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Abstract 

Accurate assessment of above-ground woody biomass is important for sustainable forest management 

and to understand the role of forest as source or sink of carbon. The best way of improving assessment 

accuracy is to develop predictive equations based on locally collected data. The use of remote sensing 

(RS) techniques with limited field data, have got popularity in forest resource assessment over large 

area in a cost effective manner. The absence of local biomass equations and the uncertainty of 

estimates when using existing regional or global equations motivated this study towards developing 

equations for biomass and carbon sequestration on tree basis for the cool temperate forest in 

Wangqing, north-east China. A ‘tree sub-sampling method’ was employed for the estimation of 

biomass of 60 sample trees harvested in the field that served as the basis for the development of 

equations. The method was found to be reliable and non-sensitive to branching pattern of the trees and 

species. Three forms of biomass equations namely polynomial, power and combined variable were 

developed. A weighted third-degree polynomial equation was found to be the best alternative while 

considering the small error margins and the problem in tree height measurements. Comparing the 

polynomial-based plot biomass estimates with the estimates from existing Chinese and IPCC 

equations revealed that the three estimates differed significantly. Field data from the growth ring and 

bark-thickness measurements of sample trees, combined with the first derivate of the polynomial dry 

biomass equation permitted the calculation of annual carbon sequestration. The estimated average dry 

biomass density of the forest using the Polynomial, Chinese and IPCC equations were respectively 

81.88±5.63, 97.11±6.43 and 112.12±7.48 tons/ha (at 95% confidence level). The average carbon 

sequestration rate in the forest was estimated to be 1.88±0.12 ton/ha.yr. For RS-based assessment, an 

empirical relationship of forest plot biomass and annual carbon sequestration was sought with the 

Landsat TM spectral data. Although poor, a significant linear relationship was observed with 

corrected-NDVI for both the forest parameters thereby implying that the existing level of biomass did 

not show a saturation effect of the VI. The average forest biomass and annual carbon sequestration 

estimated using the RS data were 65.36 ton/ha and 1.52 ton/ha respectively. The equations developed 

in this study are area-specific, hence, should be applied at other locations only after verification. 

Accurate assessments of biomass/ carbon from RS data require further research incorporating 

advanced techniques. 

 

Keywords: above-ground biomass, biomass equations, carbon sequestration, remote sensing, 

vegetation indices 
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1. Introduction 

1.1. Background 

1.1.1. Assessment of above-ground biomass and carbon in forests 

The subject of biomass assessment has received considerable attention for quite sometime, especially 

after pulpwood demand in 1960s and oil crisis in 1970s (de Gier, 2003). Estimation of biomass of 

forests is a usual practice to quantify fuel and wood stock and allocate harvestable amount (Dias et 

al., 2006). Forest biomass assessment is important for national development planning as well as for 

scientific studies of ecosystem productivity, carbon budgets, etc (Hall et al., 2006; Parresol, 1999; 

Zheng et al., 2004; Zianis and Mencuccini, 2004). Biomass is an important element in the carbon 

cycle, specifically carbon sequestration; it is used to help quantify pools and fluxes of Green House 

Gases (GHG) from the terrestrial biosphere to the atmosphere associated with land-use and land cover 

changes (Cairns et al., 2003). The concentration of atmospheric carbon dioxide (CO2) which is the 

major constituent of GHG, has increased from 278 ppm in the pre-industrial era (1970) to 379 ppm in 

2005 at an average of 1.9 ppm per year (IPCC, 2007; UNEP, 2007). With the increasing concern for 

rising CO2 concentrations, the role of forests, as a long-term carbon pool, for assimilation of 

atmospheric CO2 is being increasingly realized; hence studies are currently afoot for assessing the use 

of forest biomass sinks to sequester carbon as part of a global mitigation effort. The amount of carbon 

stored in the biomass has gained special attention as a result of the United Nations Framework 

Convention on Climate Change (UNFCCC) and its Kyoto Protocol. Under these agreements, countries 

are required to estimate and report CO2 emissions and removals by forests. The developing global 

carbon markets, particularly because of the incorporation of a Clean Development Mechanism 

(CDM1) in the Kyoto protocol, require accurate and reliable methods to quantify the sources and sinks 

of carbon in forest.  

 

Forests play a major role in the global carbon budget because they dominate the dynamics of the 

terrestrial carbon cycle. Forest biomass constitutes the largest terrestrial carbon sink and accounts for 

approximately 90% of all living terrestrial biomass (Tan et al., 2007; Zhao and Zhou, 2005). Many 

studies suggest that about 1-2 gigatons (Gt) (1Gt=109 kg)  carbon are sequestered annually in pools on 

land in temperate and boreal regions (Dong et al., 2003). Plant biomass constitutes a significant 

carbon stock and is the main conduit for CO2 removal from the atmosphere primarily through 

photosynthesis. For this reason, the UNFCC and its Kyoto Protocol has recognized the role of forests 

                                                      

 
1 CDM is a provision in the Kyoto protocol under which industrialized countries and economies under transition 
(Annex B countries) can earn certified emission reduction (CER) credits for funding projects that reduce 
greenhouse gas emissions in developing countries and contribute to sustainable development. 
Countries with a commitment to reduce their greenhouse gas emissions by around 5% below 1990 
levels (in terms of CO2 equivalent) by 2008-2012, buy CERs to cover a portion of their emission 
reduction commitments under the treaty. 



MODELING AND MAPPING OF ABOVE GROUND BIOMASS AND CARBON SEQUESTRATION 

2 

in carbon sequestration. However, forest biomass can act as either a source or sink for GHG. The 

growth in forest biomass results in net atmospheric carbon sequestration in the terrestrial biosphere 

whereas the loss causes emissions to the atmosphere. The amount of carbon sequestered by a forest 

can be inferred from the biomass accumulation since approximately 50% of forest dry biomass is 

carbon (Cairns et al., 2003; de Gier, 2003). Change in forest biomass (or carbon fluxes) are influenced 

by natural succession, anthropogenic actions such as deforestation, harvesting, plantation, silviculture, 

and natural disturbances by pests, fire and climate change (Brown, 1997; IPCC, 2006; Schroeder et 

al., 1997). Thus biomass assessment is important to understand changes in forest structure.  

 

FAO (2005) has defined biomass as “the organic material both above and below the ground, and both 

living and dead, e.g., trees, crops, grasses, tree litter, roots, etc.” Above-ground biomass, below-

ground biomass, dead wood, litter, and soil organic matter are the main carbon pools in any forest 

ecosystem (FAO, 2005; IPCC, 2003; IPCC, 2006). Above-ground biomass (AGB) includes all living 

biomass above the soil, while Below-ground biomass (BGB) includes all biomass of live roots 

excluding fine roots (< 2 mm diameter). Forest biomass is measured either in terms of fresh weight or 

dry weight. For the purpose of carbon estimation dry weight is preferred as dry biomass roughly 

contains 50 % carbon (Brown, 1997; IPCC, 2003). Majority of biomass assessments are done for 

AGB of trees because these generally account for the greatest fraction of total living biomass in a 

forest and do not pose too many logistical problems in the field measurements (Brown, 1997). AGB in 

this study is defined as the total amount of above-ground organic matter in living trees greater than 10 

cm diameter at breast height (dbh) and taller than 1.3 m excluding foliage and branches less than 2.5 

cm, expressed as oven-dry weight. The AGB, thus defined, often make the field work more practical 

and reduces the risks of measurement errors (e.g. double counting or omitting of trees in sample 

plots), especially in dense forests. Excluding the foliage biomass is justifiable as such biomass store 

carbon only temporarily.  

 

Accurate estimation and mapping the distribution of forest biomass is a prerequisite in answering a 

long-standing debate on the role of forest vegetation in the regional and global carbon cycle (Lu, 

2006). Selection of appropriate biomass estimation method and use of reliable forest inventory data 

are two key factors for this purpose (Zhao and Zhou, 2005). This study, implemented in the north-

eastern cool temperate forest of China, has focused on biomass and carbon sequestration estimation at 

landscape level in Wangqing forest. North-east China maintains a large area of forests and has been 

experiencing the largest increase in temperature over the past several decades in the country; over the 

past two decades, the average temperature in the region has increased at the rate of 0.066 0C/year (Tan 

et al., 2007). Since China occupies a pivotal position globally as a principal emitter of CO2 and at the 

same time also as host to some of the world's largest reforestation efforts, and as a key player in 

international negotiations aimed at reducing global GHG emissions (Chen et al., 2007), therefore, 

studying its forest biomass stock is important for sustainable use of the resources and understanding 

the forest carbon budget. This study is in line with the recently held 13th meeting of the Conference of 

Parties (COP) in Bali where parties realized the need for further methodological work on assessment 

of the amount of reduction or increase in GHG emission (UNFCCC, 2007). 
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1.1.2. Methods for assessment of forest biomass and carbon sequestration 

Application of appropriate biomass estimation methods and transparent and consistent reporting of 

forest carbon inventories are needed in both scientific literature and the GHG inventory measures 

(Somogyi et al., 2006). Different approaches, based on field measurements, remote sensing and GIS 

have been applied for AGB estimation (Lu, 2006). The traditional techniques based on field 

measurements only are the most accurate but have also proven to be very costly and time consuming 

(de Gier, 2003). The use of remote sensing (RS) techniques has been investigated, but as yet this 

approach has met with little success for multi-age, multi-species forests and only with limited success 

in forests with few species and age classes representing a broad range of biomass distributions 

(Schroeder et al., 1997). Nevertheless, even where RS data are useful for estimating forest biomass/ 

carbon, ground data is still necessary to develop the biomass predictive model (i.e. calibration)  and its 

validation (Zianis et al., 2005); because remote sensing does not measure biomass, but rather it 

measures some other forest characteristics (e.g. spectral reflectance from the canopy). A sufficient 

number of field measurements are a prerequisite for developing AGB estimation models and for 

evaluating the AGB estimation results. GIS-based methods require ancillary data such as on land-

cover, site quality and forest age to establish an indirect relationship for biomass in an area (Lu, 

2006). Such methods are difficult to implement because of problems in obtaining good quality 

ancillary data and the comprehensive impacts of environmental conditions on biomass accumulation 

(Brown, 2002; Lu, 2006). 

 

Biomass assessments on an area basis are usually carried out by using a multi-phase sampling design 

(de Gier, 2003) as illustrated in Figure 1.1. It can be simplified into three phases when we also 

consider the integration of RS data into the field data. The first phase of the design may use pixels 

from optical satellite imagery as sampling units from where spectral signatures can be extracted 

easily. In the second phase, sample plots corresponding to the pixels of first phase are established in 

the field and all the trees inside it are measured for dbh, among other things (these trees are not 

measured for their biomass).  In the third phase, a relatively small but representative sample of trees 

are selected and they are measured for biomass in addition to dbh, height, etc (Cunia, 1986a). These 

sample trees are used to develop biomass equation based on tree variables like dbh and height. This 

relationship is then applied to calculate biomass of each tree in the sample plots of the second phase; 

the sum of which gives the total tree biomass in the plot. To obtain a good regression equation, one 

should randomly select an equal number of sample trees from each diameter class so that the entire 

range of the diameters are covered (de Gier, 2003). When previously developed biomass equations 

exist, the third phase is no longer required; however, a critical assumption in such a case would be 

that the population for which the equations exist and the population being inventoried are similar 

(Cunia, 1986a). This is a big assumption, since biomass equations from one location can not simply 

be used in another location, even when they are ecologically comparable (Cunia, 1986a; de Gier, 

1999). Before applying any equation directly in the field, its suitability should be explored in terms of 

the range of dbh, cover-type, geographic location and the management system and also it should be 

validated by felling a sufficient number of trees. The application of existing equations without 

validation is prone to a bias of unknown magnitude (de Gier, 2003).  

 

If validation of existing equation is to be carried out, felling of a sufficient number (>25) of 

representative trees is indispensable (de Gier, 2003). Such felled trees, however, might be better used 
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to derive new biomass equations for the area concerned, since these equations are always better than 

the validated ones (de Gier, 2003; IPCC, 2003). 
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Figure 1.1 Multiphase sampling design for biomass assessment; 1, 2 and 3 indicate first, second and third 
phases; (adopted from de Gier, 2003). 

 

If existing equations are lacking, measurements of sample tree biomass and its variables in the field is 

necessary. While measuring the sample tree variables is easy and straight forward, measuring the 

sample tree biomass is difficult. The existing methods of sample tree biomass measurement can be 

categorized into non-destructive and destructive. The non-destructive methods do not require tree 

felling. Tree measurements are made either by climbing the tree or taking photographs. These 

methods, however, can give only the volume of trees non-destructively. To estimate the tree biomass 

one has to rely on density values (which is already a product of destructive process) of tree 

components from literature. The calculated biomass by these procedures can not be validated unless 

the sample trees are still felled and weighted. So in effect purely non-destructive biomass sampling 

does not exist. The conventional destructive method is felling down the sample trees and weighing it 

totally with a scale. Total weighing can only be done for small trees as bigger trees can not fit onto a 

scale. In such cases, sectioning of bigger trees into parts/ components becomes obligatory. Such 

measurements confine themselves initially with fresh or green weight estimates, with or without a 

minimum diameter limit (de Gier, 2003). While the green biomass of the entire tree can be measured 

without any appreciable error, the oven-dry biomass of a given tree component is usually estimated 

based on haphazardly selected sub-samples that are first measured in the field for the fresh biomass 

and then oven-dry biomass determined in laboratory is used to estimate the total biomass using ratio 

estimator (Cunia, 1986b). Dry weight estimation of sample trees based on such sub-samples of the 

sections are, therefore, subjected to bias (de Gier, 2003). Field measurements are very demanding for 

accurate biomass assessment, although requires considerable amount of labour and cost. 
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Sub-sampling method 
In view of the lack of cost effective and unbiased biomass estimation methods, de Gier (1989) adopted 

a sub-sampling method as suggested by Valentine et al., (1984). Although destructive, this method is 

found to be cost effective and overcomes many of the constraints identified in biomass measurements. 

It also produces unbiased estimates of tree volume, fresh weight and dry weight (de Gier, 1999; de 

Gier, 2003; Mabowe, 2006). The method uses the principles of randomized branch sampling (path 

selection) and importance sampling (de Gier, 2003). In the first step a ‘path’ is selected through the 

tree (see section 2.3.2), starting from the butt and ending at a predetermined minimum branch 

diameter. At every node of branching a decision is has to be made about the continuation of the path. 

The path continues towards the branch (segment) with higher probability that is proportional to the 

size (base diameter, di). The path selection terminates at the point where a minimum diameter is 

reached. The minimum diameter is fixed to reduce the amount of work. The unconditional probability 

of a segment (see formula in section 2.3.2) is the result of multiplication of the probabilities of all the 

segments in the path from the butt end till the segment concerned. Thus the last segment has lowest 

probability. The second step of the method is importance sampling where by one randomly located 

disk from the path is removed. At this stage, the path of the tree is considered to consist of an infinite 

number of infinitely thin disks, of which one is selected with a probability proportional to its diameter 

squared (de Gier, 2003). 

 

For volume calculation by the method, points are located along the path where change in taper occurs. 

The diameters and corresponding distances from the butt are measured at each of these points. The 

inflated areas at the points are calculated by dividing diameter squared by its unconditional 

probability. The calculated inflated areas of two subsequent points and the distance between them are 

used to calculate the inflated volume of the segment using the Smalian formula (see section 2.3.2). 

Adding all such volumes, of all sections, results in an unbiased estimate of the total tree woody 

volume (de Gier, 2003). 

 

For the weight estimation, a disk (about 10 cm thick) is removed from a random point along the path. 

This point is determined by multiplying the estimated total tree volume with a random number. The 

segment in the path at which this volume is reached is identified and the exact point within the 

segment where the disk is to be removed is determined by interpolation. The weight per unit thickness 

of the disk is determined and is divided by the unconditional probability of the segment from where it 

was removed. Multiplying this value with the estimated total tree woody volume and dividing it by the 

square of the disk diameter gives the total woody fresh biomass. The oven dry weight of the disk can 

be used to calculate the total tree dry biomass in the same way as with fresh weight (de Gier, 2003). If 

the disk is large, it can be split into wedges and one wedge is selected with a probability proportional 

to weight. The weight of the selected wedge when divided by its selection probability results in the 

estimate of the disk weight. 

 

The method has the strength to give on the spot estimates of volume and fresh weight. After oven-

drying the disks or wedges, tree dry weight is calculated. The path selection reduces much of the work 

as the branches that are not included in the selected path, do not require measurements. Further there 

is no need to weigh the whole tree, a small sample disk/ wedge is enough. Hence it is time efficient 

and cost effective. The equipments required in the method are mostly light-weight; the heaviest piece 

is a power saw but that can also be carried by hand. Field work can be efficiently carried out by two 
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people (de Gier, 2003). However, the procedure uses considerable amount of computations that makes 

use of a hand-held computer necessary. De Gier (2003) tackled this problem by developing a ‘biomass 

assessment’ program adapted for use with an iPAQ PDA. 

 

Biomass equations 
Most of the existing equations relate above ground dry biomass of trees to its biophysical variables 

such as dbh, height, etc (Zianis et al., 2005). Using more variables in an equation requires 

measurement of sufficient number of trees to cover the full range of the variables. This calls for 

equations that use as few as possible variables, because necessary tree felling will be reduced (de 

Gier, 2003). Incorporating more variables in the equation does not necessarily improve the accuracy 

of the estimate significantly; De Gier (1989), Schroeder (1997) and Wang (2006) found that 

incorporating the height did not significantly improve the models based on dbh alone. Further, 

measurements of some of the variables (e.g. total tree height) in the field are more difficult, time 

consuming and less accurate than measuring dbh (Gower et al., 1999). Hence, dbh is the most 

common predictor in biomass equations (Jenkins et al., 2003; Wang, 2006; Zheng et al., 2004; Zianis 

and Mencuccini, 2004). The method of least squares regression is quite common in the development 

of biomass equations (Furnival, 1961; Parresol, 1999). When biomass regressions are calculated by 

statistical least squares methods, the random part of sub-sampling error is automatically taken into 

account (Cunia, 1986a). Unweighted least squares estimates are fully efficient only when 

homoscedasticity exists or, in other words, only when the standard error of the residuals is constant 

for all classes of the dependent variables (Furnival, 1961). In reality, the standard error of the 

residuals tend to vary with the size of trees; larger trees deviate more from the regression curve than 

do small trees. So weighting of the regression coefficients is important (Parresol, 1999); theoretically 

weights should be employed that are inversely proportional to the variance of the residuals (Furnival, 

1961). 

 

Large number of biomass models exists in literatures; and it is really difficult to decide which model 

form is most appropriate for a particular set of data. However, the usual index of fit, the root mean 

square error (RMSE), can be used to compare models that have the same dependent variable 

(Furnival, 1961). Prediction errors, logical behaviour of the models, coefficient of determination (R2) 

and simplicity of the models are some other criteria for choosing appropriate model (Schroeder et al., 

1997). The commonly used mathematical models for biomass studies take the form of the power 

function (Fehrmann and Kleinn, 2006; Green et al., 2005; Hall et al., 2006; Meng et al., 2007; 

Samalca, 2007; Ter-Mikaelian and Korzukhin, 1997; West et al., 1997; Zianis and Mencuccini, 2004; 

Zianis et al., 2005); polynomial function (Cunia, 1986a; de Gier, 2003; Parresol, 1999; Zianis et al., 

2005)  or combined variable models (de Gier, 2003; Gregoire and Williams, 1992; Parresol, 1999; 

Zianis et al., 2005), as given below. 

 

Power function,        M = aDb     (1) 

Combined variable model,      M = a0 + a1D
2H    (2) 

Polynomial model                   M = a0 + a1D + a2D
2 + a3D

3 +………………  (3) 

 

Where, M = biomass (kg); D = diameter at breast height (dbh); H = tree height and ai = regression 

coefficients that are reported to vary by species, stand age, site quality, climate and stand density 

(Fehrmann and Kleinn, 2006; Zianis and Mencuccini, 2004). 
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The equation (1) is simple to use as it contains only one variable, dbh. It is solved by taking 

logarithms on both sides and employing simple linear regression techniques. But the problem with this 

model is that the calculated coefficient ‘a’ from the log transformed model is biased and the 

relationship between biomass and dbh can not be established because the correlation coefficient and 

the coefficient of determination refer to the log transformed equation, not to the power function (de 

Gier, 2003; Parresol, 1999; Zianis et al., 2005). The equation (2) can be solved by simple linear 

regression technique. This model requires two variables, dbh and height. The polynomial equation (3) 

also requires only one variable, dbh and it can be solved by multiple linear regression techniques. 

Models (2) and (3) allow a correct calculation of its precision, although usually require weighting (de 

Gier, 2003). The problem of heteroscedasticity with biomass data is solved by weighing. 

 

Biomass equations are preferred if one has access to a representative sample of tree-wise data from 

the target population (Somogyi et al., 2006). The biomass estimates from local site specific equations 

are considered accurate in forestry applications. The Good Practice Guidance (IPCC, 2003) and the 

guidelines for national greenhouse gas inventories (IPCC, 2006) by the Intergovernmental Panel on 

Climate Change (IPCC) prefer the selection and use of species-specific or similar-species allometric 

equations in the priority order of local to national to global scale. So, development of a local biomass 

equation can be helpful in the evaluation of the precision of biomass estimates while using alternative 

models. Only the above mentioned three models are evaluated in this study because of their simplicity 

and wide application. 

 
Annual wood increment and carbon sequestration 
Estimating the annual biomass or carbon increments in a live tree is an important component towards 

understanding the carbon balance of forested ecosystems. The measurements of annual growth rings 

(if exists) in trees in conjunction with biomass equations is an established method for determining 

above-ground woody biomass increment in live trees (Heath, 2000). Bouriaud et al., (2005) found 

very strong relationships between basal-area increment and annual wood accumulation in trees. The 

growth rings of a tree can be measured either by removing a disk or taking out a core from the trunk. 

In the latter case, an instrument called increment borer is drilled into the tree trunk and a cylindrical 

core of wood is extracted. In areas having a distinct growing season, most species have equally well 

defined annual rings. In a tree, the cambium (the cells that will become wood or bark) grows in a light 

layer during late spring/early summer changing to a dark layer in later summer/early fall. The light 

layer is early wood, formed when the tree is growing rapidly. The dark layer is late wood and is grown 

more slowly. The growth occurs at the outside of the trunk, just under the bark, so that a light and 

dark ring pair represents one year. The procedure for using increment core data for the assessment of 

annual biomass increment is explained by de Gier (1989). Loetsch et al., (1973), as cited by de Gier 

(1989), derived a relation for annual tree volume increment based on tree volume equation and annual 

over-bark diameter increment. The annual over-bark diameter increment is the sum of the annual 

increments in under-bark diameter and bark-thickness. The under-bark diameter increment and the 

increment in bark-thickness can respectively be estimated from the measurements of growth rings and 

bark-thickness at the breast heights in sample trees (see the procedure in section 2.3.2). In a similar 

way as for volume increment, a relation for annual increment of tree biomass (both fresh and dry) can 

be obtained (de Gier, 1989). The tree biomass increment equation can be used to estimate the plot 
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biomass increment based on available plot diameter data. From that annual carbon sequestration can 

be estimated since roughly 50 % of the dry biomass is carbon. 

 

Lack of location specific biomass equations and unknown precision of estimates from existing 

regional and global equations has inspired this study for a reliable estimation of biomass, annual 

biomass accumulation and carbon sequestration at a landscape level in Wangqing forest in Jilin 

Province, Northeast China. This study has focused on developing good quality local biomass 

equations based on easily measurable tree variable such as dbh. The use of sub-sampling method for 

the estimation of sample tree biomass and validation of its accuracy is also sought by undertaking 

total weighing of some sample trees. The area-based estimates from the newly developed equations 

can then serve as a reference to assess the accuracy of similar estimates while using existing regional 

or global equations. As North east China has distinct winter and summer seasons and most of the tree 

species bear annual growth rings, an attempt is made to use tree growth rings and barks thickness data 

to develop a relation for carbon sequestration estimation. 

 

Once the equations for tree biomass, annual wood accumulation and carbon sequestration are derived, 

sample plot estimates can be obtained by applying the equations to the sampled plot tree diameter 

data. These plot estimates can then be taken as independent variables and related to satellite data such 

as vegetation indices, for large scale mapping. 

 

1.1.3. Remote sensing for mapping of biomass and carbon 

The traditional approach of biomass assessment relying heavily on field measurements is often time 

consuming, labour intensive and difficult to implement, especially in remote areas. While for small 

scale biomass assessment the conventional method is good, they cannot provide the spatial 

distribution of biomass over large areas. The challenging issues of carbon sequestration require 

biomass estimation over large area. Remote sensing techniques has been extensively used for 

vegetation mapping and monitoring (Boyd et al., 2002; Brown et al., 2000; Ingram, 2005; Lu et al., 

2004; Maynard et al., 2007). Use of remote sensing data has been employed in many studies on 

biomass assessment (Dong et al., 2003; Foody et al., 2003; Foody et al., 2001; Heiskanen, 2006; Lu et 

al., 2004; Maynard et al., 2007; Muukkonen and Heiskanen, 2005; Steininger, 2000; Zheng et al., 

2004). Remote sensing may be the only feasible way to acquire forest stand parameter information at 

a reasonable cost, with acceptable accuracy, and feasible effort because of its data advantages which 

include repeated data collection, multi-spectral and multi-temporal images, synoptic view, fast digital 

processing of large quantities of data, and compatibility with geographic information systems (GIS) 

(Lu, 2006). Remote sensing also allows independent monitoring of resources (de Gier, 2003). These 

advantages of remotely sensed data, and observed high correlations between spectral data and 

vegetation parameters in many cases make it the primary source for large scale AGB mapping. In 

general, the AGB can be estimated using remotely sensed data with different approaches, such as 

multiple regression analysis, K-nearest-neighbour, and neural network (Lu, 2006). 

  
The most frequently used RS data continue to be from the optical moderate resolution sensors like 

Landsat Thematic Mapper (TM) (Hall et al., 2006; Heiskanen, 2006; Ingram, 2005; Lu, 2006; Lu et 

al., 2004). Estimation of forest biomass over large areas from the analysis of such satellite data would 

enable many additional questions about the ecological functioning of natural or human modified 
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landscapes to be addressed (Steininger, 2000). Studies have shown that TM data provide comparable 

and in some cases, stronger predictions of certain forest structural features when compared to radar 

satellite systems or other optical sensors of similar spectral and spatial resolution (Ingram, 2005). 

Biomass can not be directly measured from space, but, remotely sensed spectral signatures can be 

used to estimate biomass (Dong et al., 2003). The biomass measurements from sample plots can then 

be integrated into the RS techniques to get cost effective and large spatial information on AGB 

distribution.  

 
The possibility of estimating biomass by satellite RS has been investigated in several studies at 

various spatial scales and environments (Heiskanen, 2006). Biomass estimation using RS has 

remained a challenging task, especially in areas with complex forest stand structures and 

environmental conditions (Lu, 2006). A good understanding of relationships between forest biomass 

and remote-sensing spectral data is a prerequisite for developing appropriate biomass estimation 

models (Steininger, 2000). Identifying the spectral wavelengths or wavelength combinations that are 

most suitable to use to acquire information about a specific biophysical parameter in a given study 

area is difficult (Lu et al., 2004). Vegetation indices (VIs) and band ratio based models are most 

commonly used to produce estimates of biomass (Foody et al., 2003; Hurcom and Harrison, 1998; 

Schlerf et al., 2005; Zheng et al., 2004). A variety of VIs have been developed, with the most popular 

ones using red and near infrared wavelengths to emphasize the difference between the strong 

absorption of red electromagnetic radiation and the strong scatter of near infrared radiation. VIs are 

used to remove the variability caused by canopy geometry, soil background, sun view angles, and 

atmospheric conditions when measuring biophysical properties (Lu, 2006). Nonetheless, VIs are also 

sensitive to internal (such as canopy geometry, terrain factors, species composition) and external 

factors (sun elevation angle, zenith view angle, atmospheric conditions) that affect vegetation 

reflectance (Lu et al., 2004). There is wide disagreement in literature as regards the biomass- VIs 

relationship. Many studies report a significantly positive relationship between the values of the VIs 

and the biomass at least up to the reflectance asymptote of the canopy (Boyd et al., 1999; Heiskanen, 

2006; Hurcom and Harrison, 1998; Maynard et al., 2007; Steininger, 2000; Zheng et al., 2004); 

however, some results have shown poor relationship (Foody et al., 2003; Schlerf et al., 2005).  

 

The normalized difference vegetation index (NDVI) (see formula in section 2.5) is one of the most 

commonly used VIs in many applications relevant to analysis of biophysical parameters of forest. The 

strength of NDVI is in its ratioing concept, which reduces many forms of multiplicative noise 

(illumination differences, cloud shadows, atmospheric attenuation, certain topographic variations) 

present in multiple bands (Huete et al., 2002). However, conclusions about its value vary, depending 

on the use of specific biophysical parameters and the characteristics of the study area. Foody et al., 

(2003) tested several VIs and found that NDVI was never among the top 10 indices defined in terms 

of the strength of correlation with biomass of sample plots. Although in some cases NDVI have 

shown good correlation with leaf-area index (LAI), it did not appear to be a good predictor of stand 

structure variables such as height, basal area or total biomass in uneven age and mixed broadleaf 

forests (Lu et al., 2004). Zheng et al., (2004) used five VIs and found best result with corrected NDVI 

(NDVIc) in predicting AGB. NDVIc is calculated from Red, near-infrared (NIR), and middle infrared 

(MIR). NDVIc can help account for understory effects and is useful in secondary forests (Zheng et al., 

2004). Simple ratio, SR (ratio of NIR and Red) is another commonly used VI for the study of forest 



MODELING AND MAPPING OF ABOVE GROUND BIOMASS AND CARBON SEQUESTRATION 

10 

biophysical variables (Schlerf et al., 2005). Heiskanen (2006) and Lu et al., (2004)  found SR to be 

significantly correlated with AGB. 

 

Vegetation has a high near-infrared reflectance, due to scattering by leaf mesophyll cells and a low 

red reflectance, due to absorption by chlorophyll pigments. The value of the NDVI for vegetation will 

hence tend to one. By contrast, clouds, water and snow have a larger red reflectance than near-infrared 

reflectance and these features thus yield negative NDVI values. Rock and bare soil areas have similar 

reflectances in the two bands and result in values of NDVI near zero. 

 

Previous studies have shown that middle-infrared reflectance (TM band 5) have strongly negative 

relationships with biomass (Boyd et al., 1999; Lu, 2006; Steininger, 2000). Schlerf et al., (2005) 

observed better relation between middle-infrared VI (MVI: ratio of NIR and MIR) and tree crown 

volume than SR and NDVI and concluded that the MIR band in combination with the NIR band 

contain more information relevant to the characterization of forest canopies than the combination of 

Red and NIR bands.  

 

Shortwave infrared (SWIR) modification to simple ratio called Reduce Simple Ratio (RSR) (see 

formula in section 2.5) can also be used to study the relationship with biomass as it has been found be 

sensitive to change in LAI; reduces the effect of back ground reflectance; negates the effect of higher 

NIR reflectance in deciduous canopies and unifies deciduous and coniferous species in LAI retrieval 

from RS data (Brown et al., 2000). The Enhanced Vegetation Index (EVI) was developed to optimize 

the vegetation signal with improved sensitivity in high biomass regions and improved vegetation 

monitoring through a de-coupling of the canopy background signal and a reduction in atmospheric 

influences (Huete et al., 2002). 

 

A number of soil adjusted vegetation indices also exists to reduce the effect of the soil background 

reflectance. However, in the forested environment the bare soil is rarely visible and the definition of 

soil line is difficult and the line is discontinuous (Heiskanen, 2006). Hence application of soil 

adjusted vegetation indices becomes futile. 

 

Saturation issue 
The saturation of the relationship between biomass and the NDVI is a well-known problem (Mutanga, 

2004). The most logical explanation is that as canopy cover increases, the amount of red light that can 

be absorbed by leaves reaches a peak while NIR reflectance increases because of multiple scattering 

with leaves (Tenkabail et al., 2000). Further, NIR reflectance also saturates with increasing leaf area 

index (LAI) ≥ 3 and so does NDVI (Schlerf et al., 2005). The imbalance between a slight decrease in 

the red and high NIR reflection results in a slight change in the NDVI ratio, hence yields a poor 

relationship with biomass (Mutanga, 2004). Rauste (2005) reports that saturation level may depend on 

the tree species and forest types as well as the ground surface type (because, Imhoff (1995) found 

saturation level at 40 tons/ha of dry biomass in temperate forests in USA; Luckman et al., (1998) 

observed saturation level at 60 tons/ha in a tropical forest in Brazil; Fransson and Israelsson (1999) 

observed the saturation at 143 m3/ha in a boreal forest in Sweden) [Note: as an approximation, forest 

stem volume (m3/ha) in boreal forests can be converted into dry biomass (tons/ha) by multiplying the 

stem volume estimate by 0.6, as cited by Rauste (2005)]. Steininger (2000) found that the canopy 
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reflectance saturated when AGB approached about 15 kg/m2 i.e. 150 tons/ ha in a tropical secondary 

forest in Manaus, Brazil. 

 

This study will try to identify the most likely VIs or band ratio that best correlate with AGB of 

Wanqing forest. The saturation issue of VIs will be investigated for the existing level of biomass stock 

in Wangqing forest. 

1.2. Problem statement 

There is considerable interest today in estimating the biomass of forests for both practical forestry 

issues and scientific purposes (Parresol, 1999; Tan et al., 2007; Wang, 2006). However, the 

quantification of biomass or carbon pools of a forest suffers from a number of methodological 

problems. Accurate biomass estimation requires locally applicable tree biomass equations. 

Unfortunately, all forests do not have such equations. Although a large number of biomass equations 

exist in literature, their applicability to any forest is questionable. Very often it is unknown how many 

trees of what kinds were used and how they were selected for the development of biomass equation 

(de Gier, 2003; Zianis et al., 2005). The unclear description of the existing equations regarding the 

range of dbh, cover-type, geographic location and the management systems for which they are 

applicable makes the use and estimate uncertain. Biomass equations may vary by forest/ cover type, 

age, site conditions, stand density and climate (de Gier, 2003; Fang et al., 2001; Zianis et al., 2005). 

So before applying any secondary equation, they need to be validated by felling a sufficiently large 

number of trees (> 25) (de Gier, 1999). But instead of felling trees for verification, they can better be 

used for the development of local equation. The ‘Good Practice Guidance (GPG) for Land Use, Land 

Use Change and Forestry’ (IPCC, 2003) has shown a lot of flexibilities in terms of the use of existing 

equations. The GPG has given priority for the use of allometric equations in the order of local to 

nation to global scales in biomass calculation. However, the effect on precision of biomass estimates 

at the area concerned while using an equation developed at different geographic location, needs to be 

tested.  

 

Developing a biomass equation requires harvesting and measurement of sample trees for their 

biomass. True biomass of the sample trees can only be obtained by total weighing using a scale. But 

this method is very laborious and expensive. One choice is tree sub-sampling which is time-efficient 

and cost effective. Although the sub-sampling method of biomass assessment is designed to substitute 

the time consuming field measurement techniques or biased methods, the sub-sampling estimates still 

needs to be tested for its accuracy. As this method was never tested in cool temperate forest such as in 

north-east China; its reliability can not be established without verifying by felling some trees and 

subsequently measuring biomass by both sub-sampling and total weighing. The existing equations 

(national or global) can also be tested for the level of precision by comparing field measurements on 

sample trees with the estimates from the equation.  

 

The study area, Wangqing forest in Jilin Province, north-east China, maintains abundant forests 

characteristic of cool temperate zone. Wang (2006) has mentioned that only few biomass equations 

exist for the tree species in Chinese temperate forests. The local forest management authorities do not 

have information on the available and harvestable stock of AGB in the area. At a time when the issue 

of reducing GHG emissions is seriously growing, the carbon sequestration potential of the forest is 
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still unknown. The temperate region biomass equations suggested by GPG (IPCC, 2003), hereafter 

called IPCC equations, have originated from the forest trees of eastern USA. Similarly, one existing 

local Chinese equation evaluated in this study is based on temperate forest in another province in 

north-east China. This study is also meant to see the precisions of the biomass estimates while using 

the regional (local Chinese) and global (IPCC) equations. 

 

Measurements of growth rings can be applied for the estimation of annual wood accumulation and 

carbon sequestration (de Gier, 1989). But this potential has not been explored in the Wangqing forest. 

Whether the relationship between diameter increment and annual wood increment exists for the 

Chinese tree species; whether the relationship can be combined for all the trees species together; 

whether it is feasible and accurate are some of the issues that can be attempted from annual growth 

ring measurements. If the method be established by developing equations for annual wood 

accumulation and carbon sequestration then it would greatly benefit the concerned stakeholders. 

 

In RS based biomass assessment, biomass equation is still vital to estimate plot biomass which is 

correlated with spectral data for large scale mapping. Tree based biomass estimate is calculated by 

applying the biomass equation to the individual trees of randomly selected plots. The biomass 

estimate of all trees in each plot is then aggregated to obtain the plot biomass estimate. Tan et al., 

(2007) has mentioned that no studies have been done to estimate the forest biomass for northeast 

China by using remote sensing data. The general lack of spatial forest biomass data has been 

considered one of the persistent problems at policy level for sustainable management planning. This 

study is directed at the integrated use of RS and field inventory data to map the spatially explicit 

patterns of AGB distribution. Models derived from RS and verified with ground data can be used 

appropriately to predict AGB for a given landscape. Also the problem such as saturation effect of VI 

with RS data in mapping the distribution of AGB needs to be explored; saturation effect of VI with 

vegetation abundance is unknown for the study area that can be explored. This study is intended to 

look into the accuracy levels of different biomass assessment methods with scientific eye.  

 

1.3. Research questions 

1. How accurate is the estimate of tree biomass by sub-sampling method? 

2. Which model out of polynomial, power and combined variable forms is appropriate for the 

estimation of above-ground biomass at a landscape scale while considering the accuracy and 

problems in tree variables measurement? 

3. How do the estimates from the existing Chinese and IPCC equations compare (with respect to 

precision) with the sub-sampling estimates and what would be their impact on assessing 

carbon reservoirs and sinks? 

4. How reliable is the estimate of carbon sequestration obtained from growth ring measurement? 

5. Which vegetation index or spectral bands best relate to above-ground biomass? And what is 

the biomass estimate of Wangqing forest? 

6. Is there a saturation problem of VI in the study area? If yes, at what level of biomass does VI 

start to saturate? 
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1.4. Objectives 

1. To assess the accuracy of sub-sampling method for reliable, unbiased and cost effective-

biomass estimation 

2. To develop biomass equations based on field measurements of sample trees for landscape 

level biomass estimation 

3. To compare the effect of area based above-ground biomass estimates using local Chinese 

equations and IPCC equations in respect of precision with the field measurements 

4. To estimate the carbon sequestration of the forest using growth ring measurements and 

compare with secondary information 

5. To map the spatial distribution of forest biomass using the best combination of remote sensing 

and ground truth data 

6. To evaluate the saturation issue of VIs 

 

1.5. Hypotheses 

1. The estimates of biomass by the sub-sampling method and total weighing do not differ 

significantly 

2. Locally developed biomass equations give better estimates of above-ground biomass 

compared to the existing regional or global equations 

3. Carbon sequestration estimates obtained from growth ring measurements is comparable to 

secondary information 

4. Linear relationship of spectral VIs and plot biomass can be used to map the distribution of 

above-ground biomass and carbon sequestration 
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1.6. Research Approach 
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Figure 1.2 Flow diagram of the research approach 
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2. Methods and Materials 

2.1. Study area 

The study was implemented in Wangqing forest in Jilin Province, Northeast China (see Figure 2.1). 

The criteria for the selection of the study area were: cutting of trees for the research purpose should be 

permissible; area should be accessible by foot or vehicle; support staff and local labours should be 

available during field measurement; satellite imagery and maps should be available; and the area 

should represent typical cool temperate region experiencing severe influence of global warming. 

Since the area is also research site for some other ITC students and the local forest authority have 

collaboration with ITC and required data and resources for the study were available, the site was 

selected for the study. 

 

The study area (43°05′-43°40′N and 129°56′-131°04′E) covers approximately 85×60 km2 cool 

temperate forest and is located along the border between China and North Korea. The Wangqing 

forest area belongs to Changbai mountain system which is one of the most valuable Chinese forest 

reserves because of its rich floral diversity. The climate is continental monsoon with windy spring, a 

warm and humid summer, cool autumn and dry cold winter (Wang, 2006). Mean annual temperature 

is 3.9 oC. The mean annual precipitation is 438 mm, about 80% of which takes place between May 

and September. The elevation of the Wangqing forest ranges from 360 to 1,477 m above sea level and 

the steep slopes of the terrain even exceed 75%. September is the end of growing season of vegetation 

in Wangqing. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  
Figure 2.1 The study area, Wangqing forest in Jilin Province, North-east China 
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The area broadly covers 3 forest types by structure: needle-leaved, broad-leaved and mixed forests 

(Xing, 2007b). The main needle-leaved forest tree species are Picea jezoensis, Larix olgensis, Abies 

holophylla and Pinus koraiensis while the deciduous broadleaf forests are characterized Betula 

platyphylla, Quercus mongolica, Betula castata, Populus ussuriensis, Fraxinus mandshurica and 

Ulmus pumila. The mixed forest tree species are Pinus koraiensis, Picea jezoensis, Pinus sylvestris 

var. mongolica, Larix olgensis, Abies holophylla, Tilia amurensis, Ulmus pumila, Betula platyphylla, 

Betula castata and Acer mono (Xing, 2007b). The forests in the study area are essentially even-aged 

secondary forests which are the result of large scale industrial logging by Russian and Japanese 

invaders and the Chinese government since the turn of the 20th century (Wang, 2006). In many places 

the primary forests have been replaced by large scale plantations of pine and larch. The Mongolian 

oak (Quercus mongolica) forests are distributed at arid infertile steep slopes, mixed deciduous forests 

are distributed over well drained fertile mid-slopes and hardwood forest at moist fertile gentle toe 

slopes (Wang, 2006). 

2.2. Research Approach 

A multiphase (three-step) sampling approach as described in Chapter 1 (section 1.1.2; Figure 1.1) was 

used for the estimation of biomass and carbon sequestration. The first phase involved analysis of 

satellite image while the second and third phases respectively comprised the enumeration of sample 

plots and measurements of sample trees. Inside the sample plots all the trees were measured for dbh 

only while the sample trees, selected randomly and independently outside the sample plots, were 

measured for biomass besides dbh and height. Biomass of all the sample trees was estimated by a sub-

sampling method. In addition, total weighing of a number of randomly selected sample trees was also 

done to validate the estimation by sub-sampling. After validation, biomass data obtained from the 

measurements of sample trees through sub-sampling were used in a regression analysis, together with 

tree variables dbh and height. The developed biomass equations (dry weight, fresh weight and 

volume) were then used to estimate biomass of each tree in the sample plots, the aggregate of which 

gave the plot biomass. The plot biomass values thus calculated were then related by regression 

analysis to the spectral values (vegetation index/ band ratios) of corresponding pixels in the TM image 

of the study area. The resulting regression model, using spectral data as explanatory variable and plot 

biomass as response variable, was then used to estimate total biomass in the Wangqing forest and also 

to make a biomass distribution map. 

 

In order to develop annual wood accumulation and carbon sequestration equation (explained in 

section 2.3.2), growth ring and bark-thickness measurements were made on disks removed at breast 

height from the same trees as used for sub-sampling. 

2.3. Data collection 

2.3.1. Secondary data collection 

A local (regional) tree biomass equation for north-east Chinese temperate forests was collected from 

literature (Wang, 2006). The IPCC equations for temperate forest trees species are given in Annex 

4A.2 of the Good Practice Guidelines by IPCC (2003) and Schroeder et al., (1997). Topographic and 

vegetation information of the study area were obtained from Xing, Y. (2007) through personal 

communication who also helped in the processing of satellite data. Scientific names of tree species 

were validated by literature analysis. 
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2.3.2. Primary data collection 

Field data are necessary for both conventional and remote sensing based biomass assessment (FAO, 

1981). The primary field data collection basically involved two phases. One phase was the 

enumeration of randomly located sample plots and the other was harvesting and measurements of 

sample trees. In addition, for the purpose of assessing annual wood accumulation and carbon 

sequestration in trees, annual growth rings of some randomly selected sample trees were measured. 

The descriptions of the measurement process are as follows: 

 

2.3.2.1. Sample plot measurements 

Sample plot measurements were necessary to estimate the above-ground biomass (AGB) and annual 

carbon sequestration on per hectare basis and also for the whole study area. A general idea on the 

distribution of forest in the study area was obtained from an unsupervised classification of TM 

imagery (of September, 2006) of the area. 138 circular plots of 500 m2 (radius 12.62 m on flat terrain), 

randomly established throughout the study area, were enumerated in September, 2007. Random 

selection of the sample plots was first made on the false color composite of the geometrically 

corrected TM image and was positioned in the field with the aid of a GPS. A Garmin GPS set in the 

UTM projection system was used to locate the plot centres in the field. Next, slope, aspect and 

altitude of each plot were recorded. The slope was recorded after cross verification by taking 

measurements up and down the slope by two persons standing roughly at 25 m distance on the plot 

diameter along the slope. A slope correction table was used to obtain plot radius in order to get a 

horizontal plot area of 500 m2. Circular plots were preferred because they were easy and quick to 

layout in the field, and determination of trees inside the plot was less problematic than in square plots. 

A bigger plot size was not used to avoid the risk of double counting or omission of trees in the dense 

forest during enumeration. The size of the circular plot is comparable to the spatial resolution of TM 

image (30×30m). Species and dbh (at 1.3 m above the ground) of each standing tree above a minimum 

dbh of 10 cm were recorded in each plot (Brown, 1997; FAO, 2004; Foody et al., 2003; Schroeder et 

al., 1997). Over-bark dbh of each tree in the plots was measured with a caliper to the nearest mm in 

two perpendicular directions. To avoid bias in dbh measurement, the direction of the first 

measurement was always with the caliper oriented towards the plot centre and the second one 

perpendicular to it (de Gier, 1989). Smaller trees <10 cm dbh were not considered since they 

contribute a relatively small quantity of biomass (Brown, 1997; Schroeder et al., 1997). An additional 

set of 34 plot inventory data, collected by the same technique (Xing, 2007b) in September 2006, was 

also used in this study. Thus a total of 172 plot data sets were used for the assessment of biomass and 

carbon sequestration.  

2.3.2.2. Sample trees, sub-sampling and total weighing 

Sixty sample trees, representing the existing diameter range and forest types, were harvested and 

measured in the second week of September, 2007. The existing data set of 102 plots inventoried in 

2006 (Xing, 2007b) was used as reference to select the sample trees. A similar number of sample trees 

were randomly selected from each 5 cm class intervals of the existing dbh range so that each class had 

a nearly even tree distribution. The sample trees belonged to the nine most abundant botanical genera. 

The species selected, the dbh range and the number of trees by species are given in the Table 2.1. The 

dbh range of the sample trees was 7.2-36.5 cm which constitutes the predominant diameter range of 

the nearly even-aged secondary forest of Wangqing. A number of sample trees smaller than 10 cm dbh 
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were also included to fine tune the trend line at smaller dbh values. All trees were sampled from fully 

stocked stands. Only healthy trees were selected in the sample.  

 
Table 2.1 Number of sample trees by species and diameter range 

S.N. Species DBH range (cm) Number of trees 

1. Betula platyphylla 8.5-35.3 10 

2. Quercus mongolica 7.2-31.6 7 

3. Ulmus pumila 8.9-36.5 7 

4. Tilia amurensis 13.1-24.3 3 

5. Populus ussuriensis 14.4-18.9 2 

6. Fraxinus mandshurica 17.1 1 

7. Larix olgensis 7.7-33.5 11 

8. Picea jezoensis 8.4-26.5 9 

9. Abies holophylla 8.5-30.4 10 

 

Each sample tree was assigned an identity code, its local name and location were noted and dbh was 

measured before felling while the total height was measured by a tape after felling. The scientific 

names of the tree species were identified from literature by Wang (2006), Wang et al.,(2006) and 

Xing (2007b). The stems were cut as close to the ground as possible. All 60 sample trees were 

measured by sub-sampling method- a computer based biomass assessment program. 

 

Sub-sampling method: An iPAQ (a portable hand-held computer, PDA) based ‘biomass assessment’ 

program developed by de Gier (2003) was used for the biomass estimation of the sample trees. The 

program guides the user through all the necessary steps to estimate woody biomass and volume. The 

method is called sub-sampling because the total woody biomass of a tree is estimated based on a small 

wood sample (disk or wedge) selected from a random location of the tree so that the sample has a 

selection probability proportional to size. The common terms used in the method are branch, path and 

segment. Branch is the complete stem system that develops from a single bud; the path is a series of 

connected branch segments or internodes. A segment is a part of a branch between two consecutive 

nodes. Each segment in a path has associated selection probability proportional to size. The butt is the 

first node (see the level L1 in Figure 2.2) and has selection probability q1=1. The second node occurs 

at the point of tree limbs (level L2 in Figure 2.2). The program incorporates two main procedures 

namely path selection and importance sampling (also see section 1.1.2) to estimate tree biomass and 

volume.  

 

Step 1: Path selection 

After felling a tree, a path was selected through it, starting from the butt and ending at the specified 

minimum branch diameter of 2.5 cm. The path selection involved the measurement of base diameter 

of each branch (above 2.5 cm) at each node staring from the butt end to the minimum of 2.5 cm. At 

each node a path was selected by the computer along a branch based on probability proportional to its 

size. The ‘size’ is meant here to the proportional measure of biomass in a branch and can be 

approximated by ‘d2l’ where ‘d’ is the base diameter of the branch and ‘l’ is the length of the branch 

part (segment) between two successive nodes. De Gier (1989, 2003) has found ‘d2l’ to be proportional 

to ‘d2.5’, so biomass of a branch is simply proportional to ‘d2.5’. The principle of path selection can be 
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understood from an example. As shown in the Figure 2.2, suppose three branches namely 3-1, 3-2 and 

3-3 are emanating from a node (level L5-L6); so there are three different path continuations possible. 

Assume that the base diameter of the three branches are d3-1=15, d3-2=12 and d3-3=10 cm respectively. 

The associated proportional measures of biomass are then 871.4 (=152.5), 498.8 and 316.2 for 3-1, 3-2 

and 3-3 respectively. The cumulative totals are 871.4, 1370.2 and 1686.4. If a random number is 

drawn, say 0.457, then the result of multiplying this by 1686.4 is 770.7. Since 770.7 <871.4, the first 

branch (3-1) is selected. 

 

In general the selection probability of the kth branch 

(or segment) out of m branches at a node is: 

∑
=

=
m

i
ikk ddq

1

5.25.2 . In the above example q3-1 = 

871.4/1686.4 = 0.52 i.e. the first branch had 52 % 

probability of being selected. 

 

The path then continued in the selected branch to the 

next node and the procedure was repeated till the 

minimum diameter limit (2.5 cm) was reached (the 

coloured branch in the Figure 2.2 represent a path). 

Following the above procedure, the program 

calculated a probability value for each segment 

emanating from the nodes along the selected path. 

Unconditional probability of selection of a particular 

segment is obtained by multiplying the probabilities of 

all the segments in the path from the butt end till the 

segment concerned.  

Unconditional probability of the Kth segment: ∏
=

=
k

i
kk qQ

1

  

Figure 2.2 Principle of sub-sampling path selection 

From the unconditional probability (Qk) and the weight (Bk) of a selected segment in the path, the 

program estimates the total tree weight (Best) by the following formula: 

( )∑
=

=
n

k
kkest QBB

1

, where n is the number of segments in the path. 

 

Step 2: Importance sampling 

This step was basically to select a randomly located disk in the selected path, for the actual biomass 

estimation. In this case, the path is considered to consist of an infinite number of thin disks, one of 

which is selected with a probability proportional to its diameter squared. The process involved 

marking the points along the selected path where change in taper occurred (notably at the butt and just 

before and after nodes) and measurement of diameters at each of these points along with their 

corresponding distances from the butt end. These measurements alone already allow volume 

estimation of the tree. For volume estimation, the program calculates a so called inflated area at each 

point of diameter measurements. Inflated area at a point is the ratio of diameter squared to 

unconditional probability of the point. Since the distance between two successive points are 

Figure 2.2. Principle of sub-sampling path 
selection (adopted from de Gier, 2003) 
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measured, the inflated volume of the corresponding section is obtained using Smalian formula as 

below. 

 

Smalian formula: ( ) 2/21 AALV +×=  where A1 and A2 are the end cross-sections of a segment, L is 

the length and V is the estimated volume. 

 

The sum of all such volume sections results in an unbiased estimate of the total tree woody volume. 

 

A random location of a point from where disk had to be removed, in order to estimate fresh and dry 

weights of the tree, was obtained from the above measurements. The program calculates the position 

of the point by multiplying the total tree volume estimate with a random number. The segment of the 

path in which this volume is reached, say Kth segment, is identified and the exact position of the point 

where the disk has to be removed is determined using an interpolation function based on trapezoidal 

rule. The position of the point is obtained from the following formula: 

 

( )( ){ }aacbbLL KKX 242
0 −+−+= ; Where 

( ) ( )0101 KKKK LLVVa −−= ;  

02 KVb = ; 

( )02 Kt VuVc −−= ;  

Where LKX is the distance of the point from the butt end along the path in Kth segment where disk is to 

be cut; LK0 is the distance of the beginning of Kth segment from the butt end. VK0 and VK1 are the sum 

of volumes of all segments in the path respectively till the beginning and end of Kth segment; u is a 

random number and Vt is the total tree volume. 

 

Then a disk about 10cm thick was removed by making cuts 5 cm above and 5 cm below the point. 

Approximately 10 cm thick disk was cut considering the limited weighing capacity of the digital scale 

(1 gram precision) used. For the biomass estimation, the program calculates the weight (kg) per unit 

thickness (m) of the disk and divides the value by the unconditional probability of the segment from 

which it is removed. The result when multiplied by the estimated total tree volume (m3) and divided 

by the square of the disk diameter (m2), gives the estimate of the tree woody biomass. It should be 

noted that if the weight of the disk is fresh weight, the result will be estimated fresh biomass of the 

tree; and if the weight of the disk is oven-dry, the result will be estimated dry biomass of the tree. 

 

When the disk was too big for the weighing scale, it was further divided into a number of radially cut 

wedges and their fresh weights were measured at the site with a precision of 1 gram. After entering 

the data for the individual fresh weights of the wedges, one was selected with a probability 

proportional to the fresh weight. It should be noted that the fresh weight of the selected wedge divided 

by its selection probability results in the estimate of the fresh weight of the disk (similarly for dry 

weight). When the measurements on the fresh weight of the selected wedge and its average thickness 

were entered into the iPAQ, total fresh woody biomass of the sample tree was obtained. The randomly 

selected wedge was then marked with an identity code and brought to laboratory for oven drying. The 

program also gives the value of a factor, called k-factor, for each of the selected wedge which when 

multiplied by the oven dry weight of that wedge gives the estimate of the total dry woody biomass of 
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the sample tree. The wedges were oven-dried at a temperature of 1050C till a final constant weight in 

the laboratory at North-East Forestry University in Harbin, China.  

 

Total weighing of sample trees: To test the accuracy of sub-sampling estimates, fresh biomass of 34 

sample trees, randomly selected from the 60 trees, was also measured by direct weighing in the field 

in the conventional way using a balance. Total weighing was done by cutting the trees into sections of 

convenient lengths (0.5-2 m) and using a scale of 25 kg capacity; the foliage and branch parts less 

than 2.5 cm in diameter were not included because biomass in this study is defined as the AGB of 

trees to a minimum of 2.5 cm branch diameter.  

 

To further aid in assessing the accuracy of sub-sampling, biomass estimation of another 15 sample 

trees (among the 60) was made by combining the ‘customary method’ of volume and biomass 

measurement. This involved separating the trees into stem and branch components above 10 cm 

diameter and between 10 to 2.5 cm in diameters. Larger branches and main stem above 10 cm 

diameter were cut into sections (taking account of the taper, length varied from 0.5 to 2 m), end cross-

sections were measured and volumes were calculated using the Smalian formula. The volume, when 

multiplied by the value of fresh biomass per unit volume gave fresh weight of the component. To 

obtain the value of fresh biomass per unit volume, a disk (about 10 cm thick) of wood was removed 

from breast height of the sample tree. The fresh weight of the disk was taken in the field and volume 

was calculated as cross sectional area times thickness. The biomass of branch parts, 2.5 to 10 cm in 

diameter, was determined by direct weighing on a scale. The total fresh weight of trees was obtained 

from the sum of weights of the components above 10 cm and between 2.5 -10 cm in diameters. 

 

2.3.2.3. Annual growth ring measurement 

In the north-east Chinese cool temperate environment where there is a defined growing season (winter 

temperatures drop to minus 300C and lower), most species have well defined annual rings. The 

information contained in the annual rings in trees can be used to predict the annual wood increment 

(Bouriaud et al., 2005; de Gier, 1989; Husch et al., 1982). Increment measurements are preferably 

made in permanent sample plots (de Gier, 1989). Unfortunately, such permanent plot increment data 

were not available for the study area. It was, therefore, decided to obtain tree increment data from the 

measurement of annual growth rings on the disks removed from the sample trees from breast height 

(1.3m above the ground). As the sample trees had an even distribution across the diameter classes, the 

growth ring measurements on them were expected to give the increments of the existing size classes. 

Among the 60 sample trees felled for sub-sampling measurements, 48 trees were found to have 

conspicuous annual growth rings. Species namely Populus ussuriensis and Betula platyphylla did not 

show distinct rings. After completing the sub-sampling measurements, a disk was removed at breast 

height from each of the 48 trees belonging to the remaining 7 species. The cross sections of the disks 

were then smoothened by using a chisel-plane. The annual growth rings of the last five years and bark 

thickness were measured as follows: 

i. On each disk, four points were marked at the ends of two perpendicular diameters (rings were 
measured in four directions to correct for wood compression or tension effects in the rings, if 
present). 

ii.  Using an 8x magnifying lens and a vernier-caliper, the total width of the rings of the last five 
full years was measured to a precision of 0.1mm at each of the four points. Care was taken to 
make measurement perpendicular to the tangents of the rings. The four width measurements 
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were added; then divided by 5, and then again divided by 2 to obtain average under-bark 
diameter increment. 

iii.  At the same four points, bark thickness was also measured to the nearest mm. Using a steel 
ruler, bark thickness was measured from the sapwood to the position where a caliper would 
have touched the bark. The four measurements were added and divided by 2 to obtain double 
bark thickness. 

 

From the above measurements, a relationship between over-bark dbh and annual wood accumulation 

(or carbon sequestration) in trees was developed as shown in the section 2.4.3. 

2.4. Data analysis 

2.4.1. Validation of sub-sampling method 

Accuracy assessment of the sub-sampling biomass estimates was done by taking total fresh weight of 

34, among the total 60, sample trees and comparing these with the sub-sampled biomass data. The 

measured fresh biomass by total weighing and the estimated fresh biomass by sub-sampling method 

were compared by undertaking a t-test (paired two sample for means). A customary method of fresh 

biomass estimation of another 15 sample trees (among the 60) was also used to check the consistency 

with the fresh biomass estimates by sub-sampling. The sub-sampling method was the only way to get 

unbiased estimates of dry biomass of the sample trees. Following validation, the biomass estimates of 

the sample trees obtained by sub-sampling were related to dbh (D) and height (H) to develop the 

biomass equations. 

2.4.2. Comparison of biomass models 

Biomass equations are most commonly expressed in polynomial, power and combined variable model 

forms (Brown, 1997; de Gier, 2003; Parresol, 1999; Samalca, 2007; Zianis et al., 2005) (see section 

1.1.2). Only these types of model were evaluated to determine the one that best describes the 

relationship between tree biomass and its variables namely dbh and height. The polynomial and power 

models are based on dbh only as independent variable while the combined variable model are based 

on dbh and total tree height as independent variables. Complicated models, involving more variables, 

were not considered in this study since additional variables do not necessarily improve the fit of the 

model significantly, but can create problem with multi-collinearity and can hence reduce the 

applicability of the biomass equation (Chojnacky, 2003; Samalca, 2007; Zianis et al., 2005). The 

sample tree biomass data were plotted against D (i.e. dbh) and D2H. From the scatter plot of D verses 

biomass, polynomial and power models were derived while from the plotting of D2H and biomass, the 

combined variable model was determined. The biomass data were analyzed first by putting all species 

together and then by broad-leaved and needle-leaved category. The coefficients of the polynomial and 

combined variable models were estimated by weighted linear regression technique in SPSS; backward 

stepwise elimination method was used in case of polynomial to remove the non-significant 

coefficients. The weighing was necessary to remove heteroscedasticity in biomass data and to develop 

biomass regression model of higher precision. Theoretically, weight should be inversely proportional 

to the variance of the residuals (Furnival, 1961). So variances of residuals were calculated by dbh 

class in case of polynomial model and D2H class in case of combined variable model. The class 

variances were then plotted against mid-values of dbh classes for the polynomial model and the mid-

value of D2H classes for combined model. A trend line in power form was then fitted to each plotting 

to determine the weights for the two models (Brown et al., 1989; Leeds, 2007). 
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The coefficients of power model were obtained directly from the scatter plot of biomass versus dbh. 

However, the coefficients thus obtained are biased (Brown et al., 1989; de Gier, 2003; Parresol, 1999) 

as it is calculated after linearizing the power model by undertaking log transformation and doing 

linear regression. Although log transformation removes heteroscedasticity (Parresol, 1999), obtaining 

unbiased untransformed biomass estimates from the log transformed model is not direct because 

antilogarithm of log(biomass) yields geometric mean of the skewed arithmetic distribution rather than 

the mean. The common goodness-of fit statistics of power model relate to the transformed equation 

only (Parresol, 1999).  

 

A number of statistics have been mentioned by Parresol (1999) for evaluating goodness-of-fit and for 

use in comparing alternative biomass models. Among them the common ones are coefficient of 

determination (R2), standard error of estimate (Se) (standard deviation of residuals), root mean square 

error (RMSE), coefficient of variation (CV), mean percent standard error (S%) and Furnival Index 

(FI). Although the statistics like R2 computed for the three functions can not be compared directly, FI 

has the characteristic to be able to also compare models that have either biomass or some function of 

biomass as dependent variables (Furnival, 1961). FI reduces to the usual estimate of standard error 

about the curve when the dependent variable is biomass i.e. for polynomial and combined variable 

models the FI is equal to RMSE. FI is based on maximum likelihood approach; it also reflects the 

magnitudes of residuals and possible departures from assumptions of normality and homogeneity of 

variance (Furnival, 1961). Large value of FI represents a poor fit and vice versa. The goodness-of-fit 

statistics calculated for the tree models to identify the best fitting model are given in the Table 2.2 

below: 

 
Table 2.2 Statistics used to compare the models 

Statistics Formula Remarks 

R2 

TSS

RSS−1  RSS= ( )
2

1

ˆ∑
=

−
n

i
ii YY and TSS = ( )

2

1
∑

=

−
n

i
i YY  are 

residual sum and total sum of squares respectively 

Se ( )pnRSS −  n= number of sample observations 

p=number of model coefficients 

RMSE 
( ) nYY

n

i
ii∑

=
−

1

2ˆ  
iY is observed value of biomass; iŶ  is estimated value of 

biomass by the models 

CV ( ) 100×YSe  Y  is the arithmetic mean of observed biomass values 
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YYY
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FI ( )[ ] RMSEYf ×′ −1  ( )Yf ′  is the first derivative of the dependent variable 

w.r.t. biomass; the brackets signify geometric mean 

 

Besides the prediction errors, the logical behaviour and simplicity of the models were also considered 

while evaluating them. 
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2.4.3. Calculations for annual wood accumulation and carbon sequestration 

The under-bark diameter increment (idub) and double-bark thickness (Tdb) calculated for the sample 

trees as explained in the section 2.3.2, were separately related to their over-bark dbh (Dob) to obtain 

the relations for annual wood accumulation and carbon sequestration as follows. 

 

Suppose a linear relationship was obtained from the regression analysis between the variables Dob and 

idub. The evidence of linear relationship among these variables has been mentioned by de Gier (1989). 

As the forest in the study area is almost even-aged secondary forest, linear relationship can be 

expected. Let it be 

obdub Daai .10 += ……………………………………………..…….. (1) 

A linear relationship can also be expected in regression analysis between the variables Dob vs. Tdb. Let 

it be 

obdb DbbT .10 += ……………………………………........................ (2) 

After taking the first derivative of equation (2) with respect to (w.r.t.) Dob, annual increment in bark 

thickness (i tb) can be obtained as follows: 

Dobtbobdb iibdDdT == 1  

Or, Dobtb ibi .1= …………………………………….…...................... (3) 

We know that the increment in over-bark dbh (iDob=dDob) is the sum of the increments in under-bark 

dbh (idub) and double-bark-thickness (i tb), i.e. 

tbdubDob iii += ……………………………………………………… (4) 

When we use the relations (3) and (1) in (4), we get a relation for increment in over-bark dbh as 

function of over-bark dbh as below: 

DobdubtbdubDob ibiiii .1+=+=  

Or, ( ) ( ) ( )1101 1.1 bDaabii obdubDob −+=−= ……………...…….. (5) 

 

If we have a polynomial function (or any function dependent on dbh only) as a biomass equation, then 

from its first derivative we can estimate the annual wood accumulation in a tree using the relation (5) 

as follows. Suppose the polynomial function for dry weight♣ (DW) is  

kDnDmDlDW obobob +++= ... 23 , then its first derivative w.r.t. Dob is 

nDmDldDdDW obobob ++= ..2..3 2  

Or, obobob dDnDmDldDW )...2..3( 2 ++=  

Or, ( ) ( )110
2 1.)...2..3( bDaanDmDldDW obobob −+++= ……… (6) 

 

Where dDW represents the annual wood increment in a tree of over-bark dhh, Dob. The equation (6) 

follows from de Gier (1989). Since nearly 50% of the dry weight of a tree is carbon, from the relation 

(6) we can also estimate the annual carbon sequestration by a tree in the AGB. The annual wood 

                                                      

 
♣ The terms biomass and weight have been used interchangeably in this study, although biomass is the total 
content of matter (kg) in a body while weight is the force (Newton) exerted by gravity on mass of a body. 



MODELLING AND MAPPING OF ABOVE-GROUND BIOMASS AND CARBON SEQUESTRATION 

25 

increment and carbon sequestration thus calculated can be related to the remote sensing data. Various 

vegetation indices (VIs) were tried (see section 2.5) to relate the increments with the Landsat TM data 

of the study area for large scale estimation and mapping.  

 

Measurements of growth rings in a sufficiently large number of trees (at least 30 trees per species) are 

necessary to know the differences in increments by species (de Gier, 1989). This study attempted to 

estimate the average increment by tree size (rather than species) based on the growth ring increment 

data of all species put together. 

 

2.4.4. Evaluation of existing equations 

The biomass estimates based on the most suitable equation developed in this study was compared 

with the estimates from existing equations for similar forest types. The existing equations considered 

were local one for north-east Chinese temperate forest developed by Wang (2006) and also global 

suggested by IPCC (2003) and developed by Schroeder et al. (1997) for temperate forest tree species 

of eastern U.S.A. The local Chinese equation is general (i.e. not species specific) applicable to both 

broad-leaved and needle-leaved species while there are two IPCC equations one for broad-leaved and 

the other for needle-leaved. The equations and their characteristics are mentioned in the Table 2.3 

below 

 
Table 2.3 The secondary biomass equations used in the study 

Name of the 

equation 

Equation1 Valid dbh 

range (cm) 

R2 No. of sample trees 

used in the eqn 

Local Chinese 467.210489.88 obDDW =  2.4-57.1 0.96 98 

IPCC broad-

leaved 
246872

.25000
5.0

5.2

5.2

+
+=

ob

ob

D

D
DW  

1.3-85.1 0.99 454 

IPCC needle- 

leaved 
364946

.15000
5.0

7.2

7.2

+
+=

ob

ob

D

D
DW  

2.5-71.6 0.98 83 

1 Dob is overbark dbh; DW is oven-dry above-ground biomass that includes stem, stump, branch, 

twig, bark and foliage. Unit of DW for the Chinese equation is gram while for the IPCC equations 

are kg. Note that the above R2 values are biased since they are based on log-transformed data.  

Source: (IPCC, 2003; Schroeder et al., 1997; Wang, 2006).  

 

Using the 172 plot inventory data for dbh, biomass of each tree was calculated using the above three 

equations besides the most suitable equation developed in this study. To get plot biomass, biomass of 

individual trees was added together. Thus, three sets of plot biomass estimates, one each 

corresponding to the Chinese equation, IPCC equation and the equation of this study, were obtained. 

The three sets of plot biomass data for the three levels of equations were then compared to see the 

effect of location specific equations in area based biomass assessment. The comparison was made by 

making box plots and undertaking ANOVA test. 

 



 

26 

2.5. RS based assessment and mapping of biomass and carbon 

Landsat TM image covering the whole study site was obtained for 22 September 2006. The image was 

exactly one year ahead of the field work and was cloud free. Projection of the image was defined to 

WGS_1984_UTM_Zone_52N which is the standard projection system for north China. The acquired 

image was subjected to geometric, atmospheric and topographic corrections. Geometric correction of 

the image was done in ERDAS IMAGINE 9.1 using 11 ground control points (GCPs) from the digital 

topographic map of the study area. First order polynomial transformation was used for the geometric 

correction and re-sampling was done to the pixel size 30×30m using nearest neighbour method. This 

approach has the advantage of being simple, efficient and preserving the original values (Foody et al., 

2003). The RMSE was 0.54 pixels. Radiometric correction was done in ERDAS IMAGINE 9.1 using 

ATCOR 3 that integrates DEM data (via generating slope, aspect, shadow and sky view images) of the 

image area as an input to remove the atmospheric and topographic effects. ATCOR 3 has the 

advantage that it minimizes the effects of topography (e.g. shadow in mountainous terrain) and haze 

and automatically converts the raw digital numbers (DN) values into surface reflectance using the 

calibration file for TM, DEM, solar zenith angle, azimuth, and some atmospheric parameters.  

 

The shape file of the total 172 sample plots was overlaid on the corrected image to see the matching 

of plot positions with the ground. It was found that a few of the plots that should have actually been 

inside the forest were coming to non-forest land-use such as grass-land, agricultural field and road. 

This problem was observed with few plots at fringes of the forest i.e. close to non-forest. It may be 

due to the error in coordinates recoded from GPS because of poor satellite signal or because of the 

error in geometric correction of the image. A higher accuracy in the geometric correction of the image 

could not be achieved because the ground control points (GCP) for the forested area were not 

conspicuous on the image. So while relating the remote sensing data with plot biomass or carbon, only 

the plots lying well inside the forests were considered. Thus out of the 172 sample plots, 142 plots 

were used for remote sensing based assessment. Spectral signatures of all seven TM bands were 

extracted from the pixels corresponding to the 142 plots in ENVI 4.2 using the shape file of the plots. 

Different VIs mentioned in Table 2.4 were calculated considering their advantages for forested 

environment and good relations with biomass in previous studies (see chapter 1, section 1.1.3). 

Mainly  bands 3, 4 and 5 were used to calculate VIs and band ratios because these bands have been 

used successfully in previous studies to predict forest structural features (Ingram, 2005). Band 5 

(MIR) is less studied than the bands 3 (red) and 4 (NIR), but has been found to be the most useful TM 

band for estimating forest biomass (Ingram, 2005; Steininger, 2000). Some complex band ratio 

suggested by Foody et al., (2003) was also calculated to investigate the relationship. Soil adjusted VIs 

were not used because bare soil background was not prominent in the forest environment of the study 

area. Ordinary least square regression analysis was done to study the relationship between plot 

biomass/ carbon sequestration as dependent and different VIs or band ratios as independent variables. 

Both linear and non-linear models were examined for the relationship between forest variable and 

reflectance data; although very often the relationships are either linear or exponential, depending on 

the presence of saturation effect (Schlerf et al., 2005; Steininger, 2000). The plot biomass and carbon 

sequestration values were estimated respectively using the most appropriate biomass equation and 

carbon sequestration equation developed in the study. The relationship of VI with plot biomass was 

also analyzed to investigate the saturation issue of VIs. The best fitting RS-based model was 

determined based on the goodness of fit statistics such as RMSE and R2. After determining the best 
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model, separately for the predictions of biomass and carbon sequestration, maps were prepared in 

ArcGIS 9.1.  

 
Table 2.4 Vegetation indices and band ratios used to study the relation with biomass 

Vegetation Indices Formula Source 

NDVI (ρTM4- ρTM3)/ (ρTM4+ ρTM3) Lu et al., 2004; 

Heiskanen, 2006 

ND5,4 (ρTM4- ρTM5)/ (ρTM4+ ρTM5) Foody et al., (2003) 

MVI ρTM4/ρTM5 Fassnacht et al., 1997; 

Schlerf et al., 2005 

SR ρTM4/ρTM3 Lu, 2004; Schlerf et al., 

2005; Heiskanen, 2006 

RSR  SR[1-( ρTM5- ρTM5min)/( ρTM5max- ρTM5min)] Brown et al., (2000); 

Heiskanen, 2006 

EVI 2.5(ρTM4- ρTM3)/(ρTM4+6ρTM3-7.5ρTM1+1) Huete et al., 2002) 

Complex Ratio  

(4,5,2) 

(ρTM4-( ρTM 5+ ρTM 2))/  (ρTM 4+ ρTM 5+ ρTM 2) Foody et al., (2003) 

Complex Ratio  

(4,3,5) 

(ρTM 4-( ρTM 3+ ρTM 5))/ (ρTM 4+ ρTM 3+ ρTM 5) Foody et al., (2003) 

NDVIcorrected NDVI[1-( ρTM5- ρTM5min)/( ρTM5max- ρTM5min)] Heiskanen, 2006; 

Zheng et al., 2004  

ND45corrected ND45[1-( ρTM5- ρTM5min)/( ρTM5max- ρTM5min)] Foody et al., (2003) 
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Others
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3. Results  

3.1. DBH distribution of trees in sample plots and sample trees 

A total of 172 randomly selected sample plots, each of 500 m2, were used in this study. Quercus 

mongolica, Betula platyphylla, Larix olgensis, Abies holophylla, Populus ussuriensis, Picea jezoensis, 

Tilia amurensis and Acer mono were the major 

tree species observed in the plots (see Fig 3.1). 

Betula was the most dominant genus while 

Acer was the least abundant genus observed as 

can be seen in the Figure 3.1. A total of 6097 

trees, ≥10 cm dbh, were measured in the 

sample plots. The number of trees from 

unidentified species shared only 9% of the 

total while nine genera constituted 91%. The 

majority of the trees in the plots belonged to 

the dbh range of 10 to 35 cm; more than 97 % 

of the trees were below 35 cm dbh (see Figure 

3.2). The inverted J-distribution of trees’ dbh 

size is expected in any natural forest. The high 

share of small trees in natural forests can be 

attributed to their high mortality and the role to 

replace the bigger ones. 
Figure 3.1 Distribution of trees by genus in the sample plots 
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Figure 3.2 Distribution of trees by dbh class in the sample plots 

Figure 3.1 Distribution of trees by genus in the sample 
plots 

Figure 3.2 Distributions of trees by dbh class in the sample plots (all species) 
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A total of 60 sample trees ranging in dbh from 7.2 to 36.5 cm and belonging to nine species were 

harvested and measured for above-ground biomass (see Appendix 1). The distribution of the sample 

trees based on dbh class interval 

of 5 cm is shown in the Figure 

3.3. Relatively large numbers of 

sample trees were taken from the 

smaller diameter classes, 

compared to the bigger classes, 

since finding representative trees 

from the bigger classes was 

difficult because of their low 

abundance and also due to the 

difficult mountainous terrain.  

   

    
Figure 3.3 Distribution of sample trees by dbh class 

3.2. Reliability assessment of sub-sampling 

The sub-sampling biomass estimates were validated by comparing these with the weights obtained 

from total weighing of fresh biomass of 34 sample trees and indirect fresh weight estimation (by the 

customary method explained in section 2.3.2) of another 15 trees. The fresh-weight biomass estimates 

by sub-sampling explained more than 96 % of variation in the total fresh weights of the 34 sample 

trees (see Figure 3.4, left). When the biomass data of sample trees measured by total weighting and 

the indirect approach (customary method) were combined (i.e. 49 trees) and compared with the sub-

sampling estimates, it still explained more than 95% of variability (Figure 3.4, right). The root mean 

square error (RMSE) of sub-sampling estimates against total weighing (for 34 trees) was 12.26 kg 

(dry weight) which is 13.19 % of the average sample tree biomass. 
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Figure 3.4 Comparisons of sub-sampling biomass estimates with  total weighing (left) and total weighing 
combined with indirect weight estimation (right) 
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The statistical ‘paired sample t-test’ approved the null hypotheses that the sub-sampling biomass 

estimates do not differ significantly from the total weighing or the combination of total weighing and 

indirect approach (see Table 3.1 below). The calculated t-statistics for the two pairs are respectively 

0.137 and 0.120 while the two-tailed critical values from table of t-distribution for 33 and 48 degrees 

of freedom at 5 % level of significance are 2.03 and 2.01; this implies the validity of null hypothesis. 

 
Table 3.1 Paired sample t-test for the comparison of biomass estimates by sub-sampling, total weighing 
and combination of total weighing and indirect approach 

Paired Differences 

95% Confidence Interval  

 

Mean 

Std. Error 

Mean Lower Upper t df Sig. 

Pair-1  .293 2.134 -4.049 4.635 .137 33 .892 

Pair-2  .553 4.628 -8.752 9.858 .120 48 .905 

Pair-1: Fresh biomass estimates by sub-sampling vs. total fresh weightsψ of the 34 sample trees 

Pair-2: Fresh biomass estimates by sub-sampling vs. combined fresh weights by total weighing and indirect 

approach (49 trees) 
 
When linear regression was performed in SPSS with sub-sampling estimate of fresh biomass as 

explanatory variable (X) and measured total fresh biomass as response variable (Y), the table of 

estimated coefficients (see Table 3.2 below) revealed that the intercept term was non-significant and 

only the independent variable explained the model significantly at p<0.001. So when we neglect the 

non-significant constant term, the model becomes Y=0.977X or Y nearly equals X. The relation, 

however, gives an indication that the sub-sampling method slightly overestimates the biomass values. 

 
Table 3.2 Parameters of the linear relation between sub-sampling and total biomass 

Un-standardized Coefficients Standardized 

Coefficients 

Model 

predictors 

B Std. Error Beta t Sig. 

Constant 1.819 3.671  .495 .624 

FW_SS .977 .032 .983 30.633 <0.001 
Dependent variable: fresh biomass by total weighing;  

Independent variable: fresh weight estimates by sub-sampling (FW_SS) 

 

Some further analysis was done with the fresh biomass data of the 34 sample trees that were also 

measured for the total weight. To test whether the sub-sampling estimates of biomass are influenced 

by the branching pattern of trees, the difference in sub-sampling biomass estimate and the total weight 

of the trees were plotted against the number of branching nodes in the path. The graph demonstrated 

that the sub-sampling estimates are not affected (R2 = 0.0874) by increasing number of branches in the 

trees (see Figure 3.5). Since the graph is for all the species combined together, the sub-sampling 

estimates are also insensitive to species. 

 

 

                                                      

 
Ψ Note: the terms biomass and weight have been used interchangeably in the study 
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Figure 3.5 Difference in sub-sampling 
estimate of biomass and total sample 
tree weight against the number of 
branching nodes in the sample trees 

 

 

 

 

 

 

 

3.3. Biomass equations based on estimates of sub-sampling method 

Since the sub-sampling method had a very high correlation with the true weights of the sample trees 

and it has also an advantage of giving unbiased dry biomass estimates of the sample trees, the sub-

sampling estimates were used for the purpose of developing biomass equations. While exploring the 

sub-sampling dry biomass data (of all sample trees) by fitting the three common models namely, 

polynomial (third degree), power and combined variable, first check for presence of outliers was 

made. For this, residuals were calculated for each model and converted to z-scores (standardized 

residuals) which are the residuals divided by an estimate of their standard deviation. None of the z-

score value was beyond -3 to +3 range (see Table 3.3). From statistics, we know that in a normally 

distributed sample 99.9% of z-scores should lie between -3.29 and +3.29. So there was no obvious 

outlier. 

 
Table 3.3 z-score range of the three models fitted to dry biomass data of the sample trees 

Model z-score (minimum) z-score (maximum) 

Combined (M = a0 + a1.D
2H) -2.47 2.83 

Power (M = a.Db) -2.65 2.30 

Polynomial (M = a0 + a1.D + a2.D
2 + a3.D

3) -2.68 2.30 

 

Next it was determined whether species-specific biomass equations were necessary or whether a 

general combined species equation would be enough. Figure 3.6 below represents the scatter plot of 

sub-sampling dry biomass data of the 60 sample trees plotted against their dbh by species or similar 

species-group. Only one tree of Fraxinus mandshurica and 3 trees of Tilia amurensis could be 

harvested in the field because of their low abundance; since the two species by their physiognomic 

characteristics look similar to Ulmus pumila (also local people reported their wood strength to be 

similar), they were grouped into one species group. Similarly, as only two trees of Populus ussuriensis 

were measured and they looked similar to Betula platyphylla, the two were combined into another 

species group. Although the number of sample trees per species or species-group was not enough, the 

plotting (Figure 3.6) revealed that separate biomass equation for individual species was not necessary 

as the points of individual tree species or species-group are mixed randomly among other species or 

group. The decision is also supported by Figure 3.7 showing three third degree polynomial curves one 

each for broadleaved species, needle-leaved species and all species together. The three polynomial 

equations when used to estimate the dry biomass of trees in dbh range of 10-40 cm at 2 cm class 
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intervals and subjected to ANOVA test (Appendix 2) showed that the estimates by the three equations 

do not differ significantly at 5% level of significance. Further paired sample t-test made to compare 

the means of the three estimates in pair showed that they do not differ significantly at 5% level of 

significance (see Appendix 2). Thus, there was no need for separate equations by species. The 

advantage of combined species equation for its applicability over a large number of tree species made 

the large area (landscape scale) biomass assessment and mapping easy in the Wangqing forest. 
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Figure 3.6 Scatter plot of dry biomass (kg) by species and similar species against dbh 
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Figure 3.7 Third degree polynomial curves fitted to the broad-leaved, needle-leaved and all species 
together 
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The scatter plot of sample tree dry biomassτ against dbh (D) demonstrated a good least square fit by 

both the polynomial and power models (see Figure 3.8). However, the best fit, in terms of R2 value 

(coefficient of determination), was observed from the combined variable model in the scatter plot of 

dry biomass against D2H (dbh squared times total tree height). The R2 value for the power model at 

the first look appeared higher than that of polynomial model. But the R2 value from the power 

functions is biased because it is actually obtained from the log transformed linear model of the power 

function i.e. from the scatter plot of ln(biomass) against ln(dbh) (see Figure 3.8d). So, R2 from the 

power fit could not be compared with that from the polynomial fitting. The models obtained from the 

ordinary least square fits in Figure 3.8 are given in the Table 3.4 below. 

 

 
Figure 3.8 Fitting of (a) polynomial, (b) power, (c) combined variable and (d) log-transformed models to 
the sample tree dry biomass data 

 

 

                                                      

 
τ The graphs presented in the results and discussion chapters are only for the dry biomass data of the sample trees. 
The graphs for volume and fresh weight data are included in the Appendix 4. 
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Table 3.4 Biomass equations obtained from ordinary least square fit 

Model Equation 

Polynomial DW = 2.0433×10-2D3 - 6.2743×10-1D2 + 13.4912D – 70.3641 

Power DW = 5.3157×10-2D2.5532 

Combined variable DW =1.9531×102D2H - 7.7030 

Log-transformed power lnDW = 2.5531 lnD - 2.9345 

Where DW is dry weight of trees (in kg), D is dbh (in cm), H is total tree height (in m) and ln is 

natural logarithm; D2H is in m3 

 

The residuals of the polynomial and combined variable models showed heteroscedasticity as shown in 

Figure 3.9 below. So weighing was necessary for them. Weighted linear regression was performed in 

SPSS. The weights obtained for the polynomial and combined variable models were respectively D4.88 

and (D2H)2.3. So, just weight of D5 was used for the polynomial and (D2H)2 was used for the combined  

variable model. The result of weighted linear regression is shown in Appendix 3. The backward 

elimination method of regression applied for the polynomial model resulted in only the D and D3 

terms to be significant i.e. removed the D2 term. The power function did not require weighting 

because the residuals were not heteroscedastic; when power functions are linearized by log 

transformation, the resulting model has generally homoscedastic variance (Parresol, 1999). 
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Figure 3.9 Heteroscedastic residuals in polynomial (left) and combined variable (right) models 

 

The resulting polynomial equation for dry weight (DW) after weighted linear regression and backward 

elimination was  

DW = 8.9620×10-3D3 + 3.4614D - 23.2628 
where D explained more than 89% of the variability (at p<0.0001) in the sample tree dry biomass.  

 

The combined variable model for dry weight (DW) obtained after weighing was  

DW = 1.8144×102D - 8.0423×10-1 
where D2H explained more than 93% of the variability (at p<0.0001) of dry biomass which is higher 

than the un-weighted equation.  
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The heteroscedasticity in the residuals from the fitting of the reduced weighted polynomial and 

combined variable models was removed as can be observed from the Figure 3.10 below. 
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Figure 3.10 Homoscedastic residuals from weighted polynomial (left) and combined variable(right) models 

 

Similarly, volume and fresh biomass equations were obtained. The scatter plots of volume and fresh 

biomass data fitted with polynomial, power and combined variable models are given in the Appendix 

4. The volume and fresh biomass equations obtained in the three model forms after weighted linear 

regression of polynomial and combined variable models are as below:  

 

Weighted volume equation in polynomial form, V= 9.100×10-6D3 +6.1236×10-4D2 - 2.1180×10-2 

Volume equation in power form, V =1.3400×10-4D2.5538 

Weighted volume equation in combined variable form, V = 4.4404×10-1D2H - 1.044×10-3 
(Where V is volume in m3; D is dbh in cm; H is total tree height in m and D2H is in m3) 

 

Weighted fresh weight equation in polynomial form, FW = 1.5370×10-2D3 + 8.0613D - 54.6681 

Fresh weight equation in power form, FW =1.1999×10-1D2.5091 

Weighted fresh weight equation in combined variable form, FW =3.4718×102D2H+2.8411×10-1 
(Where FW is fresh weight in kg; D is dbh in cm; H is total tree height in m and D2H is in m3) 

 

3.4. Model comparison 

After the models were determined, the next task was to identify the best fitting model. While all the 

models exhibited good fit to the biomass data, the combined variable model was the best because it 

gave the highest coefficient of determination. But the problem with the combined variable model is 

that it also requires the measurement of total tree height which is often erroneous and tedious for 

standing trees in forests with dense canopy. Comparison of the sample tree biomass estimates by 

using the polynomial and combined variable models showed that the estimates by the two models do 

not differ significantly (Fstat=0.016< Ftab=3.921, p=0.899, df=1,118) at 5% level of significance. So 

next attempt was made to decide which one is the best among polynomial and power models. 
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Since the common goodness of fit statistics of power function belongs to the log transformed linear 

model where log(biomass) is dependent variable, those statistics can not simply be compared with 

similar statistics obtained from polynomial (or combined variable) model where biomass is dependent 

variable. The usual fit statistics such as R2 or RMSE was not enough to decide the best among the 

power or polynomial models. Another four statistics namely, coefficient of variation (CV), standard 

error of estimate (Se), mean percent standard error (S%) and Furnival Index (FI) were calculated for 

each model. The fit statistics were calculated based on predicted and detransformed values as 

suggested by Parresol (1999) and Furnival (1961). The fit statistics are shown in the Table 3.5. As 

expected, combined model gave the best fit in terms of the values of RMSE, Se, S% and CV, followed 

by the polynomial model. However, the FI was found to give misleading result. When the dependent 

variable is biomass, FI is simply equal to RMSE; but a lower value of FI means better fit which 

contradicts with all the other fit statistics of the combined and polynomial models that are better than 

the power model. It was concluded that the polynomial model fitted the data better than the power 

model. 

 
Table 3.5 Fit statistics for the tree models 

Model RMSE (kg) Se (kg) CV % S% FI 

Combined 37.72736 38.37232 31.15654 17.90655 37.72736 

Polynomial 41.98332 43.07398 34.97406 24.55235 41.98332 

Power 42.84172 43.57411 35.38015 24.88247 21.474 

 

3.5. Comparisons of plot based biomass estimates with IPCC and local 
Chinese equations 

Once it was found that the polynomial equation is better fitting than the power equation, the former 

equation was used to estimate the plots biomass. As the field plots were enumerated only for tree 

diameters at breast height, use of combined variable model to estimate the biomass was not 

applicable. Using the polynomial equation, biomass of each tree within the plots was calculated and 

summed to get the plots’ biomass. Similarly, the existing local Chinese equation and the equations 

from the GPG of IPCC were also used to calculate the plots’ biomass. Thus the biomass estimates of 

the plots using the three equations were compared to evaluate the effects on area based estimates 

while using different levels (i.e. from different geographical area) of equations. Considering the plot 

biomass estimates from the developed polynomial equation as standard (because it is based on field 

measurements, and therefore assumed to be the most accurate), the estimates from the existing 

Chinese and IPCC equations were compared in the scatter plot shown in the Figure 3.11 below. 
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Figure 3.11 Comparisons of plot biomass estimates by the existing Chinese and IPCC equations versus the 
estimate by the developed polynomial equation of this study 

 

From the Figure 3.11, it is clear that both the Chinese and IPCC equations are giving higher plot 

biomass estimates than the polynomial equation, although the Chinese estimates are closer to the 

polynomial estimates. Correlation analysis showed a higher correlation between the Polynomial and 

Chinese estimates (r=0.997) than between the Polynomial and IPCC (r=0.973), although both the 

coefficients are high. Simple linear regression between the plot biomass estimates by the polynomial 

and Chinese equations showed that Chinese equation estimated 1.178 (slope) times higher than the 

developed polynomial equation. Similarly, the linear regression between the polynomial and IPCC 

estimates showed that the estimate by the latter was 1.356 times higher. The individual sample plot 

biomass estimates by the Chinese equation were 2.41 to 21.79% higher while the estimates by IPCC 

equation were 3.01 to 53.20% higher than the corresponding estimates by the polynomial equation. 

 

ANOVA test was performed to compare the plot biomass estimates by the three equations. It showed 

that the means of the plot level biomass estimates using the three equations differ significantly at 5% 

level of significance (Fstat=20.693> Fcrit=3.013, p<0.0001, df=2,513). Paired sample t-test showed that 

the means by pair of the three estimates also differ significantly (tstat was 32.75 for polynomial vs. 

Chinese, 25.12 for polynomial vs. IPCC and 16.57 for Chinese vs. IPCC whereas tcrit was 1.97 at 171 

df and α=0.05). F-test calculated for each of the three pairs showed unequal variances among them.  

 

The average of the plots’ biomass obtained from the three levels of equations (i.e. locally developed 

polynomial of this study, existing local Chinese and global from IPCC) with their confidence intervals 

are given in the Table 3.6a below while the comparisons of medians and quartiles are shown in the 

box plot in the Figure 3.12.  

 

Based on the estimated biomass of the plots, the average biomass on a per hectare basis (called 

biomass density) was calculates as 81.885, 97.113 and 112.122 metric tons respectively for the 



 

38 

polynomial, Chinese and IPCC 

equations with their 95% confidence 

limits as given in the Table 3.6b. 

The standard errors of the average 

biomass estimates per hectare were 

2.852, 3.259 and 3.791 tons 

respectively for the polynomial, 

Chinese and IPCC equations. The 

lower confidence limits of the 

biomass estimates by both Chinese 

and IPCC equations are above the 

upper confidence limit of 

Polynomial equation which 

indicated over estimation by the 

former two equations.  

 
Figure 3.12 Box plot comparing 
medians and quartiles of estimated plots biomass (kg) using Polynomial, Chinese and IPCC equations 
Table 3.6a Averages and confidence intervals of plot dry biomass estimates 

95% confidence limits for mean Plots biomass  

estimated by 

Average sample plot 

biomass (kg) Lower (kg) Upper (kg) 

Polynomial eqn 4094.273 3812.762 4375.783 

Local Chinese eqn 4855.659 4534.002 5177.316 

IPCC eqn 5606.112 5231.869 5980.356 

 
Table 3.6b Average per hectare dry biomass and confidence limits  

95% confidence limits for mean Biomass density 

estimates by 

Average per hectare 

biomass (tons) Lower (tons) Upper (tons) 

Polynomial eqn 81.8854 76.2552 87.5156 

Local Chinese eqn 97.1131 90.6800 103.5463 

IPCC eqn 112.1222 104.6373 119.6071 

 

As the area of the Wangqing forest was nearly 281478 ha (calculated from the classified Landsat TM 

image using GIS tool), the total estimated above-ground biomass in the forest using the polynomial 

equation was 23048938.62 ± 1584777.43 tons at 95 % confidence interval. Similarly, the biomass 

estimates using the Chinese and IPCC equations were respectively 27335201.16± 1810776.12 tons 

and 31559932.61±2106834.68 tons at 95 % confidence interval. The estimates by the Chinese and 

IPCC equations are respectively 18.6% and 36.9% higher than the polynomial-based estimate. 

3.6. Assessment of annual wood increment and carbon sequestration 

The study area has a distinct growing season for plants approximately from April till September. Most 

of the tree species, therefore, show annual growth rings. The rings were quite distinct in the needle-

leaved species (viz. Picea jezoensis, Larix olgensis, Abies holophylla) and ring porous hardwoods 

(viz. Quercus mongolica, Ulmus pumila, Tilia amurensis, Fraxinus mandshurica), however, the rings 

Figure 3.12 Box plot comparing medians and quartiles of estimated 
plots biomass (kg) using Polynomial, Chinese and IPCC equations  
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in the diffuse porous wood of Betula platyphylla and Populus ussuriensis were not conspicuous 

because of only minor color differentiation between late and early wood. The observations made on 

the outermost radial sections of the sample disks, collected from the breast height of the sample trees, 

showed that the trees do not have false rings (that develop due to the slowing of growth during ring 

formation, followed by resumption of growth) for the last ten years. This was expected because, in the 

study area, drought or severe early or late frosts did not occur in the last 10 years. The measurements 

on the widths of growth rings of the last five years as well as on the bark-thickness were made on the 

sample disks from 48 sample trees consisting of seven Q. mongolica, seven U. pumila, three T. 

amurensis, one F. mandshurica, nine P. jezoensis, eleven L. olgensis and ten A. holophylla. Two 

relations, one for annual under-bark diameter increment (calculated from the growth rings) and the 

other for annual bark thickness increments, both based on over-bark dbh of trees, were needed to get 

the relation for annual wood and carbon accumulation. The data of growth ring and bark thickness 

measurements are given in the Appendix 5. 

 

The relationship between annual under-bark diameter increment (idub) and over-bark dbh (Dob) was 

established from regression analysis and the scatter plot of the two variables, combining all species, as 

shown in Figure 3.13 below. Although the coefficient of determination was low (R2=0.3335), a 

significant linear relationship was observed (Fstat=23> Fcrit(1,46)=4.05, df=1,46, α=0.05); that meant 

larger diameters tend to correlate with larger increments. The linear relation was expected because the 

forests in the study area are nearly even aged, secondary and in growing stage. Further when the 

scatter plot (Figure 3.13) was fitted with third degree polynomial or power models similar R2 values 

(0.3522 & 0.3463) were observed and backward elimination method of regression to the polynomial 

model again resulted in the linear relationship. The resulting linear relation was  

 
22 100306.9102814.1 −− ×+×= obdub Di ………………………………………..…….(a) 

Where the under-bark diameter increment (idub) and over-bark dbh (Dob) both are in cm. 

 

y = 0.012814x + 0.090306
R2 = 0.3335
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Figure 3.13 Relationship between annual under-bark diameter increment and overbark dbh 
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Similarly, a regression analysis was carried out, combining all species, relating double bark-thickness 

to over-bark dbh; double bark thickness was considered because the increment in double bark 

thickness supplements to the increment in over-bark dbh. A simple linear model proved satisfactory as 

shown in Figure 3.14. The resulting model was  

 
12 109755.1109871.6 −− ×+×= obdb DT ……………………………………………….(b) 

Where the double-bark thickness (Tdb) and over-bark dbh (Dob) both are in cm. 

y = 0.069871x + 0.197557
R2 = 0.4401
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Figure 3.14 Relationship between double-bark thickness and over-bark dbh 

 

Since 2628.234614.3109620.8 33 −+×= −
obob DDDW  is the polynomial biomass equation derived 

in the section 3.3; using its first derivative with respect to (w.r.t.) Dob in addition to the right hand side 

of the equation (a) and slope coefficient of equation (b) in the equation (6) derived in the section 

2.4.3, the relation for annual wood accumulation on a per tree basis was obtained as below: 

)109871.61/()100306.9102814.1)(4614.3109620.83( 22223 −−−− ×−×+×+××= obob DDdDW  

Or, )107089.9103776.1)(4614.3106886.2( 2222 −−− ×+×+×= obob DDdDW ……….…...…(c) 

Where annual wood accumulation (dDW) is in kg and over-bark dbh (Dob) is in cm. 

 

Since roughly 50% of the dry wood constitutes carbon (IPCC, 2003), the annual carbon sequestration 

equation on per tree basis can be written as  

 

)107089.9103776.1)(461438.3106886.2(5.0 2222 −−− ×+×+××= obobionsequestrat DDC .… (d) 

Where Csequestration is in kg/ year and over-bark dbh (Dob) is in cm. 

 

Using the sample plot data on tree dbh in equation (d), annual carbon sequestration by each tree in the 

plots was calculated and summed to get plot level annual carbon sequestration. The average annual 

carbon sequestration by the forest was estimated to be 1.889576 tons/ ha with the 95% confidence 

interval from 1.764976 to 2.014175 tons/ ha (see Appendix 6). The total carbon sequestration 

estimated for the whole Wangqing forest (area 281478 ha) was 531874.07 ± 35072.15 ton per year at 
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the confidence interval of 95%. The average carbon density of the forest was calculated as 40.942 

tons/ ha (half of the average biomass per hectare which was 81.885 tons).  

 

3.7. VIs/ band ratio based biomass and carbon sequestration assessment 

Having the plot biomass and annual carbon sequestration estimates, the next step was to relate these to 

the spectral signatures in corresponding plot pixels in the satellite image of the area. The spectral band 

values were extracted from the radiometrically and geometrically corrected TM imagery of 22 

September 2006 and the VIs/ band ratios were calculated. Both linear and non-linear least square 

models were then fitted to the scatter plot of biomass (or carbon sequestrations) per plot as dependent 

variable versus VIs/ band ratios as independent variable. The usual goodness of fit statistics R2 and 

RMSE were considered for determining the best fitting model and the likely VI that explain the 

variability of biomass most. The scatter plots in the Figure 3.15 below show the relationship between 

VIs/ band values and above-ground biomass of 142 plots together.  

 

Although poor, a significant linear relationship was observed between biomass and a few VIs such as 

corrected-NDVI (NDVIc) and RSR and also TM band 5 reflectance. Third degree polynomials were 

also fitted to the scatter plots but in most of the cases the coefficients of X3 and X2 were found to be 

non-significant; the backward elimination method of regression in SPSS resulted in linear 

relationship. The best relation was observed with NDVIc (R2=0.4175; Fstat=100.34> Fcrit=3.91, 

p<0.0001, df= 1, 140) among the tested VIs/ band ratios. The significantly linear relation with NDVIc 

was Y = 12146.385630NDVIc + 1593.670823, where Y is pixel biomass in kg. The RMSE of this 

relation was 32.28% of the mean; the mean biomass of pixel size (30×30m) plots was estimated to be 

7029.9 kg.  From the Figure 3.15 (a), (b) and (c), it is clear that there is no saturation of VIs such as 

NDVIc and RSR with the increasing level of estimated plot biomass existing in the study area. 
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Figure 3.15 Scatter plots of biomass against vegetation indices/ band values 
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Figure 3.15 (……continued) 

 

Although the above relations are not very strong, these were evaluated the best among the other 

alternatives tested. In search for better relation other options were tried. First the sample plot data 

were stratified into species dominance category based on composition and then relationship was 

analyzed. Next instead of extracting spectral signatures using point features of plot coordinates, a 

buffer of one and half pixel was used (as suggested by Hall et al., 2006) around the points to extract 

the average spectral signatures for the plots in order to take account of the possible shift in plot 

positions due to GPS reading or error in geometric correction of the image. The results of fitting linear 

models to plot data after categorizing the plots into Quercus, Betula, needle-leaved and mixed needle-

leaved broad-leaved forests (which are the major existing forest types in the area) are shown in the 

Table 3.7 below. From the R2 values in Table 3.7, it is clear that biomass of needle-leaved forest is 

best related to the spectral values compared to the biomass of mixed and broad-leaved forests (Betula 

and Quercus). The poor relation between spectral values and the biomass of broad-leaved and mixed 

forests was constraint to go for biomass mapping by the forest classes. Still poor results were obtained 

when spectra were extracted using buffer of one and half pixel around the plot centres. 
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Table 3.7 R2 values from linear regression between the plot biomass data by forest types against VIs/ band 
values (based on central pixel spectral signatures) 

 Coefficients of determination (R2) for the forest types 

VIs/ bands Betula Quercus Needle-leaved Mixed 

NDVI 0.2292 0.1108 0.4717 0.2115 

ND5,4 0.2262 0.0890 0.5260 0.2624 

NDVIc 0.0656 0.4168 0.6641 0.3589 

MVI 0.1989 0.0919 0.5198 0.2510 

SR 0.1962 0.0838 0.4014 0.1918 

RSR 0.0875 0.2987 0.5913 0.3534 

EVI 0.1073 0.0912 0.4344 0.2374 

Complex ratio 

452 

0.2089 0.1116 0.5554 0.2729 

Complex ratio 

435 

0.2362 0.1153 0.5306 0.2703 

TM Band 5 0.0488 0.4386 0.6357 0.3300 
Note: the number of sample plots in the Betula, Quercus, needle-leaved and mixed forests was 12, 44, 19 and 67 

respectively. 

 

The best fitting model for carbon-sequestration was also related to NDVIc as the relation for carbon 

sequestration is a derivative of biomass equation. The significantly linear relation for carbon 

sequestration based on NDVIc was Y = 268.167295NDVIc + 42.436101 (R2=0.4121; Fstat=98.15> 

Fcrit=3.91, p<0.0001, df= 1, 140) where Y is annual carbon sequestration per pixel in kg. The RMSE 

of the model was 31.18 % of the mean; the mean annual carbon sequestration in the pixel size plots 

was estimated to be 162.4 kg.  

 

Masking out the non-forest land cover types of the study area, maps for the distribution of above-

ground biomass and annual carbon sequestration was produced using the above NDVIc dependent 

relations for them. The maps are shown in the Figures 3.16 and 3.17 below. The high biomass density 

areas can be seen in the forest at farther distance from the settlements.  
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Figure 3.16 Distribution of Above Ground Biomass (AGB) density (tons/ ha) in Wangqing forest, North-
east China 

 

The average biomass density for the whole forest, estimated from the remote sensing based model 

dependent on NDVIc, was 65.36 tons/ ha. The total biomass of the forest was estimated to be 

18400662.72 tons. Out of the total forest area of 281478 ha, only 18171 ha had biomass density above 

80 ton/ ha while 18329 ha had lowest biomass density below 50 ton/ ha; the remaining forest areas 

had biomass in the range of 50-80 tons/ha. The high biomass density areas were mostly in mixed and 

needle-leaved forests. The mixed forests generally consisted of bigger sized trees of relatively fast 

growing species such as Populus ussuriensis, Picea jezoensis, Abies holophylla, Betula platyphylla 

and Betula castata compared to the slow growing smaller sized trees of Quercus mongolica, Ulmus 

pumila, etc in broad leaved forests. Needle leaved forest also had bigger trees mostly of Abies 

holophylla, Picea jezoensis and Larix olgensis. The biomass estimate by the NDVIc based model is 

lower than the estimate based on extrapolation of the sample plot data. 
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Figure 3.17 Distribution of carbon sequestration (tons/ ha.yr) in Wangqing forest, North-east China 

 

The average carbon sequestration of the forest, estimated from the remote sensing based model 

(dependent of NDVIc), was 1.52 ton/ha.yr. The total carbon sequestration of the forest was estimated 

to be 428920.51 tons/yr. Out of the total forest area of 281478 ha, only 11865.51 ha had carbon 

sequestration above 1.9 ton/ha.yr while 3702.51 ha had the lowest carbon sequestration below 1 

ton/ha.yr; the remaining forest areas had carbon sequestration in the range of 1-1.9 tons/ha.yr. 
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4. Discussion 

4.1. Reliability of sub-sampling biomass estimates 

Rather than putting efforts to validate existing equations, de Gier (1999) has advocated to establish 

original biomass equation for the population concerned. Tree sub-sampling method holds a good 

prospect for the purpose. Earlier studies have proved the cost-effectiveness of the sub-sampling 

method in terms of time usage and labour (Adel, 1993; De Gier, 1989; Kabore, 1991; Lemenih, 1995; 

Mabowe, 2006).  

 

The method was easily implemented in the field just by two persons using an iPAQ based biomass 

assessment program and some common measurement tools such as caliper, measuring tape and 

weighing scale. The heaviest piece of equipment required in the process was the power saw. The 

method was also quicker for sample tree biomass estimation than the total weighing method. The 

method has the peculiarity of giving on-the-spot unbiased estimate of tree volume and fresh weight 

while tree dry weight is calculated after oven-drying the wood sub-samples. 

 

The results from this study demonstrated very close relation of biomass estimates from sub-sampling 

method to the true weight of sample trees obtained by direct weighing in the field. The sub-sampling 

biomass estimates showed R2 values of 0.9668 in the linear regression with true biomass (measured 

for 34 sample trees by direct weighing). The relation having non-significant intercept term was 

Y=0.977353X+1.818551 where Y is fresh biomass (kg) by total weighing and X is fresh biomass 

estimate (kg) by sub-sampling. This model shows that the true biomass increases by 0.977 kg for one 

kg increase is sub-sampling estimates. This led to the conclusion that sub-sampling estimates are close 

to the true AGB values of trees. Reliability of sub-sampling has also been validated by Mabowe 

(2006) in semi-arid woodlands and shrub-lands in Botswana. However, this is the first study that 

attempted to verify the reliability of sub-sampling estimates in the cool temperate forest characteristic 

of north-east China. The method is quick to implement in the field and overcomes the practical 

problem of laborious and time consuming total weighing approach generally used in the conventional 

method.  

 

Tree biomass equations were developed in the study based on sub-sampling estimates, not on actually 

measured tree biomass. Although the sub-sampling estimates have inherent errors, this error 

component is automatically taken into account in the least square methods of regressions; the 

expected value of such error is zero as the sub-sampling estimates are unbiased. Parresol (1999) has 

mentioned that AGB can be estimated from a single path, but two or more paths are needed to 

compute the standard error of the estimate. Lemenih and de Gier (1999) calculated 110 sample trees 

and two sub-sampling measurements (i.e. two paths) per tree as optimum numbers to minimize the 

cost of sampling for a desired precision of tree biomass regression. However, measurements of only 

60 sample trees and only one path per tree were limitations for this study because of practical reasons 

such as time constraint and permission for tree felling. 
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The method worked well for different tree species in the study area. The form (branching or 

crookedness) of trees was not found to have any influence on the sub-sampling biomass estimates as 

the difference in true biomass measured for some sample trees and their sub-sampling estimates did 

not have any relation with the number of nodes in the path of the trees. 

 

4.2. Regression analysis of tree variables and biomass 

Realizing that tree dbh and total tree height are the most commonly used variables to predict above 

ground biomass (de Gier, 2003; Husch et al., 1982; Jenkins et al., 2003; Parresol, 1999; Wang, 2006; 

Zianis and Mencuccini, 2004), three model forms namely polynomial, power and combined variables 

were used in regression analysis. All the three models show strong fit to the sub-sampling based AGB 

data. The combined variable model was found to have the best fit followed by the polynomial and 

power models, although the fit statistics were very close. The best fit with the combined model 

implies the need to consider tree height information in biomass assessment of the temperate forest. 

The observed goodness of fit of the models was in agreement with the previous works on the 

relationship between AGB and dbh or D2H (Brown et al., 1989; Brown, 1997; de Gier, 2003; 

Ketterings et al., 2001, Wang, 2006; Cairns, 2003).  

 

Zianis et al., (2005), Zianis and Mencuccini (2004) and Jenkins et al., (2003) have documented vast 

majority of biomass equations in the non-linear power form. The coefficients of power equations, 

however, are solved after linearizing it by logarithmic transformation. Several authors have warned 

that transformed models can not simply be retransformed to the non-linear form because this yields 

underestimates of up to 20% (Brown et al., 1989). Parresol (1999) has reported that if µ̂  and 2σ̂ are 

the mean and variance of a log transformed biomass data, then untransformed mean estimates would 

be 






 + 2/2ˆˆexp σµ . 

 

Many published biomass equations are found in combined variable form. For example, Zianis et al., 

(2005) in the review of biomass equations of European tree species found that out of 607 equations, 

200 equations involved tree height as the second independent variable. Ketterings et al. (2001) and 

Wang (2006) observed that combined variable model gives a better prediction than only dbh based 

equation in power form. Among the several models tested by Cairns (2003), combined variable model 

produced highest coefficient of determination. Gregoire and Williams (1992) have also advocated for 

combined variable models in the development of volume equation. However, applications of 

combined variable model are often limited because of the practical problems in tree height 

measurement and cost factor. Nonetheless, new generation remote sensing techniques such as LiDAR 

and RADAR have demonstrated capability to measure tree heights accurately (Kasischke et al., 2004; 

Roy et al., 2003). Integrating tree height information from such remote sensing data with ground 

measurement of dbh can improve accuracy in biomass assessment. 

 

Conventionally second degree polynomials are used for the development of biomass equations 

(Brown, 1989; de Gier, 2003). Brown et al. (1989) and Parresol (1999) have mentioned that weighted 

linear models, that may be polynomial or combined variable, can achieve as good fit as any non-linear 
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model. Third-degree polynomial was preferred in this study since second degree polynomials, 

sometime show strange behaviour (see Figure 4.1). For example, de Gier, (2003) observed that at 

smaller diameters the curve dips below the x-axis, resulting in negative biomass values, or the curve 

reaches a minimum above the minimum diameter, with the consequence that, below this point, 

biomass increases with decreasing diameter. The shortcoming of the second-degree polynomial can 

also be observed in the Figure 4.1 (left) where the second-degree polynomial curve is flat at lower 

diameters.  
 

The assumption in ordinary regression analysis that variance of residuals are constant across the range 

of independent variables can also badly affect the precision of the model. In this study, the conditional 

variance of tree biomass was found to increase with tree size. De Gier (2003) has suggested that using 

a third-degree polynomial with backward elimination (to retain the significant coefficients) and 

combined with weighting can overcome the deficiency of second-degree polynomial and the problem 

of heteroscedastic residual variance (Figure 4.1, right). In order to obtain the weights, the variance of 

the residuals was computed by various classes of tree size and plotted; it was observed that the 

conditional variance was roughly proportional to D5 and (D2H)2 which is in agreement with Brown et 

al., (1989) and de Gier (2003). Since the coefficients of polynomial and combined variable models 

were obtained by weighted linear (multiple) regression, the calculated coefficients and error statistics 

were unbiased.  

 

  

Figure 4.1 Unweighted second-degree polynomial (left) and weighted third-degree polynomial (right) for 
the same dry weight data of sample trees 

 
Another interesting observation in the study was that species differences did not require the 

development of separate biomass equations. This observation is in line with de Gier (2003). 

Chojnacky (2003) also observed overlapping curves among many tree species of U.S.A. This finding 

is extremely important because one equation can serve for all tree species of the forest, and it can 

avoid another error, namely wrong species identification, a frequently encountered problem in many 

countries (de Gier, 2003). 

 

The three scatter plots of sample tree biomass estimated by sub-sampling method against the predicted 

biomass by the three models are shown in the Figure 4.2. It is clear that all the estimates by the 

combined variable model are closer to the sub-sampling estimates. 
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Figure 4.2 Dry weight estimates of the sample trees by sub-sampling method against the predicted values 
by (a) combined variable model, (b) polynomial model and (c) power function model 
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4.3. Comparision of biomass estimates with existing equations 

Before existing tree based equations can be used in any biomass assessment program, one needs to 

verify whether they are indeed applicable to the area concerned. De Gier (2003) has observed large 

differences in biomass estimates while applying different equations from similar climatic zones but at 

the same time also found the estimates by equations from different climatic zones nearly overlapping. 

Jenkins et al., (2003) has mentioned sources of errors in forest biomass assessment while using 

published equations.  

 

The polynomial equation developed in this study was taken as reference for the biomass estimation of 

sample plots. The combined variable model could not be used because trees in the plots were not 

measured for height. The comparisons of tree dry biomass estimates obtained from the polynomial 

equation and the existing Chinese and IPCC equations is shown in the Figure 4.3 below. Four more 

curves are added in the graph showing how the dry biomass equations developed in other parts of the 

world compare to the polynomial equation of this study. The additional curves are based on equations 

developed for woodland and shrub-land tree species in The Netherlands, Tunisia, Ethiopia and 

Burkina Faso respectively by de Gier (2003), Adel (1993), Lemenih (1995) and Kabore (1991), all 

using the same sub-sampling method. All the equations are general (not species specific), except the 

IPCC equations which are separate for broadleaved and needle-leaved species.  
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Figure 4.3. Comparison of biomass estimates by different equations 

 

The Figure 4.3 clearly shows the anomaly in behaviour of the curves. The IPCC curve for broad-

leaved (IPCC-BL) species is far from the polynomial curve of this study; however, the IPCC needle-

leaved (IPCC-NL) curve is almost coinciding with the regional Chinese curve and is closer to the 

polynomial curve. Surprisingly, the curve from woodland of Burkina Faso, a semi-arid country, is 

overlapping with the polynomial curve of this study and is far away from the curve of Ethiopia- also a 

semi-arid country. The curves from The Netherlands (temperate country) and Tunisia (tropical 
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country) are closer, in contrast to the great difference between the polynomial curve of this study and 

the curve of The Netherlands (both from temperate zones). From this observation it can be concluded 

that biomass equations from one location can not simply be used in another location even when the 

areas are ecologically comparable. Also, the biomass equations developed for trees in dense forest can 

not be used for trees in woodlands or shrub-lands as different trend is evident in the above graph 

(woodland/ shrub-land curves are much below the forest curves except for Burkina Faso). One reason 

could be the branching pattern of trees (de Gier, 2003) i.e. even the same species of trees when 

growing inside forest have different branching pattern than when growing in open environment.  

 

The biomass estimates by the developed polynomial are less than the estimates from the IPCC and the 

Chinese equations. This underestimation can be attributed to the difference in definitions of above-

ground biomass. Both the Chinese and IPCC equations have defined above-ground biomass as the 

total weight of all the above-ground components including foliage and twigs while this study has 

considered only the above-ground woody components to the minimum branch diameter of 2.5 cm. 

Further the difference in the definition of oven-dry weight of wood is expected to cause the variation. 

The Chinese equation is based on oven drying of wood samples to a constant weight at 700C while all 

the other equations are based on oven drying of wood samples at 1050C. 

 

In brief, biomass equations show large differences among geographical areas and land cover types. 

Hence existing equations should not be used outside their area of origin without validation. This 

implies the need to develop a new equation based on sample trees taken from the area of interest. 

 

4.4. Above ground biomass and carbon density 

The average above ground biomass density calculated from the field inventory data of this study was 

81.88 ton/ha; that means a carbon density of 40.94 ton/ha (50% of dry biomass). This figure of carbon 

density is in agreement with figures in literature for similar forests. The mean values of carbon density 

for Chinese forests range from 36-57.07 ton/ha (Zang et al., 2007). Using the national forest inventory 

data of China from 1949 to 1998, Fang et al., (2001) estimated the average carbon density of the 

north-east Chinese boreal forests to be approximately 50 tons/ha. Tan et al., (2007) reported the 

average carbon density of nearly 55 ton/ha in Changbai mountain system that also covers the study 

area. Fang et al. (2006) reported that inventory-based forest carbon stock documented for major 

countries in the middle and high northern latitudes fall within a narrow range of 36-56 tons/ha with an 

overall area-weighted mean of 43.6 tons/ ha. The average vegetation carbon density for all forests of 

Europe, USA and Japan at similar latitudes are 32, 61 and 34.7 ton/ha respectively (Zhang et al., 

2007). Fang and Wang (2001) pointed out that forest carbon density in major temperate and boreal 

forest regions in the Northern Hemisphere has a narrow range from 29 to 50 ton/ha with a global 

mean of 36.9 ton/ha. 
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4.5. Annual wood accumulation and carbon sequestration 

Annual production of above-ground biomass is key to carbon sequestration assessment. According to 

Brown (1999), estimations of net primary production (NPP) or carbon sequestration are generally 

based on the aboveground components only. Bouriaud et al., (2005) observed high correlation 

between stem biomass increment and growth ring increment at breast height. Adopting the procedure 

suggested by de Gier, (1989), the annual production of woody biomass and carbon was estimated in 

this study from tree growth rings measurements and use of biomass equations. Husch et al. (1982) has 

mentioned that it is more convenient and more accurate to obtain growth ring measurements from the 

cut cross-sections. Since most biomass equations are dependent of dbh, cut disks from breast height 

were used to derive relation for carbon sequestration. 

 

The relation for annual above-ground wood accumulation, dependent on over-bark (o.b.) dbh and 

annual increment of o.b. dbh, was obtained from the first derivative of biomass equation, namely 

polynomial equation. Since increment in o.b. dbh is the sum of increments in under-bark (u.b.) dbh 

and bark thickness, measurements for both growth rings and bark-thickness was necessary for the 

development of desired relation. A linear relationship was observed between u.b. dbh increment and 

o.b. dbh which is consistent with the relation obtained by de Gier (1989) for woodlands vegetation of 

the Netherlands. Morbes et al. (2003) has also observed positive correlation between diameter growth 

rate and dbh. This means that a large tree in developmental stage has higher growth rates (wider rings) 

than smaller trees. Also, a linear relation was observed between bark thickness and o.b. dbh. The 

linear relation between o.b. dbh and dbh increment was expected in the study because the forest is 

nearly even aged. The existing forest (secondary) is a result of protection measures by the Chinese 

government because forests in the area were destroyed by large-scale industrial logging since the turn 

of 20th century (Wang, 2006). 

 

The annual carbon sequestration in this study was assumed to be the half of annual wood (dry) 

accumulation according to literature (Brown, 1997; de Gier, 2003; IPCC, 2003). Although carbon 

sequestration rate of a forest is largely a function of growing conditions and age or stage of forest 

development (Brown, 1999), the results obtained in the study are consistent with the estimates of 

carbon sequestration made in similar forest types at other places. The average carbon sequestration 

value calculated in this study was 1.88 ton/ ha.yr. The range of NPP for all Chinese forests is 1.03 to 

18.13 ton C/ha.yr (Ni, 2003). Fang (2007) obtained the carbon sequestration figures ranging from 1.33 

to 3.55 ton/ ha.yr for Chinese temperate forests. For the similar forest types in eastern U.S.A., Brown 

and Schroeder (1999) estimated the average above-ground production of woody biomass for 

hardwood and softwood forests respectively as 5.2 and 4.9 ton/ ha.yr i.e. carbon sequestration of 2.6 

and 2.9 ton/ ha.yr respectively.  

 

Although comparable to the Chinese and U.S. figures, the rate of carbon sequestration obtained in this 

study may be an underestimation. One reason for that is the difference in definition of AGB. Some of 

the previous studies have considered the whole AGB including foliage and small branches in the 

assessment of carbon while other use national forest inventory data and expansion factors to calculate 

biomass increments that also accounts for the foliage and smaller branches (e.g. Brown and 
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Schroeder, 1999). This study, however, has defined AGB as the total mass of woody component to a 

minimum of 2.5 cm branch diameter. 

 

Bouriaud et al., (2005) has mentioned that despite numerous implications and reported evidence, the 

relationship between ring width measured at breast height and stem biomass increment has been quite 

poorly investigated. It means still little is known as to how the variations of growth at breast height 

reflect quantitative variations of stem biomass production at short time steps. Moreover, most of the 

previous studies are conducted for coniferous species.  Further, Bouriaud et al., (2005) has mentioned 

that computing annual biomass production from ring increment involves unverified assumptions. For 

example, the relative contribution of the variation in ring shape or annual fluctuations in wood density 

to the estimates of woody biomass increment is not assessed. Since this study combined the growth 

ring measurement data from all species together and does not consider the inter-annual variations in 

wood density or stem taper, the estimates of annual wood accumulation and carbon sequestration can 

only be taken as proxy. The accuracy needs to be verified by detailed study either by field 

measurements in permanent plots or intensive growth ring measurements considering the relative 

contribution of the variation in ring shape or annual fluctuations in wood density. 

 

The Kyoto protocol clearly affirms the importance of increasing our understanding of forest carbon 

budgets and the role of forests in offsetting global carbon emission. This study has contributed in that 

direction. Forest managers interested in forest carbon management for stewardship purposes or to 

attain certification in sustainable forest management may benefit from these findings. It can also serve 

as basis for entry into CDM markets. 

 

4.6. Remote sensing based biomass and carbon sequestration 
assessment 

Previous studies using optical remote sensing data have had variable results for defining the most 

useful band or indices to map biomass, and have been inconclusive for suggesting a consistent 

relationship (Dong et al., 2003; Labrecque et al., 2006). Moreover, each application requires an 

assessment of the optical bands and indices for estimating biomass from spectral relationships (Foody 

et al., 2003; Labrecque et al., 2006). With all plot data pooled together, the best relationship of 

biomass and carbon sequestration in this study was observed with corrected-NDVI (NDVIc), followed 

by RSR and TM band-5 reflectance. Although the relationships are poor, better relation based on least 

square regression could not be established. Poor relation of biomass and spectral data have been 

observed in many studies (Foody et al., 2003; Kasischke et al., 2004; Labrecque et al., 2006; Lu, 

2006; Schlerf et al., 2005). Most previous research on above-ground estimation is for coniferous 

forest because of its relatively simple structure (Lu, 2006; Zeng et al., 2004) but for forest with 

complex structure and variety in species composition biomass estimation becomes difficult (Foody et 

al., 2001). Shadows are likely to decrease the reflectance in all spectral bands as biomass increases 

(Muukkonen and Heiskanen, 2005). Kasischke et al. 2004 has mentioned the existence of relation 

between biomass and fraction of shadow in forest stand. The predominant topographic shadow in the 

study area due to the hilly terrain may be one cause for the poor relation. 

 

The better prediction of biomass by NDVIc is in agreement with Zeng et al., (2004) where they 

obtained strong relationship in a temperate forest ranging in biomass up to 220 ton/ha. NDVIc has the 
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capability to account for understory effects and is useful for secondary forests. The root mean square 

error with NDVIc was 32.28% of the mean which is comparatively lower than some other studies 

(Heiskanen, 2006; Labrecque et al., 2006; Muukkonen and Heiskanen, 2005). NDVI was not found to 

be a good predictor of biomass which is also reported by Lu et al., (2004) and Foody et al., (2003). 

 

Another better relation between biomass and RSR observed in this study can be related to Brown et 

al., (2000) whereby they observed increased sensitivity of RSR in LAI retrieval. RSR has the 

advantages of reducing the effect of background reflectance and unifying deciduous and conifer 

species in forest parameters retrieval. Middle infrared (MIR) reflectance was also found to have good 

(but inverse) relation with biomass in this study. Inverse relation between MIR (TM band 5) 

reflectance and biomass has been observed in previous studies (Boyd et al., 1999; Ingram et al., 2005; 

Lu et al., 2004; Steininger, 2000). Labrecque et al., (2006) also found the band 5 to be the most 

correlated with biomass compared to other bands. 

 

Kasischke et al., (2004) has suggested using remote sensing to stratify forest types based on 

composition and structure and then use field sample plots to estimate the timber volume of each 

stratum. When the sample plot data were stratified by forest types, needle-leaved forest demonstrated 

good relation between biomass and spectral values. But the relation in case of broad-leaved and mixed 

forest was still poor. This finding is in agreement with Kasischke et al., (2004) and Zheng et al., 

(2004) where stronger relation between the attributes (LAI and biomass) of conifer forests and VIs 

have been explained. Even after stratifying the forest by species and cover types and using polynomial 

and multiple regressions based on VIs and band ratios, the maximum R2 value obtained by Labrecque 

et al., (2006) was 0.16 in a temperate forest with average biomass range of 88 to 125 tons/ ha. 

 

Previous studies have shown significant variation in the form of regression between biomass and VIs 

due to the tendency of spectral indices to saturate at higher values of biomass (Kasischke et al., 2004). 

No saturation of VI was observed in the study at the existing level of biomass density (average 81.88 

ton/ha). This is in line with the result obtained by Steininger (2000) whereby saturation was observed 

at around 150 ton/ha. Rauste (2005) has reported that the saturation level depends on forest types, 

structure and understory conditions. The linear relationship obtained in this study is justifiable since 

saturation was absent. 

 

When buffer was applied around the plot pixel to extract the average spectral signature of the pixel 

still poor relationship was observed between biomass and spectral data. The poor relation in this case 

may be explained on the ground that the average spectral signature can not be the representative of the 

biomass of the pixel concerned. When average value for a pixel is obtained, taking account of the 

surrounding pixels, the result is a form of smoothing which either increases or dampens the spectral 

value of the pixel concerned. The equal contribution of surrounding pixels that may be a non-forest, in 

such a case, can be a constraint in the relationship between biomass and spectral values. 

 

One fundamental reason for poor prediction of biomass from optical remote sensing is that satellite 

sensors can only see the forest canopy and can not detect how much biomass is found under the 

canopy. In dense canopy forest, the stem biomass that is hidden from the sensor comprises majority of 

the above-ground biomass. Another reason mentioned in literature is the physiochemical properties of 

leaves such as structure, chlorophyll content and water content (Ingram et al., 2004; Steininger, 2000). 
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Vegetation appears dark in TM band 3 due to chlorophyll absorption of red wavelengths and appears 

bright in band 4 due to high reflectance and multiple scattering of photons. Middle infrared bands 

(TM bands 5 and 7) are subject to absorption by water in leaf. Leaf senescence of deciduous species 

could have effect on spectral characteristics of the forest. As the imagery used was of 22 September, 

some deciduous species were already turning leaves to yellow. During the field visit in September, 

leaves of deciduous species in one part of the forest were still green while in the others part they were 

yellow. 

 

It should be noted that out of the 172 plots for which plot biomass and carbon sequestration were 

calculated only 142 were taken for the development of relationship between the forest variables and 

VI. The reason was that some of the plot points, when overlaid on the image, were shifting from the 

actual position where it should have been. This was recognized when some of the peripheral plot 

points in the forest were noticed on agricultural fields or roads on the image. 
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5. Conclusions 

Above ground biomass assessment is critical to understand the influential role of forest in global 

carbon cycle and climate change. Precise models, specific to local conditions, and good quality 

ground data are important for accurate biomass assessment. In addition to determining the best fitting 

biomass models, based on a reliable and unbiased method of sample tree measurements, the study has 

concluded the following:  

 

How accurate is the estimate of tree biomass by sub-sampling method? 
The sub-sampling method is promising for reliable and unbiased biomass estimation. The sub-

sampling based biomass estimates explained more than 95 % of the variability of true biomass of the 

sample trees. Since the biomass estimates by the method are unbiased and statistically independent 

(i.e. the expected value of error is zero), the resulting equations from the least square regression are 

also accurate. 

 

Which model out of polynomial, power and combined variable forms is appropriate for the 
estimation of AGB at a landscape scale while considering the accuracy and problems in tree 
variables measurement? 
The combined variable model was found to be the best in describing the relationship of tree biomass 

and its variables dbh and height. While considering the practical problems in tree height measurement, 

the polynomial model was the next best alternative because its fit statistics differ little with the 

combined model compared to the power model. The weighting of third degree polynomial followed 

by backward elimination of non-significant coefficients was necessary to get rid of the 

heteroscedasticity and illogical behaviour of curve at lower dbh values. 

 

How do the estimates from local Chinese and IPCC equations compare (w.r.t. precision) with 
the sub-sampling estimates and what would be their impact on assessing carbon reservoirs and 
sinks? 
The geographical location of the existing tree-based equations was found to have significant effect in 

the area based estimates of biomass, although the estimate by Chinese equation was closer to the sub-

sampling based estimates (i.e. from the polynomial equation). The estimates of biomass density using 

the Polynomial, Chinese and IPCC equations were found to be 81.885, 97.113 and 112.122 metric 

tons. The estimates by the Chinese and IPCC equations are respectively 18.6% and 36.9% higher than 

the polynomial estimate. The estimates by the tree equations differed significantly. Since the 

polynomial equation was based on field measurement by unbiased and reliable sub-sampling method, 

the estimate from it was assumed to be the most accurate. 

 

How reliable is the estimate of carbon sequestration obtained from growth ring measurement? 
The use of tree ring analysis is a valuable tool for the assessment of increment in woody biomass or 

carbon sequestration. The use of growth ring measurements for the assessment of annual carbon 

sequestration demonstrated agreement with the documented values in literature for the forests in 
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north-east China and the comparable forests elsewhere. Further investigation on the relationship 

between tree ring measurements and annual wood accumulation is required for improved 

understanding of the role of temperate forests as carbon sink and for sustainable management 

planning. The relation developed in the study needs to be verified by species and all species 

combined. 

 

Which vegetation index or spectral bands best relate to AGB? And what is the biomass estimate 
of Wangqing forest? 
Although poor, a significant relationship was observed between biomass (or annual carbon 

sequestration) and corrected-NDVI. The average biomass density of the forest was estimated to be 

65.36 tons/ ha while the total biomass was 18400662.72 tons. The annual carbon sequestration was 

estimated at 1.52 ton/ha and the total annual carbon sequestration was 428920.51 tons.  

 

Is there saturation problem of VI in the study area? If yes, at what level of biomass does VI 
start to saturate? 
In general, saturation effect was not observed with VIs/ band ratios; however, because of the poor 

relationships detail evaluation could not be made for each of the tested VIs/ band ratios. 

 

Finally, the equations developed in this study can be used for biomass and carbon inventories for 

ecological studies, for validating theoretical models and for planning the use of forest resources. The 

maps showing spatial distribution of biomass and annual carbon sequestration could serve as 

reference for the planners for sustainable management of the forest. 
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6. Recommendations 

• Sub-sampling method can be used for reliable and cost effective biomass assessment. The 

reliability of the sub-sampling estimates should be consolidated by undertaking two path 

measurements per tree. 

• Existing equations should not be used without validation. Original equation specific to the 

area under investigation is important. 

• The equations developed in this study are valid only for the Wangqing forest for trees above 

7.2 cm dbh and can be used to the maximum dbh of 40 cm. So the equations should be used 

with care for the locality and dbh limits. Application of the equation beyond the limits needs 

verification. 

• Species specific relations for annual wood increment need to be developed for precise 

estimation of carbon sequestration because the diameter increment or the width of growth 

rings and hence the wood increment varies across species. The relation derived for carbon 

sequestration needs to be verified by the measurements of sample trees in permanent plots. 

Further research is required to see the effect of variations in wood density across the growth 

rings on tree biomass increment. 

• Integrating the both diameter and height dimensions in the development of biomass equation 

could provide more accurate biomass estimation. 

• Further research is required to establish better relation between biomass and spectral data. 

Additional data on forest types, canopy cover, height and age could be integrated to obtain 

better predictive model based on spectral data. The use of alternative imaging technology (e.g. 

RADAR, LiDAR, Hyper-spectral imagery, or high resolution imagery such as Quickbird or 

IKONOS) should be considered and methods to capture horizontal (e.g. canopy cover, basal 

area) and vertical (height) characteristics of the forest should be further studied. 
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Appendices 

Appendix 1: Sample tree measurements 

Tree  

# 

dbh  

(cm) 

ht    

(m) Species FWS FWT FWC VS DWS 

1 26.8 16.4 B. platyphylla 365   392.4 0.5096 225.77 

2 9.2 8.7 B. platyphylla 19.6 22.6   0.0375 11.31 

3 22.5 19.5 B. platyphylla 388.6   457.5 0.4595 217.29 

4 18.8 20.4 B. platyphylla 184.2   262.7 0.3178 101.74 

5 14.4 18.7 B. platyphylla 113.4 108   0.149 61.44 

6 15.8 16.3 U. pumila 175.3 163   0.1729 81.70 

7 9.8 8.6 U. pumila 30.5 34   0.0311 14.44 

8 19 16 U. pumila 246.6     0.2441 118.61 

9 13.7 13.6 U. pumila 134.9 100   0.1144 64.16 

10 36.1 16 U. pumila 785.3     0.9827 420.56 

11 17.1 20.2 F. mandshurica 201.2   245.3 0.2687 114.85 

12 18.3 12.7 A. holophylla 137.3 131   0.1909 47.70 

13 19.4 12.9 Q. mongolica 219.8 204   0.2474 135.96 

14 20.7 13.8 Q. mongolica 226.8   255.7 0.2732 135.95 

15 19.7 16.4 A. holophylla 207.8 197   0.2535 88.94 

16 8.5 8.6 A. holophylla 22.9 23   0.0278 9.13 

17 13.2 14.4 A. holophylla 115.7 109   0.1213 43.63 

18 13.2 13.6 A. holophylla 90 83   0.1055 40.01 

19 26.2 17.3 A. holophylla 345.4   290.8 0.3938 131.41 

20 10.4 10.5 P. jezoensis 44.8 42   0.0516 19.36 

21 26.1 19.1 P. jezoensis 460.8     0.6005 212.86 

22 18.3 19.3 L. olgensis 251.9   171.4 0.2695 101.72 

23 13.9 17.1 L. olgensis 108.9 108   0.1365 66.05 

24 27 22.6 L. olgensis 463.5   419.4 0.6556 270.48 

25 33.1 23.2 L. olgensis 786.1   726.2 0.9729 450.00 

26 22.7 19.2 A. holophylla 318.7   316.2 0.4012 129.09 

27 20.5 10.8 T. amurensis 144.1 152   0.198 74.28 

28 24.3 11.8 T. amurensis 174     0.2559 84.36 

29 14.9 15.2 B. platyphylla 114.6 117   0.1472 63.96 

30 24.1 19 B. platyphylla 363.9   438.7 0.545 207.88 

31 35.3 23.1 B. platyphylla 1141     1.2874 632.47 

32 8.5 12.9 B. platyphylla 29.2 32   0.0375 15.86 

33 8.95 10.6 U. pumila 26.8 23   0.0308 12.85 

34 24.3 19.5 U. pumila 485.1     0.6346 225.83 

35 34.2 22.4 B. platyphylla 948     1.1832 504.09 

36 14.5 14.2 P. ussuriensis 117.3 121   0.1636 66.49 
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Appendix 1: …continued 
37 18.9 19.9 P. ussuriensis 214.1   257.0 0.335 102.02 

38 18.1 12 P. jezoensis 114.6 129   0.1825 52.10 

39 9.5 7.8 A. holophylla 27.5 24.5   0.0329 9.58 

40 10.1 11.1 Q. mongolica 37.7 41.7   0.052 24.12 

41 11.6 12.5 Q. mongolica 54.4 61   0.0691 35.11 

42 7.2 9.2 Q. mongolica 17.8 18   0.0215 10.82 

43 27.3 13.4 Q. mongolica 473.5     0.5806 291.78 

44 31.6 18 Q. mongolica 786.2     1.1097 472.51 

45 12 10.8 L. olgensis 51.4 50   0.0704 27.35 

46 30.4 19.1 A. holophylla 530.9   551.2 0.7495 219.62 

47 15.2 15.3 A. holophylla 142.1   115.9 0.1548 59.05 

48 15.6 13.8 P. jezoensis 83 103   0.1017 37.51 

49 15.6 15.6 P. jezoensis 156.8 149   0.1659 50.17 

50 8.4 7.8 P. jezoensis 22.4 22   0.028 11.19 

51 23.3 15.8 P. jezoensis 218.5     0.3724 131.69 

52 17.1 20.2 L. olgensis 243.2 222.5   0.266 147.57 

53 7.7 11.1 L. olgensis 23 23   0.0253 11.42 

54 10.7 10.2 P. jezoensis 36 42   0.0528 18.01 

55 10.9 11.5 L. olgensis 48.7 51   0.0594 23.97 

56 14.1 19 L. olgensis 112.6 123   0.1476 62.91 

57 20.7 19.7 L. olgensis 246 288   0.3041 135.75 

58 13.1 9.3 T. amurensis 42.3 43   0.066 20.87 

59 22.4 16.2 P. jezoensis 262.4   214.0 0.3694 130.61 

60 20.2 12.1 L. olgensis 209.8     0.2424 101.62 

 

FWS: Fresh weight (kg) estimate by sub-sampling; FWT: Fresh weight (kg) by total weighing; FWC: 

Fresh weight (kg) estimate by combined approach of volume calculation and weighing; VS: Volume 

(m3) estimate by sub-sampling; DWS: Estimated dry weight (kg) by sub-sampling 
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Appendix 2 
2-A: ANOVA test for the comparison of dry biomass estimates of tree in the dbh range of 10-40 
cm and at 2 cm class interval by broad-leaved (BL), needle-leaved (NL) and combined species 
equations obtained from fittings to sub-sampling dry biomass data 

SUMMARY   

Groups Count Sum Average Variance   

Polynomial estimates for 

NL sps 16 4199.184 262.449 61625.19   

Polynomial estimates for 

BL sps 16 4456.176 278.511 50542.13   

Polynomial estimates for 

combined sps 16 4324.112 270.257 55092.71   

ANOVA 

Source of Variation SS df MS F P-value F crit 

Between Groups 2064.433 2 1032.217 0.018514 0.981664 3.204317 

Within Groups 2508900 45 55753.34       

Total 2510965 47         

 

 

2-B: t-test (paired two sample for means) to compare the significance of difference of means of 
dry biomass estimates by polynomial equations respectively for BL, NL and all species 
combined for trees in the dbh range 10-40 cm at class interval of 2 cm  

Pair 1 Pair 2 Pair 3 

  
Estimates 

for NL 

Estimates 

for BL 

Estimates 

for BL 

Estimates 

for 

combined 

Estimates 

for NL 

Estimates 

for 

Combined 

Mean 262.449 278.511 278.511 270.257 262.449 270.257 

Variance 61625.187 50542.125 50542.125 55092.705 61625.187 55092.705 

Observations 16 16 16 16 16 16 

Pearson Correlation 0.985   0.996   0.997   

Hypothesized Mean 

Difference 0   0   0   

df 15   15   15   

t Stat -1.363   1.425   -1.301   

P(T<=t) one-tail 0.096   0.087   0.106   

t Critical one-tail 1.753   1.753   1.753   

P(T<=t) two-tail 0.193   0.175   0.213   

t Critical two-tail 2.131   2.131   2.131   
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 Appendix 3 
3-A: Results of weighted linear regression by backward elimination method applied to the 
polynomial model based on dry biomass data of the sample trees 

Model Summary 

Model R R Square Adjusted R Square 

Std. Error of the 

Estimate 

1 .944(a) .891 .885 .08250491 

2 .944(b) .891 .887 .08177814 

a  Predictors: (Constant), D3, D, D2 

b  Predictors: (Constant), D3, D 

ANOVA (c,d) 

Model   

Sum of 

Squares df Mean Square F Sig. 

Regression 3.125 3 1.042 153.019 <0.001(a) 

Residual .381 56 .007     

1 

Total 3.506 59       

Regression 3.125 2 1.562 233.627 <0.001(b) 

Residual .381 57 .007     

2 

Total 3.506 59       

a  Predictors: (Constant), D3, D, D2;   b  Predictors: (Constant), D3, D 

c  Dependent Variable: Dry-biomass;     d  Weighted Least Squares Regression - Weighted by D5 

Coefficients (a,b) 

Un-standardized 

Coefficients 

Standardized 

Coefficients 

Model   B Std. Error Beta t Sig. 

(Constant) -23.766 34.887   -.681 .499 

D 3.569 7.241 .330 .493 .624 

D2 -.007 .452 -.018 -.015 .988 

1 

D3 .009 .009 .658 1.064 .292 

(Constant) -23.263 9.156   -2.541 .014 

D 3.461 1.034 .320 3.348 .001 

2 

D3 .009 .001 .648 6.791 <0.001 

a  Dependent Variable: Dry-biomass 

b  Weighted Least Squares Regression - Weighted by D5 

Excluded Variables (b,c) 
Collinearity 

Statistics 

Model   Beta In t Sig. 

Partial 

Correlation Tolerance 

2 D2 -.018(a) -.015 .988 -.002 .001 

a  Predictors in the Model: (Constant), D3, D 

b  Dependent Variable: Dry-biomass 

c  Weighted Least Squares Regression - Weighted by D5 
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3-B: Results of weighted linear regression applied to combined variable model based on dry 
biomass data of the sample trees 

 
Model Summary 

Model R R Square Adjusted R Square 

Std. Error of the 

Estimate 

1 .967(a) .935 .934 38.844 

a  Predictors: (Constant), D2H 

 

ANOVA(b,c) 

Model   

Sum of 

Squares df Mean Square F Sig. 

Regression 1262787.072 1 1262787.072 836.900 <0.001(a) 

Residual 87515.462 58 1508.887     

1 

Total 1350302.535 59       

a  Predictors: (Constant), D2H 

b  Dependent Variable: Dry-biomass 

c  Weighted Least Squares Regression - Weighted by (D2H)2 

 

Coefficients(a,b) 
Un-standardized 

Coefficients 

Standardized 

Coefficients 

Model   B Std. Error Beta t Sig. 

(Constant) -.804 1.087   -.740 .462 1 

D2H 181.438 6.272 .967 28.929 <0.001 

a  Dependent Variable: Dry-biomass 

b  Weighted Least Squares Regression - Weighted by (D2H)2 
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Appendix 4: Curves fitting to the sample tree volume and fresh biomass data 
 

Vpol = 9.57E-06D3 + 6.80E-04D2 - 3.11E-03D + 3.79E-03

R2 = 0.9418

Vwt.pol = 9.103E-06D3 + 6.124E-04D2 - 2.118E-02

R2 = 0.9414
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Figure 4A: scatter plot of volume data (obtained from sub-sampling method) against DBH fitted with 

un-weighted and weighted third degree polynomial models. Vpol is volume estimate by un-weighted 

polynomial; Vwt.pol is volume estimate by weighted polynomial; and D is dbh. 
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Figure 4B: scatter plot of volume data against DBH fitted with power model 
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Vwt.com = 0.44404D2H - 0.00104

R2 = 0.97632

Vcom = 0.45086D2H - 0.00158

R2 = 0.96331
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Figure 4C: scatter plot of volume data (obtained from sub-sampling method) against D2H fitted with 

un-weighted and weighted combined variable models. Vcom is volume estimate by un-weighted 

combined variable model; Vwt.com is volume estimate by weighted combined variable model; and D is 

dbh. 
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Figure 4D: scatter plot of fresh weight data against DBH fitted with un-weighted and weighted third 

degree polynomial models. FWpol is fresh weight estimate by un-weighted polynomial; FWwt.pol is fresh 

weight estimate by weighted polynomial; and D is dbh. 
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FWpow = 0.11999D2.50911

R2 = 0.94475
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Figure 4E: scatter plot of fresh biomass data of sample trees against DBH fitted with power model 
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Figure 4F: scatter plot of fresh biomass data against D2H fitted with un-weighted and weighted 

combined variable models. FWcom is fresh weight estimate by un-weighted combined variable model; 

FWwt.com is fresh weight estimate by weighted combined variable model; and D is dbh. 
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Appendix 5: Measurements for the growth rings and bark-thickness made on 48 sample disks 

Tree 

# Species 

Over-

bark 

DBH 

(cm.) 

Av. width 

(cm) of 

the rings 

of last 

five years 

Av. annual 

under-bark 

diameter 

increment 

(cm) 

Av. bark 

thicknes

s (cm) 

Double-

bark 

thicknes

s (cm) 

1 Ulmus pumila 9.8 0.88 0.352 0.50 1 

2 Ulmus pumila 15.8 0.84 0.334 0.40 0.8 

3 Ulmus pumila 8.95 0.56 0.222 0.30 0.6 

4 Ulmus pumila 36.05 1.84 0.734 1.50 3 

5 Ulmus pumila 13.7 0.86 0.342 0.40 0.8 

6 Ulmus pumila 18.95 1.13 0.450 0.55 1.1 

7 Ulmus pumila 24.25 1.14 0.454 1.40 2.8 

8 Fraxinus spp. 17.1 0.64 0.254 0.97 1.9 

9 Quercus mongolica 7.2 0.39 0.156 0.67 1.3 

10 Quercus mongolica 10.1 0.40 0.158 1.07 2.1 

11 Quercus mongolica 11.6 0.40 0.160 0.75 1.5 

12 Quercus mongolica 27.25 0.47 0.189 1.67 3.3 

13 Quercus mongolica 19.35 1.13 0.450 1.40 2.8 

14 Quercus mongolica 20.7 0.94 0.377 1.30 2.6 

15 Quercus mongolica 31.6 1.14 0.455 1.73 3.5 

16 Abies holophylla 18.25 0.71 0.282 0.40 0.8 

17 Abies holophylla 9.5 0.51 0.204 0.30 0.6 

18 Abies holophylla 30.4 0.95 0.380 0.83 1.7 

19 Abies holophylla 26.15 1.60 0.639 0.60 1.2 

20 Abies holophylla 15.15 0.82 0.328 0.45 0.9 

21 Abies holophylla 19.65 0.96 0.385 0.50 1 

22 Abies holophylla 13.15 0.68 0.271 0.50 1 

23 Abies holophylla 13.2 0.38 0.151 0.45 0.9 

24 Abies holophylla 8.5 0.72 0.287 0.25 0.5 

25 Abies holophylla 22.7 0.33 0.132 0.53 1.1 

26 Picea jezoensis 17.95 0.87 0.348 0.55 1.1 

27 Picea jezoensis 26.05 1.67 0.668 0.55 1.1 

28 Picea jezoensis 23.25 0.69 0.276 0.50 1 

29 Picea jezoensis 15.6 1.09 0.434 0.35 0.7 

30 Picea jezoensis 15.55 0.34 0.137 0.40 0.8 

31 Picea jezoensis 10.65 0.47 0.189 0.35 0.7 

32 Picea jezoensis 10.35 0.15 0.058 0.45 0.9 

33 Picea jezoensis 8.4 0.18 0.070 0.30 0.6 

34 Picea jezoensis 22.35 1.67 0.669 0.50 1 

35 Larix olgensis 11.95 0.25 0.098 0.70 1.4 

36 Larix olgensis 26.95 1.11 0.443 1.30 2.6 
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Appendix 5: …continued 
37 Larix olgensis 27.7 0.97 0.389 1.10 2.2 

38 Larix olgensis 33.05 0.70 0.281 1.20 2.4 

39 Larix olgensis 17.1 0.69 0.277 0.67 1.3 

40 Larix olgensis 26.95 0.58 0.232 0.85 1.7 

41 Larix olgensis 14.1 0.43 0.171 0.90 1.8 

42 Larix olgensis 18.25 1.37 0.547 0.55 1.1 

43 Larix olgensis 10.9 0.37 0.147 0.43 0.9 

44 Larix olgensis 7.7 0.58 0.231 0.45 0.9 

45 Larix olgensis 20.15 1.51 0.603 0.95 1.9 

46 Tilia amurensis 13.1 1.11 0.444 0.70 1.4 

47 Tilia amurensis 20.45 0.76 0.303 1.10 2.2 

48 Tilia amurensis 24.3 0.87 0.347 0.95 1.9 
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Appendix 6: Location of sample plots along with the calculated quantity of biomass, annual 
wood increment and carbon sequestration in them 

Plot coordinates 

Plot ID X Y 

Plot biomass 

(kg) 

estimate 

from poly. 

equation 

Annual 

wood 

accumulatio

n (dM) per 

plot (kg) 

Carbon 

sequestratio

n per plot 

(kg) 

Carbon 

sequestratio

n scaled up 

to per ha 

(tons) 

1RA 617261 4809276 1371.34 78.15 39.08 0.78 

2RA 617488 4809052 747.43 44.63 22.32 0.45 

3RA 617072 4808604 3170.24 152.14 76.07 1.52 

4RA 616372 4811341 3089.98 137.02 68.51 1.37 

5RA 616094 4810874 2387.64 116.62 58.31 1.17 

7RA 616263 4811167 2165.92 105.47 52.73 1.05 

8RA 616116 4811914 1522.94 75.40 37.70 0.75 

9RA 615817 4812460 2793.06 136.60 68.30 1.37 

10RA 614867 4811362 3375.49 157.98 78.99 1.58 

11RA 614886 4811254 4178.92 207.25 103.62 2.07 

12RA 614849 4810957 3652.09 176.91 88.46 1.77 

13RA 618919 4795537 2422.68 123.33 61.67 1.23 

14RA 617320 4793180 4234.22 195.88 97.94 1.96 

15RA 617316 4793016 8588.93 380.50 190.25 3.81 

16RA 617615 4794363 4114.32 194.01 97.01 1.94 

17RA 617537 4794473 4035.71 189.12 94.56 1.89 

18RA 619431 4791536 4541.40 215.88 107.94 2.16 

20RA 619340 4790570 4641.24 207.88 103.94 2.08 

21RA 619509 4789615 4043.85 189.13 94.56 1.89 

22RA 619174 4790038 4688.92 215.29 107.64 2.15 

23RA 621894 4800602 1855.75 81.90 40.95 0.82 

24RA 620055 4802986 3197.45 142.70 71.35 1.43 

25RA 621566 4800236 4973.29 234.02 117.01 2.34 

26RA 620186 4788157 7143.70 322.42 161.21 3.22 

28RA 620151 4788801 4230.38 205.30 102.65 2.05 

29RA 620041 4789242 3592.33 182.11 91.06 1.82 

30RA 620175 4789631 4040.90 182.95 91.47 1.83 

31RA 619700 4788102 7777.05 348.79 174.39 3.49 

32RA 619512 4787888 8737.47 414.97 207.49 4.15 

33RA 619829 4788219 5963.04 275.85 137.93 2.76 

34RA 636144 4819632 3865.38 178.74 89.37 1.79 

35RA 636042 4819604 1739.21 81.84 40.92 0.82 

37RA 635929 4819402 4343.30 199.03 99.52 1.99 

38RA 635906 4819854 3476.31 158.51 79.25 1.59 

39RA 635839 4820081 3759.89 171.40 85.70 1.71 
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Appendix 6: …continued 
40RA 635460 4820249 5117.33 227.96 113.98 2.28 

41RA 634187 4814496 2983.42 133.99 67.00 1.34 

42RA 634070 4814587 3676.39 171.91 85.95 1.72 

43RA 633952 4814607 7586.30 340.96 170.48 3.41 

44RA 634267 4816289 1899.28 84.90 42.45 0.85 

46RA 635631 4817351 4839.53 221.62 110.81 2.22 

48RA 637545 4822770 3500.72 166.93 83.46 1.67 

49RA 637762 4822190 2288.86 103.08 51.54 1.03 

50RA 638742 4821928 2919.97 130.08 65.04 1.30 

51RA 638490 4820263 5881.09 264.18 132.09 2.64 

52RA 634241 4814071 1951.41 104.67 52.34 1.05 

53RA 634241 4813480 2933.87 140.08 70.04 1.40 

54RA 633299 4811699 4936.72 236.95 118.47 2.37 

55RA 632865 4810322 6355.95 295.79 147.90 2.96 

56RA 633022 4810237 4193.15 213.54 106.77 2.14 

57RA 641554 4817662 2936.45 141.89 70.94 1.42 

58RA 641354 4817484 718.76 36.24 18.12 0.36 

59RA 641279 4817757 5408.38 241.13 120.56 2.41 

60RA 642116 4818439 2821.39 152.43 76.22 1.52 

61RA 617860 4800986 3504.01 170.39 85.20 1.70 

4D 617919 4801835 701.15 41.06 20.53 0.41 

6D 617811 4802522 829.17 45.86 22.93 0.46 

9D 616694 4809387 1627.64 95.80 47.90 0.96 

10D 616659 4809568 4162.29 195.70 97.85 1.96 

11D 616646 4809733 2716.47 128.27 64.13 1.28 

13D 616382 4811277 3701.60 169.19 84.60 1.69 

14D 616418 4811113 2544.03 122.01 61.00 1.22 

15D 616440 4811935 2307.37 105.95 52.97 1.06 

16D 616468 4810771 2621.17 129.06 64.53 1.29 

17D 616498 4810592 6710.62 310.95 155.48 3.11 

18D 616524 4810431 189.45 11.13 5.56 0.11 

20D 616576 4810071 807.12 36.47 18.23 0.36 

22D 616076 4813173 2654.47 138.20 69.10 1.38 

23D 616109 4813004 2204.62 103.55 51.77 1.04 

24D 616131 4812832 3287.79 151.29 75.65 1.51 

25D 616162 4812660 3249.38 159.81 79.90 1.60 

26D 616187 4812486 5723.11 264.00 132.00 2.64 

27D 616228 4812316 1807.94 90.61 45.30 0.91 

28D 616280 4811970 2111.93 100.51 50.26 1.01 

29D 616299 4811805 3828.74 178.19 89.10 1.78 

31D 618978 4795322 4943.12 223.14 111.57 2.23 
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Appendix 6: …continued 
32D 619011 4795155 3289.55 155.61 77.80 1.56 

33D 619035 4794979 4238.19 193.31 96.65 1.93 

34D 619066 4794806 3192.42 146.28 73.14 1.46 

35D 619100 4794644 5716.80 263.15 131.58 2.63 

36D 619127 4794454 4928.69 230.19 115.09 2.30 

37D 619179 4794115 6804.92 308.35 154.18 3.08 

38D 619211 4793939 4858.26 222.12 111.06 2.22 

39D 619238 4793777 3577.94 173.41 86.71 1.73 

43D 619596 4791552 3894.39 183.42 91.71 1.83 

44D 619621 4791368 6437.58 291.58 145.79 2.92 

45D 619648 4791191 6595.23 304.52 152.26 3.05 

46D 619683 4791023 5965.31 275.21 137.61 2.75 

47D 619701 4790859 2882.79 133.66 66.83 1.34 

48D 619738 4790675 8288.08 369.11 184.56 3.69 

49D 620152 4788115 4003.00 181.71 90.85 1.82 

50D 620123 4788276 2383.19 113.62 56.81 1.14 

51D 620096 4788454 9126.98 408.07 204.03 4.08 

54D 620013 4788971 7980.95 357.04 178.52 3.57 

55D 619959 4789172 4970.44 228.63 114.32 2.29 

56D 619961 4789310 4227.34 206.12 103.06 2.06 

57D 619930 4789475 5212.98 235.86 117.93 2.36 

58D 619907 4789652 5651.92 258.91 129.46 2.59 

59D 620177 4787928 7253.22 326.13 163.06 3.26 

61D 620239 4787596 5272.18 237.70 118.85 2.38 

62D 620272 4787424 5448.37 246.20 123.10 2.46 

63D 620300 4787244 2577.68 120.87 60.43 1.21 

64D 620328 4787072 6218.60 282.39 141.20 2.82 

65D 636716 4819417 2839.03 137.24 68.62 1.37 

66D 636693 4819248 2887.31 130.16 65.08 1.30 

68D 636651 4818903 2392.67 110.80 55.40 1.11 

69D 636633 4818730 3792.74 174.61 87.30 1.75 

70D 636614 4818554 2323.49 103.89 51.95 1.04 

71D 636590 4818385 1888.56 85.66 42.83 0.86 

72D 636563 4818218 3637.82 162.66 81.33 1.63 

73D 636556 4818038 3017.61 133.48 66.74 1.33 

74D 636534 4817871 1548.56 68.58 34.29 0.69 

77D 636764 4819761 4265.47 198.31 99.16 1.98 

78D 636784 4819930 6327.68 286.99 143.49 2.87 

79D 636808 4820107 4910.75 221.11 110.56 2.21 

80D 636830 4820276 2691.22 120.93 60.47 1.21 

81D 636857 4820446 2320.52 112.63 56.31 1.13 
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82D 636873 4820618 2312.68 105.73 52.87 1.06 

83D 636894 4820792 2307.57 105.06 52.53 1.05 

84D 636918 4820968 2914.97 135.28 67.64 1.35 

85D 636945 4821137 4629.39 205.16 102.58 2.05 

86D 636960 4821304 3523.33 158.38 79.19 1.58 

87D 636984 4821479 2484.61 110.72 55.36 1.11 

88D 637008 4821659 2127.10 100.37 50.18 1.00 

89D 637089 4822344 5328.57 240.34 120.17 2.40 

90D 637102 4822518 3823.09 169.32 84.66 1.69 

91D 637137 4822692 1928.84 87.94 43.97 0.88 

92D 637157 4822857 3811.42 177.94 88.97 1.78 

93D 637182 4823034 5671.58 249.97 124.98 2.50 

95D 637224 4823388 5536.47 248.03 124.02 2.48 

96D 637245 4823550 3043.83 133.90 66.95 1.34 

97D 637261 4823724 5043.05 225.39 112.70 2.25 

98D 637283 4823900 3439.91 153.51 76.75 1.54 

99D 632371 4784583 4161.65 190.94 95.47 1.91 

100D 632334 4784240 3641.95 170.37 85.18 1.70 

101D 632312 4784073 4734.85 217.75 108.88 2.18 

102D 632416 4784929 3870.25 174.57 87.28 1.75 

103D 632476 4785456 4105.06 189.66 94.83 1.90 

2YQ 618582 4803904 4642.25 210.06 105.03 2.10 

3YQ 618610 4803731 2648.59 123.53 61.77 1.24 

9YQ 617641 4805735 2242.37 105.24 52.62 1.05 

10YQ 617615 4805915 5537.11 242.47 121.23 2.42 

12YQ 617562 4806256 1783.16 85.98 42.99 0.86 

13YQ 617538 4806423 2265.01 108.30 54.15 1.08 

14YQ 617508 4806595 1709.18 78.19 39.09 0.78 

15YQ 617479 4806776 4687.88 214.75 107.37 2.15 

18YQ 617333 4807618 4551.56 210.72 105.36 2.11 

23YQ 620008 4795154 5083.64 224.73 112.36 2.25 

27YQ 620123 4794470 5839.73 267.76 133.88 2.68 

30YQ 620202 4793957 8117.23 361.52 180.76 3.62 

33YQ 620291 4793445 4496.23 208.81 104.40 2.09 

38YQ 620560 4788073 4180.59 200.07 100.03 2.00 

39YQ 620587 4787902 8396.59 378.19 189.09 3.78 

42YQ 620668 4787385 1304.72 66.21 33.10 0.66 

43YQ 620695 4787215 3031.21 143.39 71.70 1.43 

48YQ 620363 4789267 3883.05 180.67 90.34 1.81 

73YQ 633406 4784567 4600.69 207.82 103.91 2.08 

77YQ 633296 4783706 4582.97 205.48 102.74 2.05 



 

78 

Appendix 6: …continued 
78YQ 633274 4783533 9765.13 440.85 220.43 4.41 

79YQ 633254 4783362 5253.25 243.86 121.93 2.44 

80YQ 633221 4783189 5038.65 233.87 116.94 2.34 

81YQ 633211 4783018 3468.47 165.29 82.65 1.65 

82YQ 633189 4782847 3617.54 166.75 83.38 1.67 

84YQ 632072 4783839 6893.48 310.63 155.32 3.11 

85YQ 632051 4783669 6759.78 299.52 149.76 3.00 

86YQ 632030 4783496 5305.83 239.71 119.86 2.40 

87YQ 632009 4783323 7844.52 348.53 174.27 3.49 

88YQ 631988 4783153 5869.70 269.87 134.93 2.70 

91YQ 631924 4782638 6083.27 270.92 135.46 2.71 

97YQ 632177 4784699 4393.66 212.49 106.25 2.12 

99YQ 632220 4785043 6826.66 310.34 155.17 3.10 

100YQ 632243 4785215 5586.57 254.45 127.22 2.54 

 

 


