methods with scientific eye.

1.3. Research questions

1. How accurate is the estimate of tree biomass bysauipling method?

2. Which model out of polynomial, power and combinetiable forms is appropriate for the
estimation of above-ground biomass at a landsceale svhile considering the accuracy and
problems in tree variables measurement?

3. How do the estimates from the existing ChineselB&L equations compare (with respect to
precision) with the sub-sampling estimates and whatild be their impact on assessing
carbon reservoirs and sinks?

4. How reliable is the estimate of carbon sequesmailztained from growth ring measurement?

5. Which vegetation index or spectral bands besteadimtabove-ground biomass? And what is
the biomass estimate of Wangging forest?

6. Is there a saturation problem of VI in the studga& If yes, at what level of biomass does VI
start to saturate?

12
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1.4.

1.5.

Objectives

To assess the accuracy of sub-sampling methodef@bte, unbiased and cost effective-
biomass estimation

To develop biomass equations based on field memsunts of sample trees for landscape
level biomass estimation

To compare the effect of area based above-groumehdsis estimates using local Chinese
equations and IPCC equations in respect of preatisith the field measurements

To estimate the carbon sequestration of the fousstg growth ring measurements and
compare with secondary information

To map the spatial distribution of forest biomasig the best combination of remote sensing
and ground truth data

To evaluate the saturation issue of Vs

Hypotheses

The estimates of biomass by the sub-sampling metratl total weighing do not differ
significantly

Locally developed biomass equations give betteimaseés of above-ground biomass
compared to the existing regional or global equetio

Carbon sequestration estimates obtained from groimth measurements is comparable to
secondary information

Linear relationship of spectral VIs and plot biosy@san be used to map the distribution of
above-ground biomass and carbon sequestration
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2. Methods and Materials

2.1. Study area

The study was implemented in Wangqing forest im Jrovince, Northeast China (see Figure 2.1).
The criteria for the selection of the study areaeweutting of trees for the research purpose shbal
permissible; area should be accessible by footeticle; support staff and local labours should be
available during field measurement; satellite inmgend maps should be available; and the area
should represent typical cool temperate region eepeing severe influence of global warming.
Since the area is also research site for some ¢fi@students and the local forest authority have
collaboration with ITC and required data and resesrfor the study were available, the site was
selected for the study.

The study area (43°083°40N and 129°56131°04E) covers approximately 85x60 kntool
temperate forest and is located along the bordevdss China and North Korea. The Wangging
forest area belongs to Changbai mountain systerohniki one of the most valuable Chinese forest
reserves because of its rich floral diversity. Thmate is continental monsoon with windy spring, a
warm and humid summer, cool autumn and dry colderifWang, 2006). Mean annual temperature
is 3.9°C. The mean annual precipitation is 438 mm, ab@ &f which takes place between May
and September. The elevation of the Wangqing foeegies from 360 to 1,477 m above sea level and
the steep slopes of the terrain even exceed 75ptei@ber is the end of growing season of vegetation
in Wanggqing.

Jilin

Figure 2.1 The study area, Wangqing forest in Jilin Provine, North-east China
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The area broadly covers 3 forest types by structueedle-leaved, broad-leaved and mixed forests
(Xing, 2007b). The main needle-leaved forest tigeces ard®icea jezoensis, Larix olgensis, Abies
holophylla and Pinus koraiensiswhile the deciduous broadleaf forests are charaeBetula
platyphylla, Quercus mongolica, Betula castata, #Hap ussuriensis, Fraxinus mandshurica and
Ulmus pumila.The mixed forest tree species dpinus koraiensis, Picea jezoensis, Pinus syhastri
var. mongolicalarix olgensis, Abies holophylla, Tilia amurendidmus pumila, Betula platyphyllia,
Betula castataand Acer mong(Xing, 2007b). The forests in the study area ase®islly even-aged
secondary forests which are the result of largdestalustrial logging by Russian and Japanese
invaders and the Chinese government since theofuire 20th century (Wang, 2006). In many places
the primary forests have been replaced by largke sdantations of pine and larch. The Mongolian
oak Quercus mongoligaforests are distributed at arid infertile stegpes, mixed deciduous forests
are distributed over well drained fertile mid-slepgnd hardwood forest at moist fertile gentle toe
slopes (Wang, 2006).

2.2. Research Approach

A multiphase (three-step) sampling approach asritestin Chapter 1 (section 1.1.2; Figure 1.1) was
used for the estimation of biomass and carbon sti®n. The first phase involved analysis of
satellite image while the second and third phasespectively comprised the enumeration of sample
plots and measurements of sample trees. Insideatmple plots all the trees were measured for dbh
only while the sample trees, selected randomly iadeépendently outside the sample plots, were
measured for biomass besides dbh and height. Boofasl the sample trees was estimated by a sub-
sampling method. In addition, total weighing ofamber of randomly selected sample trees was also
done to validate the estimation by sub-samplingeAfalidation, biomass data obtained from the
measurements of sample trees through sub-sampéng used in a regression analysis, together with
tree variables dbh and height. The developed bisnemgiations (dry weight, fresh weight and
volume) were then used to estimate biomass of #raehin the sample plots, the aggregate of which
gave the plot biomass. The plot biomass values tdalsulated were then related by regression
analysis to the spectral values (vegetation indard ratios) of corresponding pixels in the TM imag
of the study area. The resulting regression madsehg spectral data as explanatory variable and plo
biomass as response variable, was then used moag¢stiotal biomass in the Wangging forest and also
to make a biomass distribution map.

In order to develop annual wood accumulation andara sequestration equation (explained in
section 2.3.2), growth ring and bark-thickness meseents were made on disks removed at breast
height from the same trees as used for sub-sampling

2.3. Data collection

2.3.1. Secondary data collection

A local (regional) tree biomass equation for na#st Chinese temperate forests was collected from
literature (Wang, 2006). The IPCC equations forpgerate forest trees species are given in Annex
4A.2 of the Good Practice Guidelines by IPCC (20&3) Schroedest al., (1997). Topographic and
vegetation information of the study area were otadi from Xing, Y. (2007) through personal
communication who also helped in the processingabéllite data. Scientific names of tree species
were validated by literature analysis.
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2.3.2. Primary data collection

Field data are necessary for both conventionalrambte sensing based biomass assessment (FAO,
1981). The primary field data collection basicallyolved two phases. One phase was the
enumeration of randomly located sample plots amddtiner was harvesting and measurements of
sample trees. In addition, for the purpose of adsgsannual wood accumulation and carbon
sequestration in trees, annual growth rings of scamelomly selected sample trees were measured.
The descriptions of the measurement process ddl@ss:

2.3.2.1. Sample plot measurements

Sample plot measurements were necessary to estihetbove-ground biomass (AGB) and annual
carbon sequestration on per hectare basis and@lgsbe whole study area. A general idea on the
distribution of forest in the study area was ob#dirfrom an unsupervised classification of TM
imagery (of September, 2006) of the area. 138 kirqulots of 500 r(radius 12.62 m on flat terrain),
randomly established throughout the study areagvestumerated in September, 2007. Random
selection of the sample plots was first made on fiise color composite of the geometrically
corrected TM image and was positioned in the figith the aid of a GPS. A Garmin GPS set in the
UTM projection system was used to locate the pkutres in the field. Next, slope, aspect and
altitude of each plot were recorded. The slope wearded after cross verification by taking
measurements up and down the slope by two persandiisg roughly at 25 m distance on the plot
diameter along the slope. A slope correction taides used to obtain plot radius in order to get a
horizontal plot area of 500 inCircular plots were preferred because they weasy end quick to
layout in the field, and determination of treeddesthe plot was less problematic than in squawspl

A bigger plot size was not used to avoid the risldauble counting or omission of trees in the dense
forest during enumeration. The size of the circplat is comparable to the spatial resolution of TM
image (30x30m). Species and dbh (at 1.3 m abovgrthend) of each standing tree above a minimum
dbh of 10 cm were recorded in each plot (Brown,71$9A0, 2004; Foodt al, 2003; Schroedest

al., 1997). Over-bark dbh of each tree in the plots weasured with a caliper to the nearest mm in
two perpendicular directions. To avoid bias in dbteasurement, the direction of the first
measurement was always with the caliper orientevatds the plot centre and the second one
perpendicular to it (de Gier, 1989). Smaller tred® cm dbh were not considered since they
contribute a relatively small quantity of biomaBsdwn, 1997; Schroedest al, 1997). An additional
set of 34 plot inventory data, collected by the sdaathnique (Xing, 2007b) in September 2006, was
also used in this study. Thus a total of 172 phitdsets were used for the assessment of biomdss an
carbon sequestration.

2.3.2.2. Sample trees, sub-sampling and total weighing

Sixty sample trees, representing the existing diameange and forest types, were harvested and
measured in the second week of September, 2007efikng data set of 102 plots inventoried in

2006 (Xing, 2007b) was used as reference to stlectample trees. A similar number of sample trees
were randomly selected from each 5 cm class infenfahe existing dbh range so that each class had
a nearly even tree distribution. The sample tredarged to the nine most abundant botanical genera.
The species selected, the dbh range and the nwhbees by species are given in the Table 2.1. The
dbh range of the sample trees was 7.2-36.5 cm wdoaititutes the predominant diameter range of
the nearly even-aged secondary forest of Wangdimmumber of sample trees smaller than 10 cm dbh
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were also included to fine tune the trend linenaalber dbh values. All trees were sampled fromyfull
stocked stands. Only healthy trees were selectdtkisample.

Table 2.1 Number of sample trees by species and diametange

S.N. Species DBH range (cm) Number of trees
1. Betula platyphylla 8.5-35.3 10

2. Quercus mongolica 7.2-31.6 7

3. Ulmus pumila 8.9-36.5 7

4. Tilia amurensis 13.1-24.3 3

5. Populus ussuriensis 14.4-18.9 2

6. Fraxinus mandshurica 17.1 1

7. Larix olgensis 7.7-33.5 11

8. Picea jezoensis 8.4-26.5 9

9. Abies holophylla 8.5-30.4 10

Each sample tree was assigned an identity codmcié$ name and location were noted and dbh was
measured before felling while the total height wasasured by a tape after felling. The scientific
names of the tree species were identified fromditee by Wang (2006), Wargt al.(2006) and
Xing (2007b). The stems were cut as close to tloeirgt as possible. All 60 sample trees were
measured by sub-sampling method- a computer basathbs assessment program.

Sub-sampling method:An iPAQ (a portable hand-held computer, PDA) babémmass assessment’
program developed by de Gier (2003) was used ®mbibmass estimation of the sample trees. The
program guides the user through all the necessapg $0 estimate woody biomass and volume. The
method is called sub-sampling because the totatlwb@mass of a tree is estimated based on a small
wood sample (disk or wedge) selected from a ranttaation of the tree so that the sample has a
selection probability proportional to size. The enam terms used in the method are branch, path and
segment. Branch is the complete stem system thalajiss from a single bud; the path is a series of
connected branch segments or internodes. A segmenpart of a branch between two consecutive
nodes. Each segment in a path has associatedi@elpibability proportional to size. The butt et
first node (see the level L1 in Figure 2.2) and $election probability g£1. The second node occurs
at the point of tree limbs (level L2 in Figure 2.Zhe program incorporates two main procedures
namely path selection and importance sampling (s¢sosection 1.1.2) to estimate tree biomass and
volume.

Step 1: Path selection

After felling a tree, a path was selected througlstarting from the butt and ending at the spedifi
minimum branch diameter of 2.5 cm. The path sadacinvolved the measurement of base diameter
of each branch (above 2.5 cm) at each node st&ongthe butt end to the minimum of 2.5 cm. At
each node a path was selected by the computer albrgnch based on probability proportional to its
size. The ‘size’ is meant here to the proportiom@asure of biomass in a branch and can be
approximated by @ where ‘d’ is the base diameter of the branch 4nig the length of the branch
part (segment) between two successive nodes. Dg1589, 2003) has found?dto be proportional

to ‘d*”, so biomass of a branch is simply proportionaido™. The principle of path selection can be
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understood from an example. As shown in the Figu2esuppose three branches namely 3-1, 3-2 and
3-3 are emanating from a node (level L5-L6); sadlere three different path continuations possible.
Assume that the base diameter of the three brarmieed =15, ¢.,=12 and ds=10 cm respectively.
The associated proportional measures of biomasthene871.4 (=1%), 498.8 and 316.2 for 3-1, 3-2
and 3-3 respectively. The cumulative totals are.8471370.2 and 1686.4. If a random number is
drawn, say 0.457, then the result of multiplyingthy 1686.4 is 770.7. Since 770.7 <871.4, the firs
branch (3-1) is selected.

In general the selection probability of thg Branch |L1

(or segment) out of m branches at a node iﬁéu
m La
g =dZ?*/>°d*. In the above examplap, =
i=1 L7
871.4/1686.4 = 0.52 i.e. the first branch had 52 %
probability of being selected. LB

The path then continued in the selected brancheo t|L 5
next node and the procedure was repeated till the
minimum diameter limit (2.5 cm) was reached (the
coloured branch in the Figure 2.2 represent a path)*
Following the above procedure, the program
calculated a probability value for each segmenE
emanating from the nodes along the selected path.
Unconditional probability of selection of a parti@u 1| 4
segment is obtained by multiplying the probabifitaf

all the segments in the path from the butt encthigl Figure 2.2. Principle of sub-sampling path
segment concerned selection (adopted from de Gier, 2003)

A%

k
Unconditional probability of the KsegmentQ, = |_J 0O

From the unconditional probabilityQ() and the weightR,) of a selected segment in the path, the
program estimates the total tree weighiJBy the following formula:

B = Z(Bk/Qk), where n is the number of segments in the path.
k=1

Step 2: Importance sampling

This step was basically to select a randomly |atalisk in the selected path, for the actual biomass
estimation. In this case, the path is consideredottsist of an infinite number of thin disks, orfe o
which is selected with a probability proportional its diameter squared. The process involved
marking the points along the selected path wheaa@h in taper occurred (notably at the butt and jus
before and after nodes) and measurement of diasneteeach of these points along with their
corresponding distances from the butt end. Thesasumrements alone already allow volume
estimation of the tree. For volume estimation, ghegram calculates a so called inflated area at eac
point of diameter measurements. Inflated area giomt is the ratio of diameter squared to
unconditional probability of the point. Since théstdnce between two successive points are
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measured, the inflated volume of the correspondiecfion is obtained using Smalian formula as
below.

Smalian formulaV = L><(Al + AQ)/Z whereA; andA; are the end cross-sections of a segment, L is
the length and V is the estimated volume.

The sum of all such volume sections results inra#rased estimate of the total tree woody volume.

A random location of a point from where disk hadbtoremoved, in order to estimate fresh and dry
weights of the tree, was obtained from the abovasmements. The program calculates the position
of the point by multiplying the total tree volumstienate with a random number. The segment of the
path in which this volume is reached, $qysegment, is identified and the exact positiorhefpoint
where the disk has to be removed is determinedjuininterpolation function based on trapezoidal
rule. The position of the point is obtained frora tbllowing formula:

Lex = Lyo +{(— b+./[b? - 4acj)/2a}; Where

a= (VKl _VKO)/(LKl - LKO);

b=2/,;

c= _2(U\/t _VKO);

WhereLgxis the distance of the point from the butt end gltre path in K segment where disk is to
be cut;Ly, is the distance of the beginning of, Kegment from the butt endy, andVy; are the sum

of volumes of all segments in the path respectiwdlyhe beginning and end of Ksegmentu is a
random number and is the total tree volume.

Then a disk about 10cm thick was removed by making 5 cm above and 5 cm below the point.
Approximately 10 cm thick disk was cut considerthg limited weighing capacity of the digital scale
(1 gram precision) used. For the biomass estimatian program calculates the weight (kg) per unit
thickness (m) of the disk and divides the valueth®y unconditional probability of the segment from
which it is removed. The result when multiplied the estimated total tree volumejnand divided
by the square of the disk diameter’\ngives the estimate of the tree woody biomasshdtuld be
noted that if the weight of the disk is fresh wejghe result will be estimated fresh biomass &f th
tree; and if the weight of the disk is oven-drye tlesult will be estimated dry biomass of the tree.

When the disk was too big for the weighing scaleds further divided into a number of radially cut
wedges and their fresh weights were measured aitiavith a precision of 1 gram. After entering
the data for the individual fresh weights of thedges, one was selected with a probability
proportional to the fresh weight. It should be wiotieat the fresh weight of the selected wedge dilid
by its selection probability results in the estienaf the fresh weight of the disk (similarly forydr
weight). When the measurements on the fresh weigtite selected wedge and its average thickness
were entered into the iPAQ, total fresh woody biesnaf the sample tree was obtained. The randomly
selected wedge was then marked with an identity @dl brought to laboratory for oven drying. The
program also gives the value of a factor, calldgddter, for each of the selected wedge which when
multiplied by the oven dry weight of that wedgeeagthe estimate of the total dry woody biomass of
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the sample tree. The wedges were oven-dried ahpetature of 10% till a final constant weight in
the laboratory at North-East Forestry UniversitHiarbin, China.

Total weighing of sample treesTo test the accuracy of sub-sampling estimateshfbiomass of 34
sample trees, randomly selected from the 60 treas,also measured by direct weighing in the field
in the conventional way using a balance. Total Wieig was done by cutting the trees into sections of
convenient lengths (0.5-2 m) and using a scale50k@ capacity; the foliage and branch parts less
than 2.5 cm in diameter were not included becaim@dss in this study is defined as the AGB of
trees to a minimum of 2.5 cm branch diameter.

To further aid in assessing the accuracy of sulpiag) biomass estimation of another 15 sample
trees (among the 60) was made by combining thetdmery method’ of volume and biomass
measurement. This involved separating the treas stém and branch components above 10 cm
diameter and between 10 to 2.5 cm in diametersgdrabranches and main stem above 10 cm
diameter were cut into sections (taking accournheftaper, length varied from 0.5 to 2 m), end €ros
sections were measured and volumes were calculsied the Smalian formula. The volume, when
multiplied by the value of fresh biomass per urotwne gave fresh weight of the component. To
obtain the value of fresh biomass per unit voluandjsk (about 10 cm thick) of wood was removed
from breast height of the sample tree. The fresightef the disk was taken in the field and volume
was calculated as cross sectional area times #mskiThe biomass of branch parts, 2.5 to 10 cm in
diameter, was determined by direct weighing onaescThe total fresh weight of trees was obtained
from the sum of weights of the components abovem@nd between 2.5 -10 cm in diameters.

2.3.2.3. Annual growth ring measurement

In the north-east Chinese cool temperate envirohmbare there is a defined growing season (winter
temperatures drop to minus °80and lower), most species have well defined anmungs. The
information contained in the annual rings in treaa be used to predict the annual wood increment
(Bouriaud et al, 2005; de Gier, 1989; Husdt al, 1982). Increment measurements are preferably
made in permanent sample plots (de Gier, 1989)otftinfately, such permanent plot increment data
were not available for the study area. It was,eftge, decided to obtain tree increment data frtoen t
measurement of annual growth rings on the disksovenh from the sample trees from breast height
(1.3m above the ground). As the sample trees haam distribution across the diameter classes, the
growth ring measurements on them were expected/éotige increments of the existing size classes.
Among the 60 sample trees felled for sub-samplirepsurements, 48 trees were found to have
conspicuous annual growth rings. Species naimefyulus ussuriensiandBetula platyphylladid not
show distinct rings. After completing the sub-samgplmeasurements, a disk was removed at breast
height from each of the 48 trees belonging to #maining 7 species. The cross sections of the disks
were then smoothened by using a chisel-plane. Mhaad growth rings of the last five years and bark
thickness were measured as follows:

i. On each disk, four points were marked at the efitl@@perpendicular diameters (rings were
measured in four directions to correct for wood pogssion or tension effects in the rings, if
present).

ii. Using an 8x magnifying lens and a vernier-caliplee, total width of the rings of the last five
full years was measured to a precision of 0.1meeah of the four points. Care was taken to
make measurement perpendicular to the tangentseofiigs. The four width measurements
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were added; then divided by 5, and then again ed/ily 2 to obtain average under-bark
diameter increment.

iii. At the same four points, bark thickness was alsasmed to the nearest mm. Using a steel
ruler, bark thickness was measured from the sapwodbe position where a caliper would
have touched the bark. The four measurements vadgledaand divided by 2 to obtain double
bark thickness.

From the above measurements, a relationship betasmbark dbh and annual wood accumulation
(or carbon sequestration) in trees was developsti@sn in the section 2.4.3.

2.4. Data analysis

2.4.1. Validation of sub-sampling method

Accuracy assessment of the sub-sampling biomassates was done by taking total fresh weight of
34, among the total 60, sample trees and compdnege with the sub-sampled biomass data. The
measured fresh biomass by total weighing and ttima®d fresh biomass by sub-sampling method
were compared by undertaking-gest (paired two sample for means). A customanhowbf fresh
biomass estimation of another 15 sample trees (grifn60) was also used to check the consistency
with the fresh biomass estimates by sub-samplihg. Sub-sampling method was the only way to get
unbiased estimates of dry biomass of the sampds.tfeollowing validation, the biomass estimates of
the sample trees obtained by sub-sampling werdecelkn dbh (D) and height (H) to develop the
biomass equations.

2.4.2. Comparison of biomass models

Biomass equations are most commonly expressedyngrial, power and combined variable model
forms (Brown, 1997; de Gier, 2003; Parresol, 198&malca, 2007; Zianist al, 2005) (see section
1.1.2). Only these types of model were evaluatedlétermine the one that best describes the
relationship between tree biomass and its variaidesely dbh and height. The polynomial and power
models are based on dbh only as independent vanethiile the combined variable model are based
on dbh and total tree height as independent vasalifomplicated models, involving more variables,
were not considered in this study since additimaalables do not necessarily improve the fit of the
model significantly, but can create problem with ltireollinearity and can hence reduce the
applicability of the biomass equation (Chojnack@®02; Samalca, 2007; Ziangt al, 2005). The
sample tree biomass data were plotted againseDdfh) and BH. From the scatter plot of D verses
biomass, polynomial and power models were deriviifievirom the plotting of BH and biomass, the
combined variable model was determined. The biordats were analyzed first by putting all species
together and then by broad-leaved and needle-lezategory. The coefficients of the polynomial and
combined variable models were estimated by weigltedr regression technique in SPSS; backward
stepwise elimination method was used in case ofnpohial to remove the non-significant
coefficients. The weighing was necessary to rentmteroscedasticity in biomass data and to develop
biomass regression model of higher precision. Tétezally, weight should be inversely proportional
to the variance of the residuals (Furnival, 19639. variances of residuals were calculated by dbh
class in case of polynomial model andHDclass in case of combined variable model. Thescla
variances were then plotted against mid-valuesbbf dasses for the polynomial model and the mid-
value of BH classes for combined model. A trend line in pofeem was then fitted to each plotting
to determine the weights for the two models (Bratal, 1989; Leeds, 2007).
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The coefficients of power model were obtained diyefrom the scatter plot of biomass versus dbh.
However, the coefficients thus obtained are bigBedwn et al, 1989; de Gier, 2003; Parresol, 1999)

as it is calculated after linearizing the power mlody undertaking log transformation and doing

linear regression. Although log transformation ree®heteroscedasticity (Parresol, 1999), obtaining
unbiased untransformed biomass estimates fromdberbhnsformed model is not direct because
antilogarithm of log(biomass) yields geometric meaithe skewed arithmetic distribution rather than

the mean. The common goodness-of fit statisticeosfer model relate to the transformed equation
only (Parresol, 1999).

A number of statistics have been mentioned by Bat(@999) for evaluating goodness-of-fit and for
use in comparing alternative biomass models. Amibregn the common ones are coefficient of
determination (B, standard error of estimate (Se) (standard dewiatf residuals), root mean square
error (RMSE), coefficient of variation (CV), meaerpent standard error (S%) and Furnival Index
(FI). Although the statistics like?Romputed for the three functions can not be coetpdirectly, Fl
has the characteristic to be able to also compadehs that have either biomass or some function of
biomass as dependent variables (Furnival, 1961)edlices to the usual estimate of standard error
about the curve when the dependent variable is dgésne. for polynomial and combined variable
models the Fl is equal to RMSE. Fl is based on mari likelihood approach; it also reflects the
magnitudes of residuals and possible departures &ssumptions of normality and homogeneity of
variance (Furnival, 1961). Large value of Fl reprgs a poor fit and vice versa. The goodness-of-fit
statistics calculated for the tree models to idgntie best fitting model are given in the Tabl@ 2.
below:

Table 2.2 Statistics used to compare the models

Statistics | Formula Remarks
R’ RSS n -\ " 2
1= = RSS= Zl (v, - V) and TSS = (v, -yY) are

i=1

residual sum and total sum of squares respectively

S RSS(h-p n= number of sample observations
p=number of model coefficients

RMSE n (Y - )2 Y, is observed value of biomas‘gl; is estimated value gf
- n

izz‘i b biomass by the models
cv (s./¥)x100 Y is the arithmetic mean of observed biomass values
S% n Al ~

[ Y. - i\/rjx@

i=1 n

Fl [f '(Y) 1 x RMSE f'(Y) is the first derivative of the dependent variable

w.r.t. biomass; the brackets signify geometric mean

Besides the prediction errors, the logical behavamd simplicity of the models were also considered
while evaluating them.
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2.4.3. Calculations for annual wood accumulation and carbon sequestration

The under-bark diameter incremend,d and double-bark thicknes34f) calculated for the sample
trees as explained in the section 2.3.2, were atggarrelated to their over-bark dbB.f) to obtain
the relations for annual wood accumulation and @adequestration as follows.

Suppose a linear relationship was obtained fronrégesssion analysis between the variablgsand

iwp The evidence of linear relationship among thes@bles has been mentioned by de Gier (1989).
As the forest in the study area is almost even-aggmbndary forest, linear relationship can be
expected Let it be

Tgup = 8o FAD gy eneee i (1)
A linear relatlonshlp can also be expected in regjom analysis between the varialgsvs. Tqp. Let
it be

Tao =00 DDy, (2)

After taking the first derivative of equation (2)tkvrespect to (w.r.t.Po,, annual increment in bark
thicknessif,) can be obtained as follows:

dT,,/dD,, =b =iy, /ipg,
OF, Ty T gy e veeen et e e (3)

We know that the increment in over-bark diths=dD,) is the sum of the increments in under-bark
dbh {4u) and double-bark-thicknesig), i.e.

dub i cee e e s ()

When we use the relations (3) and (1) in (4), weayeelation for increment in over-bark dbh as
function of over-bark dbh as below:

Ipop =1

IDob =igup T =law 00 pgp

OF, ipyy Zigus/1=0)=(ag + 8.0 )/ (L=0) v (5)

If we have a polynomial function (or any functioepgndent on dbh only) as a biomass equation, then
from its first derivative we can estimate the anw@od accumulation in a tree using the relation (5
as follows. Suppose the polynomial function for dgight' (DW) is

DW =1.D3, + mDZ, + n.D,,, +k , then its first derivative w.r.Dypis

dDW/dD,, = 31.D3, + 2mD,p, +n

or, dDW = (31.D3, + 2mD,,, + n).dD,;,

Or, dDW = (31.D&, + 2mDgy, +n).(ag + 8;.Dgp)/[L-by) .......... (6)

WheredDW represents the annual wood increment in a tresvef-bark dhhD,,. The equation (6)

follows from de Gier (1989). Since nearly 50% cof tiry weight of a tree is carbon, from the relation
(6) we can also estimate the annual carbon seatiestroy a tree in the AGB. The annual wood

* The terms biomass and weight have been used interchangeti$ study, although biomass is the total
content of matter (kg) in a body while weight is the foiidewton) exerted by gravity on mass of a body.
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increment and carbon sequestration thus calcut@ede related to the remote sensing data. Various
vegetation indices (VIs) were tried (see sectid) b relate the increments with the Landsat Thadat
of the study area for large scale estimation anpiimg.

Measurements of growth rings in a sufficiently Ergumber of trees (at least 30 trees per spedies) a
necessary to know the differences in incrementspggcies (de Gier, 1989). This study attempted to
estimate the average increment by tree size (raltlaer species) based on the growth ring increment
data of all species put together.

2.4.4. Evaluation of existing equations

The biomass estimates based on the most suitabktieq developed in this study was compared
with the estimates from existing equations for Emiorest types. The existing equations considered
were local one for north-east Chinese temperatesfadeveloped by Wang (2006) and also global
suggested by IPCC (2003) and developed by Schratddr(1997) for temperate forest tree species
of eastern U.S.A. The local Chinese equation isg#r(i.e. not species specific) applicable to both
broad-leaved and needle-leaved species while #rerewvo IPCC equations one for broad-leaved and
the other for needle-leaved. The equations and tireiracteristics are mentioned in the Table 2.3
below

Table 2.3 The secondary biomass equations used in thedy

Name of the Equatiort Valid dbh R® No. of sample trees
equation range (cm) used in the €Y

Local Chinese | pyy = 88.10489335467 2.4-57.1 0.96 98
IPCC broad- _ 25000D0255 1.3-85.1 0.99 454
leaved DW = 0-5+25—

Doy +246872
IPCC needle- _ 15OOOD0257 2.5-71.6 0.98 83
leaved DW = 0-5+27—

Dgp +364946
! D,y is overbark dbhPW is oven-dry above-ground biomass that includessgtump, branch,
twig, bark and foliage. Unit dDW for the Chinese equation is gram while for the @P&tjuations
are kg. Note that the abové Ralues are biased since they are based on logioramed data.
Source: (IPCC, 2003; Schroedsral, 1997; Wang, 2006).

Using the 172 plot inventory data for dbh, biomakgach tree was calculated using the above three
eqguations besides the most suitable equation deselm this study. To get plot biomass, biomass of
individual trees was added together. Thus, threes & plot biomass estimates, one each
corresponding to the Chinese equation, IPCC equaiial the equation of this study, were obtained.
The three sets of plot biomass data for the thegel$ of equations were then compared to see the
effect of location specific equations in area basiethass assessment. The comparison was made by
making box plots and undertaking ANOVA test.

25



2.5. RS based assessment and mapping of biomass and carbon

Landsat TM image covering the whole study site alatained for 22 September 2006. The image was
exactly one year ahead of the field work and wastifree. Projection of the image was defined to
WGS_1984 UTM_Zone_ 52N which is the standard pra@acsystem for north China. The acquired
image was subjected to geometric, atmospheric gpolgtaphic corrections. Geometric correction of
the image was done in ERDAS IMAGINE 9.1 using 1dugrd control points (GCPs) from the digital
topographic map of the study area. First order patyial transformation was used for the geometric
correction and re-sampling was done to the pixad 80x30m using nearest neighbour method. This
approach has the advantage of being simple, eftieied preserving the original values (Foadal,
2003). The RMSE was 0.54 pixels. Radiometric cdivecwvas done in ERDAS IMAGINE 9.1 using
ATCOR 3 that integrates DEM data (via generatings| aspect, shadow and sky view images) of the
image area as an input to remove the atmosphedct@pographic effects. ATCOR 3 has the
advantage that it minimizes the effects of topogyafe.g. shadow in mountainous terrain) and haze
and automatically converts the raw digital numb@sl) values into surface reflectance using the
calibration file for TM, DEM, solar zenith anglezimuth, and some atmospheric parameters.

The shape file of the total 172 sample plots wasrlaid on the corrected image to see the matching
of plot positions with the ground. It was foundttlafew of the plots that should have actually been
inside the forest were coming to non-forest lane-ssch as grass-land, agricultural field and road.
This problem was observed with few plots at fringéshe forest i.e. close to non-forest. It may be
due to the error in coordinates recoded from GR&ume of poor satellite signal or because of the
error in geometric correction of the image. A highecuracy in the geometric correction of the image
could not be achieved because the ground contrmitpdGCP) for the forested area were not
conspicuous on the image. So while relating theoteraensing data with plot biomass or carbon, only
the plots lying well inside the forests were coesédl. Thus out of the 172 sample plots, 142 plots
were used for remote sensing based assessmentrabmegnatures of all seven TM bands were
extracted from the pixels corresponding to the s in ENVI 4.2 using the shape file of the plots
Different VIs mentioned in Table 2.4 were calcuthteonsidering their advantages for forested
environment and good relations with biomass in oy studies (see chapter 1, section 1.1.3).
Mainly bands 3, 4 and 5 were used to calculateaviid band ratios because these bands have been
used successfully in previous studies to predicedb structural features (Ingram, 2005). Band 5
(MIR) is less studied than the bands 3 (red) a(MIR), but has been found to be the most useful TM
band for estimating forest biomass (Ingram, 200&in8ger, 2000). Some complex band ratio
suggested by Foodst al.,(2003) was also calculated to investigate thdimelahip. Soil adjusted Vis
were not used because bare soil background wasromtinent in the forest environment of the study
area. Ordinary least square regression analysisdeas to study the relationship between plot
biomass/ carbon sequestration as dependent amdediffVIs or band ratios as independent variables.
Both linear and non-linear models were examinedtlier relationship between forest variable and
reflectance data; although very often the relatiqpss are either linear or exponential, depending on
the presence of saturation effect (Schédrél, 2005; Steininger, 2000). The plot biomass antarar
sequestration values were estimated respectiveéhg ke most appropriate biomass equation and
carbon sequestration equation developed in theysithie relationship of VI with plot biomass was
also analyzed to investigate the saturation issu&/Is. The best fitting RS-based model was
determined based on the goodness of fit statistich as RMSE and’RAfter determining the best
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model, separately for the predictions of biomass earbon sequestration, maps were prepared in
ArcGIS 9.1.

Table 2.4 Vegetation indices and band ratios used to studhe relation with biomass

Vegetation Indices | Formula Source

NDVI (ptma- prm3)! (PTva+ PTM3) Lu et al.,2004;
Heiskanen, 2006

ND5,4 (Prma- prvs)! (PTmas pTvs) Foodyet al.,(2003)

MVI pmalPTMS Fassnachtt al.,1997;
Schlerfet al.,2005

SR PrmalPTM3 Lu, 2004; Schlerét al.,
2005; Heiskanen, 2006

RSR SR[1-P1ms- prmsmin)/ ( PTM5max PTM5min)] Brown et al., (2000);
Heiskanen, 2006

EVI 2.5(1ma- prma)/ (PTMatBpTM3-7.5pTmat) Hueteet al, 2002)

Complex Ratio (prva-( prvst prm2)) (Prmat prmst pTm2) Foodyet al.,(2003)

(4,5,2)

Complex Ratio (Prma( prm st ptms)) (Prmat prvat Prvis) Foodyet al.,(2003)

(4,3,5)

NDVicorrected NDVI[1-(ptms- prvsmin)/( PTMsmax PTMsmin)] Heiskanen, 2006;
Zhenget al.,2004

ND45corrected NDA45[1+tms- prmsmin)/( PTMSmax PTMSmin)] Foodyet al.,(2003)
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3. Results

3.1.

A total of 172 randomly selected sample plots

DBH distribution of trees in sample plots and sample trees

, eaB00 nf, were used in this studpuercus

mongolica, Betula platyphylla, Larix olgensis, Abllophylla, Populus ussuriensis, Picea jezoensis,

Others
9%

Quercus sp.
18%

Acer sp.
3%

Tilia sp.
6%

Abies sp.

Larixsp.
10%

11%

Picea sp.
9%

Betula sp.
24%

Populus sp.
9%

Pinus sp.
1%

Figure 3.1 Distribution of trees by genus in the sampl
plots

Tilia amurensisandAcer monowere the major
tree species observed in the plots (see Fig 3.1).
Betula was the most dominant genus while
Acerwas the least abundant genus observed as
can be seen in the Figure 3.1. A total of 6097
trees, >10 cm dbh, were measured in the
sample plots. The number of trees from
unidentified species shared only 9% of the
total while nine genera constituted 91%. The
majority of the trees in the plots belonged to
the dbh range of 10 to 35 cm; more than 97 %
of the trees were below 35 cm dbh (see Figure
3.2). The inverted J-distribution of trees’ dbh
size is expected in any natural forest. The high
share of small trees in natural forests can be
attributed to their high mortality and the role to
replace the bigger ones.
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A total of 60 sample trees ranging in dbh from #©236.5 cm and belonging to nine species were
harvested and measured for above-ground biomassAfsgendix 1). The distribution of the sample
trees based on dbh class interv
of 5 cm is shown in the Figure
3.3. Relatively large numbers o
sample trees were taken from tt
smaller diameter classes
compared to the bigger classe
since finding representative tree
from the bigger classes wa
difficult because of their low
abundance and also due to tt
difficult mountainous terrain. 0

16+

14+

12+

10+

No. of sample trees
[ee)

<10  10-15 1520 20-25 25-30 30-35 35-40
DBH class (cm)

Figure 3.3 Distribution of sample trees by dbh class

3.2. Reliability assessment of sub-sampling

The sub-sampling biomass estimates were validayedomparing these with the weights obtained
from total weighing of fresh biomass of 34 sampées$ and indirect fresh weight estimation (by the
customary method explained in section 2.3.2) otlerol5 trees. The fresh-weight biomass estimates
by sub-sampling explained more than 96 % of vanmatn the total fresh weights of the 34 sample
trees (see Figure 3.4, left). When the biomass afatample trees measured by total weighting and
the indirect approach (customary method) were coatbii.e. 49 trees) and compared with the sub-
sampling estimates, it still explained more thafo9& variability (Figure 3.4, right). The root mean
square error (RMSE) of sub-sampling estimates agaotal weighing (for 34 trees) was 12.26 kg
(dry weight) which is 13.19 % of the average sanu@e biomass.

o
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Figure 3.4 Comparisons of sub-sampling biomass estimategth total weighing (left) and total weighing
combined with indirect weight estimation (right)
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The statistical ‘paired sampletest’ approved the null hypotheses that the sulpBagibiomass
estimates do not differ significantly from the toteeighing or the combination of total weighing and
indirect approach (see Table 3.1 below). The catedlt-statistics for the two pairs are respectively
0.137 and 0.120 while the two-tailed critical vaudeom table ot-distribution for 33 and 48 degrees
of freedom at 5 % level of significance are 2.08 ar01; this implies the validity of null hypothgsi

Table 3.1 Paired samplé-test for the comparison of biomass estimates by sub-satmg, total weighing
and combination of total weighing and indirect apprach

Paired Differences
Std. Error | 95% Confidence Intervg
Mean Mean Lower Upper t df Sig.
Pair-1 .293 2.134 -4.049 4.635 137 33 .89
Pair-2 .553 4.628 -8.752 9.858 .120 48 .904

Pair-1: Fresh biomass estimates by sub-sampling vsfresh weight¥ of the 34 sample trees
Pair-2: Fresh biomass estimates by sub-sampling vs. nethfiesh weights by total weighing and indirect
approach (49 trees)

When linear regression was performed in SPSS withrsempling estimate of fresh biomass as
explanatory variable (X) and measured total freglmbss as response variable (Y), the table of
estimated coefficients (see Table 3.2 below) reagéhat the intercept term was non-significant and
only the independent variable explained the mouaglificantly at p<0.001. So when we neglect the
non-significant constant term, the model become®.9Z7X or Y nearly equals X. The relation,

however, gives an indication that the sub-sampineghod slightly overestimates the biomass values.

Table 3.2 Parameters of the linear relation between susampling and total biomass

Model Un-standardized Coefficients| Standardized
predictors Coefficients

B Std. Error Beta t Sig.
Constant 1.819 3.671 .495 .624
FW_SS .977 .032 .983 30.633 <0.001

Dependent variable: fresh biomass by total weighing;
Independent variable: fresh weight estimates by sub-samphilig $S)

Some further analysis was done with the fresh b#sndata of the 34 sample trees that were also
measured for the total weight. To test whethersilte-sampling estimates of biomass are influenced
by the branching pattern of trees, the differemcsub-sampling biomass estimate and the total weigh
of the trees were plotted against the number afidiriag nodes in the path. The graph demonstrated
that the sub-sampling estimates are not affectée (R0874) by increasing number of branches in the
trees (see Figure 3.5). Since the graph is fothall species combined together, the sub-sampling
estimates are also insensitive to species.

w Note: the terms biomass and weight have been used interchbnigetae study
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3.3. Biomass equations based on estimates of sub-sampling method

Since the sub-sampling method had a very high ledime with the true weights of the sample trees
and it has also an advantage of giving unbiasedbmnass estimates of the sample trees, the sub-
sampling estimates were used for the purpose dfldeing biomass equations. While exploring the
sub-sampling dry biomass data (of all sample tréwsjitting the three common models namely,
polynomial (third degree), power and combined \@dafirst check for presence of outliers was
made. For this, residuals were calculated for gackel and converted to z-scores (standardized
residuals) which are the residuals divided by amase of their standard deviation. None of the z-
score value was beyond -3 to +3 range (see TaB)e Brom statistics, we know that in a normally
distributed sample 99.9% of z-scores should lisvbeh -3.29 and +3.29. So there was no obvious
outlier.

Table 3.3 z-score range of the three models fitted to dlyiomass data of the sample trees

Model

z-score (minimum)

z-score (maximum)

Combined i1 = ao+ a;.D’H)

-2.47

2.83

Power M = a.D"

-2.65

2.30

Polynomial M = ap+ a;.D + a,.D*+ a3.D°)

-2.68

2.30

Next it was determined whether species-specifianbigs equations were necessary or whether a
general combined species equation would be endtigbre 3.6 below represents the scatter plot of
sub-sampling dry biomass data of the 60 samples fpemited against their dbh by species or similar
species-group. Only one tree Bfaxinus mandshuricaand 3 trees offilia amurensiscould be
harvested in the field because of their low abundasince the two species by their physiognomic
characteristics look similar tdimus pumila(also local people reported their wood strengtibdo
similar), they were grouped into one species grQuilarly, as only two trees &fopulus ussuriensis
were measured and they looked similaBetula platyphyllathe two were combined into another
species group. Although the number of sample fpeespecies or species-group was not enough, the
plotting (Figure 3.6) revealed that separate bieeapiation for individual species was not necessary
as the points of individual tree species or spegiesp are mixed randomly among other species or
group. The decision is also supported by FiguresBaiving three third degree polynomial curves one
each for broadleaved species, needle-leaved spactsll species together. The three polynomial
equations when used to estimate the dry biomadeee$ in dbh range of 10-40 cm at 2 cm class
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intervals and subjected to ANOVA test (AppendixsBpwed that the estimates by the three equations
do not differ significantly at 5% level of signifiace. Further paired sampiest made to compare
the means of the three estimates in pair showedthles do not differ significantly at 5% level of
significance (see Appendix 2). Thus, there was sednfor separate equations by species. The
advantage of combined species equation for itsiggiplity over a large number of tree species made
the large area (landscape scale) biomass assesantem@apping easy in the Wangqing forest.

200 300 400 500 600 700

Estimated dry biomass (kg/tree)

100

5 10 15 20 DBH(cm) o5 30 35 40
@ Betula & Populus spp. A Ulmus, Fraxinus & Tilia spp. @ Quercus spp.
X Larix spp. O Abies spp. ¢ Picea spp.

Figure 3.6 Scatter plot of dry biomass (kg) by species argimilar species against dbh

400 600 800

Estimated dry biomass (kg/tree)
200

o

5 10 15 20 DBH(cm) 25 30 35 40
A Broad-leaved (BL) ® Needle-leaved (NL) —— Poly. (BL & NL combined)
——Poly. (NL) ——Poly. (BL)

Figure 3.7 Third degree polynomial curves fitted to thebroad-leaved, needle-leaved and all species
together
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The scatter plot of sample tree dry biomasginst dbh (D) demonstrated a good least sqitaog f
both the polynomial and power models (see Figud®. However, the best fit, in terms of Ralue
(coefficient of determination), was observed frdme tombined variable model in the scatter plot of
dry biomass against’H (dbh squared times total tree height). THev&ue for the power model at
the first look appeared higher than that of polyi@nmodel. But the Rvalue from the power
functions is biased because it is actually obtafnech the log transformed linear model of the power
function i.e. from the scatter plot of In(biomassjainst In(dbh) (see Figure 3.8d). S4,fflRm the
power fit could not be compared with that from gadynomial fitting. The models obtained from the
ordinary least square fits in Figure 3.8 are giwvetihe Table 3.4 below.
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Figure 3.8 Fitting of (a) polynomial, (b) power, (c) comimed variable and (d) log-transformed models to

the sample tree dry biomass data

' The graphs presented in the results and discussiorechape only for the dry biomass data of the sample. trees
The graphs for volume and fresh weight data are included iphendix 4.
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Table 3.4 Biomass equations obtained from ordinary leasiguare fit

Model Equation
Polynomial DW = 2.0433x10°D® - 6.2743x10'D” + 13.4912D — 70.3641
Power DW = 5.3157x10°D*>>%

Combined variable DW =1.9531x16D?H - 7.7030

Log-transformed power INDW = 2.5531 InD - 2.9345

WhereDW is dry weight of trees (in kgD is dbh (in cm)H is total tree height (in m) and is
natural logarithmpP?H is in n?

The residuals of the polynomial and combined vagiaodels showed heteroscedasticity as shown in
Figure 3.9 below. So weighing was necessary fanth&eighted linear regression was performed in
SPSS. The weights obtained for the polynomial ardhined variable models were respectivefy?D
and (H)*2. So, just weight of Pwas used for the polynomial and’H)* was used for the combined
variable model. The result of weighted linear regren is shown in Appendix 3. The backward
elimination method of regression applied for thédypomial model resulted in only the D and D
terms to be significant i.e. removed thé @rm. The power function did not require weighting
because the residuals were not heteroscedasticn wlogver functions are linearized by log
transformation, the resulting model has generalipbscedastic variance (Parresol, 1999).
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Figure 3.9 Heteroscedastic residuals in polynomial (Iefeend combined variable (right) models

The resulting polynomial equation for dry weighi) after weighted linear regression and backward
elimination was

DW = 8.9620x10°D° + 3.4614D - 23.2628

whereD explained more than 89% of the variability (at @d®1) in the sample tree dry biomass.

The combined variable model for dry weigbM)) obtained after weighing was

DW = 1.8144x16D - 8.0423x10"

whereD?H explained more than 93% of the variability (at @€D1) of dry biomass which is higher
than the un-weighted equation.
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The heteroscedasticity in the residuals from théng of the reduced weighted polynomial and
combined variable models was removed as can bewausiom the Figure 3.10 below.
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Figure 3.10 Homoscedastic residuals from weighted polyraal (left) and combined variable(right) models

Similarly, volume and fresh biomass equations wd&ined. The scatter plots of volume and fresh
biomass data fitted with polynomial, power and corall variable models are given in the Appendix
4. The volume and fresh biomass equations obtamélde three model forms after weighted linear
regression of polynomial and combined variable nwdee as below:

Weighted volume equation in polynomial forks 9.100x10°D® +6.1236x10°D? - 2.1180%x10°
Volume equation in power fornv,=1.3400x10'D>>°38

Weighted volume equation in combined variable fovhs 4.4404x10'D?H - 1.044x10°
(WhereV is volume in i, D is dbh in cmH is total tree height in m arofH is in nT)

Weighted fresh weight equation in polynomial fofvV = 1.5370x10*D* + 8.0613D - 54.6681
Fresh weight equation in power forfyW =1.199%10p?°%*

Weighted fresh weight equation in combined varidbten, FW =3.471&10°D°H+2.8411x10™"
(WhereFW s fresh weight in kgD is dbh in cmH is total tree height in m arioPH is in nt)

3.4. Model comparison

After the models were determined, the next task wadentify the best fitting model. While all the
models exhibited good fit to the biomass data,cim@bined variable model was the best because it
gave the highest coefficient of determination. Big problem with the combined variable model is
that it also requires the measurement of total breight which is often erroneous and tedious for
standing trees in forests with dense canopy. Coswarof the sample tree biomass estimates by
using the polynomial and combined variable modbtsagd that the estimates by the two models do
not differ significantly (k,=0.016< Rx=3.921, p=0.899, df=1,118) at 5% level of significa. So
next attempt was made to decide which one is teedeong polynomial and power models.
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Since the common goodness of fit statistics of pdiwection belongs to the log transformed linear
model where log(biomass) is dependent variableselsiatistics can not simply be compared with
similar statistics obtained from polynomial (or dwned variable) model where biomass is dependent
variable. The usual fit statistics such &sdR RMSE was not enough to decide the best amoag th
power or polynomial models. Another four statistizamely, coefficient of variation (CV), standard
error of estimate (§ mean percent standard error (S%) and FurnivaggXr(FI) were calculated for
each model. The fit statistics were calculated thase predicted and detransformed values as
suggested by Parresol (1999) and Furnival (196t fit statistics are shown in the Table 3.5. As
expected, combined model gave the best fit in tevitbe values of RMSE,.SS% and CV, followed

by the polynomial model. However, the Fl was fotodjive misleading result. When the dependent
variable is biomass, Fl is simply equal to RMSEt hulower value of FI means better fit which
contradicts with all the other fit statistics obthombined and polynomial models that are bettan th
the power model. It was concluded that the polymbmiodel fitted the data better than the power
model.

Table 3.5 Fit statistics for the tree models

Model RMSE (kg) Se (kg) CV % S% Fl
Combined 37.72736 38.37232 31.15654 17.9065pH 336727
Polynomial 41.98332 43.07398 34.97406 24.5523b 88B2
Power 42.84172 43.57411 35.38015 24.8824y 21.474
3.5. Comparisons of plot based biomass estimates with IPCC and local

Chinese equations

Once it was found that the polynomial equationa#idy fitting than the power equation, the former
equation was used to estimate the plots biomasgshédield plots were enumerated only for tree
diameters at breast height, use of combined variabbdel to estimate the biomass was not
applicable. Using the polynomial equation, biomasach tree within the plots was calculated and
summed to get the plots’ biomass. Similarly, thesting local Chinese equation and the equations
from the GPG of IPCC were also used to calculagepibts’ biomass. Thus the biomass estimates of
the plots using the three equations were comparegvaluate the effects on area based estimates
while using different levels (i.e. from differenéggraphical area) of equations. Considering the plo
biomass estimates from the developed polynomiahigmu as standard (because it is based on field
measurements, and therefore assumed to be the avostate), the estimates from the existing
Chinese and IPCC equations were compared in thiespdot shown in the Figure 3.11 below.
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Figure 3.11 Comparisons of plot biomass estimates bydtexisting Chinese and IPCC equations versus the
estimate by the developed polynomial equation of this study

From the Figure 3.11, it is clear that both then@se and IPCC equations are giving higher plot
biomass estimates than the polynomial equatiompatih the Chinese estimates are closer to the
polynomial estimates. Correlation analysis showdtdghaer correlation between the Polynomial and
Chinese estimates (r=0.997) than between the Pwiahcand IPCC (r=0.973), although both the
coefficients are high. Simple linear regressionveen the plot biomass estimates by the polynomial
and Chinese equations showed that Chinese equedgiomated 1.178 (slope) times higher than the
developed polynomial equation. Similarly, the lineegression between the polynomial and IPCC
estimates showed that the estimate by the latter 266 times higher. The individual sample plot
biomass estimates by the Chinese equation weret@.21.79% higher while the estimates by IPCC
equation were 3.01 to 53.20% higher than the cpomding estimates by the polynomial equation.

ANOVA test was performed to compare the plot bissnestimates by the three equations. It showed
that the means of the plot level biomass estimasesy the three equations differ significantly & 5
level of significance (§=20.693> E;=3.013, p<0.0001, df=2,513). Paired santgest showed that
the means by pair of the three estimates alsordsffmificantly (t was 32.75 for polynomial vs.
Chinese, 25.12 for polynomial vs. IPCC and 16.57Chinese vs. IPCC whereag tvas 1.97 at 171
df anda=0.05). F-test calculated for each of the threespgtiowed unequal variances among them.

The average of the plots’ biomass obtained fromthinee levels of equations (i.e. locally developed
polynomial of this study, existing local Chinesaafobal from IPCC) with their confidence intervals
are given in the Table 3.6a below while the congmars of medians and quartiles are shown in the
box plot in the Figure 3.12.

Based on the estimated biomass of the plots, tleeage biomass on a per hectare basis (called
biomass density) was calculates as 81.885, 97.hiti3142.122 metric tons respectively for the
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polynomial, Chinese and IPCC 4
equations with their 95% confidence
limits as given in the Table 3.6b. 12000+ —T
The standard errors of the average. ..o, - om
biomass estimates per hectare Wer% o
2.852, 3.259 and 3.791 tonsz 000«
respectively for the polynomial, 2
Chinese and IPCC equations. The‘g;
lower confidence limits of the T 4o
biomass estimates by both Chinesé
and IPCC equations are above th&
upper  confidence limt  of
Polynomial equation which
indicated over estimation by the by - - -
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Figure 3.12Box plot comparing medians and quartiles of estimate
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Table 3.6a Averages and confidence intervals of plot ghbiomass estimates

Plots biomass Average sample plot 95% confidence limits for mean
estimated by biomass (kg) Lower (kg) Upper (kg)
Polynomial e§ 4094.273 3812.762 4375.783
Local Chinese €Y 4855.659 4534.002 5177.316
IPCC eq 5606.112 5231.869 5980.356

Table 3.6b Average per hectare dry biomass and confideadimits

Biomass density Average per hectare 95% confidence limits for mean
estimates by biomass (tons) Lower (tons) Upper (tons)
Polynomial e 81.8854 76.2552 87.5156
Local Chinese €q 97.1131 90.6800 103.5463
IPCC eq 112.1222 104.6373 119.6071

As the area of the Wangqing forest was nearly 281/ (calculated from the classified Landsat TM
image using GIS tool), the total estimated abowetgyd biomass in the forest using the polynomial
equation was 23048938.62 + 1584777.43 tons at %oRfidence interval. Similarly, the biomass
estimates using the Chinese and IPCC equations nespectively 27335201.16+ 1810776.12 tons
and 31559932.61+2106834.68 tons at 95 % confidameeval. The estimates by the Chinese and
IPCC equations are respectively 18.6% and 36.9%ehithan the polynomial-based estimate.

3.6. Assessment of annual wood increment and carbon sequestration

The study area has a distinct growing season fortplapproximately from April till September. Most
of the tree species, therefore, show annual groints. The rings were quite distinct in the needle-
leaved species (viRicea jezoensjs arix olgensis Abies holophylla and ring porous hardwoods
(viz. Quercus mongolicallmus pumilaTilia amurensis Fraxinus mandshurica however, the rings
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in the diffuse porous wood dBetula platyphyllaand Populus ussuriensisvere not conspicuous
because of only minor color differentiation betwéate and early wood. The observations made on
the outermost radial sections of the sample dishiéected from the breast height of the samplestree
showed that the trees do not have false rings (teetlop due to the slowing of growth during ring
formation, followed by resumption of growth) forethast ten years. This was expected because, in the
study area, drought or severe early or late frdgtsiot occur in the last 10 years. The measuresnent
on the widths of growth rings of the last five ygas well as on the bark-thickness were made on the
sample disks from 48 sample trees consisting o€érs€y. mongolica sevenU. pumila threeT.
amurensis one F. mandshuricanine P. jezoensiselevenL. olgensisand tenA. holophylla Two
relations, one for annual under-bark diameter memat (calculated from the growth rings) and the
other for annual bark thickness increments, bodetian over-bark dbh of trees, were needed to get
the relation for annual wood and carbon accumutatithe data of growth ring and bark thickness
measurements are given in the Appendix 5.

The relationship between annual under-bark diamemement ii,, and over-bark dbhDiy) was
established from regression analysis and the sgatieof the two variables, combining all specias,
shown in Figure 3.13 below. Although the coeffitierf determination was low R0.3335), a
significant linear relationship was observed 23> Ry 4674.05, df=1,46,0=0.05); that meant
larger diameters tend to correlate with largerénwents. The linear relation was expected becagse th
forests in the study area are nearly even agedndacy and in growing stage. Further when the
scatter plot (Figure 3.13) was fitted with thirdgdee polynomial or power models similaf Walues
(0.3522 & 0.3463) were observed and backward eéitton method of regression to the polynomial
model again resulted in the linear relationshipe Tésulting linear relation was

igup =1.2814x1072 Dy +9.0306%1072 ..., (@)
Where the under-bark diameter incremégt)(and over-bark dbr) both are in cm.
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Figure 3.13 Relationship between annual under-bark dianmer increment and overbark dbh
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Similarly, a regression analysis was carried ooilzining all species, relating double bark-thiclees
to over-bark dbh; double bark thickness was comsitiebecause the increment in double bark
thickness supplements to the increment in over-tark A simple linear model proved satisfactory as
shown in Figure 3.14. The resulting model was

Ty = 6.9871x1072 Dy, +1.9755x 1072 ..o (D)
Where the double-bark thickness4) and over-bark dbHX,,) both are in cm.

4
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Figure 3.14 Relationship between double-bark thicknessnd over-bark dbh

SinceDW =8.9620x1073D3, +3.4614D,,, — 23.2628 is the polynomial biomass equation derived

in the section 3.3; using its first derivative wittspect to (w.r.t.py, in addition to the right hand side
of the equation (a) and slope coefficient of edquratib) in the equation (6) derived in the section
2.4.3, the relation for annual wood accumulatioraguer tree basis was obtained as below:

dDW = (3x8.9620x1073 D2, +3.4614(1.2814x1072 D, + 9.0306x10 ) /(1- 6.9871x107?)
Or,dDW = (2.6886x10 2D3, +3.4614(1.3776x10 2Dy, +9.7089%1072) .......cocvvne.. (©)

Where annual wood accumulatiaD\W) is in kg and over-bark dblDg,) is in cm.

Since roughly 50% of the dry wood constitutes car®CC, 2003), the annual carbon sequestration
equation on per tree basis can be written as

Csequestrdon = 05 (2.6886x10 2 D2, +3.46143§(1.3776x10 2D, +9.7089x1072) .... (d)

WhereCisequestratiodS iN K/ year and over-bark dbBd) is in cm.

Using the sample plot data on tree dbh in equdtipnannual carbon sequestration by each treeein th
plots was calculated and summed to get plot lemalal carbon sequestration. The average annual
carbon sequestration by the forest was estimatdzk th.889576 tons/ ha with the 95% confidence
interval from 1.764976 to 2.014175 tons/ ha (segehglix 6). The total carbon sequestration
estimated for the whole Wangqing forest (area 281#) was 531874.07 + 35072.15 ton per year at
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the confidence interval of 95%. The average cantbemsity of the forest was calculated as 40.942
tons/ ha (half of the average biomass per hecthrehwvas 81.885 tons).

3.7. VIs/ band ratio based biomass and carbon sequestration assessment

Having the plot biomass and annual carbon sequiestrastimates, the next step was to relate these t
the spectral signatures in corresponding plot pikethe satellite image of the area. The spebaad
values were extracted from the radiometrically ayambmetrically corrected TM imagery of 22
September 2006 and the VIs/ band ratios were @bl Both linear and non-linear least square
models were then fitted to the scatter plot of lasm(or carbon sequestrations) per plot as dependen
variable versus VIs/ band ratios as independenfbigr The usual goodness of fit statisticsaRd
RMSE were considered for determining the bestnfittmodel and the likely VI that explain the
variability of biomass most. The scatter plotshie Figure 3.15 below show the relationship between
VIs/ band values and above-ground biomass of 143 pbgether.

Although poor, a significant linear relationshipssabserved between biomass and a few VIs such as
corrected-NDVI (NDVIc) and RSR and also TM bandefiectance. Third degree polynomials were
also fitted to the scatter plots but in most of thses the coefficients of ¥ind X were found to be
non-significant; the backward elimination method mdgression in SPSS resulted in linear
relationship. The best relation was observed witAVI¢ (R?*=0.4175; K,=100.34> E;=3.91,
p<0.0001, df= 1, 140) among the tested VIs/ batidgaThe significantly linear relation with NDVIc
was Y = 12146.385630NDVIc + 1593.670823, where ikl biomass in kg. The RMSE of this
relation was 32.28% of the mean; the mean biomBpel size (30x30m) plots was estimated to be
7029.9 kg. From the Figure 3.15 (a), (b) and (c), it is cltéwat there is no saturation of VIs such as
NDVIc and RSR with the increasing level of estintbpdot biomass existing in the study area.
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Figure 3.15 (...... continued)

Although the above relations are not very stromgsé were evaluated the best among the other
alternatives tested. In search for better relatirer options were tried. First the sample ploadat
were stratified into species dominance categoryedam composition and then relationship was
analyzed. Next instead of extracting spectral giges using point features of plot coordinates, a
buffer of one and half pixel was used (as suggedsyddall et al., 2006) around the points to extract
the average spectral signatures for the plots deroto take account of the possible shift in plot
positions due to GPS reading or error in geometicection of the image. The results of fittingelar
models to plot data after categorizing the plote @uercus Betula needle-leaved and mixed needle-
leaved broad-leaved forests (which are the maj@tieg forest types in the area) are shown in the
Table 3.7 below. From the’Ralues in Table 3.7, it is clear that biomass eédie-leaved forest is
best related to the spectral values compared tbitireass of mixed and broad-leaved foreBist(la
andQuercu$. The poor relation between spectral values anthtbmass of broad-leaved and mixed
forests was constraint to go for biomass mappinthbyforest classes. Still poor results were olein
when spectra were extracted using buffer of onehatfdpixel around the plot centres.
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Table 3.7 R values from linear regression between the plot bioass data by forest types against Vls/ band
values (based on central pixel spectral signatures)

Coefficients of determination (Rfor the forest types
Vls/ bands Betula Quercus Needle-leaved Mixed
NDVI 0.2292 0.1108 0.4717 0.2115
ND5,4 0.2262 0.0890 0.5260 0.2624
NDVIc 0.0656 0.4168 0.6641 0.3589
MVI 0.1989 0.0919 0.5198 0.2510
SR 0.1962 0.0838 0.4014 0.1918
RSR 0.0875 0.2987 0.5913 0.3534
EVI 0.1073 0.0912 0.4344 0.2374
Complex ratio 0.2089 0.1116 0.5554 0.2729
452
Complex ratio 0.2362 0.1153 0.5306 0.2703
435
TM Band 5 0.0488 0.4386 0.6357 0.3300

Note: the number of sample plots in Betula Quercus needle-leaved and mixed forests was 12, 44, 19 and 67
respectively.

The best fitting model for carbon-sequestration aise related to NDVIc as the relation for carbon
sequestration is a derivative of biomass equatibme significantly linear relation for carbon
sequestration based on NDVIc was Y = 268.167295MDVI42.436101 (R0.4121; K.=98.15>
Fe=3.91, p<0.0001, df= 1, 140) where Y is annual oarbequestration per pixel in kg. The RMSE
of the model was 31.18 % of the mean; the meanaroarbon sequestration in the pixel size plots
was estimated to be 162.4 kg.

Masking out the non-forest land cover types of shedy area, maps for the distribution of above-
ground biomass and annual carbon sequestrationpreaiticed using the above NDVIc dependent
relations for them. The maps are shown in the [Eig@ 16 and 3.17 below. The high biomass density
areas can be seen in the forest at farther disfamtethe settlements.
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Figure 3.16 Distribution of Above Ground Biomass (AGB) desity (tons/ ha) in Wangqing forest, North-
east China

The average biomass density for the whole foregimated from the remote sensing based model
dependent on NDVIc, was 65.36 tons/ ha. The toiambss of the forest was estimated to be
18400662.72 tons. Out of the total forest area8d#4Z8 ha, only 18171 ha had biomass density above
80 ton/ ha while 18329 ha had lowest biomass demhsitow 50 ton/ ha; the remaining forest areas
had biomass in the range of 50-80 tons/ha. The higimass density areas were mostly in mixed and
needle-leaved forests. The mixed forests genecalhsisted of bigger sized trees of relatively fast
growing species such @&wopulus ussuriensidicea jezoensjsAbies holophyllaBetula platyphylla
and Betula castatacompared to the slow growing smaller sized trde®wercus mongolicadlmus
pumila, etc in broad leaved forests. Needle leaved foadésh had bigger trees mostly 8bies
holophylla Picea jezoensiandLarix olgensis The biomass estimate by the NDVIc based model is
lower than the estimate based on extrapolatioh@tample plot data.
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Figure 3.17 Distribution of carbon sequestration (tonsha.yr) in Wangging forest, North-east China

The average carbon sequestration of the forestnasd from the remote sensing based model
(dependent of NDVIc), was 1.52 ton/ha.yr. The totbon sequestration of the forest was estimated
to be 428920.51 tons/yr. Out of the total foresaaof 281478 ha, only 11865.51 ha had carbon
sequestration above 1.9 ton/ha.yr while 3702.5lh&a the lowest carbon sequestration below 1
ton/ha.yr; the remaining forest areas had carbqonesgration in the range of 1-1.9 tons/ha.yr.
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4. Discussion

4.1. Reliability of sub-sampling biomass estimates

Rather than putting efforts to validate existingi&ipns, de Gier (1999) has advocated to establish
original biomass equation for the population conedr Tree sub-sampling method holds a good
prospect for the purpose. Earlier studies have gutathe cost-effectiveness of the sub-sampling
method in terms of time usage and labour (Adel 312% Gier, 1989; Kabore, 1991; Lemenih, 1995;

Mabowe, 2006).

The method was easily implemented in the field justwo persons using an iPAQ based biomass
assessment program and some common measurementstodi as caliper, measuring tape and
weighing scale. The heaviest piece of equipmentired in the process was the power saw. The
method was also quicker for sample tree biomasmason than the total weighing method. The

method has the peculiarity of giving on-the-spobiaeed estimate of tree volume and fresh weight
while tree dry weight is calculated after oven-dgythe wood sub-samples.

The results from this study demonstrated very cltetstion of biomass estimates from sub-sampling
method to the true weight of sample trees obtamedirect weighing in the field. The sub-sampling
biomass estimates showed Wlues of 0.9668 in the linear regression wittethiomass (measured
for 34 sample trees by direct weighing). The relathaving non-significant intercept term was
Y=0.977353X+1.818551 where Y is fresh biomass (g)total weighing and X is fresh biomass
estimate (kg) by sub-sampling. This model shows ttta true biomass increases by 0.977 kg for one
kg increase is sub-sampling estimates. This leddga@onclusion that sub-sampling estimates areclos
to the true AGB values of trees. Reliability of ssdmpling has also been validated by Mabowe
(2006) in semi-arid woodlands and shrub-lands its®ana. However, this is the first study that
attempted to verify the reliability of sub-sampliegtimates in the cool temperate forest charatiteris
of north-east China. The method is quick to impleme the field and overcomes the practical
problem of laborious and time consuming total waighapproach generally used in the conventional
method.

Tree biomass equations were developed in the staggd on sub-sampling estimates, not on actually
measured tree biomass. Although the sub-samplingnaes have inherent errors, this error
component is automatically taken into account ie thast square methods of regressions; the
expected value of such error is zero as the sulplgagrestimates are unbiased. Parresol (1999) has
mentioned that AGB can be estimated from a singlth,pbut two or more paths are needed to
compute the standard error of the estimate. Lemanihde Gier (1999) calculated 110 sample trees
and two sub-sampling measurements (i.e. two pgéstree as optimum numbers to minimize the
cost of sampling for a desired precision of treentass regression. However, measurements of only
60 sample trees and only one path per tree wertations for this study because of practical reason
such as time constraint and permission for trdgl
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The method worked well for different tree speciesthe study area. The form (branching or
crookedness) of trees was not found to have atyein€e on the sub-sampling biomass estimates as
the difference in true biomass measured for sommleatrees and their sub-sampling estimates did
not have any relation with the number of nodehiegath of the trees.

4.2. Regression analysis of tree variables and biomass

Realizing that tree dbh and total tree height heerhost commonly used variables to predict above
ground biomass (de Gier, 2003; Husthal, 1982; Jenkingt al, 2003; Parresol, 1999; Wang, 2006;
Zianis and Mencuccini, 2004), three model forms elgrpolynomial, power and combined variables
were used in regression analysis. All the threeatsshow strong fit to the sub-sampling based AGB
data. The combined variable model was found to hheebest fit followed by the polynomial and
power models, although the fit statistics were velgse. The best fit with the combined model
implies the need to consider tree height infornmaiio biomass assessment of the temperate forest.
The observed goodness of fit of the models wasgreement with the previous works on the
relationship between AGB and dbh ofHD(Brown et al., 1989; Brown, 1997; de Gier, 2003;
Ketteringset al, 2001, Wang, 2006; Cairns, 2003).

Zianis et al., (2005), Zianis and Mencuccini (2004) and Jenkihsl., (2003) have documented vast
majority of biomass equations in the non-linear poyiorm. The coefficients of power equations,
however, are solved after linearizing it by logamiic transformation. Several authors have warned
that transformed models can not simply be retransd to the non-linear form because this yields

underestimates of up to 20% (Brownal., 1989). Parresol (1999) has reported thak ifand 52 are
the mean and variance of a log transformed biomdats then untransformed mean estimates would

be ex;{ [+62 /zj .

Many published biomass equations are found in coetbvariable form. For example, Ziamsal,
(2005) in the review of biomass equations of Euamptree species found that out of 607 equations,
200 equations involved tree height as the secoddp@ndent variable. Ketterings al. (2001) and
Wang (2006) observed that combined variable motlesga better prediction than only dbh based
equation in power form. Among the several modedtett by Cairns (2003), combined variable model
produced highest coefficient of determination. Giegand Williams (1992) have also advocated for
combined variable models in the development of m@uequation. However, applications of
combined variable model are often limited becau$ethe practical problems in tree height
measurement and cost factor. Nonetheless, newa@reremote sensing techniques such as LIDAR
and RADAR have demonstrated capability to meagseeeieights accurately (Kasischéeal, 2004;
Roy et al, 2003). Integrating tree height information fromck remote sensing data with ground
measurement of dbh can improve accuracy in biomsssssment.

Conventionally second degree polynomials are usedtte development of biomass equations
(Brown, 1989; de Gier, 2003). Brovet al. (1989) and Parresol (1999) have mentioned thaghted
linear models, that may be polynomial or combinadable, can achieve as good fit as any non-linear
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model. Third-degree polynomial was preferred instisiudy since second degree polynomials,
sometime show strange behaviour (see Figure 4dk).ekample, de Gier, (2003) observed that at
smaller diameters the curve dips below the x-aesulting in negative biomass values, or the curve
reaches a minimum above the minimum diameter, With consequence that, below this point,
biomass increases with decreasing diameter. Thecsimaing of the second-degree polynomial can
also be observed in the Figure 4.1 (left) wherestbeond-degree polynomial curve is flat at lower
diameters.

The assumption in ordinary regression analysisswhaance of residuals are constant across theerang
of independent variables can also badly affecptiegision of the model. In this study, the conditib
variance of tree biomass was found to increase tngth size. De Gier (2003) has suggested that using
a third-degree polynomial with backward eliminati(io retain the significant coefficients) and
combined with weighting can overcome the deficieatgecond-degree polynomial and the problem
of heteroscedastic residual variance (Figure 4gbt). In order to obtain the weights, the variante
the residuals was computed by various classeseef size and plotted; it was observed that the
conditional variance was roughly proportional tbdhd (FH)* which is in agreement with Browet

al., (1989) and de Gier (2003). Since the coefficimftpolynomial and combined variable models
were obtained by weighted linear (multiple) regi@ssthe calculated coefficients and error statssti
were unbiased.
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Figure 4.1 Unweighted second-degree polynomial (left) andeighted third-degree polynomial (right) for
the same dry weight data of sample trees

Another interesting observation in the study waat thpecies differences did not require the
development of separate biomass equations. Thignatton is in line with de Gier (2003).
Chojnacky (2003) also observed overlapping curvesrg many tree species of U.S.A. This finding
is extremely important because one equation careder all tree species of the forest, and it can
avoid another error, namely wrong species idemtiion, a frequently encountered problem in many
countries (de Gier, 2003).

The three scatter plots of sample tree biomassattd by sub-sampling method against the predicted
biomass by the three models are shown in the Figielt is clear that all the estimates by the
combined variable model are closer to the sub-sampktimates.
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Figure 4.2 Dry weight estimates of the sample trees ®ub-sampling method against the predicted values
by (a) combined variable model, (b) polynomial model an¢c) power function model
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4.3. Comparision of biomass estimates with existing equations

Before existing tree based equations can be usedirbiomass assessment program, one needs to
verify whether they are indeed applicable to theaatoncerned. De Gier (2003) has observed large
differences in biomass estimates while applyin§edént equations from similar climatic zones but at
the same time also found the estimates by equationsdifferent climatic zones nearly overlapping.
Jenkinset al., (2003) has mentioned sources of errors in forgminéss assessment while using
published equations.

The polynomial equation developed in this study w&en as reference for the biomass estimation of
sample plots. The combined variable model couldb®iused because trees in the plots were not
measured for height. The comparisons of tree doynbss estimates obtained from the polynomial
equation and the existing Chinese and IPCC equai®shown in the Figure 4.3 below. Four more
curves are added in the graph showing how the idmpdiss equations developed in other parts of the
world compare to the polynomial equation of thisdst The additional curves are based on equations
developed for woodland and shrub-land tree speicieshe Netherlands, Tunisia, Ethiopia and
Burkina Faso respectively by de Gier (2003), Ad€193), Lemenih (1995) and Kabore (1991), all
using the same sub-sampling method. All the egunatare general (not species specific), except the
IPCC equations which are separate for broadleanddheedle-leaved species.
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Figure 4.3. Comparison of biomass estimates bguifft equations

The Figure 4.3 clearly shows the anomaly in behavif the curves. The IPCC curve for broad-
leaved (IPCC-BL) species is far from the polynondaive of this study; however, the IPCC needle-
leaved (IPCC-NL) curve is almost coinciding withethegional Chinese curve and is closer to the
polynomial curve. Surprisingly, the curve from wémt of Burkina Faso, a semi-arid country, is
overlapping with the polynomial curve of this stualyd is far away from the curve of Ethiopia- also a
semi-arid country. The curves from The Netherlaffidgsnperate country) and Tunisia (tropical
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country) are closer, in contrast to the great diffice between the polynomial curve of this study an
the curve of The Netherlands (both from temperateeg). From this observation it can be concluded
that biomass equations from one location can noplyi be used in another location even when the
areas are ecologically comparable. Also, the bisrnegsiations developed for trees in dense forest can
not be used for trees in woodlands or shrub-larsdditfierent trend is evident in the above graph
(woodland/ shrub-land curves are much below thestocurves except for Burkina Faso). One reason
could be the branching pattern of trees (de GiéQ3) i.e. even the same species of trees when
growing inside forest have different branching @attthan when growing in open environment.

The biomass estimates by the developed polynomgdiesas than the estimates from the IPCC and the
Chinese equations. This underestimation can bibateid to the difference in definitions of above-
ground biomass. Both the Chinese and IPCC equatiame defined above-ground biomass as the
total weight of all the above-ground componentduding foliage and twigs while this study has
considered only the above-ground woody componenthd minimum branch diameter of 2.5 cm.
Further the difference in the definition of overy-dveight of wood is expected to cause the variation
The Chinese equation is based on oven drying otiveamnples to a constant weight at@vhile all

the other equations are based on oven drying ofiwamples at 166.

In brief, biomass equations show large differerm@®ng geographical areas and land cover types.
Hence existing equations should not be used outsidie area of origin without validation. This
implies the need to develop a new equation basezmple trees taken from the area of interest.

4.4. Above ground biomass and carbon density

The average above ground biomass density calculededthe field inventory data of this study was
81.88 ton/ha; that means a carbon density of 4@84ha (50% of dry biomass). This figure of carbon
density is in agreement with figures in literatéoesimilar forests. The mean values of carbon igns
for Chinese forests range from 36-57.07 ton/ha §#4ral.,2007). Using the national forest inventory
data of China from 1949 to 1998, Faegal., (2001) estimated the average carbon density of the
north-east Chinese boreal forests to be approxiyn&@ tons/ha. Taret al., (2007) reported the
average carbon density of nearly 55 ton/ha in Chanmountain system that also covers the study
area. Fanget al. (2006) reported that inventory-based forest carbmtk documented for major
countries in the middle and high northern latitutidswithin a narrow range of 36-56 tons/ha with a
overall area-weighted mean of 43.6 tons/ ha. Tlezaae vegetation carbon density for all forests of
Europe, USA and Japan at similar latitudes are632and 34.7 ton/ha respectively (Zhagigal.,
2007). Fang and Wang (2001) pointed out that foragbon density in major temperate and boreal
forest regions in the Northern Hemisphere has aomarange from 29 to 50 ton/ha with a global
mean of 36.9 ton/ha.
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4.5. Annual wood accumulation and carbon sequestration

Annual production of above-ground biomass is kegadon sequestration assessment. According to
Brown (1999), estimations of net primary producti®fPP) or carbon sequestration are generally
based on the aboveground components only. Bour&udl., (2005) observed high correlation
between stem biomass increment and growth ringgment at breast height. Adopting the procedure
suggested by de Gier, (1989), the annual productfomoody biomass and carbon was estimated in
this study from tree growth rings measurementsiesedof biomass equations. Husthal. (1982) has
mentioned that it is more convenient and more atewo obtain growth ring measurements from the
cut cross-sections. Since most biomass equatiengegrendent of dbh, cut disks from breast height
were used to derive relation for carbon sequestrati

The relation for annual above-ground wood accurnariatdependent on over-bark (o0.b.) dbh and
annual increment of 0.b. dbh, was obtained fromfitet derivative of biomass equation, namely
polynomial equation. Since increment in 0.b. dblhies sum of increments in under-bark (u.b.) dbh
and bark thickness, measurements for both growtfjsrand bark-thickness was necessary for the
development of desired relation. A linear relatlipswvas observed between u.b. dbh increment and
0.b. dbh which is consistent with the relation aled by de Gier (1989) for woodlands vegetation of
the Netherlands. Morbext al. (2003) has also observed positive correlation betwdiameter growth
rate and dbh. This means that a large tree in dpr@ntal stage has higher growth rates (wider yings
than smaller trees. Also, a linear relation waseoked between bark thickness and o.b. dbh. The
linear relation between o.b. dbh and dbh incremeas expected in the study because the forest is
nearly even aged. The existing forest (secondary) iesult of protection measures by the Chinese
government because forests in the area were desdtinylarge-scale industrial logging since the turn
of 20" century (Wang, 2006).

The annual carbon sequestration in this study veasimed to be the half of annual wood (dry)
accumulation according to literature (Brown, 19€@; Gier, 2003; IPCC, 2003). Although carbon
sequestration rate of a forest is largely a fumctié growing conditions and age or stage of forest
development (Brown, 1999), the results obtainedhim study are consistent with the estimates of
carbon sequestration made in similar forest typgestteer places. The average carbon sequestration
value calculated in this study was 1.88 ton/ haljxe range of NPP for all Chinese forests is 1003 t
18.13 ton C/ha.yr (Ni, 2003). Fang (2007) obtaitiexicarbon sequestration figures ranging from 1.33
to 3.55 ton/ ha.yr for Chinese temperate forests.tike similar forest types in eastern U.S.A., Brow
and Schroeder (1999) estimated the average abouedrproduction of woody biomass for
hardwood and softwood forests respectively as 82489 ton/ ha.yr i.e. carbon sequestration of 2.6
and 2.9 ton/ ha.yr respectively.

Although comparable to the Chinese and U.S. figutesrate of carbon sequestration obtained in this
study may be an underestimation. One reason foighhbe difference in definition of AGB. Some of
the previous studies have considered the whole AtRiding foliage and small branches in the
assessment of carbon while other use nationaltforesntory data and expansion factors to calculate
biomass increments that also accounts for the geliand smaller branches (e.g. Brown and
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Schroeder, 1999). This study, however, has def&@8 as the total mass of woody component to a
minimum of 2.5 cm branch diameter.

Bouriaudet al., (2005) has mentioned that despite numerous impiasitand reported evidence, the
relationship between ring width measured at brieaight and stem biomass increment has been quite
poorly investigated. It means still little is knovais to how the variations of growth at breast heigh
reflect quantitative variations of stem biomassdpiaion at short time steps. Moreover, most of the
previous studies are conducted for coniferous sgeciurther, Bouriauet al.,(2005) has mentioned
that computing annual biomass production from iimgement involves unverified assumptions. For
example, the relative contribution of the variatioming shape or annual fluctuations in wood dignsi

to the estimates of woody biomass increment isassessed. Since this study combined the growth
ring measurement data from all species togetherdaed not consider the inter-annual variations in
wood density or stem taper, the estimates of amwoatl accumulation and carbon sequestration can
only be taken as proxy. The accuracy needs to biece by detailed study either by field
measurements in permanent plots or intensive graimtdh measurements considering the relative
contribution of the variation in ring shape or aahfluctuations in wood density.

The Kyoto protocol clearly affirms the importanckimcreasing our understanding of forest carbon
budgets and the role of forests in offsetting glaaabon emission. This study has contributed at th
direction. Forest managers interested in foresdbaamanagement for stewardship purposes or to
attain certification in sustainable forest manageinneay benefit from these findings. It can alsasser
as basis for entry into CDM markets.

4.6. Remote sensing based biomass and carbon sequestration
assessment

Previous studies using optical remote sensing Hate had variable results for defining the most
useful band or indices to map biomass, and have enclusive for suggesting a consistent
relationship (Dong et al.,, 2003; Labrecque et 2006). Moreover, each application requires an
assessment of the optical bands and indices fonatitg biomass from spectral relationships (Foody
et al, 2003; Labrecquest al, 2006). With all plot data pooled together, thestbeelationship of
biomass and carbon sequestration in this studyolvasrved with corrected-NDVI (NDVIc), followed
by RSR and TM band-5 reflectance. Although thetimtahips are poor, better relation based on least
square regression could not be established. Pdatiore of biomass and spectral data have been
observed in many studies (Foody al, 2003; Kasischkest al, 2004; Labrecquet al, 2006; Lu,
2006; Schlerfet al, 2005). Most previous research on above-grounithason is for coniferous
forest because of its relatively simple structute, (2006; Zenget al., 2004) but for forest with
complex structure and variety in species compasitiomass estimation becomes difficult (Foady
al.,, 2001). Shadows are likely to decrease the refiteet in all spectral bands as biomass increases
(Muukkonen and Heiskanen, 2005). Kasisclekeal. 2004 has mentioned the existence of relation
between biomass and fraction of shadow in forestdstThe predominant topographic shadow in the
study area due to the hilly terrain may be one edoisthe poor relation.

The better prediction of biomass by NDVIc is in egment with Zenget al., (2004) where they
obtained strong relationship in a temperate far@sging in biomass up to 220 ton/ha. NDVIc has the
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capability to account for understory effects andssful for secondary forests. The root mean square
error with NDVIc was 32.28% of the mean which isngaratively lower than some other studies
(Heiskanen, 2006; Labrecqeeal, 2006; Muukkonen and Heiskanen, 2005). NDVI watsfoond to

be a good predictor of biomass which is also reqabbly Luet al.,(2004) and Foodgt al., (2003).

Another better relation between biomass and RSRrebd in this study can be related to Brogin
al., (2000) whereby they observed increased sensitoftyRSR in LAl retrieval. RSR has the
advantages of reducing the effect of backgrounteetfnce and unifying deciduous and conifer
species in forest parameters retrieval. Middleardd (MIR) reflectance was also found to have good
(but inverse) relation with biomass in this studgverse relation between MIR (TM band 5)
reflectance and biomass has been observed in peestadies (Boyét al, 1999; Ingranet al.,2005;

Lu et al., 2004; Steininger, 2000). Labrecqat al., (2006) also found the band 5 to be the most
correlated with biomass compared to other bands.

Kasischkeet al., (2004) has suggested using remote sensing tafistfatest types based on
composition and structure and then use field sarpfiies to estimate the timber volume of each
stratum. When the sample plot data were stratlfieéorest types, needle-leaved forest demonstrated
good relation between biomass and spectral vaBigghe relation in case of broad-leaved and mixed
forest was still poor. This finding is in agreemeavith Kasischkeet al., (2004) and Zhengt al.,
(2004) where stronger relation between the atteibt Al and biomass) of conifer forests and Vs
have been explained. Even after stratifying thegbby species and cover types and using polynomial
and multiple regressions based on VlIs and bandstatie maximum Rvalue obtained by Labrecque
et al.,(2006) was 0.16 in a temperate forest with avebagmass range of 88 to 125 tons/ ha.

Previous studies have shown significant variatiothie form of regression between biomass and Vls
due to the tendency of spectral indices to satwatahégher values of biomass (Kasisclekal.,2004).

No saturation of VI was observed in the study atekisting level of biomass density (average 81.88
ton/ha). This is in line with the result obtained &teininger (2000) whereby saturation was observed
at around 150 ton/ha. Rauste (2005) has reportdtile saturation level depends on forest types,
structure and understory conditions. The lineaati@hship obtained in this study is justifiablecgn
saturation was absent.

When buffer was applied around the plot pixel ttramt the average spectral signature of the pixel
still poor relationship was observed between biangasl spectral data. The poor relation in this case
may be explained on the ground that the averagerspsignature can not be the representativeef th
biomass of the pixel concerned. When average Viaua pixel is obtained, taking account of the
surrounding pixels, the result is a form of smoaghwhich either increases or dampens the spectral
value of the pixel concerned. The equal contributbsurrounding pixels that may be a non-forest, i
such a case, can be a constraint in the relatipristiveen biomass and spectral values.

One fundamental reason for poor prediction of bissnfiom optical remote sensing is that satellite
sensors can only see the forest canopy and cadetett how much biomass is found under the
canopy. In dense canopy forest, the stem biomasssthidden from the sensor comprises majority of
the above-ground biomass. Another reason mentionktgrature is the physiochemical properties of
leaves such as structure, chlorophyll content aaigmcontent (Ingrarat al.,2004; Steininger, 2000).
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Vegetation appears dark in TM band 3 due to chloybmbsorption of red wavelengths and appears
bright in band 4 due to high reflectance and midtigcattering of photons. Middle infrared bands
(TM bands 5 and 7) are subject to absorption byemiat leaf. Leaf senescence of deciduous species
could have effect on spectral characteristics effthiest. As the imagery used was of 22 September,
some deciduous species were already turning lgavgsllow. During the field visit in September,
leaves of deciduous species in one part of thesfavere still green while in the others part therev
yellow.

It should be noted that out of the 172 plots forichihplot biomass and carbon sequestration were
calculated only 142 were taken for the developnoénklationship between the forest variables and
VI. The reason was that some of the plot pointseiwbverlaid on the image, were shifting from the

actual position where it should have been. This rez®gnized when some of the peripheral plot

points in the forest were noticed on agriculturelds or roads on the image.
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5. Conclusions

Above ground biomass assessment is critical to nsteted the influential role of forest in global
carbon cycle and climate change. Precise modetsifgp to local conditions, and good quality
ground data are important for accurate biomasssassmnt. In addition to determining the best fitting
biomass models, based on a reliable and unbiast#bdhef sample tree measurements, the study has
concluded the following:

How accurate is the estimate of tree biomass by stgampling method?

The sub-sampling method is promising for reliablel ainbiased biomass estimation. The sub-
sampling based biomass estimates explained moneSth&o of the variability of true biomass of the
sample trees. Since the biomass estimates by thtieochare unbiased and statistically independent
(i.e. the expected value of error is zero), thelltgsy equations from the least square regressien a
also accurate.

Which model out of polynomial, power and combined ariable forms is appropriate for the
estimation of AGB at a landscape scale while congidng the accuracy and problems in tree
variables measurement?

The combined variable model was found to be thé¢ ibedescribing the relationship of tree biomass
and its variables dbh and height. While considetivggpractical problems in tree height measurement,
the polynomial model was the next best alternabeeause its fit statistics differ little with the
combined model compared to the power model. Thghtieig of third degree polynomial followed
by backward elimination of non-significant coef@ots was necessary to get rid of the
heteroscedasticity and illogical behaviour of cuavéower dbh values.

How do the estimates from local Chinese and IPCC eqtions compare (w.r.t. precision) with

the sub-sampling estimates and what would be theimpact on assessing carbon reservoirs and
sinks?

The geographical location of the existing tree-bdasguations was found to have significant effect in
the area based estimates of biomass, althougtstimate by Chinese equation was closer to the sub-
sampling based estimates (i.e. from the polynoegalation). The estimates of biomass density using
the Polynomial, Chinese and IPCC equations wereddo be 81.885, 97.113 and 112.122 metric
tons. The estimates by the Chinese and IPCC eaqagie respectively 18.6% and 36.9% higher than
the polynomial estimate. The estimates by the tgeaations differed significantly. Since the
polynomial equation was based on field measurefmgninbiased and reliable sub-sampling method,
the estimate from it was assumed to be the mosiraiec

How reliable is the estimate of carbon sequestrativobtained from growth ring measurement?

The use of tree ring analysis is a valuable tooltli@ assessment of increment in woody biomass or
carbon sequestration. The use of growth ring measemts for the assessment of annual carbon
sequestration demonstrated agreement with the dattach values in literature for the forests in
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north-east China and the comparable forests elgewliairther investigation on the relationship
between tree ring measurements and annual woodmadation is required for improved
understanding of the role of temperate forests arbon sink and for sustainable management
planning. The relation developed in the study netxde verified by species and all species
combined.

Which vegetation index or spectral bands best relatto AGB? And what is the biomass estimate

of Wanggqing forest?

Although poor, a significant relationship was olveer between biomass (or annual carbon

sequestration) and corrected-NDVI. The average assmdensity of the forest was estimated to be
65.36 tons/ ha while the total biomass was 18400@6fons. The annual carbon sequestration was
estimated at 1.52 ton/ha and the total annual casbquestration was 428920.51 tons.

Is there saturation problem of VI in the study are& If yes, at what level of biomass does VI
start to saturate?

In general, saturation effect was not observed Wigi band ratios; however, because of the poor
relationships detail evaluation could not be mamteefich of the tested VIs/ band ratios.

Finally, the equations developed in this study banused for biomass and carbon inventories for
ecological studies, for validating theoretical misdend for planning the use of forest resourceg Th
maps showing spatial distribution of biomass andiuah carbon sequestration could serve as
reference for the planners for sustainable manageofehe forest.
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6.

Recommendations

Sub-sampling method can be used for reliable astl effective biomass assessment. The
reliability of the sub-sampling estimates should dmmsolidated by undertaking two path
measurements per tree.

Existing equations should not be used without \ai@h. Original equation specific to the
area under investigation is important.

The equations developed in this study are valig éod the Wangqing forest for trees above
7.2 cm dbh and can be used to the maximum dbh eh®(So the equations should be used
with care for the locality and dbh limits. Applica of the equation beyond the limits needs
verification.

Species specific relations for annual wood incremesged to be developed for precise
estimation of carbon sequestration because theeténmncrement or the width of growth
rings and hence the wood increment varies acrossiesp The relation derived for carbon
sequestration needs to be verified by the measumsneé sample trees in permanent plots.
Further research is required to see the effectdftions in wood density across the growth
rings on tree biomass increment.

Integrating the both diameter and height dimensiorthe development of biomass equation
could provide more accurate biomass estimation.

Further research is required to establish bettatioea between biomass and spectral data.
Additional data on forest types, canopy cover, heand age could be integrated to obtain
better predictive model based on spectral data.uSkeof alternative imaging technology (e.g.
RADAR, LiDAR, Hyper-spectral imagery, or high restbn imagery such as Quickbird or
IKONOS) should be considered and methods to captareontal (e.g. canopy cover, basal
area) and vertical (height) characteristics offthvest should be further studied.
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Appendices

Appendix 1: Sample tree measurements

Tree dbh ht
# (cm) (m) | Species FWS FWT FWC VS DWS
1 26.8| 16.4| B. platyphylla 365 3924 0.5096 225.77
2 9.2 8.7 | B. platyphylla 19.6 22.6 0.0375 11.31
3 22.5| 19.5| B. platyphylla 388.6 457.5 0.4595 217.29
4 18.8| 20.4| B. platyphylla 184.2 262.7 0.3178 101.74
5 14.4| 18.7| B. platyphylla 113.4 108 0.149 61.44
6 15.8| 16.3| U. pumila 175.3 163 0.1729 81.70
7 9.8 8.6 | U. pumila 30.5 34 0.0311 14.44
8 19 16 | U. pumila 246.6 0.2441] 118.61
9 13.7| 13.6| U. pumila 134.9 100 0.1144 64.16
10 36.1 16 | U. pumila 785.3 0.9827| 420.56
11 17.1| 20.2| F. mandshurica 201.2 245.3 0.2687 114.85
12 18.3| 12.7| A. holophylla 137.3 131 0.1909 47.70
13 19.4| 12.9| Q. mongolica 219.8 204 0.2474 135.96
14 20.7| 13.8| Q. mongolica 226.8 255.7 0.2732 135.95
15 19.7| 16.4| A. holophylla 207.8 197 0.2535 88.94
16 8.5 8.6 | A. holophylla 22.9 23 0.0278 9.13
17 13.2| 14.4| A. holophylla 115.7 109 0.1213 43.63
18 13.2| 13.6]| A. holophylla 90 83 0.1055 40.01
19 26.2| 17.3| A. holophylla 3454 290.8 0.3938 131.41
20 10.4| 10.5]| P. jezoensis 44.8 42 0.0516 19.36
21 26.1| 19.1| P.jezoensis 460.8 0.6005 212.86
22 18.3| 19.3| L. olgensis 251.9 171.4 0.2695 101.72
23 13.9| 17.1| L. olgensis 108.9 108 0.1365 66.05
24 27| 22.6| L. olgensis 463.5 419.4 0.6556 270.48
25 33.1| 23.2] L. olgensis 786.1 726.2 0.9729 450.00
26 22.7| 19.2| A. holophylla 318.7 316.2 0.4012 129.09
27 20.5| 10.8| T. amurensis 144.1 152 0.198 74.28
28 24.3| 11.8| T. amurensis 174 0.2559 84.36
29 14.9| 15.2| B. platyphylla 114.6 117 0.1472 63.96
30 24.1 19| B. platyphylla 363.9 438.7 0.545 207.88
31 35.3| 23.1| B. platyphylla 1141 1.2874| 632.47
32 8.5| 12.9]| B. platyphylla 29.2 32 0.0375 15.86
33 8.95| 10.6| U. pumila 26.8 23 0.0308 12.85
34 24.3| 19.5| U. pumila 485.1 0.6346| 225.83
35 34.2| 22.4| B. platyphylla 948 1.1832] 504.09
36 145| 14.2| P. ussuriensis 117.3 121 0.1636 66.49
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37 18.9| 19.9| P. ussuriensis 214.1 257.0 0.335 102.02
38 18.1 12 | P. jezoensis 114.6 129 0.1825 52.10
39 9.5 7.8 | A. holophylla 27.5 24.5 0.0329 9.58
40 10.1| 11.1| Q. mongolica 37.7 41.7 0.052 24.12
41 11.6| 12.5| Q. mongolica 544 61 0.0691 35.11
42 7.2 9.2 | Q. mongolica 17.8 18 0.0215 10.82
43 27.3| 13.4| Q. mongolica 473.5 0.5806| 291.78
44 31.6 18 | Q. mongolica 786.2 1.1097] 472.51
45 12| 10.8]| L. olgensis 51.4 50 0.0704 27.35
46 30.4| 19.1| A. holophylla 530.9 551.2 0.7495| 219.62
47 15.2| 15.3]| A. holophylla 142.1 115.9 0.1548 59.05
48 15.6| 13.8| P.jezoensis 83 103 0.1017 37.51
49 15.6| 15.6| P. jezoensis 156.8 149 0.1659 50.17
50 8.4 7.8| P. jezoensis 22.4 22 0.028 11.19
51 23.3| 15.8]| P. jezoensis 218.5 0.3724| 131.69
52 17.1| 20.2]| L. olgensis 243.2| 2225 0.266 147.57
53 7.7 11.1| L. olgensis 23 23 0.0253 11.42
54 10.7| 10.2| P. jezoensis 36 42 0.0528 18.01
55 10.9| 11.5]| L. olgensis 48.7 51 0.0594 23.97
56 14.1 19| L. olgensis 112.6 123 0.1476 62.91
57 20.7| 19.7] L. olgensis 246 288 0.3041| 135.75
58 13.1 9.3 | T. amurensis 42.3 43 0.066 20.87
59 22.4| 16.2| P. jezoensis 262.4 214.0| 0.3694 130.61
60 20.2| 12.1] L. olgensis 209.8 0.2424| 101.62

FWS: Fresh weight (kg) estimate by sub-samplingTEWresh weight (kg) by total weighing; FWC:
Fresh weight (kg) estimate by combined approactoafme calculation and weighing; VS: Volume
(m°) estimate by sub-sampling; DWS: Estimated dry We{lg) by sub-sampling
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Appendix 2

2-A: ANOVA test for the comparison of dry biomass stimates of tree in the dbh range of 10-40
cm and at 2 cm class interval by broad-leaved (BL)eedle-leaved (NL) and combined species
equations obtained from fittings to sub-sampling dy biomass data

4317

SUMMARY
Groups Count Sum Average Variance
Polynomial estimates fo
NL sps 16 4199.184 262.449 61625/19
Polynomial estimates fo
BL sps 16 4456.176¢ 278.511 5054213
Polynomial estimates fo
combined sps 16 4324.112 270.257 55092.71
ANOVA
Source of Variation SS df MS F P-value F crit
Between Groups 2064.433 2 1032.217 0.018h14 0.981664 3.2
Within Groups 250890( 45 55753.34
Total 2510965 47

2-B: t-test (paired two sample for means) to compare thgignificance of difference of means of
dry biomass estimates by polynomial equations respevely for BL, NL and all species
combined for trees in the dbh range 10-40 cm at cda interval of 2 cm

Pair 1 Pair 2 Pair 3
Estimates Estimates
Estimates | Estimates | Estimates | for Estimates | for
for NL for BL for BL combined | for NL Combined
Mean 262.449 278.511 278.511 270.257 262.449 270.257
Variance 61625.187 50542.125 50542.125 55092|705 61625.187 55092.705
Observations 16 16 16 16 16 16
Pearson Correlation 0.985 0.996 0.997
Hypothesized Mean
Difference 0 0 q
df 15 15 15
t Stat -1.363 1.42% -1.301
P(T<=t) one-talil 0.096 0.08f7 0.106
t Critical one-tail 1.753 1.753 1.783
P(T<=t) two-tail 0.193 0.17% 0.213
t Critical two-tail 2.131 2.131 2.131
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Appendix

3

3-A: Results of weighted linear regression by backard elimination method applied to the
polynomial model based on dry biomass data of theample trees
Model Summary

Std. Error of the
Model R R Square Adjusted R Square Estimate
1 .944(a) .891 .885 .08250491
2 .944(b) .891 .887 .08177814
a Predictors: (Constant)’[D, D
b Predictors: (Constant) D
ANOVA (c,d)
Sum of
Model Squares df Mean Square F Sig.
1 Regression 3.125 3 1.042 153.019] <0.001(a)
Residual 381 56 .007
Total 3.506 59
2 Regression 3.125 2 1.562 233.627| <0.001(b)
Residual 381 57 .007
Total 3.506 59

a Predictors: (Constant)’[D, D> b Predictors: (Constant)?[D

¢ Dependent Variable: Dry-biomass;

Coefficients (a,b)

d Weightedst Squares Regression - Weighted by D

Un-standardized Standardized
Coefficients Coefficients
Model B Std. Error Beta t Sig.
1 (Constant) -23.766 34.887 -.681 .499
D 3.569 7.241 .330 .493 .624
D? -.007 452 -.018 -.015 .988
D® .009 .009 .658 1.064 292
2 (Constant) -23.263 9.156 -2.541 .014
D 3.461 1.034 .320 3.348 .001
D* .009 .001 .648 6.791 <0.001
a Dependent Variable: Dry-biomass
b Weighted Least Squares Regression - Weightdaf by
Excluded Variables (b,c)
Collinearity
Partial Statistics
Model Beta In t Sig. Correlation Tolerance
2 D2 -.018(a) -.015 .988 -.002 .001

a Predictors in the Model: (Constant}, D
b Dependent Variable: Dry-biomass
c Weighted Least Squares Regression - Weighte®f by
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3-B: Results of weighted linear regression applietb combined variable model based on dry

biomass data of the sample trees

Model Summary

Std. Error of the

Model R R Square Adjusted R Square Estimate
1 .967(a) .935 .934 38.844
a Predictors: (Constant)’B
ANOVA(b,c)
Sum of
Model Squares df Mean Square F Sig.
1 Regression | 1262787.072 1| 1262787.072 836.900, <0.001(a)
Residual 87515.462 58 1508.887
Total 1350302.535 59
a Predictors: (Constant)’B
b Dependent Variable: Dry-biomass
c Weighted Least Squares Regression - Weightg®1y)?
Coefficients(a,b)
Un-standardized Standardized
Coefficients Coefficients
Model B Std. Error Beta t Sig.
1 (Constant) -.804 1.087 -.740 462
D’H 181.438 6.272 .967 28.929 <0.001

a Dependent Variable: Dry-biomass
b Weighted Least Squares Regression - Weighté®1y)*
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Appendix 4: Curves fitting to the sample tree volune and fresh biomass data
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Figure 4A: scatter plot of volume data (obtained from subarg method) against DBH fitted with
un-weighted and weighted third degree polynomiaflei® \j is volume estimate by un-weighted
polynomial; V. pais volume estimate by weighted polynomial; and Db&.
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Figure 4B: scatter plot of volume data against DBH fittedhapower model

69



I
~

o
]
o 1.2
>
o)
£eg !
=
(5]
0.8
55
o
> £ 06
S E
= 504
Q
©
E 0.2
7
w
0
0 0.5 1 1.5 2 25 3 3.5
D?H (m?)
——Linear (Weighted combined model) —— Linear (Un-weighted combined model) ‘

Figure 4C: scatter plot of volume data (obtained from subssarg method) against 3l fitted with
un-weighted and weighted combined variable modéls,is volume estimate by un-weighted
combined variable model;Y:omiS volume estimate by weighted combined variable@hcand D is
dbh.
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Figure 4D: scatter plot of fresh weight data against DBIeftwith un-weighted and weighted third
degree polynomial models. RWis fresh weight estimate by un-weighted polynorm&Wy: yais fresh
weight estimate by weighted polynomial; and D i&.db
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Figure 4E: scatter plot of fresh biomass data of samplestegginst DBH fitted with power model
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Appendix 5: Measurements for the growth rings and krk-thickness made on 48 sample disks

Av. width | Av. annual
Over- (cm) of under-bark Double-
bark the rings diameter | Av. bark | bark

Tree DBH of last increment | thicknes | thicknes

# Species (cm.) five years (cm) s (cm) s (cm)

1| Ulmus pumila 9.8 0.88 0.352 0.50 1
2 | Ulmus pumila 15.8 0.84 0.334 0.40 0.8
3 | Ulmus pumila 8.95 0.56 0.222 0.30 0.6

4 | Ulmus pumila 36.05 1.84 0.734 1.50 3
5 | Ulmus pumila 13.7 0.86 0.342 0.40 0.8
6 | Ulmus pumila 18.95 1.13 0.450 0.55 1.1
7 | Ulmus pumila 24.25 1.14 0.454 1.40 2.8
8 | Fraxinus spp. 17.1 0.64 0.254 0.97 1.9
9 | Quercus mongolica] 7.2 0.39 0.156 0.67 1.3
10 | Quercus mongolica] 10.1 0.40 0.158 1.07 2.1
11 | Quercus mongolica| 11.6 0.40 0.160 0.75 1.5
12 | Quercus mongolica| 27.25 0.47 0.189 1.67 3.3
13 | Quercus mongolica] 19.35 1.13 0.450 1.40 2.8
14 | Quercus mongolica| 20.7 0.94 0.377 1.30 2.6
15 | Quercus mongolica| 31.6 1.14 0.455 1.73 3.5
16 | Abies holophylla 18.25 0.71 0.282 0.40 0.8
17 | Abies holophylla 9.5 0.51 0.204 0.30 0.6
18 | Abies holophylla 30.4 0.95 0.380 0.83 1.7
19 | Abies holophylla 26.15 1.60 0.639 0.60 1.2
20 | Abies holophylla 15.15 0.82 0.328 0.45 0.9

21| Abies holophylla 19.65 0.96 0.385 0.50 1

22 | Abies holophylla 13.15 0.68 0.271 0.50 1
23| Abies holophylla 13.2 0.38 0.151 0.45 0.9
24 | Abies holophylla 8.5 0.72 0.287 0.25 0.5
25| Abies holophylla 22.7 0.33 0.132 0.53 11
26 | Picea jezoensis 17.95 0.87 0.348 0.55 1.1
27 | Picea jezoensis 26.05 1.67 0.668 0.55 1.1

28 | Picea jezoensis 23.25 0.69 0.276 0.50 1
29 | Picea jezoensis 15.6 1.09 0.434 0.35 0.7
30 | Picea jezoensis 15.55 0.34 0.137 0.40 0.8
31 | Picea jezoensis 10.65 0.47 0.189 0.35 0.7
32 | Picea jezoensis 10.35 0.15 0.058 0.45 0.9
33 | Picea jezoensis 8.4 0.18 0.070 0.30 0.6

34 | Picea jezoensis 22.35 1.67 0.669 0.50 1
35 | Larix olgensis 11.95 0.25 0.098 0.70 1.4
36 | Larix olgensis 26.95 1.11 0.443 1.30 2.6
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37 | Larix olgensis 27.7 0.97 0.389 1.10 2.2
38 | Larix olgensis 33.05 0.70 0.281 1.20 2.4
39 | Larix olgensis 17.1 0.69 0.277 0.67 1.3
40| Larix olgensis 26.95 0.58 0.232 0.85 1.7
41 | Larix olgensis 14.1 0.43 0.171 0.90 1.8
42 | Larix olgensis 18.25 1.37 0.547 0.55 11
43| Larix olgensis 10.9 0.37 0.147 0.43 0.9
44 | Larix olgensis 7.7 0.58 0.231 0.45 0.9
45| Larix olgensis 20.15 151 0.603 0.95 1.9
46 | Tilia amurensis 13.1 1.11 0.444 0.70 14
47 | Tilia amurensis 20.45 0.76 0.303 1.10 2.2
48 | Tilia amurensis 24.3 0.87 0.347 0.95 1.9
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Appendix 6: Location of sample plots along with thecalculated quantity of biomass, annual

wood increment and carbon sequestration in them

Plot biomass  Annual Carbon
(kg) wood Carbon sequestratio
) estimate accumulatio| sequestratio| n scaled up

A ESITITENSE from poly. n (dM) per n per plot to per ha

Plot ID X Y equation plot (kg) (kg) (tons)
1RA | 617261| 4809276 1371.34 78.15 39.08 0.78
2RA | 617488| 4809052 747.43 44.63 22.32 0.45
3RA | 617072| 4808604 3170.24 152.14 76.07 1.52
4RA | 616372| 4811341 3089.98 137.02 68.51 1.37
5RA | 616094| 4810874 2387.64 116.62 58.31 1.17
7RA | 616263| 4811167 2165.92 105.47 52.73 1.05
8RA | 616116| 4811914 1522.94 75.40 37.70 0.75
9RA | 615817| 4812460 2793.06 136.60 68.30 1.37
10RA | 614867| 4811362 3375.49 157.98 78.99 1.58
11RA | 614886| 4811254 4178.92 207.25 103.62 2.07
12RA | 614849| 4810957 3652.09 176.91 88.46 1.77
13RA | 618919| 4795537 2422.68 123.33 61.67 1.23
14RA | 617320| 4793180 4234.22 195.88 97.94 1.96
15RA | 617316| 4793016 8588.93 380.50 190.25 3.81
16RA | 617615| 4794363 4114.32 194.01 97.01 1.94
17RA | 617537| 4794473 4035.71 189.12 94.56 1.89
18RA | 619431| 4791536 4541.40 215.88 107.94 2.16
20RA | 619340| 4790570 4641.24 207.88 103.94 2.08
21RA | 619509| 4789615 4043.85 189.13 94.56 1.89
22RA | 619174| 4790038 4688.92 215.29 107.64 2.15
23RA | 621894| 4800602 1855.75 81.90 40.95 0.82
24RA | 620055| 4802986 3197.45 142.70 71.35 1.43
25RA | 621566| 4800236 4973.29 234.02 117.01 2.34
26RA | 620186| 4788157 7143.70 322.42 161.21 3.22
28RA | 620151| 4788801 4230.38 205.30 102.65 2.05
29RA | 620041| 4789242 3592.33 182.11 91.06 1.82
30RA | 620175| 4789631 4040.90 182.95 91.47 1.83
31RA | 619700| 4788102 7777.05 348.79 174.39 3.49
32RA | 619512| 4787888 8737.47 414.97 207.49 4.15
33RA | 619829| 4788219 5963.04 275.85 137.93 2.76
34RA | 636144| 4819632 3865.38 178.74 89.37 1.79
35RA | 636042| 4819604 1739.21 81.84 40.92 0.82
37RA | 635929| 4819402 4343.30 199.03 99.52 1.99
38RA | 635906| 4819854 3476.31 158.51 79.25 1.59
39RA | 635839| 4820081 3759.89 171.40 85.70 1.71
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40RA | 635460| 4820249 5117.33 227.96 113.98 2.28
41RA | 634187| 4814496 2983.42 133.99 67.00 1.34
42RA | 634070| 4814587 3676.39 171.91 85.95 1.72
43RA | 633952| 4814607 7586.30 340.96 170.48 3.41
44RA | 634267| 4816289 1899.28 84.90 42.45 0.85
46RA | 635631| 4817351 4839.53 221.62 110.81 2.22
48RA | 637545| 4822770 3500.72 166.93 83.46 1.67
49RA | 637762| 4822190 2288.86 103.08 51.54 1.03
50RA | 638742| 4821928 2919.97 130.08 65.04 1.30
51RA | 638490| 4820263 5881.09 264.18 132.09 2.64
52RA | 634241| 4814071 1951.41 104.67 52.34 1.05
53RA | 634241| 4813480 2933.87 140.08 70.04 1.40
54RA | 633299| 4811699 4936.72 236.95 118.47 2.37
55RA | 632865| 4810322 6355.95 295.79 147.90 2.96
56RA | 633022| 4810237 4193.15 213.54 106.77 2.14
57RA | 641554| 4817662 2936.45 141.89 70.94 1.42
58RA | 641354| 4817484 718.76 36.24 18.12 0.36
59RA | 641279| 4817757 5408.38 241.13 120.56 241
60RA | 642116| 4818439 2821.39 152.43 76.22 1.52
61RA | 617860 4800986 3504.01 170.39 85.20 1.70

4D | 617919| 4801835 701.15 41.06 20.53 0.41

6D | 617811| 4802522 829.17 45.86 22.93 0.46

9D | 616694| 4809387 1627.64 95.80 47.90 0.96
10D | 616659| 4809568 4162.29 195.70 97.85 1.96
11D | 616646| 4809733 2716.47 128.27 64.13 1.28
13D | 616382| 4811277 3701.60 169.19 84.60 1.69
14D | 616418| 4811113 2544.03 122.01 61.00 1.22
15D | 616440| 4811935 2307.37 105.95 52.97 1.06
16D | 616468| 4810771 2621.17 129.06 64.53 1.29
17D | 616498| 4810592 6710.62 310.95 155.48 3.11
18D | 616524| 4810431 189.45 11.13 5.56 0.11
20D | 616576| 4810071 807.12 36.47 18.23 0.36
22D | 616076| 4813173 2654.47 138.20 69.10 1.38
23D | 616109| 4813004 2204.62 103.55 51.77 1.04
24D | 616131| 4812832 3287.79 151.29 75.65 151
25D | 616162| 4812660 3249.38 159.81 79.90 1.60
26D | 616187| 4812486 5723.11 264.00 132.00 2.64
27D | 616228| 4812316 1807.94 90.61 45.30 0.91
28D | 616280| 4811970 2111.93 100.51 50.26 1.01
29D | 616299| 4811805 3828.74 178.19 89.10 1.78
31D | 618978| 4795322 4943.12 223.14 111.57 2.23
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32D | 619011| 4795155 3289.55 155.61 77.80 1.56
33D | 619035| 4794979 4238.19 193.31 96.65 1.93
34D | 619066| 4794806 3192.42 146.28 73.14 1.46
35D | 619100| 4794644 5716.80 263.15 131.58 2.63
36D | 619127| 4794454 4928.69 230.19 115.09 2.30
37D | 619179| 4794115 6804.92 308.35 154.18 3.08
38D | 619211| 4793939 4858.26 222.12 111.06 2.22
39D | 619238| 4793777 3577.94 173.41 86.71 1.73
43D | 619596| 4791552 3894.39 183.42 91.71 1.83
44D | 619621| 4791368 6437.58 291.58 145.79 2.92
45D | 619648| 4791191 6595.23 304.52 152.26 3.05
46D | 619683| 4791023 5965.31 275.21 137.61 2.75
47D | 619701| 4790859 2882.79 133.66 66.83 1.34
48D | 619738| 4790675 8288.08 369.11 184.56 3.69
49D | 620152| 4788115 4003.00 181.71 90.85 1.82
50D | 620123| 4788276 2383.19 113.62 56.81 1.14
51D | 620096| 4788454 9126.98 408.07 204.03 4.08
54D | 620013| 4788971 7980.95 357.04 178.52 3.57
55D | 619959| 4789172 4970.44 228.63 114.32 2.29
56D | 619961| 4789310 4227.34 206.12 103.06 2.06
57D | 619930| 4789475 5212.98 235.86 117.93 2.36
58D | 619907| 4789652 5651.92 258.91 129.46 2.59
59D | 620177| 4787928 7253.22 326.13 163.06 3.26
61D | 620239| 4787596 5272.18 237.70 118.85 2.38
62D | 620272| 4787424 5448.37 246.20 123.10 2.46
63D | 620300| 4787244 2577.68 120.87 60.43 1.21
64D | 620328| 4787072 6218.60 282.39 141.20 2.82
65D | 636716| 4819417 2839.03 137.24 68.62 1.37
66D | 636693| 4819248 2887.31 130.16 65.08 1.30
68D | 636651| 4818903 2392.67 110.80 55.40 1.11
69D | 636633| 4818730 3792.74 174.61 87.30 1.75
70D | 636614| 4818554 2323.49 103.89 51.95 1.04
71D | 636590| 4818385 1888.56 85.66 42.83 0.86
72D | 636563| 4818218 3637.82 162.66 81.33 1.63
73D | 636556| 4818038 3017.61 133.48 66.74 1.33
74D | 636534| 4817871 1548.56 68.58 34.29 0.69
77D | 636764| 4819761 4265.47 198.31 99.16 1.98
78D | 636784| 4819930 6327.68 286.99 143.49 2.87
79D | 636808| 4820107 4910.75 221.11 110.56 221
80D | 636830| 4820276 2691.22 120.93 60.47 1.21
81D | 636857| 4820446 2320.52 112.63 56.31 1.13
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82D | 636873| 4820618 2312.68 105.73 52.87 1.06
83D | 636894| 4820792 2307.57 105.06 52.53 1.05
84D | 636918| 4820968 2914.97 135.28 67.64 1.35
85D | 636945| 4821137 4629.39 205.16 102.58 2.05
86D | 636960| 4821304 3523.33 158.38 79.19 1.58
87D | 636984| 4821479 2484.61 110.72 55.36 1.11
88D | 637008| 4821659 2127.10 100.37 50.18 1.00
89D | 637089| 4822344 5328.57 240.34 120.17 2.40
90D | 637102| 4822518 3823.09 169.32 84.66 1.69
91D | 637137| 4822692 1928.84 87.94 43.97 0.88
92D | 637157| 4822857 3811.42 177.94 88.97 1.78
93D | 637182| 4823034 5671.58 249.97 124.98 2.50
95D | 637224| 4823388 5536.47 248.03 124.02 2.48
96D | 637245| 4823550 3043.83 133.90 66.95 1.34
97D | 637261| 4823724 5043.05 225.39 112.70 2.25
98D | 637283| 4823900 3439.91 153.51 76.75 1.54
99D | 632371| 4784583 4161.65 190.94 95.47 1.91
100D | 632334| 4784240 3641.95 170.37 85.18 1.70
101D | 632312| 4784073 4734.85 217.75 108.88 2.18
102D | 632416| 4784929 3870.25 17457 87.28 1.75
103D | 632476| 4785456 4105.06 189.66 94.83 1.90
2YQ | 618582| 4803904 4642.25 210.06 105.03 2.10
3YQ | 618610| 4803731 2648.59 123.53 61.77 1.24
9YQ | 617641| 4805735 2242.37 105.24 52.62 1.05
10YQ | 617615 4805915 5537.11 242.47 121.23 2.42
12YQ | 617562 4806256 1783.16 85.98 42.99 0.86
13YQ | 617538| 4806423 2265.01 108.30 54.15 1.08
14YQ | 617508| 4806595 1709.18 78.19 39.09 0.78
15YQ | 617479| 4806776 4687.88 214.75 107.37 2.15
18YQ | 617333| 4807618 4551.56 210.72 105.36 211
23YQ | 620008 4795154 5083.64 224.73 112.36 2.25
27YQ | 620123 4794470 5839.73 267.76 133.88 2.68
30YQ | 620202| 4793957 8117.23 361.52 180.76 3.62
33YQ | 620291| 4793445 4496.23 208.81 104.40 2.09
38YQ | 620560( 4788073 4180.59 200.07 100.03 2.00
39YQ | 620587| 4787902 8396.59 378.19 189.09 3.78
42YQ | 620668| 4787385 1304.72 66.21 33.10 0.66
43YQ | 620695| 4787215 3031.21 143.39 71.70 1.43
48YQ | 620363| 4789267 3883.05 180.67 90.34 1.81
73YQ | 633406| 4784567 4600.69 207.82 103.91 2.08
77YQ | 633296| 4783706 4582.97 205.48 102.74 2.05

7



Appendix 6: ...continued

78YQ | 633274| 4783533 9765.13 440.85 220.43 441
79YQ | 633254 4783362 5253.25 243.86 121.93 2.44
80YQ | 633221| 4783189 5038.65 233.87 116.94 2.34
81YQ | 633211| 4783018 3468.47 165.29 82.65 1.65
82YQ | 633189| 4782847 3617.54 166.75 83.38 1.67
84YQ | 632072| 4783839 6893.48 310.63 155.32 3.11
85YQ | 632051| 4783669 6759.78 299.52 149.76 3.00
86YQ | 632030| 4783496 5305.83 239.71 119.86 2.40
87YQ | 632009| 4783323 7844.52 348.53 174.27 3.49
88YQ | 631988| 4783153 5869.70 269.87 134.93 2.70
91YQ | 631924| 4782638 6083.27 270.92 135.46 2.71
97YQ | 632177| 4784699 4393.66 212.49 106.25 2.12
99YQ | 632220| 4785043 6826.66 310.34 155.17 3.10
100YQ | 632243| 4785215 5586.57 254.45 127.22 2.54
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