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Abstract 

 
Changes in land use and land cover are central to the study of global environmental change. Among 
these changes is soil fertility degradation, which has become a major problem for agricultural 
management in Rwanda. Man as a soil-forming factor has been a difficult issue for pedology in 
general; explaining changes in soil fertility is but one example. 
 
The main agent causing change in processes controlling soil fertility is generally considered to be 
human activity. However, the nature and causes of soil fertility change in the complex lithology of 
Rwandan highlands is currently poorly known. In order to design and implement the national policy 
2020 for conservation and restoration of soil fertility, policy makers need a clear and quantitative 
view of the spatio-temporal pattern of nutrient removal and redistribution, as well as the causes of 
decline. Existing detailed soil maps and lab analyses are more than 20 years old and poorly reflect the 
situation since the civil conflict of the 1990’s, which resulted in major land use changes. 
 
This study attempts a quantitative assessment of human-induced soil fertility change in the Gishwati 
watershed. To supplement the 1980’s soil map, a supplementary soil sampling, followed by lab 
analysis was carried out. Factor analysis was used to select most-significant fertility indicators 
(MSFI). These were used to develop a soil fertility index (SFI) and deterioration index (DI) which 
was interpolated over the study area for both dates. The soil fertility model was developed and 
validated using independent validation set. Kriging prediction was then applied to the data using 
auxiliary variables such soil mapping units and soil predictive components (SPC) generated from 
improved DEM and derived hydrological indices. 
 
The result of PCA showed that pH, OC, Al, P, K, Ca, and Mg are the most dynamic chemical 
properties in Rwanda (refer as MSFI), and those can be used to monitor the change in soil fertility 
over time. One-way ANOVA revealed that all MSFI are highly affected by LUCC with regards to soil 
type and topography. 
   
By computing the deviation of SFI from natural forest to other land uses, SFI captured the individual 
MSFI information, and revealed the change of soil fertility over 25 years. The soil fertility 
deterioration index (DI), which reflects the changes in soil fertility from natural forest conversion to 
different land uses with respect to soil type, revealed that soil quality in the study area has been 
significantly reduced in agricultural lands (-31%), pine plantations (-24%) and pasture  land (-16%). 
However, DI showed that volcanic soils are slowly degraded compared acidic soils. With regular 
cultivation, Eutrandepts and Andaquepts lost only 7% over more than 11 years. 
 
Of the geostatistical analysis including SMUs and SPCs predictors, SFI was the best choice for 
representing spatial structure of soil fertility change in relation to LUCC. Prediction accuracy ranged 
from 91% to 93% in the entire Gishwati watershed. Therefore SFI maps differences enabled us to 
detect early degradation caused by different change in land uses done in different time which could 
not be easily seen using individual MSFI. 



 ii 

Acknowledgements 

I would like to express my sincere gratitude to the Government of Netherlands through the 
Netherlands Programme for the Institutional Strengthening of Post-secondary Education and Training 
Capacity (NPT) for granting me this opportunity to study for a Master of Science degree. I am grateful 
to my employer, the National University of Rwanda for providing me this opportunity to pursue 
higher studies. 
 
I want to express my gratefulness to my supervisors Dr D. Rossiter and Dr Ir C.A.J. M. de Bie for 
their excellent guidance. Without their direct assistance this thesis would not have been possible. 
Also, I would like to express my special thanks to Mr. Bart Krol for the encouragements throughout 
my study period and especially during the field work. His regular advisor made my studies successful. 
Thanks to Dr. M.J.C. Weir, Program Director of NRM for being our father throughout the studies. 
 
I would like to appreciate Ir. D. Ntawumenya, employer in the Ministry of Agriculture, for providing 
the soil and topographical data required for this study.  
 
I would like to extend my gratitude to Mr. J. Farifteh who always had time for me and had the advice 
ready. It was always a pleasure to discuss with him a draft of content of this thesis. I enjoyed the way 
he raised questions that always allowed me to dig more into the scientific content of my research. I 
would like to express my appreciation to ITC staff members, especially Dr. B.H.P. Maathuis for his 
fruitful advice. To Mr.G.Reinink, Mr. J.H.M.Hendrikse, Ir. W. Koolhoven, and Ir.V. Retsios  for 
being helpful to me during the data analysis. 
  
I am also grateful to Rwanda Institute of Agriculture Research (ISAR), especially Mr. E. Gashabuka, 
researcher and head of ISAR-Gishwati station for providing logistic during field data collection.  
Thanks to Mr F. Mbarubukeye, technician at ISAR-Gishwati for enormous assistance in soil sample 
collection. My thanks extend to Mr. A. Ntawumenya and D. Shiragaga, technicians in PASI 
laboratory for their assistance during the laboratory analysis period. Their commitment and sacrifice 
of their time allowed me to complete this thesis on time. 
 
Thanks to fellow Rwandese students especially .P. Bizimana, F. Uwimana, V. Munyaburanga, C.M. 
Rulinda for our joint efforts that made Enschede a pleasant place to live during our studies at ITC. 
 
I would like to give special thanks to the NRM 2005 in particular S. Mungungu, R. Nyaribi, C. G. 
Mandara, Z. Newa, Matilda, A. Sedogo and Julie who provided their assistance in modules, and 
additionally, gave a pleasant touch to the difficult moments, making the situation bearable and 
enjoyable. 
 
This study would not have been possible without constant and valuable support from my family, 
particularly my lovely husband who day by day was behind my shoulders encouraging me and feeding 
my hopes to get successful results. Thanks to my son Jackson and my daughter Lillian, for their 
constant stimulation and for showing me the sense of our life. To my family members and friends who 
have been constantly interested in my progress with the studies. May God bless you all. 



 iii 

Table of contents 

 
1. Introduction ......................................................................................................................................1 

1.1. Background .............................................................................................................................1 
1.2. Research problem ...................................................................................................................2 
1.3. Research objectives ................................................................................................................3 
1.4. Research questions..................................................................................................................3 
1.5. Hypotheses..............................................................................................................................3 
1.6. Research approach ..................................................................................................................4 

2. Concepts ...........................................................................................................................................6 
2.1. Soil fertility degradation in relation to LUCC........................................................................6 
2.2. Integrated approach for soil quality assesment and monitoring .............................................6 
2.3. Prediction of soil fertility change using CLORPT model ......................................................8 

3. Material and Methods ....................................................................................................................10 
3.1. Gishwati study area in the context of  Rwandan environment .............................................10 

3.1.1. Climate, geology and geomorphology..............................................................................10 
3.1.2. Soils and fertility ..............................................................................................................11 
3.1.3. Historical land Use and Land cover change.....................................................................11 

3.2. Research Methods.................................................................................................................13 
3.2.1. Methodological flowchart ................................................................................................13 
3.2.2. Spatial and temporal boundaries of the study ..................................................................14 
3.2.3. Data types .........................................................................................................................14 
3.2.4. Soil fertility change analysis ............................................................................................19 
3.2.5. Soil fertility change interpretation....................................................................................20 

4. Results ............................................................................................................................................25 
4.1. Characterisation of soil fertility indicators and predictors ...................................................25 

4.1.1. Land Use and Cover change (LUCC) over the 25 years and soil surveys .......................25 
4.1.2. Variation of soils and soil samples locations ...................................................................27 
4.1.3. Landscape complexity of Gishwati catchment area .........................................................27 

4.2. Selection of  the Minimum Soil Fertility Indicators .............................................................28 
4.3. Change in soil fertility over 25 years....................................................................................30 
4.4. Spatial variation of  MSFI 2006 in relation to Ancillary Variables .....................................31 

4.4.1. Variation of MSFI in relation to soil types ......................................................................32 
4.4.2. Variation of MSFI in relation to Land Use change ..........................................................34 
4.4.3. Variation of MSFI in relation to Landscape.....................................................................36 

4.5. Relationships among soil fertility indicators ........................................................................38 
4.6. Integration of Soil fertility indicators (MSFI) into index of soil quality (SFI) ....................38 
4.7. Deterioration of soil fertility due to land use change ...........................................................40 
4.8. Geostatistical analysis of soil fertility change ......................................................................41 

4.8.1. Modelling the spatial structure of Soil fertility across Gishwati study area ....................41 
4.8.2. Comparison of models in prediction of soil fertility ........................................................45 
4.8.3. Models quality assessment ...............................................................................................46 
4.8.4. Detection of the spatio-temporal soil fertility degradation ..............................................48 



 iv 

5. Discussions.................................................................................................................................... 49 
5.1. Determination of the Minimum Soil fertility Indicators (MSFI)......................................... 49 
5.2. Trends of change in soil fertility indicators (MSFI) in relation to LUCC........................... 49 
5.3. Performance of SFI model vs to MSFI models.................................................................... 50 
5.4. Degradation of soil fertility in Gishwati highlands ............................................................. 51 

6. Conclusions and recommendations ............................................................................................... 52 
6.1. Conclusions.......................................................................................................................... 52 
6.2. Recommendations................................................................................................................ 53 

References ............................................................................................................................................. 54 
Appendices ............................................................................................................................................ 58 
 



 v 

List of figures 

Figure 1-1: Conceptual diagram of soil fertility degradation (DI) in relation to land use system...........2 
Figure 1-2: Decision tree for mapping and modelling soil fertility degradation using CLORPT 
approach ...................................................................................................................................................5 
Figure 3-1: Map showing Gishwati study area before 1995 ..................................................................10 
Figure 3-2: Methodological flowchart soil fertility change analysis and mapping. ..............................13 
Figure 3-3: Soil series map of Gishwati study area ...............................................................................15 
Figure 3-4: NDVI map of Gishwati study area using Aster, February 2005 .........................................17 
Figure 3-5: Conceptual model of soil fertility index (SFI) development after Andrews et al. (Karlen et 
al., 2003).................................................................................................................................................21 
Figure 4-1: Maps showing Land Covers of Gishwati in 1986 and 2006 ...............................................26 
Figure 4-2: Change detection map showing the change in land cover over 25 years ............................26 
Figure 4-3: Great group soils map of Gishwati study area and sample locations..................................27 
Figure 4-4: Improved digital elevation map (DEM) of Gishwati catchment area .................................28 
Figure 4-5: Boxplots of each soil fertility indicator by 25 years and the probability of significant 
difference using one-way ANOVA........................................................................................................31 
Figure 4-6: Post plots of the minimum soil fertility indicators (MSFI) using 200 soil samples 
measured in the Gishwati study area......................................................................................................32 
Figure 4-7: Boxplots showing MSFI variation in different type of soils ...............................................33 
Figure 4-8: Box plots showing MSFI variation in different type of change in land use........................35 
Figure 4-9: Soil fertility indicators for different landscape positions....................................................37 
Figure 4-10: Contribution of original MSFI values in soil fertility index (SFI)....................................39 
Figure 4-11: (a) variation of SFI in different soil types, (b) type of change in land use and (c) 
landscape positions ................................................................................................................................39 
Figure 4-12: Deterioration index for different types of land use change...............................................40 
Figure 4-13: (a) Post plot of SFI and (b) SFI histogram using 200 sample points of 2006 ...................41 
Figure 4-14: Variogram models of indicators (MSFI) and resulted soil fertility model (SFI) ..............43 
Figure 4-15: First four soil predictive components from terrain parameters.........................................44 
Figure 4-16: Gaussian model of SFI residuals .......................................................................................45 
Figure 4-17: Gaussian model of SFI residuals after stratifying SPCs by SMUs ...................................45 
Figure 4-18: Predicted soil fertility map (a) by OK, (b) by RK using SPCs , and (c) by RK using 
SMUs as strata of SPCs..........................................................................................................................46 
Figure 4-19: Comparison of models performance at interpolation set (a: OK, b: RK with SPCs, and c: 
RK with SPCs stratified by SMUs)........................................................................................................47 
Figure 4-20: Comparison of model performance at validation set (a: OK, b: RK with SPC, and c: RK 
with SMUs) ............................................................................................................................................47 
Figure 4-21: Predicted error map (a) by OK, (b) by RK using SPC, (c) by RK using SMUs as strata of 
SPCs .......................................................................................................................................................48 
Figure 4-22: Soil fertility index (SFI) maps for both years (1981 and 2006) and soil fertility 
deterioration (DI) map resulted on differences ......................................................................................48 
 



 vi 

List of tables 

Table 3-1: Unit conversion coefficients and mean exoatmospheric irradiance of ASTER bands........ 17 
Table 3-2: Data type and key variables considered for soil fertility change analysis........................... 18 
Table 4-1: Great group soils of Gishwati and series that are represented............................................. 27 
Table 4-2: Statistics’ values of terrain parameters included in soil-landscape modeling..................... 28 
Table 4-3: Matrix of nonparametric correlations of 14 soil fertility indicators (SFI) in the topsoil from 
Rwanda (Spearman correlation: r). ....................................................................................................... 29 
Table 4-4: Loadings of the first four components (PC) from PCA of 16 SFIs in topsoil of Rwanda... 30 
Table 4-5: Multiple comparison of MSFI means by soil type and separations using Duncan test ....... 34 
Table 4-6: Multiple comparison of MSFI means by type of change in land use and separations using 
Duncan test ............................................................................................................................................ 36 
Table 4-7: Multiple comparison of MSFI means by landscape and separations using Duncan test..... 37 
Table 4-8: Spearman correlations among MSFI using 200 soil observations points............................ 38 
Table 4-9: Multiple comparisons of SFI Means by soil type, land use change and landscape............. 40 
Table 4-10: Mean separation of DI by Duncan test .............................................................................. 40 
Table 4-11: Factor analysis matrix of landscape predictors.................................................................. 43 
 



 vii 

List of appendices 

Appendix 1: Field-Data Collection Form for Soil Fertility Mapping and Modelling ...........................58 
Appendix 2: Soil series of Gishwati ......................................................................................................59 
Appendix 3: Descriptive Statistics of 15 soil properties of topsoil of Rwanda.....................................60 
Appendix 4: Summary statistics of revisited soil profiles of CPR 1981 (MSFI 1981, N=17) ..............60 
Appendix 5: Summary statistics of MSFI 2006 on the revisited MSFI 1981 (N=17) ...........................60 
Appendix 6: Summary Statistics of MSFI 2006 ....................................................................................61 
Appendix 7: One-way ANOVA showing the significant change of MSFIs over 25 years....................61 
Appendix 8: One-way ANOVA of MSFI by Soil types.........................................................................61 
Appendix 9: One-way ANOVA of MSFI by type of change in land use...............................................61 
Appendix 10: One-way ANOVA of MSFIs by Landscape position......................................................61 
Appendix 11: Thresholds for interpretation of the pH results (after Mutwewingabo et al., 1987) .......62 
Appendix 12: Thresholds for interpretation of Soil nutrients availability (P, K, Ca, and Mg) .............62 
Appendix 13: Thresholds for interpretation of the results of org. carbon and Aluminum acidity ........62 
Appendix 14: Spatial correlation of SFI observation points..................................................................63 
Appendix 15: Linear relationship between soil types and soil fertility index (SFI) (R2=0.15) .............63 
 



 viii 

List of abbreviations 

 

ANOVA  Analysis of variance 
ASTER  Advanced Space-borne Thermal Emission and Reflection Radiometer 
BADC   Belgium Administration for Development Cooperation 
CPR   Carte Pedologique du Rwanda 
DBF   Database file 
DI   Deterioration Index 
DEM   Digital elevation map 
DN   Digital Number 
DTM   Digital Terrain Model 
FA  Factor Analysis 
ILWIS  Integrated Land and Water Information System software 
GLASOD  Global Assessment Degradation 
GLM   Generalised Linear Model 
KED   Kriging with External Drift 
LP  Landscape position 
LUCC   Land Use and Land Cover Change 
MDS   Minimum Data Set 
MPE  Mean Prediction Error 
MSFI   Minimum Soil Fertility Indicators 
MLC   Maximum Likelihood Classifier 
MINITERRE Ministere of Land, Environment, Forestry, Water and Mines 
NUR  National University of Rwanda 
NDVI   Normalized Difference Vegetation Index 
NMSE  Normalized Mean Square Error 
OK   Ordinary Kriging 
PCA  Principal Component Analysis 
PCFN   Nyungwe Forest Conservation Project  
RK   Regression Kriging 
RMSPE  Root Mean Square Prediction Error 
SCM  Spearman Correlation Matrix 
SFI   Soil Fertility Index 
SFID  Soil Fertility Index Development 
SHP   Shape file 
SMU   Soil Mapping Unit 
SPC   Soil Predictive Component 
SPI   Stream Power Index 
STI   Sediment Transport Index 
TM   Thematic Mapper 
TWI   Topographic Wetness Index 
WCS   Wildlife Conservation Society 
WLS  Weighted Least Square 



MAPPING AND MODELLING LANDSCAPE-BASED SOIL FERTILITY CHANGE IN RELATION TO HUMAN INDUCTION 

 

 1 

1. Introduction  

1.1. Background  

 
Changes in land use and land cover are central to the study of global environmental change including 
soil fertility degradation, and reflect the rapid population 
n growth in tropics. As a result of increasing demand for firewood, timber, pasture, shelter and food 
crops, natural land covers, particularly tropical forests, are being degraded or converted to cropland at 
an alarming rate (Islam and Weil, 2000). Man as soil-forming factor has been a difficult issue in 
pedology (Hartemink, 2003), whereas many soils in the world have been drastically altered or 
degraded as a result of human interference (Hartemink, 2003; Jaiyeoba, 2003; Wu and Tiessen, 2002).  
 
Soil fertility degradation by nutrient depletion, mostly caused by erosion but also by removal of 
nutrients in crops is one of the threats that agricultural systems in Rwanda are facing. Soil erosion is 
obviously the most visible and sometimes most destructive form, and it has received considerable 
attention in Rwanda’s national policy (MINITERRE/Rwanda, 2003). This threat, in addition to 
causing on-site loss of topsoil and reducing the productivity of the land, brings about major off-site 
environmental effects such as flooding and infrastructure damage. Rwanda’s relief consists of high 
mountains, steep-sloped hills and depressions. Highlands are most wet area and water runoff on steep 
slopes, coupled with the natural fragility of the soil, carries along soils towards valleys and 
depressions. A big amount is swept along outside Rwanda. On its way, the Akagera River carries 
along about 30 kg of soil per second. Maximum land loss is estimated at 557 t ha-1 yr-1 
(MINITERRE/Rwanda, 2003). This affects a big part of territory, particularly fragile ecosystems of 
mountain regions in the North and in the West; and ends up by causing a reduction of soil fertility and 
consequently, the loss of land productivity. 
 
To improve degraded soils and restore their productivity, it is necessary to determine the current 
status, and see whether this degradation can be explained by use of land in local conditions. The 
purpose of this study is to assess the effect of LUCC on soil fertility at landscape scale. The 
fundamental question we attempt to answer in this study is: to what extent the change in land use 
degrades the soil fertility. A related concern is the degree to which land use coupled with complex 
lithology on hilly landscape can explain the change in soil fertility over 25 years, and how much can 
be explained by a model of spatial dependence.  
 
The conceptual diagram of changes in soil fertility at watershed level with respect to the major land 
uses and related management in Rwandan highlands is shown in figure 1-1.  
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Figure 1-1: Conceptual diagram of soil fertility degradation (DI) in relation to land use system 
 

1.2. Research problem 

 
Soil fertility degradation has become a major problem for agricultural management in Rwanda. The 
main agent causing change in controlling processes is human activity, and a complete explanation of 
the fertility components cannot be achieved without an understanding of human-induced soil change 
(Pennock and Veldkamp, 2006) at landscape level. 
 
Land use changes, especially cultivation of deforested land may rapidly diminish soil quality. 
However, the exact removal of soil fertility in complex lithology of Rwandan highlands is currently 
poorly known. In order to design and implement the national policy 2020 in conservation and 
restoration of soil fertility (MINITERRE/Rwanda, 2005), the policy makers need a clear view of the 
nutrients removal, where this deficiency is located and how much need to be restored. As with 
accurate information on the distribution of soil type and the soil chemical properties in soil map of 
Rwanda at scale of 1:50,000 which are more than 20 years, soil change information is needed by 
today's decision makers for a variety of management goals, including short and long-term 
productivity, economics, sustainability and environmental quality. 
 
The GISHWATI study area provides an ideal ‘laboratory’ for assessing soil fertility change, since (1) 
it was forested until 1994, (2) there was a baseline soil survey done prior to deforestation in 1981, (3) 
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the area has been deforested since 1995, and due to Agricultural and Settlement activities, it has faced 
dramatic erosion and changes in soil management, in particular intensive cropping.  
 

1.3. Research objectives 

 
The present study aimed to investigate and map the evolution of soil fertility in Rwandan highland as 
a result of land use change and related management. The main objective of this research was to 
quantify the response of soil fertility to human activity in Rwandan highlands at watershed level. The 
related concerns were to map the spatial distribution of soil fertility using auxiliary variables that were 
available and to model the temporal evolution of soil fertility within a watershed. To accomplish this, 
a minimum data set (MDS) for soil fertility changes were developed; and used to determine soil 
fertility index (SFI) that were used to predict the spatial distribution of changes across different soil 
types and present land uses of entire Gishwati catchment area. 
 

1.4. Research questions 

 
1) What is the Minimum Data Set (MDS) of soil chemical attributes that can be used to assess 

the landscape-based soil fertility change? 
2) Is there a significant change in soil fertility over the last 25 years? If so, what is it, and where 

are the changes most pronounced? 
3) How can the individual indicators of soil fertility be modeled into and integrative measure of 

soil fertility and fertility degradation?  
4) To what extent land use change contributes to soil fertility change at watershed level? 
5) How successfully can the spatial pattern of soil fertility be predicted in complex lithology of 

Rwandan highlands? 

1.5. Hypotheses 

 
1) Soil Nutrients are the most dynamic soil fertility indicators. Those can be used for soil 

fertility change mapping and modelling.  
2) The soil fertility indicators have changed significantly over the last 25 years, especially in 

areas invaded since 1980. 
3) Soil fertility indicators are modeled into Soil Fertility Index (SFI) and Fertility Deterioration 

Index (DI) using thresholds values of soil properties classes of Rwanda. 
4) There is significant difference in soil fertility within the same soil forming environment. 

These differences are highly explained by the type of change in land use. 
5) The spatial change in soil fertility is fairly mapped using Kriging methods that include soil 

forming factors in the model of spatial dependence than using only the target variable.  
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1.6. Research approach 

 
Study on how LUCC affects the Soil fertility must involve the response of the soil fertility indicators 
to LUCC. Numerous models have been adopted to estimate the impact of LUCC on natural resources. 
 
In fact, all the soil properties are not equally affected by the LUCC in space and time. For example, 
previous studies have shown that most of the physical properties are usually much less variable over 
the short distance than chemical properties (Yemefack, 2005). Cost is also one of the factors that lead 
to minimize the sample size and parameters in many researches. To minimize the redundancy in 
analysis and get maximum information with a minimum cost, Principal Component Analysis (PCA) 
and Spearman Correlation Matrix (SCM) are used. Principal component analysis is a data reduction 
technique that aims to explain most of the variance in the data while reducing the number of variables 
to a few uncorrelated components (Boruvka et al., 2005; Carroll and Oliver, 2005; Rezaei et al., 
2006). 
 
Through ANOVA of soil properties (MSFI) by Soil type (SMU), Land use change (LUCC) and 
topography of the region, the difference in soil fertility over the 25 years can be explained. MSFI can 
further be integrated into an indicator measurement of soil fertility (SFI) using a conceptual model of 
MSFI scoring (adapted from Andrews et al. 2003) and thresholds of soil properties of Rwanda (after 
Mutwewingabo and Rutunga, 1987). 
 
Soil fertility map of 2006 can then be created from SFI point data and CLORPT grid data using a 
number of Geostatistical interpolation, and graphical procedures (Mueller et al., 2001) such GLM 
model. Interpolation using auxiliary variables is most successful for soil attributes whose spatial 
distribution is strongly influenced by lateral hydrological and slope processes (Park and Vlek, 2002) 
with respect to soil type.  
 
Through difference computed between SFI 1981 and SFI 2006, the change in soil fertility can be 
mapped and the extent to which LUCC affect soil fertility can therefore be visualized and explained.  
 
The decision tree (Figure1-2) summarizes the approach used in order to achieve the objective of this 
research. 
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Figure 1-2: Decision tree for mapping and modelling soil fertility degradation using CLORPT 
approach 
 

Soil properties of the topsoil of Rwanda in 1981 

1. What are the most dynamic? 

Dynamic 
properties MSFI 

Static 
properties 

MSFI 2006 

2a. Is there a significant difference? 

SFI 2006 
(Point map) 

3. How can MSFI be integrated into an 
index of soil fertility? 

MSFI 1981 
 

If yes 

SFI 1981 
(Polygon map) 

4. To what extent LUCC 
contribute to SFI change (DI)? 

5a. Do CLORPT factors explain 
SFI variation? 

If yes 

5b. How successful is to map SFI 
2006 using available CLORPT 

Predicted SFI map  
& Error of prediction 

2b. How much and where the 
changes are most pronounced? 

DI map 

PCA & SCM 

One-way 
ANOVA 

GLM 

RK 

One-way 
ANOVA 

SFID   model 



MAPPING AND MODELLING LANDSCAPE-BASED SOIL FERTILITY CHANGE IN RELATION TO HUMAN INDUCTION 

 

 6 

2. Concepts 

2.1. Soil fertility degradation in relation to LUCC 

 
Land use and land cover change (LUCC) plays an important role in soil fertility dynamics when 
compared with natural factors, and can have impact upon soil quality especially under tropical climate 
conditions. Soil fertility defined as ‘the quality of a soil that enables it to provide nutrients in adequate 
amounts and proper balance for the specified plants or crops’ has been the cause for much debate and 
the high fertility theory of tropical soils was dispelled when the forest was cut, crops planted and it 
was discovered that yield levels were disappointingly low or rapidly declining (Hartemink, 2003). 
But, this effect of LUCC focuses on short term changes such as deforestation. Other less dramatic 
decadal scale land use changes turn out to have less effect on soil properties, especially when the 
results are corrected for landscape variability (Breuer et al., 2006).  
 
An assessment of soil properties upon conversion of natural forests for different purposes is of utmost 
importance to detect early changes in soil quality. This has been basically proved significant in a 
tropical forest ecosystem of Bangladesh (Islam and Weil, 2000). Yet, Global change research has 
stimulated research on the fate of soil organic carbon in relation to soil management and land use 
change (Pennock and Veldkamp, 2006). However, previous studies have generally not considered 
landscape relations. These changes might behave differently with regard to lithology variability within 
the same landscape. 
 
Three different data types are used to assess soil changes caused by agriculture production systems: 
expert Knowledge, nutrient balances and monitoring of soil chemical properties over time (Type I) or 
at different sites (Type II). Changes can be assessed by measuring and comparing present values 
against values at the commencement of the monitoring period (Arshad and Martin, 2002), with 
historical data when available, with soil attributes under reference ecosystems (Wang and Gong, 
1998), or using values measured at different time intervals. This is so called chronosequential 
sampling or Type (I) data. Type I data show changes in soil chemical property under a particular type 
of land use change over time whereas with type II data, soil under adjacent different land use systems 
are sampled at the same time and compared (Hartemink, 2003). Therefore, in this study we focus on 
both types due to the lower number of type I samples. Moreover, Type II data allows spatial and 
temporal change while Type I data allows only temporal change analysis.  
 

2.2. Integrated approach for soil quality assesment and monitoring  

 
Identification of soil nutrient deficiencies is usually carried out through the analysis of the soil. 
Nonetheless, this process can be expensive and time consuming, depending on the extent of the area 
to be evaluated. In other hand, the time series measurements are not always available due to different 
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reasons. This is the case of monitoring the soil fertility in Rwanda where no soil measurements were 
taken during the period from 1990 up to now because of the war and genocide 1994 that have been 
followed by the Rehabilitation priorities. Hence, there is a need of other technology to achieve a 
reliable monitoring of soil fertility using estimated predictors as an alternative to intensive laboratory 
measurements that are high costly and time consuming. An integrative assessment framework and the 
ability of available auxiliary variables such as Digital Elevation data, Soil data and Remote Sensing 
data to provide explanations of soil fertility change in both future and space without requiring 
intensive field data collection and laboratory analysis need to be investigated. 
 
During the last decades, mathematical Modelling has become an essential part of ecological research 
because such models make assessment and predictions in ecological systems more objective and 
reliable (Jorgensen, 1994). Several study have been done in assessing change of soil properties after 
deforestation (Lemenih et al., 2005a; Lemenih et al., 2005b) or nutrient depletion on smallholder 
farming systems (Haileslassie et al., 2005), but  few of them integrated this changes into in indicator 
of land quality. 
 
Indicators of land quality (LQIs) are being developed as a means to better coordinate actions on land 
related issues, such as land degradation (Dumanski and Pieri, 2000). Economic and social indicators 
are already in regular use to support decision making at different levels and in some cases for air and 
water quality, but few such indicators are available to assess, monitor changes in the soil quality.  
Recently, Andrews et al. (2003) developed the conceptual framework (SMAF) and it has proven to be 
useful for various soil quality assessment (Andrews et al., 2003). However, He emphasized that the 
model should be adapted to some situations.  
 
This reason motivates our study to define an integrative index of soil fertility using the thresholds 
provided for site-specific management. We should now combine probabilistic models provided by 
mathematicians with previous findings that made available to us, expert knowledge in order to assess 
the human-induced soil fertility degradation with different auxiliary variables that are already 
available (Carroll and Oliver, 2005). 
 
While Land refers not just to soil but to the combined resources of terrain, water, soil and biotic 
resources that provide the basis for land use (Dumanski and Pieri, 2000), soil fertility refers to the 
critical level of soil properties relative to the requirements of crop production. With respect to 
predefined classes of soil properties (Mutwewingabo and Rutunga, 1987), an index of soil fertility can 
then be computed to compare management practices or monitor change over time.  
 
When evaluating the impact of land use change on soils, the soil status under a new land use is 
compared to a pre-existing steady-state baseline, ideally the native vegetation, which can then be 
expressed as degradation index (Islam and Weil, 2000; Lemenih et al., 2005a). The deviation of soil 
fertility from the natural forest gives better indication on how change in land management affects the 
long-term soil fertility decline. This decline can then be explained by environmental factors such as 
CLORPT which known as soil forming factor, and see whether the unexplained change can be linked 
to the change in land uses. 
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2.3. Prediction of soil fertility change using CLORPT model  

 
Global Assessment of Soil Degradation (GLASOD, 1990) has shown that the soil chemical 
degradation is believed to be important in many parts of the tropics. The loss of nutrient (i.e. soil 
fertility decline) is severe in Africa (Hartemink, 2003) including a large part of Rwanda. 
 
 The method of Geographic information System (GIS) for soil nutrients mapping using different types 
of interpolation is well proposed and is being used in soil science (Amini et al., 2005; Bishop and 
McBratney, 2001; Iqbal et al., 2005; Lark and Ferguson, 2004; Li et al., 2004; Liu et al., 2006; 
McBratney et al., 2003; Mueller and Pierce, 2003; Mueller et al., 2004a; Mueller et al., 2004b; 
Srivastava and Saxena, 2004). In this chapter, we discuss the various methods that have been used to 
map the soil properties which are used to monitor the soil fertility change. We also review the soil-
environment relationship that has been widely used in soil mapping and modelling.  
 
Jenny's equation (1941) is known as the first model of soil development,  

),,,,( tprocfS = ,                                                                                                                         (1) 

Where S represents a soil attribute (e.g. fertility) or soil class, c (sometimes cl) climate, o organisms 
including human activity, r relief, p parent material and t time. Most of the soil models are built based 
on this famous equation. Numerous researchers have taken the quantitative path and have tried to 
formalize this equation largely through studies of cases where one factor varies and the rest are held 
constant.  
 
Since the 1960s, there has been an emphasis on what might be called geographic or purely spatial 
approaches in soil mapping. Soil attribute can be predicted from spatial position largely by 
interpolating between soil observation locations where soil is considered at some location (x,y) to 
depend on the geographic coordinates x,y and  on the soil at neighbouring locations (x + u, y + v), i.e.,  
 

),(),,((),( vyuxsyxfyxS ++= .                                                                                                  (2)  
 
These purely spatial approaches are almost entirely based on Geostatistics and its precursor trend-
surface analysis. Geostatistics provides descriptive tools such as semi-variogram to characterize the 
spatial pattern of continuous and categorical soil attributes (Amini et al., 2005; Lark and Ferguson, 
2004). This technique has been widely applied by soil scientists particularly, various forms of kriging. 
However, it was recognised early in the development of soil Geostatistics that soil could be better 
predicted if denser sets of secondary variables correlated with the primary variable were available 
(McBratney et al., 2003). This technique is called co-kriging, regression kriging, or kriging with 
external drift:  
 

),)(,,,,{),,((),( yxtproclvyuxsfyxS ++= .                                                                             (3) 

 
In the early co-kriging studies (e.g. in 1983), these secondary variables were other soil variables, 
indicating that other soil variables are themselves useful predictors of soil. Later in 1994, with the 
advent of GIS and improved technology, Odeh et al.(1994) found that co-kriging can be  performed 
with detailed auxiliary data sets of environmental variables derived from digital elevation models and 
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satellite images (McBratney et al., 2003). In the middle of the 1990s some researchers recognized the 
similarities between co-Kriging and regression Kriging.  In the last approach ‘CLORPT’ is used to 
predict the soil property of interest from environmental variables and kriging is used on the residuals. 
In many cases, kriging combined with regression has proven to be superior to the plain Geostatistical 
techniques yielding more detailed results and higher accuracy of prediction (Hengl et al., 2004b). 
Moreover, in several other studies (Bishop and McBratney, 2001; Simbahan et al., 2006), combination 
of kriging and correlation with auxiliary data outperformed ordinary kriging, co-kriging and plain 
regression.  
 
Kriging with external drift (KED) is an example of Kriging combined with regression which only 
allows a linear relationship between the variable of interest and the environmental variables (the 
external drifts). Although, quantitative relationships have generally been most easily found between 
soil and topography but the results of many studies illustrate that this empirical relationships between 
soil properties and terrain attributes are somewhat unique to each soil property and each soil-forming 
environment. Especially over large areas, predictive capabilities are limited because the relationships 
between soil properties and landscape attributes are nonlinear or unknown (Lagacherie and Voltz, 
2000).  In this view, the drift and residuals can also be fitted separately and then summed afterwards 
(Hengl et al., 2004b). This technique was originally suggested by Odeh et al. (1994, 1995), who 
named it ‘‘Regression Kriging’’ (RK), whereas Goovaerts  uses the term ‘‘Kriging after 
detrending’’(Goovaerts, 1999). RK can be more easily combined with stratification, General Additive 
Modelling (GAM) and regression trees (McBratney et al., 2000). Recently, Multivariate RK with 
elevation, apparent EC, reflectance, and soil series performed best in terms of increasing map 
accuracy. For example, in multivariate RK methods relative improvements in map accuracy over OK 
ranged from 19% to 38% at the three sites in Nebraska and there was little loss of accuracy when 
sampling intensity was reduced by half (Simbahan et al., 2006). 
 
Therefore, in this study, we focuses on regression kriging (RK) instead of kriging with external drift 
(KED), not because, RK implies the regression combined with kriging, but it as well allows the 
nonlinear relationship between the target variable and continuous and categorical predictor. Numerous 
ancillary variables with potential for soil fertility mapping are available, particularly at landscape 
scale. Examples include digitized soil surveys (soil mapping units), digital elevation model (DEM) 
and derived terrain indices. DEM is useful to derive Slope gradient and aspect, the specific 
Catchment, and the hydrological terrain parameters that are used in Soil loss (Shrestha et al., 2004) as 
well as soil attributes prediction for a relatively large area (Ziadat, 2005). A methodological approach 
is also developed (Hengl et al., 2004b).  The challenge is to apply them to the local environment, 
and produce an explicit soil fertility map with regard to covering the variation in primary and 
secondary variables in feature and geographical space in situation where the sampling intensity is 
limited. 
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3. Material and Methods 

3.1. Gishwati study area in the context of  Rwandan environment 

 

 
 
Figure 3-1: Map showing Gishwati study area before 1995 
 

3.1.1. Climate, geology and geomorphology 

 
Rwanda occupies the eastern shoulder of the Kivu–Tanganyika rift in Africa. It lies between latitudes 
1o04’ and 2o51’ South, and between longitudes 28o53’ and 30o53’East. The general altitude increases 
from about 1000 m at the edge of the Lake Victoria basin in the east to over 2600 m at the crest of the 
rift shoulder in the west. The lowest point in Rwanda goes down to 950 m, the highest reaches 4507 
m. Due to its elevation, Rwanda enjoys a rather mild climate for a country so close to the equator. The 
mean annual temperature turns slightly around 20oC. Annual rainfall varies between 700 and 1,400 m 
in the eastern and western lowlands, between 1,200 and 1,400 m in the Central Plateau and between 
1,400 and 2,000 m in the high altitude region (MINITERRE/Rwanda, 2003). The two rainy seasons 
extend from the middle of September to December and from the end of January till May or June, 
respectively. The annual distribution of the orographic rainfall, issued from the Indian Ocean during 
the passage of the intertropical convergence belt, reflects the general topography (Moeyersons, 2003). 
According to Köppen classification system, most of high elevation regions including Gishwati study 
area are belong to the CW-type with 2-3 months of rainfall under 60 mm(ABOS-AGCD, 1983). 
 
The topography forms of Rwanda are the result of the combined action of erosion and of tectonic 
movements. After the metamorphosis and folding of sedimentary rocks that gives rise to of Rusizian 
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and Burundian, the northern part of the country, including the Gishwati study area is underlain by 
Precambrian rusizian rocks composed of a wide range of shales locally pierced by granitic batholiths. 
These granites give way to more rounded hills and valleys than the shales and result a “landscape of 
thousand hills” with steep slope that characterized the “Congo-Nile watershed divide” in West 
(Moeyersons, 2003). 
  
The investigated area is within the Congo-Nile watershed divide in Western province of Rwanda 
(Figure 3). This area was chosen because of its representative of complex lithology and landscape 
diversity due to elevation differences from valley floor to mountain summits, and related land use 
changes having influence on soil erosion which is considered typical for the highland of Rwanda. It 
extends from easting of 29o21’40” to 29o28’50” longitude and southing of 1o36’52” to 1o52’17” 
latitude. 
 

3.1.2. Soils and fertility 

 
Soils of Rwanda present a high variability in physical and chemical properties. As reported by 
different researchers, most soils are fine textured, but the soil depth is strongly variable as well as 
weathering intensity and chemical soil fertility (Mukashema, 2003; Mutwewingabo, 1984; Neel et al., 
1976; Ntaneza, 1988; Zaag, 1981; Zaag et al., 1982). Consequently, most of the Soil Taxonomy (Soil 
Survey Staff, 1983) orders are found in Rwanda (Verdoodt and Van Ranst, 2006), except Spodosols 
(ABOS-AGCD, 1983).  
 
In high elevation region where Gishwati watershed is located, Entisols occupy the river valleys; these 
are mostly Aquents. Histosols are very common in the poorly drained swamps. They are not typical 
for Gishwati but they occur elsewhere in Rwanda where the drainage is low. In the zones covered by 
volcanic material and, elsewhere on steep slopes, the Inceptisols are an extensive soil unit. Many soils 
developed in the colluviums accumulated at the foot of the hill slopes belong to this order too. Most 
well-drained soils of this region are belonging to Ultisols. In spite of the steep slopes, soils are 
generally deep and rich in organic matter. Some of the soils show a structure which could make them 
considered as Oxisols but generally their exchange capacity exceeds the value which is necessary for 
Oxisols (ABOS-AGCD, 1983). Speaking about soil fertility, we must stress that besides the classic 
pedogenetic factors, human activity did largely influence to the soil fertility status. This human 
influence, together with relief, explain why there is a wide range in crop yields over small distance, 
even in soils developed in the same parent material.  
 

3.1.3. Historical land Use and Land cover change 

 
The change in land use in Rwanda especially in Gishwati study area is result of the changes in 
population, which doubled nationally between 1978 and 2002. Over 90 percent of the population 
relies on subsistence agriculture to meet its needs, with a concomitant need for land, which puts great 
pressure on the country’s remaining natural ecosystems, whether forested, savannas, or wetland 
(Plumptre et al., 2001). 
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Since 1980s, Gishwati forest reserve had been heavily affected by human activities prior to the 
Rwandan civil war. It constituted approximately 280 square kilometres in the mid-1970s and 
contained populations of chimpanzees (Pan Troglodytes) and golden monkeys (Cercopithecus mitis 
kandti), although the forest was fairly degraded by many years of cattle herding within the forest. The 
World Bank supported an integrated forestry and livestock project that converted 100 square 
kilometres to pasture and another 100 square kilometres to pine plantations in the early 1980s. A 30 
square kilometres area was designated as a military zone in the north of the forest, leaving only 50 
square kilometres of natural forest.  
 
During and following the war in 1994, the northern part of Gishwati was used for camps of displaced 
persons, which grew rapidly. People settled and farmed within the reserve, thus creating further 
pressures on land and deforestation. In early 2000, the Nyungwe forest conservation project (PCFN), 
supported by the Wildlife Conservation Society (WCS), organized a survey of Gishwati natural forest 
to assess the current status and to determine whether it would be useful to encourage conservation 
efforts. There was little of the original forest remaining in Gishwati. Only a few stands of trees of less 
than one hectare in size within cropland were observed (Plumptre et al., 2001). 
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3.2. Research Methods 

3.2.1. Methodological flowchart 
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Figure 3-2: Methodological flowchart soil fertility change analysis and mapping. 
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3.2.2. Spatial and temporal boundaries of the study 

 
To assess soil fertility decline, it is necessary to define the spatial and temporal boundaries of the 
system under study. The loss of fertility by erosion at catchment scale is measured spatially using the 
black box approach. This approach considers the depth, the width and length as important boundaries 
of the box. The same approach is used to explain the transfer of nutrients from one area or spatial 
scale to another by subsurface flow (Hartemink, 2003). This approach was applied to this study. 
Gishwati catchment represents a catena of about 280 km2 with flows of nutrients from upper slope to 
valley by erosion or subsurface flow process. The depth of the box was about 30 cm as the most 
vulnerable layer to erosion and most important for crop growth. The study focused firstly on different 
land uses for the entire area and for the temporal study, the profiles of 1981 project were also 
revisited.  
 

3.2.3. Data types 

3.2.3.1. Soil fertility indicators 

 
To assess the change in soil fertility at a given site, Type I data were used. This method is also called 
chronosequential sampling or Type (I) data. Type I data show changes in soil chemical property under 
a particular type of land use change over time. Usually the original level is taken as the reference level 
to investigate the trend in such changes. Example, Type I data have been used for quantifying soil 
contamination by comparing soil samples collected before the intensive industrialization period with 
recent samples taken from the same location (Hartemink, 2003). The same approach was used to 
quantify the change in soil fertility of the study area. We used the chemical properties already 
measured from 1981 through the semi-detailed soil survey done during the project named “Carte 
pedologique du Rwanda” (CPR), and compared to newly collected and analysed soil samples of 2006.  
 
Because there were only 17 points of Type I which was not even distributed in different land uses, the 
land use change effect on soil fertility was assessed using Type II data. In this approach, soil fertility 
status under adjacent different land use systems were sampled and compared. This is so called 
biosequential sampling (Hartemink, 2003) or synchronic sampling (Yemefack, 2005). The main 
underlying assumption is that the soils on the cultivated land, pasture, planted forest and reference 
land use (in this case natural forest) are the same soil type (refer to great group units), but that the 
differences in soil fertility can be attributed to the difference to the differences in land use.  Revisiting 
the site is the key for Type I data, while knowing the historical land use is much more important for 
Type II. Both types were involved in assessing the spatio-temporal change of soil fertility across 
Gishwati catchment area. Type II was useful for spatial distribution of the change whereas Type I was 
important for temporal change analysis. 
 



MAPPING AND MODELLING LANDSCAPE-BASED SOIL FERTILITY CHANGE IN RELATION TO HUMAN INDUCTION 

 

 15 

3.2.3.2. Site specific explanatory variables 

 
Site-specific information on historical land use change and related management and landscape 
position were recoded during soil sample collection (Appendix 8-1). GPS 12 XL was used to record 
the geographical position of each sample site.    
 

3.2.3.3. Soil fertility predictors 

 
a) Soil data 
 
A digital soil map (1:50000) of the study area were obtained from the National Soil Geodatabase in 
the Ministry of Agriculture (Table 3-2). The soil map resulted from the soil survey of Rwanda which 
started in 1981 and finalized in 1994. Initially, the intention of the soil survey was to map Rwanda at 
scale 1:100,000. However, the geologic and geomorphologic complexity of Rwanda and the 
multiplication of rural projects required more detailed soil information, which resulted in a 
modification of mapping scale to 1:50,000. This semi-detailed soil survey, based on extensive use of 
aerial photographs and fieldwork, was accomplished. From 1989 onwards, the soil maps and all 
observation points with their corresponding data were stored in a master database using GIS and 
relational database software (Verdoodt and Van Ranst, 2006). Stopped in 1994 due to the war, the 
digital storage of the soil data was later finalized at Gent University, Belgium (1998-2000). Both the 
activities in Rwanda and at Ghent University were financed by BADC (Belgian Administration for 
Development Cooperation).  
 
Figure 3-3: Soil series map of Gishwati study area 

 The national survey resulted in the elaboration of 43 soil 
maps, at a scale 1:50,000, covering the whole of Rwanda. 
More than 2000 soil profiles, corresponding to 176 
different soil series had been described and analysed 
among them 36 series are found in the study area (Figure 3-
3, Appendix 2 for series’ description). Gishwati watershed 
is located in two soil maps (GISENYI and MULUNDA). 
The Automation of the data started with the digitizing of 
hardcopy maps by use of the GIS software ARC/INFO. 
Each soil unit received a unique label that was related to a 
numerical database with the tabulated properties of each 
soil series. 
The spreadsheets containing the profile description and 
analytical information were imported in Access database. 
Relationships were built between three tables containing 
the general profile information, the horizon description and 
the horizon analytical data. Through use of unique soil 
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profile number, these numerical data can be easily linked to cartographic data (Verdoodt, 2003). 
About 43 profiles are located in Gishwati watershed but only 17 profiles among them are within the 
study area.  
The acquired base information on soils was then processed for the purpose of this study. Soil map of 
Gishwati catchment area was 36 soil mapping units (refer to the series in Soil Taxonomy). Due to 
their similarity in soil properties those were reclassified and merged in 14 great groups (appendix 8-4) 
using ArcGIS 9.1 software. Soil samples were distributed in 8 major great groups of the study area. 
Those great groups were considered in soil fertility change interpretation. Soil properties of 1300 
profiles at horizon A were extracted from the spreadsheet of soil properties of Rwanda which contain 
more than 7000 records of soil variables for all soil profiles and all horizons of each profile. Those 
were used in indicator section procedure. 
 
b) Vegetation cover data  
 
Prior to the field data collection, a proper visualisation of Land use and cover is important to guide on 
the criteria of selecting sample design and distribution of sample points across the study area. NDVI 
map was prepared for this purpose. 
  
Aster image level-1B (L1B) of February 21st 2005 was acquired (Table 3-2) and processed using 
ILWIS scripts. Visible and near infrared bands (VNIR) were imported and reprojected to local 
projection (Transverse Mercator), Ellipsoid (Clarke 1880), and Datum (Arc 1960) to prevent the shift 
and match with other thematic layers). Then, the image was georeferenced to the corner coordinates 
of the study area. ASTER Level-1B data are offered in terms of scaled radiance as sensor calibrated 
Digital Numbers (DN). To convert DN to radiance at the sensor, the unit conversion coefficients were 
used. Radiance (spectral radiance) is expressed in unit of Wm-2 sr-1 �m-1. The relation between DN 
values and radiances is expressed in equation 4. The maximum radiances depend on both the spectral 
band and gain setting. The sensor calibrated DN values are converted to spectral radiance in ILWIS 
using the unit conversion coefficient of each band as follows: 

CDNL ×−= )1(          (4) 
Where L is calculated spectral radiance (Wm-2 sr-1 �m-1), DN is the value of sensor calibrated digital 
number and C is the unit conversion coefficient from the metadata in HDF file. Unit conversion 
coefficient used for different bands and for different gain settings are shown in table 3-2. 
The image was corrected for artifacts due to atmospheric conditions by computing the exoatmospheric 
reflectance of each image pixel using equation 5. Reflectance (ρ) is defined as the wavelength 
dependant ratio between reflected and incoming energy and can be expressed as: 

zESUN
dL

θ
πρ
λ

λ

cos

2

=          (5) 

Where � represents the top of atmosphere reflectance, Lλ Radiance at the sensor (Wm-2sr-1µm-1), d2 
Earth Sun distance (AU), θZ solar zenith angle (degrees) and ESUNλ the mean exoatmospheric 
irradiance (Wm-2µm-1). Note that earth sun distance depends on the day of the year (Julian day) and 
the solar zenith angle depends on day and time of acquisition of the image, the latitude and the 
longitude of the location. Earth Sun distance is given in table 3-2 (Aster user handbook).  
NDVI map as ratio index of vegetation cover was then calculated to guide field data collection, using 
the following formula (Equation 6): 
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)/()( RNIRRNIR ρρρρ +−          (6) 
Where �NIR is the reflectance on near infrared band and �R is the reflectance on red band. NDVI map 
enabled us to distinguish different entities of land use in the study area (Figure 3-3). Thus, were 
followed in data collection. 
Figure 3-4: NDVI map of Gishwati study area using Aster, February 2005  

 
Table 3-1: Unit conversion coefficients and mean 
exoatmospheric irradiance of ASTER bands 
 

Bands  C  ESUN 
1  0.676  1846 
2  0.708  1555 
3N  0.862  1120 
4  0.217  231 

 
c) Land use and land Cover change data 
 
To map change in land use, Landsat-5 TM image of 
July 19th 1986 and ASTER image of June 16th 2006 
were acquired and processed to a common 15 X 15 m 
grid by resampling method. They were reprojected to 
the local projection (refer to the previous paragraph).  
Supervised classification using Maximum Likelihood 
classifier (MLC) was performed in ERDAS Imagine 8.7 

package for both images. This method was found to be the most accurate and objective when the 
results were compared with the changes recorded in the CPR database during soil survey 1983, and 
information recorded during soil sample correction, September 2006. With the MLC, all significant 
land cover types in the image were designated as classes. The overall classification accuracy was 
assessed by comparison of 43 cover points recorded by CPR project for Landsat-5 TM, 1986 and 200 
sample points recorded during field work for ASTER, 2006. The classified images for each date were 
combined into one file and change images were created representing pixels that changed from Natural 
forest to pasture in 1980s, from Natural forest to forest plantation (Pinus and Acacia sp), and those 
that changed recently from natural forest to cropland after 1995.  
Change map was then confronted to the change in soil fertility in order to analyze the extent of 
human- induced soil fertility change in Gishwati watershed. 
 
d) Topographic data 
 
Terrain attributes derived from digital elevation models (DEM) are commonly useful explanatory 
variables in predictive soil models (Sonneveld et al., 2006; Tomer and James, 2004; Ziadat, 2005). 
The contour data of 25 m equidistance were acquired to generate different terrain parameters. This 
contour map was created in the same project as soil map. During the CPR project, 43 topographic 
maps at scale 1:50,000 were produced by 1987. This map contains contour lines at an equidistance of 
25 m. Digitization of the topographic map data was realized by scanning the hardcopy maps and 
vectorising, georeferencing and geocoding of the digital data. Arc view Software and 3-D Analyst 
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extension ware used to derive a digital terrain model (DTM) for each map sheet (Verdoodt, 2003). 
The river network and spot heights of the study area were also supplied in the same Geo-database. 
Prior to the calculation of terrain parameters, the quality DEM was improved using the method 
proposed by Hengl et al., 2004 (Hengl et al., 2004a). This procedure is done to account for the 
features that are not shown by the contours such as ridges and valley bottom. The spot heights were 
assigned to the medial axis between the closed contours and the river networks were used to adjust the 
final DEM. The sinks were also filled. All these steps are well explained in terrain analysis user guide 
(Hengl et al., 2003). The improved DEM was then used to generate the relief parameters for soil 
landscape modelling.  
 
The contour was rasterized using a common grid (15x15m) of all variables involved in this study. This 
was used to generate Digital Elevation Map (DEM) and terrain attributes such as slope gradient 
(S=tan �, percent), specific catchment area (As, m2 m−1), topographic wetness index (TWI), stream 
power index (SPI) and Sediment transport index (STI).  
The topographic wetness index, a predictor of zones of soil saturation, is the ratio of specific 
catchment area to slope gradient: 

)/ln( SAsTWI = .         (7) 
The stream power index, a measure of runoff erosivity, is the product of specific catchment area and 
slope gradient:  

)ln( SAsSPI ×= .         (8) 
The sediment transport index, also called erosion index is modelled as following: 

3.16.0 )0896.0/(sin)13.22/( β×= ASSTI .       (9) 
For detail elaborations refer to (Hengl et al., 2003; Thompson et al., 2006; Tomer and James, 2004). 
The calculations were performed using flow indices script in ILWIS 3.0. 
 
Table 3-2: Data type and key variables considered for soil fertility change analysis  
 
Data type variables Source 
Initial Soil fertility 
indicators (before 
deforestation)(1:50,000) 

pHw, pHKCl avail.P, OC, Exch. bases 
(Ca, Mg, K), Echange acidity (Al, H). 

Soil Geo-database of Rwanda 
MINAGRI (Kigali/Rwanda) 

Actual MSFI (2006) pHw, pHKCl, avail.P, OC, Exch. bases 
(Ca, Mg, K), Exch. acidity (Al, H). 

Primary data 
Soil measurements  

Soil type Soil series and related variables 
 

Soil Geo-database of Rwanda 
MINAGRI (Kigali/Rwanda) 

Topographic data 
(1:50,000) 

 Contour data (25 m equidistance) 
Spot heights and River network 
DEM, derived Terrains parameters 

Soil Geo-database of Rwanda 
MINAGRI (Kigali/ Rwanda) 

Interviews and Field 
observation 

Historical land uses and related 
management 
Erosion features 

Site-specific information 
(smallholder farmers and local 
operators: ISAR/Gishwati, PAFOR). 

Remote Sensing  data  
Landsat-5 TM 16th July 
1986,  
ASTER 21st January, 2005 
and 21st June 2006 

Land use / cover types 
Vegetation index (NDVI) 

Geodata Warehouse (ITC Enschede) 
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3.2.4. Soil fertility change analysis 

3.2.4.1. Selection of the Minimum soil fertility indicators (MSFI) 

 
Due to the limited logistic and time, the study of soil fertility as the combination of various soil 
properties that determine the capacity of the soil to crop production function, started by reducing the 
soil variables prior to data collection and laboratory activities. This lead to a minimum data set for soil 
fertility assessment in Gishwati catchment area. The MSFI should just be considered as the smallest 
set of the soil chemical properties that can best represent the human-induced change in soil fertility. 
This approach is similar to the Minimum Data Set (MDS) approach (Park and Vlek, 2002; Yemefack 
et al., 2006), the only difference is that the MSFI is limited to the chemical soil properties whereas the 
MDS consider both physical and chemical properties i.e. the MSFI is part of the MDS. 
 
We agree with different researchers that the soil chemical properties to be included in a MSFI must be 
sensitive to changes in soil management, soil perturbations, and inputs into the soil system. 
(McBratney et al., 2003; Sena et al., 2002; Yemefack, 2005; Yemefack et al., 2006; Yemefack et al., 
2005). Each selected property must also be inexpensively, easily and reproducibly measurable. 
 
Reducing the redundancy between soil chemical variables was achieved by evaluating the correlation 
of variables over the whole dataset of Rwanda. The Spearman correlation was computed on the 
multivariate data matrix using 1300 soil samples collected and analyzed during the semi-detailed soil 
survey of 1981. This non-parametric method was used to avoid distortions from non-normally 
distributed variables or extreme values (Yemefack, 2005). To cross-check the result of this correlation 
analysis, Principal Component Analysis (PCA) was also performed as one of factor analysis for soil 
variables reductions. Properties that had high score of PCA value and highly correlated were 
classified in one group. The included soil variable in the MSFI was defined to be the highest scored 
variable in PCA and sometimes times with less correlation among themselves. 
 

3.2.4.2. Sampling design 

 
Refer to the distribution of human activities in Gishwati study area, such as the division of the land 
into different land uses (Figure 3-3), we realised that there were organized control. As result, the 
human-induced soil fertility change can not be random, except within the same use, same soil and 
same landscape position. This situation leads us to the stratified sampling design. We agree also with 
soil conservation scientist that simulated erosion patterns and nutrient losses are directly related to the 
flow network of the catchment. Since the model routes water and suspended sediment towards the 
outlet using a user-supplied network (Jetten et al., 2003), the flow of soil nutrients is closely related to 
this network. Therefore, stratified toposequence transect sampling seemed to be appropriate and 
transect location was chosen purposely. About 67 toposequential transect locations were chosen to 
represent major Land Use classes with different topography and soil types. Each transect included at 
least three of five separate sampling points collected at summit, upper slope, middle slope, lower 
slope, and valley.  
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3.2.4.3. Soil sample collection and laboratory analysis 

 
Nutrients in soil solution are readily plant-available. In that case, topsoil properties may be used as an 
indication of nutrient availability to plants because most roots are concentrated in the A horizons 
(Lilienfein et al., 2003). Soil samples were collected from Gishwati catchment area by augering at 0-
30 cm depth. These were analysed in the PASI laboratory, Faculty of Agriculture at the National 
University of Rwanda (NUR) for the following determinations: pH water and pHKCl with a ratio of 
1:2.5 (pHw), organic carbon (Org.C) using the Walkley-Black method, available P (avail.P) using the 
Bray-1 method, exchangeable bases (exch.B) using the ammonium acetate percolation method, 
exchange acidity (Exch. Ac.) using an unbuffered KCl solution. All these methods are described in 
(ABOS-AGCD, 1983). The same methods were used to analyze the soil chemical properties in CPR 
project. 
 

3.2.4.4. Relations of soil fertility to predictive factors 

 
One-way analyses of variance (ANOVAs) were performed on each soil fertility indicator per Soil 
type, Type of change in land use and landscape positions to test whether, the relations investigated 
were statistically significant. Mean values were compared using Duncan test. Duncan test separates 
the means of soil fertility indicator variables at α =0.05.    
 

3.2.5. Soil fertility change interpretation 

 

3.2.5.1. Development of soil fertility index (SFI) 

 
The development of an integrative index of soil fertility (SFI) was utmost important to capture the 
variability of individual indicator of soil fertility. Once we had the most dynamic soil variables, the 
next task was to integrate them into a value that indicates at once the maximum variability both in 
space and time. This index gives an explicit indication of soil fertility that can not be easily seen using 
each soil property.  
 
Probabilistic model are becoming increasingly important in analyzing the huge amount of data being 
produced by different scale, methods or different laboratory analysis. The integration involved 
transformation of each observed MSFI value in scored value (probability value) using thresholds for 
interpretation of topsoil properties of Rwanda (Appendix 11, 12, 13).  This method assumes that the 
indicator is measured according to the standard method for near surface (0-30 cm) (Mutwewingabo et 
Rutunga, 1987), and that sampling design was appropriate for the area to be assessed (Andrews et al., 
2004).  
 
The conceptual model (Figure 3-5) summarizes the steps for soil fertility index development (SFID). 
In this framework, measured MSFI values were transformed into unitless score (0 to 1) using 
thresholds of soil properties classes of Rwanda and probabilistic approach. Each soil fertility indicator 
was assigned its probability that it falls into very high fertile soil.  An indicator score of 1 represent 
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the highest potential function for the production system. That means the indicator is nonlimiting to 
soil productivity function. 
The developed SFI index was defined as the probability that any type of soil with its measured soil 
properties (MSFI values in this case) falls into good fertile soil. SFI vary from 0 to 1 which means 
from extremely low fertile soil to very high fertile soil (Equation 10). 

10 ≤≤ SFI                         (10) 
Each MSFI was assigned a score equivalent to its probability of falling in very high fertile soil (i.e. 
SFI=1) by using the threshold and soil property classes developed by Mutwewingabo et al. (1987). 
The classes (c) must be mutually exclusives according to the axiom of the probability in general. The 
number of classes leads to the probability assigned to each class as expressed in equation 11. 

c
c n

p
1=                          (11) 

Where, pc represents the probability the class c, and nc the number of classes. The score (Sci) given to 
each soil class depend on its position in class’ range and pc as in equation 12: 

cji pcSc ×=                         (12) 
Where, cj represents the class number which varies from 1 to j depending on the amount of classes for 
the MSFI interpretation (refer to appendices 11, 12 and 13). Note that for all MSFI, “More is better” 
except for Al where “Less is better”. 
The scored indicators were combined to form a single index value reflecting soil fertility index (SFI) 
of each sample site. This index value is considered to be an overall assessment of soil quality of a 
given site. SFI is an additive index and it is accomplished by summing the scored value for each soil 
fertility indicator, dividing by the total number of indicators and then multiplying by 10 (Eq.10): 

101 ×
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                        (13) 

Where Sci represents the scored MSFI indicator value and N is the number of indicators of MSFI. The 
data was multiplying by 10 to provide index values in range (1 to 10 rather than 0 to 1). Andrews et al, 
2004 found to be more amenable for producers and others potential users. 

 
Figure 3-5: Conceptual model of soil fertility index (SFI) development after Andrews et al. 
(Karlen et al., 2003)  
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3.2.5.2. Index of Soil fertility deterioration (DI) 

After that SFI was determined for each sample point, the soil deterioration index (DI) was computed 
on the assumption that the status of soil fertility under pine plantation, pasture and agriculture were 
once the same as that of adjacent soil under natural forest prior to conversion. The difference between 
each value of SFI under pine plantation, pasture and agriculture were compared to baseline mean 
value of SFI under natural forest. The deterioration index (DI) was calculated as deviation of SFI 
values from SFI of Natural forest (SFINF) to other land cover type (SFILCi) under a specific soil type. 
Eutrandepts were used as one of representative soil type in Gishwati study area. 

NFLC SFISFIDI
i

−=                        (14) 
 

3.2.5.3. Geostatistical analysis 

The development of the cross variogram model for soil fertility might be very beneficial for Gishwati 
study area if prediction is sufficiently accurate. For instance in Agriculture, the predicted map from 
developed SFI model might be a tool for monitoring and implementing site specific management. 
Secondly, in management goal, SFI define at once the situation that happened instead of what 
happened to individual parameter which could be difficult to understand because sometimes they 
contradict each other. In this case SFI average the behaviour of its predictors into a common 
behaviour of soil fertility across the study area.  
 
1) Spatial prediction of SFI using smoothing Kriging (OK) 
Kriging is one of interpolation techniques that use spatial correlation between observation points. 
With OK, the trend is modelled as a function of the location (Hengl et al., 2004b). There are a number 
of considerations in geostatistical analysis including normality, anisotropy, and semivariogram model 
selection. While normality is not a requirement for developing the semivariogram or kriging, the 
classical linear Kriging predictor (i. e. OK in this case) is not the best predictor if the spatial process is 
not Gaussian (Mueller et al., 2001). 
 
The interpolation of target variable (in  this case SFI) is based on assumption that the original process 
is a diffusion process (Lark and Ferguson, 2004; Webster, 2000). It varies continuously so that if the 
target variable takes values zj and zi at locations xi and xj, respectively, then all intervening values 
between these two must occur at locations between xi and xj. The commonest model, which we used 
for Kriging, is the Gaussian diffusion process. Since SFI data more or less resembled to Gaussian 
distribution, the nonlinear transform to achieve normality was not necessary. A variogram is estimated 
using Matheron’s estimator (1965). 
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Where, Z (xi) is the property value (SFI in this case) at a given location (xi), h is lag (both distance and 
direction), Mh is the pairs of observation points, separated by h; and �ˆ (h) is semi-variance at lag h. 
Kriging assumes a certain degree of spatial correlation between the input point values. To investigate 
whether SFI values were spatially correlated and until which distance from any point this correlation 
occurs, we used the Spatial Correlation operation in ILWIS. This distance value was then used for the 
limiting distance in point interpolations using OK. 
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2) Spatial prediction using Kriging with ancillary variables  
SFI pair points may be correlated because they are affected by similar processes, or phenomena, that 
extend over a larger area. For instance they may correlate because they are under similar land use or 
under the same soil type. 
 
In this case, a mixed approach is used to explain what can be explained by knowledge of soil-forming 
factors (as expressed in CLORPT model), and then see if the remaining unexplained variability has 
any geostatistical relation which can be used to improve the prediction. Regression Kriging (RK) or 
Kriging with External Drift (KED) use a CLORPT variable as predictor of soil attribute. However, 
both KED and RK has the same mathematical form and yields the same predictions (Hengl et al., 
2004b). The impact of soil type, land use change and landscape on soil fertility variation in the study 
area were investigated using analysis of variance procedures. Most of the soil fertility variables varied 
between soil types, type of change in land uses and landscape positions. Therefore, the interpolation 
involved them in the model of SFI trend by using stepwise regression procedures and the residuals 
were extracted and fitted in geostatistical model.  
 
We used DEM, Slope gradient (S), Topographic Wetness Index (TWI), Stream Power Index (SPI) and 
Sediment Transport Index (STI) as predictors. They were first linearly stretched to a range of 0-255 to 
give each map equal contrast. To account for multicollinearity, a factor analysis prior to regression 
analysis was applied to produce the soil predictive components (SPCs) using ILWIS. The use of 
standardised principal component instead of the original terrain variable improves the prediction for 
soil-landscape modelling (Hengl et al., 2004b). The SPCs values were then extracted for SFI locations 
for the stepwise regression modelling. The regression model of SFI as function of SPCs was then 
generated.  
 
SFI Point data were imported to an ILWIS table with XY and SFI coordinates. We first estimated the 
values of predictors (SPCs) at the measured SFI locations and we fitted the trend (SFI trend) by using 
an obtained regression model. Secondary, we estimated the residuals at sampled locations using: SFI 
residual as difference between measured SFI and SFI trend using ‘SFI-MapValue (SFI trend, 
Coordinate)’ syntax. Third, Gaussian variogram model of SFI residual was fitted and SFI residual was 
interpolated using OK (interpolated SFI residual). The fitted trend and residuals was then added back 
together using ‘predicted SFI=SFI trend +interpolated SFI residual’. All those calculation was done 
using ILWIS command line (for detail refer to http://spatial-analyst.net/RKguide.php). 
To improve the SFI prediction, SMUs was used to stratify SPCs in Stepwise regression by using 
WLS. This technique adds the contribution of soil type on SFI to SPCs explanation. Then RK 
proceeded in ILWIS as described in previous paragraph. 
 
3) Spatial prediction of soil fertility deterioration over 25 years  
 The spatial distribution of soil fertility deterioration index (DI) was computed as deviation of SFI 
from SFI before deforestation to the current situation of soil fertility. In this case Type I method is 
made possible through the predicted maps because it gives on opportunity to monitor the change in 
soil fertility at a given location. This deterioration reflects the human-induced soil fertility loss in 
Gishwati study area and it is expressed as in equation 16: 

if tyxtyxyxtyx SFISFItSFIfDI ),(),(),(),( ),( −==        (16)  
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Where, DI represents the current deterioration index at x, y location, 
itysSFI ),( the soil fertility index 

at time reference (ti) and 
ftysSFI ),( the soil fertility at current time (tf).  

 
4) Model quality evaluation 
The evaluation of soil fertility prediction map was done using interpolation and validation sets. From 
200 soil observations (N), 30 observations were randomly selected as validation set (n). The true 

prediction accuracy was then evaluated by comparing estimated values of soil fertility ( )(SFIjz∧ with 

actual observation at validation points )(SFIjz∗  in order to assess a systematic error, calculated as 

mean prediction error (MPE) using Equation (17). 
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And accuracy of prediction, calculated as root mean square prediction error (RMSPE): 
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In order to compare different methods of SFI prediction, the error was then normalized by the total 
variance of observed samples. This is so called the normalized mean square error (NMSE) or relative 
prediction error (Park and Vlek, 2002): 
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Where, S2 is the total variance of SFI index at observed sample. As a rule of thumb (Hengl et al., 
2004b), we considered that a value of relative prediction error (NMSE) close to 40 %  means a fairly 
satisfactory accuracy of prediction. Otherwise, if the value exceeds 71%, this means that the model 
accounted for less than 50 % of variability at the validation points and the prediction is unsatisfactory. 

The goodness of fit was also confirmed by adjusted coefficient of determination 2
aR and Pearson’s 

correlation coefficient (R). Note that 85.02 ≥aR correspond in many cases to the relative prediction 

error of 40.0≤NMSE (Hengl et al., 2004b; Park and Vlek, 2002). 
 
The uncertainty of predicted SFI map was visualized by using predicted error map. The error map was 
computed as the standard error or standard deviation (σ ) of the predicted SFI from measured SFI 
point location (equation 20). 
 

)))((( λγσ ρ +×= � i
hW

i i
                     (20) 

Where, σ is the standard error or the standard deviation of the output pixel estimate, 
i

hρ is the 

distance between the output pixel ρ (i.e. predicted SFI) and input point i (i.e. measured SFI), γ is the 

value of the semi-variogram model for the distance
i

hρ , i.e. the semi-variogram value for the distance 

between the output pixel ρ  and input point i, Wi is a weight factor for input point (i) and λ is a 

Lagrange multiplier, used to minimize possible estimation error (for detail elaboration refer to IlWIS 
user guide). 
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4. Results 

4.1. Characterisation of soil fertility indicators and predictors 

4.1.1. Land Use and Cover change (LUCC) over the 25 years and soil surveys 

 
As shown on the Land cover maps (Figure 4-1) generated using Landsat-5 TM and ASTER, the 
natural forest has been exploited since 1980s. Over the years, people living in surrounding villages 
have often encroached upon and grazed their cattle. As reported by PCFN (Plumptre et al., 2001), 
about 200 km² were converted into pasture and pine plantation. The classified image showed that this 
conversion was done gradually. From 1986, eastern central of Gishwati was already converted to pine 
plantation and pasture. Based on interviews with relevant stakeholders, after 1988, the pasture land 
was extended to south west (Figure 4-2); about 50 km² of natural forest remained in south and 30 km² 
already assigned to military zone in the northern part (Fig. 4-1a). CPR (2002) reported that during soil 
survey, soil profiles were mostly done in the study area in 1983 during the conversion. Some profiles 
were done in natural forest (south), others in pasture, and young pine plantation sometimes mixture 
with crops (example pea nut and potatoes). Refer to the same report; the pine plantation had 3 years 
growth. Due to inaccessibility, only 17 soil profiles were done within the study area especially where 
the natural forest was already cleared (in central) and where there is accessibility to the roads (in 
south west) (Fig.4-1a).  During that time, PENAPE project for potatoes’ production and GBK project 
for livestock were already installed in central eastern part, which was followed by ISAR in 2000 for 
livestock and crops production mostly dominated by Irish potatoes.  
  
The land cover map of 2006 (Figure 4-1b) revealed the actual status of LUC in Gishwati. Between 
1995 and 2000, most of the remained natural forest and degraded areas (mostly occupied by shrubs) 
were converted to agriculture land and farmers were settled in south and north. To the small extent, 
people were settled inside the pasture land, and due to irregular encroachment the central part of 
pasture was then converted for crop production. Only single indigenous trees were remained in the 
parcels for agricultural area and those that were used to divide the paddocks of pasture remained (Fig. 
4-1b). 
  
Note that, the classified LC maps and change detection map fairly reported the land cover change and 
consequently the land use change in Gishwati study area because they represented accurately what 
was observed on the ground and what discussed with major stakeholders. The overall accuracy 
assessment was 83.3% for Landsat-5 TM image of July 1986 and 84.16% for ASTER image of June 
2006. Change detection map was also assessed using the matrix of change and no change, and it has 
revealed 96.4% of accuracy. 
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(a) Situation on 19th July, 1986        (b) Situation on 16th June, 2006 
Figure 4-1: Maps showing Land Covers of Gishwati in 1986 and 2006 
 

 
Figure 4-2: Change detection map showing the change in land cover over 25 years 

Informal discussion with the farm owners  in 
northern Gishwati (Arusha) showed that crop 
fields younger than 10 years since converted 
from the natural forest are cultivated mainly 
with, potatoes, maize and legumes (i.e. carrots 
cabbage etc.), and without fertilization due to 
high initial soil fertility. However, farmers in 
southern Gishwati (Karumbi) claimed that crop 
yields decline, as the fields get older unless 
fertilizers are applied. 
 
Mixed cropping as well as rotation of legumes 
and potatoes with cereals on the out fields is not 
commonly practiced in Gishwati.  
There was significant soil erosion in the 
agriculture fields (25 to 50% coverage). All the 
visited fields have got   more or less similar 
management except some minor differences in 
the soil protection measures.  
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4.1.2. Variation of soils and soil samples locations  

 
The map of great group soils (Figure 4-3) showed the variation of soils occurring in Gishwati study 
area. Eutrandepts are dominant soils in the area and lie from north to the central part of Gishwati.  
Those are less weathered soils developed on volcanic materials and Andaquepts occupy valleys.  
Dystropepts are found in east and they are developed on volcanic materials deposited on top of 
granites. Argiudolls are dominant in north-eastern part and are well drained soil developed on 
volcanic material deposited on acid material (granites). Humitropepts and Eutropepts are found in 
central and east and they are moderate weathered soils characterized by micas. In the south, 
Tropohumults and Tropudalfs are dominant soils. Thus more weathered soils are developed on 
mixture of acidic material (granites) and basic materials (dolerites or diorites).  
 
As an indicator of soil fertility, out of 14 great group soils (Fig.4-3), 200 soil samples were distributed 
in 8 major of them. Soils that are found in small extent were not sampled. Those are Tropudults (in 
south), Hapludolls, Dystropepts, Tropaquepts and Troporthents (in north), and Dystrandepts in the 
central of the study area. 

Table 4-1: Great group soils of Gishwati and 
series that are represented 
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Figure 4-3: Great group soils map of Gishwati study area and sample locations  
 

4.1.3. Landscape complexity of Gishwati catchment area  

  
Gishwati catchment ranges in altitude from 2025 m to 3002 m above sea level (Figure 4-4). Muhe is 
known as the highest mountain in the study area which account 3003 m. The table 4-2 gives an 

Great group Soil Series combined 
Andaquepts MA 

Argiudolls BRI, HSA 

Dystrandepts MAY, RUE 

Dystropepts KRO, TRE 

Eutrandepts GKB,MHR, TMA 

Eutropepts GIR, RAV 

Hapludolls GI, GO 

Humitropepts 
BWI, GKK, MAH, RK, RNB,  
MUE 

Tropaquepts RM 

Tropohumults 
GSV, MUK, NBO, NBU, RAB,  
RAM, RKO, SOV 

Troporthents RKR 

Troposaprists RZ 

Tropudalfs HNK, MB, NAR, RH 

Tropudults KAR 

See appendix (2) for the description of soil 
series 
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indication of terrain characteristics in study area. There is no distinction in use of land in term of 
elevation. However, at higher elevations especially on upper part of the mountain, land cover is 
mainly forest with Pine or Acacia in the area allocated for forest and livestock. Grassland is located 
on gentle slope at moderate elevation. It appears that agriculture and settlement was not previously 
planned to be in the area. This is shown by agriculture lands that are located in very steep part of the 
hills.  Terraces mostly progressive and agroforestry species (Clerodendrum: Umukuzanyana) are used 
to protect the land from erosion in agriculture land especially in north and south part of Gishwati. As 
discussed with peoples at neighbouring of the remaining natural forest, areas under degraded natural 
forest are not the ones that are located in very steep part or inaccessible area, but because of the local 
authority stopped  them to expand their activities in that area. This found to be consistent with terrain 
analysis. The natural forest remains in south between 2000m and 2400m whereas in the north, it is 
located between 2400 m and 2600 m. 
 

Table 4-2: Statistics’ values of terrain parameters 
included in soil-landscape modeling 

  
Figure 4-4: Improved digital elevation map (DEM) of Gishwati catchment area 
 

4.2. Selection of  the Minimum Soil Fertility Indicators 

 
The computation of correlations between soil properties measured from 1981 during CPR project 
aimed to choose minimum soil fertility indicators (MSFI) for soil fertility change mapping and 
modelling. As revealed (Table 4-3), the degrees of association among the 14 soil properties of the 
topsoil using 1300 soil samples from CPR dataset is explained by nonparametric correlation value 
(Spearman correlation)  and the level of significant. Except for a high correlation between OC and 
Bulk density and porosity (r=0.79), only low to moderate correlations were observed among physical 
and chemical soil fertility indicators (r=0.00 to 0.48). This could be attributed to high variability of 

Terrain 
parameters 

Mean Median Std. Dev 

DEM (m) 2541.63 2575.0 179.27 
Slope (%) 36.25 35.7 20.62 
SPI 924.85 901.72 531.89 
STI 13.75 11.25 12.87 
TWI 5.63 5.24 1.44 
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chemical properties within the same range of physical properties in the same type of soil. High 
correlations were also observed among chemical soil variables such aluminum and hydrogen acidity 
with pH (r=0.52 to 0.81).  In contrast, there is low correlation between organic carbon and nutrients 
and exchange acidity as well. So far, the association between OC and CEC (r=0.37) is due to the fact 
that in weathered soils, the source of CEC is organic matter rather than clay content. To check it, the 
partial correlation with controlling for Clay was computed, and revealed that out of 37 % , 21% is 
from OC  (r=0.21). Note that except porosity with nutrients (P, Ca, Mg), most of the associations were 
significant (P<0.05). 
 
Table 4-3: Matrix of nonparametric correlations of 14 soil fertility indicators (SFI) in the topsoil 
from Rwanda (Spearman correlation: r). 
 
SFI CEC pHW pHKCl OC P Ca Mg K Al H 
Clay (%) 0.17* -0.10* -0.08 0.34** 0.02 0.09 0.11* 0.11* 0.18* 0.11* 
Silt (%) 0.27** 0.01 0.02 0.32** -0.01 0.13* 0.12** 0.11** 0.07* 0.00 
Sand (%) -0.34** 0.04 0.00 -0.48** -0.01 -0.20** -0.21** -0.18* -0.15* 0.06* 
Porosity (%) -0.42** -0.23* -0.19* 0.79** -0.04 0.07 0.00 0.17* 0.39** 0.12 
CECcmol+.kg-1 - -0.02 -0.01 0.37** -0.03 0.13* 0.12* 0.10* 0.11* 0.01 
pH in Water          pH - 0.89** -0.19* 0.29* 0.76** 0.76** 0.54** -0.81** -0.64** 
pH  in KCl                         pHKCl - -0.13* 0.26** 0.72** 0.71** 0.52** -0.76** -0.64** 
Organic carbon (%)                            OC - 0.09 0.09 0.68* 0.21* 0.34** 0.23** 
Available Phosphorus (ppm)                                P - 0.27* 0.27* 0.33** -0.27* -0.22* 
Exchangeable calcium (cmol+.kg-1)                                    Ca - 0.92** 0.60** -0.76** -0.56** 
Exchangeable Magnesium (cmol+.kg-1)                                                Mg - 0.66** -0.76** 0.56** 
Exchangeable potassium (cmol+.kg-1)                                                                    K - -0.43** 0.32** 
Aluminum acidity (cmol+.kg-1)                                                                                          Al - 0.78** 
Hydrogen acidity (cmol+.kg-1)                                                                                                            H - 

**: Correlation is significant at the 0.01 level (P<0.01) *: Correlation is significant at the 0.05 level (P<0.05) 

 
Principal Component Analysis (Table 4-4) was then computed using 14 original variables and it 
extracted 4 major components that explain 68.9% of total variation. These showed the amount that 
each soil property contributes to each component. The first PC is almost a mixture of soil chemical 
properties except OC. The second PC has a large contribution from particle size (clay and sand), 
organic carbon and porosity. Yet, CEC moderately contributed to the second PC. This component 
largely explains the soil structure, water and nutrient holding capacity of the topsoil of Rwanda.  Clay 
content can also explain variations in soil fertility because it may enhance the understanding of the 
source of acidity. In tropical rain conditions, the silicates leach to the subsurface and oxides of 
aluminum and other oxides (Fe, Mn) remain in the topsoil. Such soil is mostly characterized by high 
clay content especially Kaolinite type (1:1). In addition, sand content has a negative association to 
others soil variables (table 4-3). This negative relationship explains how increase of sand in topsoil 
decreases nutrients held in topsoil in contrast with clay content. The third and forth PCs poorly 
explain variation of soil properties than the two first PCs (PC value 5.0≤ ). PCA results meet the 
relationship earlier observed with Spearman correlations analysis. 
 
 
 



MAPPING AND MODELLING LANDSCAPE-BASED SOIL FERTILITY CHANGE IN RELATION TO HUMAN INDUCTION 

 

 30 

Table 4-4: Loadings of the first four components (PC) from PCA of 16 SFIs in topsoil of 
Rwanda 
  

Principal Components  Topsoil properties 
  1 2 3 4 
Clay (%) 0.197 0.743 -0.434 0.032 
Silt (%) 0.366 0.150 0.711 0.080 
Sand (%) -0.407 -0.764 -0.053 -0.079 
pH in water 0.862 -0.345 0.024 0.106 
pH in KCl (1N) 0.803 -0.331 0.115 0.133 
Organic Carbon (%) -0.036 0.706 0.038 0.129 
Available Phosphorus (ppm) 0.597 -0.215 0.339 0.224 
Exch. Calcium (cmol+/kg) 0.761 0.200 -0.335 -0.027 
Exch. Magnesium (cmol+/kg) 0.710 0.191 -0.471 -0.103 
Exch. Potassium (cmol+/kg) 0.531 -0.030 0.048 0.290 
Aluminum acidity (cmol+/kg) -0.621 0.485 0.211 0.237 
Hydrogen acidity (cmol+/kg) -0.266 -0.019 -0.235 0.850 
CEC (cmol+/kg) 0.374 0.456 0.287 -0.213 
Porosity (%) 0.068 0.848 0.223 -0.030 
Eigen value 4.050 3.172 1.396 1.030 
Proportion of variance (%) 28.928 22.660 9.972 7.356 
Cumulative proportion (%) 28.928 51.588 61.559 68.915 

 
 
Firstly, eleven soil attributes showing the highest component score (PCA value ≥ 0.5) for the two first 
principal components were subjected to soil fertility variability analysis. These soil attributes include 
exchangeable bases (K, Ca, and Mg) and available phosphorus for ‘nutrient dynamics’, pH, aluminum 
acidity (Al) for ‘solute leaching and acidification’, and particle size (clay and sand), porosity and 
organic carbon for ‘soil structure, air and water condition’.  
 
Secondly, considering economical part, organic carbon, porosity and particle size were grouped 
together as one indicator of soil stability because there had equal explanation to the variability (refer 
to second PC, PCA value range between 0.7 and 0.8). OC was chosen as representative of that group 
because it can satisfactory explain the soil structure in topsoil of Rwanda. It is cheaper and consumes 
less time in data collection compare to porosity and particle size.  
 
Therefore, using pH, P, K, Ca, Mg, Al and OC as minimum soil fertility indicators (MSFI) would 
yield results similar to those using all 14 soil variables that were used in PCA, since the selected soil 
attributes have the highest component score within the major principal components.  
 

4.3. Change in soil fertility over 25 years 

 
The significant change was computed using Type I data of 17 samples points available in the study 
area. Most 17 revisited profiles were located in pasture land and pine plantation especially in area 
where the conversion was done since 1980s. As seen in boxplots (Figure 4-5), the variability within 
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each year (length of the box) and the differences between 1981 survey and 2006 measurements 
(median) were partially represented. In general, the soil fertility indicators changed significantly 
( 05.0≤P ) as revealed by comparison of the means using one-way ANOVA (appendix 7). The average 
pH which 3.8 in KCl (1N) become 3.4, Al change from 2.6 to4.5 cmol+/kg, OC (5 to 5.4%, P (42.5 to 
32.2 ppm), K (0.7 to 0.5 cmol+/kg), Ca (6.7 to 4.7 cmol+/kg) and Mg (2.09 to 1.07 cmol+/kg). 
However there was a high variability within each MSFI (see the standard deviation values in appendix 
4 and 5). This variability was confirmed by positive skewness remarked for pH and exchange bases 
while the negative skewness was found in organic carbon (OC), exchange acidity (Al, H) and 
available phosphorous (P). In addition to the differences in soil of 1981 and 2006 between different 
Land Uses (LU) for the revisited points, the changes in soil fertility remarked could be also explained 
by the variability in lithology and landscape as well. There was a similar trend in values (North-
South) but with only 17 samples the change had limited explanation. Type II data was processed for 
detailed explanation. 
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Figure 4-5: Boxplots of each soil fertility indicator by 25 years and the probability of significant 
difference using one-way ANOVA.  
 
One-way ANOVA (Table 4-5) showed that this difference was significant (P<0.05). Organic carbon 
decreased from 7.10% to 6.5% which was considered to be a significant change. Exchange acidity 
almost doubled and it might affect the presence of exchangeable bases which decreased significantly 
especially Ca and Mg. However, there was a slightly decrease in available phosphorous. Globally, the 
decrease in MSFI values could be attributed to overland flow which took place after deforestation and 
exposition to erosion particularly in south and north part of the study area but is further explained in 
the next section (4.4). Refer to the standard deviation (Appendices 4 and 5); there were high 
variability in measured MSFIs due to high variability in soil types, Land Uses, and topography as 
well. This is also confirmed by further analysis (section 4.4).  
             

4.4. Spatial variation of  MSFI 2006 in relation to Ancillary Variables 

 
The actual state of soil fertility was highly variable (appendix 5) and this variability could not be 
explained without any reference to the main use of land, with regard to the complexity of the 
lithology, and topography as well. The pH in water ranged between 3. 12 to 7.03, OC (0.2 to 8.1%), 
Al (0.0 to 9.85 cmol+/kg), P (1 to 125.23 ppm), K (0.6 to 3.7 cmol+/kg) Ca (1.04 to 24.60 cmol+/kg) 
and Mg (0.12 to 8.38 cmol+/kg). Except for organic carbon, the general decrease of MSFI values 
moved smoothly from north to south following mainly the change in soil type, secondly land 

05.0≤P             05.0≤P          05.0≤P       1.0≤P         05.0≤P              05.0≤P          05.0≤P
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conversions, and from valley to summit as follow (Fig. 4-6); but this relationship is analysed in next 
sections (4.4.1- 4.4.3). 
 

          
        
Figure 4-6: Post plots of the minimum soil fertility indicators (MSFI) using 200 soil samples 
measured in the Gishwati study area   
 

4.4.1. Variation of MSFI in relation to soil types 

 
As shown by boxplots (Figure4-7), the decrease in nutrients (P, K, Ca, Mg) was from less weathered 
soils developed on volcanic materials in north (Andaquepts, Eutrandepts) and on a mixture of 
volcanic and acidic material in north-east (Argiudolls) passing through the moderate weathered soils 
(Humitropepts and Eutropepts) and ends up to more weathered soils in the south (Tropudalfs and 
Tropohumults) where human activity had large influence. Tropudalfs and Tropohumults are 
developed on mixture of acidic material (granites) and basic materials (dolerites or diorites). 
However, Tropudalfs were also found in North West in volcanic material. The observations that were 
taken in such soils appeared in the box as unusual (e.g. nr 168 and 169). For all MSFI, there was high 
variability within soil type. This was shown by the position of the median lines. 
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(a) pH in Water (1:2.5)        (b) pH in KCl 1N (1:2.5)  (c) Organic carbon (%) 

Andaquepts

Argiudolls

Eutrandepts

Eutropepts

Hum
itropepts

Troposaprists

Tropohum
ults

Tropudalfs

Soil types

0.00

2.00

4.00

6.00

8.00

10.00

A
lu

m
in

iu
m

 a
c

id
it

y
 (

c
m

o
l+

/k
g

)

137

 

Andaquepts

Argiudolls

Eutrandepts

Eutropepts

Hum
itropepts

Troposaprists

Tropohum
ults

Tropudalfs

Soil types

0.00

5.00

10.00

15.00

H
y

d
ro

g
e
n

 a
c
id

it
y
 (

c
m

o
l+

/k
g

)

194

59

 

Andaquepts

Argiudolls

Eutrandepts

Eutropepts

Hum
itropepts

Troposaprists

Tropohum
ults

Tropudalfs

Soil types

0.00

20.00

40.00

60.00

80.00

100.00

120.00

140.00

A
v

a
il

a
b

le
 P

h
o

s
p

h
o

ru
s

 (
p

p
m

)

82

 
(d)Aluminum acidity (cmol+/kg) (e) Hydrogen acidity (cmol+/kg)     (f) Avail. Phosphorus (ppm) 
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Figure 4-7: Boxplots showing MSFI variation in different type of soils 
 
Although the difference were highly significant for exchangeable bases (P<0.01), exchange acidity 
(Al, H), organic carbon and available phosphorus were not (p>0.05). They were not associated to soil 
types (Appendix 8). Separation of means by Duncan test distinguished five subsets of pH in relation 
to soil types (Table 4-5). Tropudalfs had lower pH (4.52) than others, Argiudolls and Andaquepts 
were the highest in pH.  Although aluminium acidity was not highly different in soil types, Duncan 
separated its trend into three subsets. Andaquepts had lower aluminium acidity and Tropudalfs were 
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the highest in aluminium toxic. Exchangeable bases (Ca and Mg) were separated into 4 groups and in 
general, Troposaprists were the lowest loaded in cations than others (0.86, 4.21 and 0.49 cmol+.kg-1) 
respectively for K, Ca and Mg). Andaquepts were registered as the highest (1.75, 18.8 and 56.06 

cmol+.kg-1) in bases content and followed by Argiudolls (1.19, 12.91 and 2.88 cmol+.kg-1). 
 
Table 4-5: Multiple comparison of MSFI means by soil type and separations using Duncan test 
 
 Soil Types  pHW

** pHKCl
** OCns Als Hns Pns K** Ca** Mg** 

Tropudalfs 4.52a 3.82a 4.62a 3.69b 4.12a 38.76a 1.01a 5.29a 1.22ab 
Troposaprists 4.59ab 3.94ab 6.09a 3.05ab 4.42a 31.05a 0.86a 4.21a 0.49a 
Humitropepts 4.68ab 3.98ab 4.73a 2.92ab 2.92a 40.20a 0.91a 6.78ab 0.96ab 
Tropohumults 4.71ab 4.00ab 4.85a 2.99ab 3.21a 40.39a 0.83a 6.37ab 1.25ab 
Eutropepts 4.91ab 4.26ab 5.38a 2.60ab 2.16a 45.31a 1.11a 10.10ab 1.55ab 
Eutrandepts 5.14abc 4.44abc 5.16a 2.26ab 2.68a 48.29a 1.40a 9.41ab 2.71ab 
Argiudolls 5.58bc 4.84bc 6.04a 1.69ab 3.28a 44.58a 1.19a 12.91b 2.88b 
Andaquepts 6.02c 5.28c 4.62a 0.12a 0.36a 66.62a 1.75a 18.85c 6.06c 

**: Very significant difference ( 01.0≤P ); *: Significant difference ( 05.0≤P ); s: Significant trend ( 1.0≤P ) 
ns: No significant difference ( 05.0≥P  ); a, b and c represent the subsets at α =0.05. 
 

4.4.2. Variation of MSFI in relation to Land Use change 

 
The boxplots (Figure 4-8) showed the variability of soil fertility indicators between types of change in 
land use. As revealed, in contrary to exchange acidity (Al, H), the pH, organic carbon, and nutrients 
(P, K, Ca and Mg) decreased from no change (natural forest) to double change (pasture to cropland) 
passing through one change (natural forest to pasture or to cropland). For all MSFI, there was high 
variability within type of change. This means that land use alone is not the source of soil fertility 
variation in the study area. There are other factors that were also acting to soil fertility status. The 
variability was also explained by the skewness values for each MSFI variable (appendix 6).   
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Figure 4-8: Box plots showing MSFI variation in different type of change in land use 
 
Multiple comparisons using one-way ANOVA (Table 4-6) showed that the type of change in Land use 
had a great impact on soil fertility ( 05.0≤P ). Most of the soil fertility indicators considered in this 
study varied across the main type of change in Gishwati study area. Duncan test showed that soils 
under change from pasture to cropland had lower pH and nutrients (P, K, Ca and Mg) and higher 
exchange acidity (Al).  Soils under no change where natural forest remained and change from natural 
forest to croplands had lower acidity and consequently higher nutrients content. This could be 
explained by the time of conversion than type of land use. Refer to historical land use reported by 
major stakeholders and image interpretation, the conversion of natural forest being agriculture fields 
was done after 1995 while other areas have been converted into pasture and pine plantation since 
1980. It has discovered that even though the conversion was done at the same time, pasture conserved 
the nutrients compare to pine plantation. Except for phosphorus, pasture had higher nutrients 
compared to pine plantation. 
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Table 4-6: Multiple comparison of MSFI means by type of change in land use and separations 
using Duncan test 
 
 
Type of change   pHw

** pHKCl
** OC** Al** H** P** K* Cas Mg* 

Pasture to 
Croplands 

4.40a 3.82a 3.81a 3.27a 3.20ab 25.38a 0.65a 5.36a 0.69a 

Natural Forest to 
Forest plantation 

4.44a 3.84a 5.64b 4.20a 4.82b 41.68abc 0.79a 6.28a 1.31ab 

Natural Forest to 
Pasture 

4.90ab 4.19a 5.51b 2.54a 2.96ab 36.09ab 1.24a 7.59a 1.59ab 

Natural Forest to 
Cropland 

5.06b 4.33a 4.66ab 2.29a 2.45a 50.36bc 1.15a 8.87a 2.37b 

No change 
(Natural Forest) 

5.07b 4.29a 5.59b 2.90a 3.65ab 57.31c 1.07a 7.67a 2.45b 

**: Very significant difference ( 01.0≤P ); *: Significant difference ( 05.0≤P ); s: Significant trend ( 1.0≤P ) 
a, b and c represent the subsets at groups at α =0.05 

 
The results of analysis of MSFI by land use change revealed that even though the soil type has a great 
relationship with nutrients content, this relation tends to decrease when human activity is intensive. 
This was shown by the fact that phosphorus could not be explained by soil type (Table 4-5) but by the 
type of change in land use (Table 4-6). The same phenomenon was observed on exchange acidity (Al, 
H). The total acidity was highly associated to the type of change than soil type. 
 

4.4.3. Variation of MSFI in relation to Landscape 

 
The pH and nutrients increased from the summit to valley for all different land uses and for all type of 
soils (Figure 4-9). This situation was highly remarked in agricultural area where the silicates and 
bases are washed away by the overland flow and oxides of Al, Fe and Mn in the surface. Most of high 
values were found in drainage lines and sometimes statistically appeared as unusual points. 
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Figure 4-9: Soil fertility indicators for different landscape positions 
 
One-way ANOVA (Table 4-7) revealed that except organic carbon, other MSFI had very high 
significant difference between landscape positions. The lower values of pH were found on summit 
and higher values were found in the valleys. Soils on upper slope and summits had higher total acidity 
(Al, H) than soils in the valley. Nutrients (P, K, Ca and Mg) were highly concentrated in valley than 
upper part of the hills. Except for total acidity (Al, H) that were grouped into three groups, pH, P, and 
Ca were grouped into two groups of means, while K and Mg were not separated into subsets 
according to Duncan test. 
 
Table 4-7: Multiple comparison of MSFI means by landscape and separations using Duncan test 
 
Landscape   pHW

** pHKCl
** OCns Al** H** P** K* Ca** Mg* 

Summit 4.64a 3.98a 5.30a 3.77c 4.16c 39.07a 0.98a 6.22a 1.60a 
Middle slope 4.77a 4.09a 5.02a 2.92bc 3.15ab 36.43a 1.04a 7.66ab 1.70a 
Lower slope 4.89a 4.19a 5.07a 2.21ab 2.92ab 51.31b 1.01a 7.63ab 1.91a 
Valley 5.34b 4.57b 5.07a 1.42a 1.77a 56.48b 1.38a 10.04b 2.49a 

**: Very significant difference ( 01.0≤P ); *: Significant difference ( 05.0≤P ); ns: not significant difference 

( 05.0≥P ); a, b and c represent the subsets at α =0.05 
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4.5. Relationships among soil fertility indicators 

 
The spearman correlations (Table 4-8) revealed dependencies among bases cations (r=0.63 to 0.77), 
but they were strongly affected by Aluminium acidity (r=-0.57 to -0.73). One would normally expect 
calcium to make up the available phosphorus but this was modified in the soils of the study area due 
strongly toxicity of aluminium (r=0.43) which also explains the contribution of acidity to the 
complexity of P by the allophanes (r=-0.29 with Al and -0.31 with H). The correlation between 
organic carbon with total acidity was relatively strong (r=0.41 with Al and 0.42 with H) while it had 
no relationship with Nutrients availability (r=0.08 to -0.16).  
 
Table 4-8: Spearman correlations among MSFI using 200 soil observations points 
 

 MSFI 
pH  
H20 

pH   
KCl OC Al H P K  Ca  Mg 

pH Water - 0.95** -0.23** -0.88** -0.78** 0.34** 0.67** 0.79** 0.73** 

pH   KCl 1N - -0.23** -0.86** -0.78** 0.32** 0.68** 0.80** 0.71** 

Organic Carbon (%) OC - 0.41** 0.42** -0.02 0.08 -0.16* -0.08 
Aluminium acidity (cmol+/kg) Al - 0.86** -0.29* -0.57** -0.73** -0.65** 

Hydrogen acidity (cmol+/kg)                  H - -0.31** -0.58** -0.68** -0.60** 

Available Phosphorus (ppm)                                    P - 0.38** 0.43** 0.41** 
Exchangeable Potassium (cmol+/kg)                                        K - 0.77** 0.63** 

Exchangeable Calcium (cmol+/kg)                                                          Ca - 0.77** 

Exchangeable Magnesium (cmol+/kg)                                                                     Mg - 

** Correlation is significant at the 0.01 level.  * Correlation is significant at the 0.05 level. 
 

4.6. Integration of Soil fertility indicators (MSFI) into index of soil quality 
(SFI) 

 
After scoring MSFI in scored indicators then combined into SFI, by plotting SFI against each MSFI 
(Figure 4-10), the relationship between soil fertility and each soil variable was explained by the 

multiple determination coefficients ( 2R ). The same result showed to what extent each indicator 
contributed to the SFI. As revealed, the exchange bases are the most contributing indicators than 
available phosphorous. The pH was also important than aluminium acidity (Figure 4-10e, d). The 
observed moderate relationship was not only due to the high variability within the indicator 
distribution across the study area, but also the class intervals that are assigned to the soil attribute 
during soil properties interpretation by Mutwewingabo et al. (1987). The fine interpretation classes, 
the better contribution to SFI. This constraint was specifically observed for available phosphorous 
(Figure 4-10d) and aluminium acidity (Figure 4-10e).   
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SFI= 1.0324Ln(Mg) + 6.313     R2 = 0.8093
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SFI = 1.3414Ln(K) + 6.7698   R2 = 0.641
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SFI = 0.0296 P + 5.6089   R2 = 0.4907
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Figure 4-10: Contribution of original MSFI values in soil fertility index (SFI) 
 
Comparison of soil fertility index (SFI) between soil types (Figure 4-11a) showed that SFI was 
significantly greater in Andaquepts than Argiudolls, Eutrandepts, and Eutropepts. The lower values 
were observed for Humitropepts, Troposaprists, Tropohumults and Tropudalfs.  The SFI was also 
significant different between the type of changes. The SFI was higher where there was no change, 
change from natural forest to cropland, and from natural forest to pasture than for soils under change 
from pasture to cropland or from natural forest to forest plantation (Figure 4-11b). FI was highly 
significant different between landscape positions ( )01.0≤P  and Duncan grouped SFI means in two 

subsets at � = 0.05 (table 4-9). Soil fertility increased from summit to valley (Figure 4-11c). In general 
SFI had the similar trend with MSFI, therefore we expect SFI to have similar spatial structure with 
MSFI because the continuous scored MSFI combined into SFI contains the original MSFI information 
of the original data. 
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Figure 4-11: (a) variation of SFI in different soil types, (b) type of change in land use and (c) 
landscape positions  
 

(a) (b) (c) 
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Table 4-9: Multiple comparisons of SFI Means by soil type, land use change and landscape 
 
Soil type**  Land use change*  Topography** 
Great groups SFI  Type of change SFI Landscape position SFI 
Tropudalfs 5.97a Pasture to Croplands 5.43a Summit 6.11a 
Troposaprists 6.00a Natural Forest to Forest plantation 6.06ab Middle slope 6.32a 
Humitropepts 6.06a No change (Natural Forest) 6.41b Lower slope 6.45a 
Tropohumults 6.07a Natural Forest to Pasture 6.53b Valley 7.03b 
Eutropepts 6.74ab Natural Forest to Cropland 6.62b   
Eutrandepts 6.90ab 
Argiudolls 7.13ab 
Andaquepts 8.15b 

**:Very significant difference ( 001.0≤P ); *: Significant difference ( 05.0≤P ) 
a, b  represent the subsets at α =0.05 according to Duncan test 

 

4.7. Deterioration of soil fertility due to land use change 

 
The calculated soil fertility deterioration index (DI) reflects the changes in soil fertility from Natural 
forest conversion to different land uses (Figure 4-12) under specific soil type. One-way ANOVA ( 
table 4-10) revealed that soil quality in Gishwati catchment area is highly deteriorated due to land use 
change (p<0.001). Soil under double conversion from Natural forest to cultivation passing through 
pasture had a significantly negative deterioration (DI= -3.1) than soils under other land use types. This 
area was first converted to pasture in 1980 and after 1995 the same area was converted to agriculture 
due to irregular encroachment in central part of Gishwati which was assigned to be grazing land.   
 

Table 4-10: Mean separation of DI by Duncan test 
 

Type of change***  Mean of DI DI (%) 
Pasture to Cropland -3.1a -31 

Natural forest to Pine Plantation -2.4ab -24 

Natural forest to Pasture -1.6bc  -16 

Natural forest to Cropland -0.7cd  -7 

No change/Natural forest 0.0d  0 
a, b, c, d indicate subsets at α =0.05 ***: Difference between type 

of changes was highly significant (P ≤ 0.001). 

 
 

Figure 4-12: Deterioration index for different types of land use change 
 
Although the conversion of natural forest to agriculture appeared as less deteriorated compared to 
pasture and reforested area, this can be explained by the type of soil as well as the time of land 
conversion than land use type.  The soils that are developed on volcanic material were slowly 
deteriorated compare to those that are developed on granites. Before 1995, this area was natural forest 
protected for military purposes (Plumptre et al., 2001). After deforestation, the area was heavily 
affected by erosion which accelerated the deterioration (DI= -0.7). This is also confirmed by a 
positive deterioration observed in the stream. The deterioration of soil fertility for soils under grass 
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and reforestation with pine plantation were not the same even though the conversion was done at the 
same time (1980). However, deterioration is high in pine plantation (DI=-2.4) than in pasture land 
(DI=-1.6).  
 

4.8. Geostatistical analysis of soil fertility change 

4.8.1. Modelling the spatial structure of Soil fertility across Gishwati study area 

 
The spatial structure soil fertility can be modeled based on the target variable, or also including 
covariates that are expected to influence soil properties. In this case, landscape and soil map were 
found as explanatory variables of soil fertility in the study area (refer to figure 4-11), so they can be 
used as covariates in the model soil spatial dependence. 
 

4.8.1.1. Local structure of soil fertility index (SFI) 

 
The post plot (figure 4-13a) showed the spatial distribution of SFI. SFI exhibited a normal distribution 
(refer to the histogram) which resulted from the transformation of integrated soil fertility indicators 
into score values. This could be one of the advantages of using SFI rather than individual soil fertility 
indicator because it accounted the variability of indicators within the same level of soil fertility by 
assigning to the number of indicator values a unique score value. The score value represents the soil 
fertility level at sampled location (Figure 4-13).  
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Figure 4-13: (a) Post plot of SFI and (b) SFI histogram using 200 sample points of 2006 
 
Prior to fit the model of spatial dependence to the MSFI or SFI data, spatial correlations were 
analyzed and have shown that pairs were correlated differently. Spatial autocorrelation coefficient of 
all MSFI and SFI point (Moran’s value I) varied from 0.263 to 0.722. 
The experimental variograms and fitted models for MSFI and SFI are shown in the figure 4-14. As 
revealed by the fitted exponential variogram model to pH data (Figure 4-14a), there was less 
unexplained variation of pH in the study area (Nug=0.1). Other variation could be explained by the 

H 
M 
L 

(a) (b) 



MAPPING AND MODELLING LANDSCAPE-BASED SOIL FERTILITY CHANGE IN RELATION TO HUMAN INDUCTION 

 

 42 

model of local structure and therefore pH was strongly explained by the local structure. This strong 
structure was also revealed by the high spatial correlation between pH pair points (I=0.568). This was 
also observed for Base cations (K, Ca, and Mg) but they exhibited a diffusion process (Gaussian 
model) while pH showed an increasing spatial variation. They were spatially correlated (I=0.445 for 
K), (I=0.549 for Ca), and (I=0.722 for Mg) and smaller nuggets (0.31 for K, 9 for Ca and 1.1 for Mg) 
indicating that the sampling scheme used resolved most of the spatial variation in base cations and 
pH. However, base cations yielded high residuals compare to pH (Figure 4-14c, d, and e) which 
meaning that the local conditions had a great impact on nutrients variability within smaller distance 
than on pH. The closer spatial structure observed among base cations were supported by the strong 
relationship observed among themselves in the previous statistical analysis (r=0.63 to 0.77). 
 
OC revealed its own spatial structure (Figure 4-14g). Spatial correlation (I= 0.294) included in OC a 
short range of dependence (R=3.5 km) whereas other MSFI had a large range structure (about 6 km). 
The short range occurred due to the historical land uses and related management, which included the 
division of entire area into sub-regions (refer to land cover map 2006 in the figure 4-1b) each having 
its own use (ether crop production, livestock or pine plantation).  
 
Other similar cases were observed for available phosphorous (P) and aluminum acidity (Al).  The 
higher nuggets were observed indicating very high unexplained variations in local structure (Figure 4-
14e and f); and spatial correlation was lower in both elements (I value was 0.263 for P and 0.288 for 
Al). Such spatial behavior remarked for both P and Al confirmed the lower explanation from local 
ancillary variable such as lithology of the area (in this case refer to soil type). However, the latter 
probably reflected gradual difference in P and Al due to elevation (refer previously to landscape 
positions). There was very significant difference in P or Al contents from the valley floor to the 
mountain summits, indicating that erosion could to some extent in controlling variability process. 
Therefore, predicting Al or P may result the higher prediction error when compared with pH or base 
cations, due to the higher an explained variation in the model of spatial dependence.  
 
The more we analyzed the local structure of each MSFI, the complex and sometimes contradictory 
spatial structure was revealed, indicating the weakness of each MSFI in predicting soil fertility of the 
study area. Some revealed the cluster at local condition (e.g. OC) or diffuse process (base cations), 
and others unexplained structure (Al, and P). This resulted to the transformation of original values in 
a probability value (SFI) that composites all behaviors into one and explain at once soil fertility of the 
investigated area. 
 
The composite SFI (Figure 4-14h) yielded the spatial correlation in the middle of the Moran’s value of 
the MSFI (I=0.519) and showed that spatial dependence reduced after 6 km distance (refer to the 
range parameter of the model). A half unit of soil fertility was not explained by the local structure 
(refer to the nugget =0.5). This behavior was not because of large scale drift but rather because of low 
variability in SFI within low distance along Gishwati catchment area. The explanatory variables such 
as parental material and management of the land are almost similar within smaller distance. 
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Figure 4-14: Variogram models of indicators (MSFI) and resulted soil fertility model (SFI) 
 
As result, we chose SFI for prediction purposes and further analysis of soil fertility because it is a 
satisfactory representative of the MSFI both in structure and content. Secondly, it accounts the noises 
observed in each MSFI models. With SFI index, we expect to achieve similar and better results than 
the results that would be aimed using each MSFI indicator.  
 

4.8.1.2. Models of soil fertility structure including landscape 

 

Detailed hillslope characterization and modelling of digital terrain and soil fertility relationships is a 
key to understanding the contribution of topography because they often point to the spatial 
distribution of significant processes such as weathering and erosion. Thus, one of our results was 
development of explicit landscape-based soil fertility model that can be used to improve the prediction 
of soil fertility along the Gishwati catena. As shown in table 4-11, DEM, slope gradient, stream power 
index (SPI), sediment transport index (STI) and topographic wetness index (TWI) were used to 
produce soil predictor component using factor analysis methods. 
 
Table 4-11: Factor analysis matrix of landscape predictors  

• SFI (h) 
___0.5Nug (0) + 0.8Gau (6000) 

• OC (g) 
___0.5Nug (0) + 1.2Sph (3500) 

• Ca (d) 
___9Nug (0) + 18Gau (5800) 

• Mg (e) 
___1.1Nug (0) + 1.5Gau (4500) 

• Al (f) 
___4.9Nug (0) + 1.0Gau (6000) 

• pH_KCl (a) 
___0.1Nug (0) + 0.43Exp (6000) 

• P (b) 
___490Nug (0) + 190Gau (6000) 

• K (c) 
___0.31Nug (0) + 0.32Gau (6000) 
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Terrain parameters   Soil predictive 

components (SPC) DEM Slope SPI STI TWI Variance (%)  
per band 

Cumulative 
variance (%) 

SPC1 0.454 0.483 0.486 0.461 0.333 74.38    74.38 
SPC2 -0.185 0.372 0.367 0.007 -0.832 16.26    90.64 
SPC3 -0.697 -0.019 -0.076 0.703 0.118 7.25    97.89 
SPC4 0.517 0.421 -0.286 0.541 -0.425 2.08    99.87 
SPC5 -0.080 -0.671 0.736 -0.024 0.041 0.03 100 
 
The results of the factor analysis showed that there is an overlap in information and that the data can 
be reduced. The first four SPCs (Figure 4-15) accounted for 99.87 % of the total variation in the bands 
(74.38%, 16.26%, 7.25% and 2.08%). SPC1 as the main component was explained by almost equal 
variation in DEM, Slope, SPI, CTI and TWI. SPC2 accounted mainly for the variation in TWI, slope 
and SPI, while the third component accounted for DEM.  As SPC1, the fourth SPC was also explained 
by equal mixture of DEM, STI, Slope, TWI, and SPI. Note that SPC4 revealed an opposite trend of 
TWI and SPI with DEM, ST, and slope compare to SPC1. The fifth accounted for Slope and SPI.  
 

 
Figure 4-15: First four soil predictive components from terrain parameters 
 
Note that factor analysis did not account only for the multicollinearity between terrain parameters but 
also the skewness in the original predictors. 
With CLORPT approach, the more regional soil fertility behaviour was explained by multiple 
regression functions of soil fertility (Equation 20) derived from the two first soil predictive 
components (SPCs).  
 

SFI trend = 5.2 + 0.006SPC1 - 0.005SPC2  ( 2
aR  = 0.12,)                              (21) 

Although SPCs appeared to have a weak relationship with SFI, still this association was very 
significant ( 001.0≤P ). 
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Figure 4-16: Gaussian model of SFI residuals 
 

4.8.1.3. Models of soil fertility structure including both soil type and landscape  

 
Although landscape has been considered to be strong in prediction of soil attributes, this consideration 
tend to decrease when there is other factors that are acting in the process. This is the case of soil 
fertility which not only depends on landscape but also on local lithology. Previous tests have shown 
that there was very high difference in SFI between soil types. Soils that are developed on volcanic 
material were not degraded at the same rate with soils that are developed on acidic material even 
though they have received the same local management. 

 SFI trend =4.57+0.007SPC1-0.006SPC2-0.003SPC3 ( 2
aR  = 0.25, 001.0≤P )                (22) 

 

 
Figure 4-17: Gaussian model of SFI residuals after stratifying SPCs by SMUs 
 

4.8.2. Comparison of models in prediction of soil fertility   

 
The developed models were then used to interpolate SFI point observation. The predicted SFI maps 
(Figure 4-18) revealed that a part from the natural environment factors that used to develop the 
models, the range of soil fertility classes (Low to High SFI) follows a certain event. This tempted us 
to attribute such pattern to different land uses in the study area. To some extent, soil type could later 
explain the change in the region where land use is the same.  SFI predicted using SPC (Table 4-18b) 

• SFI residuals  
___0.47 Nug (0) +0.88 Gau (5000) 

• SFI residuals 
____0.58Nug (0) +0.8Gau (5800)  

Stepwise regression analysis involved all four 
predictive components (SPCi) and excluded the 
two last components (SPC3 and SPC4) in the 
model. The most predictive model for SFI 
explained about 12 % of the SFI variation 
(equation 21).  This model was used to interpolate 
the SFI trend. Then the residuals extracted from 
SFI trend map were modelled with geostatistics as 
shown in the figure 4-16. 
 

The contribution of Soil type in SFI was added to SFI 
lineal model as strata of SPCs. SPC3 which was 
excluded during stepwise regression analysis, was 
now added to the previous model. The offset was 
reduced from 5.2 to 4.57. As expected, this resulted 

to a model with high 2
aR  (equation 22) and 

consequently less residuals (Figure 4-17). The 2
aR  

increased from 0.12 to 0.25. The nugget effect was 
also decreased from 0.58 to 0.47. In fact, Gishwati 
presents more or less similar landscape pattern from 
north to south, while its lithology is highly variable. 
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revealed details which could not be seen using smoothing Kriging (OK) or SMU map alone. After 
adding SMU to SPC model, SFI level was bounded in some areas (refer to blue area in NE and red 
area in SE of the figure 4-18c). 
 

  
 
Figure 4-18: Predicted soil fertility map (a) by OK, (b) by RK using SPCs , and (c) by RK using 
SMUs as strata of SPCs. 
 

4.8.3. Models quality assessment 

 
We validated the models using simple regression analysis, bias (MPE), precision (RMSPE) and 
relative prediction error (NMSE) in order to compare three methods used to predict SFI. The observed 
SFI values were regressed against those predicted (SFI*) from the application of the linear model 
combined with cross variogram model of residuals in both validation set (Nr=30) and interpolation 
sets (Nr=170). The independent data set improves the evaluation of model performance because they 
were not included in the model development. 
 
The excellent correspondence between fitted and measured values for the data used to develop the 

models was not surprising (Figure 4-19) considering the large model value 2
aR . Whenever the same 

data that is perused to develop a model is also used to evaluate it, the relative prediction error 
(NMSE) statistic may underrepresent the prediction errors that would have been encountered by those 
who would use the model for prediction. Therefore, the validation with independent dataset was 
conducted (Figure 4-20). The relative prediction error (NMSE) with this approach was 40% by OK 
(Figure 4-20a), 32% by regression kriging (RK) including SPCs only (Figure 4-20b), and 31% by RK 
using soil type as strata of SPCs (Figure 4-20c), which was different to the error at interpolation set 
(18 by OK, 32% by RK using SPCs only, and 31% by RK using SPCs stratified by SMUs). This 
indicated that the model parameters were fairly sensitive to the individual data values used to develop 
the model. As expected, errors of prediction increased when the model was used to predict the values 
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of individual observations. The bias (MPE) occurred because all models slightly underestimated 
prediction soil fertility quality. The MPE was (-0.15) with OK, (-0.13) with RK using SPCs stratified 
by soil types (SMUs). 
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Figure 4-19: Comparison of models performance at interpolation set (a: OK, b: RK with SPCs, 
and c: RK with SPCs stratified by SMUs) 
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Figure 4-20: Comparison of model performance at validation set (a: OK, b: RK with SPC, and 
c: RK with SMUs) 
 
The predicted error maps were also used to explore the distribution of bias in prediction of soil 
fertility of Gishwati catchment area. Refer to these maps (Figure 4-21) as the standard error or 
standard deviation of predicted SFI from measured SFI point, the uncertainty of prediction was 
estimated. As revealed, the prediction was highly accurate with RK than OK. The yielded standard 
error in RK is the composite error of fitted trend with stepwise regression and error that results in 
fitting variogram model of the residuals (Hengl et al., 2004b).  
Regarding to NMSE, for all Kriging methods used, most of geostatistical parameters, the nugget and 
sill of spatial variability or the range of spatial correlation were fairly estimated (NMSE %40≤ ). This 
was because spatial trends were associated with the order of sampling scheme which followed all 
possible predictors of soil fertility in the study area. 
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Figure 4-21: Predicted error map (a) by OK, (b) by RK using SPC, (c) by RK using SMUs as 
strata of SPCs 
 

4.8.4. Detection of the spatio-temporal soil fertility degradation  

Difference map of soil fertility i.e. SFI of 1986 and SFI of 2006 revealed the general deterioration of 
soil fertility (DI) in Gishwati study area. As shown by Figure 4-22, DI varied from 0 to -3.2. Despite 
from natural event that contributed to the spread and depth of deterioration, land use change had a 
great influence. This was revealed by the shape of deterioration which was closer to Land use change 
map of the study area than other predictors. Soil type tended to have less impact on soil fertility 
structure in Gishwati catchment area, after human activity took place. While SFI of 1981 trend 
followed entirely soil type (Figure 4-22a), SFI 2006 trend deviated to structure previously drown by 
soil type (Figure 4-3) by including news event such land use type (Figure 4-2). However, it was 
difficult to state with evidence, because compared maps were generated using different methods. 

 
Figure 4-22: Soil fertility index (SFI) maps for both years (1981 and 2006) and soil fertility 
deterioration (DI) map resulted on differences 
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5. Discussions 

5.1. Determination of the Minimum Soil fertility Indicators (MSFI)  

 
Beginning with the concept of soil quality assessment as reported in several studies (Andrews et al., 
2004; Andrews et al., 2002; Arshad and Martin, 2002; Boruvka et al., 2005; Rezaei et al., 2006; 
Stelluti et al., 1998), Soil fertility change study started with generating minimum soil fertility 
indicators from 1300 topsoil data of Rwanda containing 14 measured topsoil properties, using non 
parametric correlation analysis and principal component analysis. These techniques resulted to 
minimum soil fertility indicators (MSFI) formulation which contains only seven major soil chemical 
properties that can be used to explain major process leading to soil fertility degradation.  
 
Considering the number of variable in the original soil dataset, and the high variability within each 
soil variable (Std. Dev. appendix 3), the first four PCs explained 68.9% of variation in the potential 
MSFI indicators. About 51.5% of the variation among all original data sets was explained by the first 
two PCs in the PCA. MSFI is closer to other MDS developed during several soil studies (Rezaei et al., 
2006; Yemefack et al., 2006). The principal component loading matrix (Table 4-4) shows that the 
seven MSFI selected for soil fertility change analysis were highly weighted variables within 14 soil 
variables considered during the selection. 
 

5.2. Trends of change in soil fertility indicators (MSFI) in relation to LUCC 

 
The increased soil fertility degradation is related primarily to reduction of vegetation cover, decreased 
biogeochemical cycling and, to a lesser extent during seedbed preparation. This is reported by many 
researchers (Jaiyeoba, 2003; Koch and Stockfisch, 2006). All MSFI were sensitive to land use effects 
(Table 4-6). The long-term response of MSFI to LUCC along biosequence is found to have two 
phases: an initial change with clearing natural forest being pasture or replanted forest, which latter 
continue into the cropping without any protection measures. The similar findings were found with 
land clearing by burning which followed by initial cropping in southern Cameroon (Yemefack, 2005).  
 
When natural forest is brought into other land uses, organic carbon declines (Figure 4-8c). This is 
simply because organic carbon is first mineralized, or lost by erosion (Wu and Tiessen, 2002). But 
these decreases do not have the same rate as they depend on type of change in LU. With cropping, OC 
is mineralized faster due to regular tillage. Unlike with cropping, with pasture (Figure 4-8c), OC is 
recycled due to animal wastes but since there are no records of how often and how much animal 
wastes are deposed, it is impossible to give an accurate estimation for the contribution from animal 
wastes.  
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Highest Al concentrations in pine and agriculture systems were observed at the 30 cm soil depth 
compared with pasture land (Figure 4-8a). These findings can be explained by the decrease of pH in 
the same systems; and therefore increases Al solubility in the surface (Lilienfein et al., 2003). In other 
hand, with the tropical climate, especially in western province of Rwanda, the heavy rains and its 
different pattern destroy soils which are uncovered. This accelerates the deterioration of silicates and 
their leaching involves a loss of silica in the soil and the accumulation of oxides of Al and other 
oxides (Fe and Mn). The increase of Al in agriculture land responds to what is often reported in the 
literature as leaching effect in tropical soils (Dabin, 1985; Mutwewingabo and Rutunga, 1987), and 
meets Yemefack (2005) findings.   
 
The effect of pasture use on soil fertility was generally small when compared with effects of other 
permanent cultures like pine plantation because it preserves more nutrients (Figure 4-11b).  However, 
the high available phosphorus in pine plantation can be attributed to the roots activity of pine than for 
the grass (Table 4-6). Phosphorous that are in accessible areas (in depth) is brought to the surface by 
roots activities. The availability of phosphorous under forest cover confirmed the conclusions from 
several experiments that have shown gradual improvement of P in the surface by root activity (Islam 
and Weil, 2000). 
 

5.3. Performance of SFI model vs to MSFI models  

 
By weighting the minimum soil fertility indicators (MSFI) into score values, SFI index is  an additive 
index which combine the appreciation of each MSFI in term of land productivity and stability, and it 
is found to be in-line with other indices reported by some researches (Andrews et al., 2003; Andrews 
et al., 2002; Pervanchon et al., 2005).  
 
Of the geostatistical analysis of MSFI and SFI, SFI was the best choice for representing spatial 
structure of soil fertility and changes that happened due to LUCC in hilly slope condition (Figure 4-
14). The relative improvement of SFI over MSFI was consistent and large. The relationship with 
CLORPT factors remained as it was with MSFI. However, the nugget effect was smaller while in 
some cases of MSFI (e.g. P, and Al) it was very high. Moreover, the experiment variogram of SFI had 
bounded sill, which indicates that the noise has indeed been removed. 
 
Incorporating soil map and soil predictive components derived from DEM and derived hydrological 
indices in spatial prediction of SFI gives better results over OK (Figure 4-18). The range parameter of 
residuals was mush shorter, and nugget was proportionally reduced, indicating that some variations 
which were not explained by the model fitted using only target variable, has been to some extent 
explained by soil type and topography. This largely confirms results obtained in other studies on 
digital soil mapping (McBratney et al., 2003) or mapping soil properties based on multivariate 
secondary data (Hengl et al., 2004b; Simbahan et al., 2006). The map of SFI generated with RK with 
SMUs and SPCs reveals the details which can not be seen on SFI map generated using OK. For 
instance in SE of Gishwati (between 48’ and 50’) Eutropepts was separated to Tropohumults while in 
OK they merged. Referred to SFI map values (Figure 4-18) also in previous analysis (Table 4-9), 
Eutropepts had moderate to high SFI value from 6.2 to 6.9 with average value of 6.7 while 
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Tropohumults low to moderated SFI (5.5 to 6.2) with average of 6.0. Yet, in the NE (between 42’ and 
44’), SFI was underestimated by OK in Eutrandepts (SFI ≤ 5.5) at moderated elevation ( ≈ 2400m) 
while it was between 5.5 and 6.2 according to RK using SMU and SPCs. The difference remarked 
between SFI predicted using OK and RK concerned the differentiations of boundaries between 
polygons drown by soil type and pattern of the topography. OK was found not realistic without 
considering other predictive factors.       
 

5.4. Degradation of soil fertility in Gishwati highlands 

 
By computing the deviation of SFI from Natural forest being agricultural purpose (referred in this 
study as DI), permanent pine plantation or pasture reveals the deterioration levels of soil fertility in 
Gishwati watershed. DI enables us to detect early degradation caused by different land uses in 
different times since the natural forest conversion (Figure 4-22c).  
 
It is discovered that the deterioration occurs in soil quality when natural forest is degraded and 
converted to agriculture without the use of appropriate soil and water conservation. The same problem 
was also observed in Bangladesh (Islam and Weil, 2000) where soil under cultivated were high 
degraded over 20 years. At the same time, if natural forest is converted in forest plantation, the choice 
of species being planted is outmost important for soil quality conservation. If it was Acacia planted in 
large extent rather than pine, soils could not be degraded at such alarming rate (-24% refer back to 
table 4-10 or to the blue area in the figure 4-22c, NE from 42’ to 44’ where DI 5.2−≥ ). This finding 
joints the experiment done in Bangladesh where soils under reforestation with Acacia, the DI was 
actually positive (Islam and Weil, 2000). The findings are consistent with other studies on soil fertility 
declines in the tropics following deforestation and conversion to agricultural lands (Lemenih et al., 
2005a). 
 
Lower degradation responses following deforestation are common observations in most Andepts 
(Andaquepts and Eutrandepts). For example in NE of Gishwati study area (between 40’ and 42’ in the 
map) where land conversion was done at the same time (early 1980s) with same use (pasture) but the 
deterioration of soil fertility was different (DI 2.1−≤ ) in Eutrandepts (refer back to figure 4-3 and 
figure 4-22c) and (DI 5.2−≥ ) in Tropohumults. We found that such indicated soils that contain 
allophanic minerals from volcanic eruptions can be much more resistant to degradation from 
cultivation than soil derived acidic material (Tropohumults) or from river deposits (Troportents and 
Tropaquepts). The similar results were observed with Andisols (Parfitt et al., 1997). The Andisol 
contained allophanes and ferrihydrite whereas the Inceptisols contained mica as the main clay 
mineral. The samples were taken under perennial pasture and cropped area with cropped with barley 
and brassica. They found that the stability of organic matter was greater in the Andisol than in the 
Inceptisol, and it was less likely to be affected by cropping. Allophanes and ferrihydrites appeared to 
have a stabilizing influence on a large part of the organic matter in the Andisol. 
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6. Conclusions and recommendations 

6.1. Conclusions 

The objective of this study was to quantify the response of soil fertility to human activity in Rwandan 
highlands using a case study of Gishwati catchment area.  We integrated several methodological steps 
to provide a preliminary framework that can be used to assess and locate soil fertility degradation as 
one major concern of precision agriculture in Rwanda. 
 
We made use of principal component analysis (PCA) and that was applied to the whole dataset of 
Rwanda in order to determine the Minimum Data Set (MDS) that can be use in soil fertility 
degradation assessment.  Referred in this study as Minimum Soil Fertility Indicators (MSFI); seven 
major soil chemical properties were selected due to their higher score in two first PCs. Those are pH, 
OC, Al, P, K, Ca and Mg.  With these findings we got the answer of the first question about the 
Minimum Data Set that can be used to assess the landscape-based soil fertility change in Rwandan 
highland. 
 
Next, we collected 200 soil samples and we revisited 17 soil profiles done in 1981 during soil map 
project of Rwanda (CPR) in order to assess the early changes in soil fertility. Unfortunately, the 
previous profiles were few to allow us the chronosequential assessment (Type I) and state with 
evidence. In this case, we used biosequential or type II data to answer to the part of the second 
question which was raised as: if there a significant change in soil fertility over the last 25 years. One-
way ANOVA revealed that each soil fertility indicator has been heavily affected by land use change 
over 25 years ( 01.0≤P ). 
 
Study on how can the individual indicators of soil fertility be modeled into and integrative measure of 
soil fertility and fertility degradation as question 3, SFI was developed using an adapted conceptual 
framework after Andrews at al., 2003. This framework was made malleable using probabilistic 
approach and generating a score value of each class of soil properties that were already available after 
Mutwewingabo et al., 1987.  Integration of MSFI into index of soil fertility (SFI) enabled us to 
reasonably interpret the complex data set with conflicting or contradictory trends due to irregular 
change in CLORPT factors. 
 
This strategic method revealed that the loss of soil fertility is higher about 31% when natural forest is 
converted into pasture and latter continue into cropland. About 24 % of soil fertility is lost with 
reforestation of cleared natural forest without an appropriate species being planted. Note that pasture 
conserves more or less soil fertility compared to other land uses. Only 16% is lost in grassland for 25 
years since natural forest has been converted. However it has discovered that soils under volcanic 
material are degraded slowly compared to acidic soils even though they are under same use.  Only 7 
% of soil fertility is lost after 11 years of regular cultivation. This comes to answer the fourth question 
to what extent land use change contributes to soil fertility change.  
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Geostatistical methods that utilized spatially correlated secondary information (RK) increased the 
quality of maps of SFI as compared to Ordinary kriging (OK). Both OK and RK yielded lower relative 
perdition error (36% to 40%). However, Regression kriging using soil predictive components (SPCs) 
generated from improved DEM with combination of soil type (SMUs) performed better than OK not 
only in terms of increasing map accuracy but also in visualization of details. In stepwise RK method 
relative improvement in map accuracy over OK was 4% and there was little loss of accuracy when the 
model was used to predict SFI at unsampled locations. SPCs was the most valuable and quantitative 
CLORPT factor for detailed mapping of SFI at watershed level, whereas the SMUs was used to 
represent parental material which varied from north to south of Gishwati watershed. With SFI map of 
2006 we satisfactory answered the firth question on how successfully the spatial pattern of soil 
fertility can be predicted in complex lithology of Rwandan highlands. The prediction ranged from 
91% to 93 % accuracy. However it should be emphasized that a SFI dataset with a fairly equal 
spreading of point is more appropriate for regression kriging. 
 

6.2. Recommendations 

This study was considered as a preliminary quantitative assessment of soil fertility degradation and 
has involved secondary data unknown accuracy of the producer. We assumed that this secondary data 
contained uncertainties that may mask relationships with MSFI or SFI. Relying on the secondary 
information is risky because (i) SPCs used to generated the stepwise regression model may not be 
coincide exactly to the SFI point for several reasons such as GPS precision and so on, (ii) the range of 
soil properties classes used to develop SFI may mask the variability which could be highlighted if the 
range was made shorter. Those errors in the secondary information could propagate significant errors 
in the SFI prediction. To reduce uncertainties, we recommend updating existing soil map, including 
detailed geologic map and review existing topographic information by independently measured 
elevations, before any soil-landscape modelling and prediction. 
 
Although CLORPT approach was used in our study, this empirical approach tends to decrease its 
ability in explaining the variability in the SFI model of spatial dependence. SFI Gaussian model 
yielded the high nugget effect still after the drifts used were removed. Adding quantitative human 
disturbance as drift may reduce residuals and consequently reduce unexplained variability. More work 
need to be done to develop a quantitative predictive component of land use as predictor of human-
induced changes, and this may enhance the CLORPT approach in soil fertility change analysis.  
 
Next to this study, more research should be devoted to these important topics, in particular validation 
of usefulness of SFI in decision making and implantation. The similar research should be conducted in 
different environment to test the transportability of SFI approach. 
 
For further understanding of the degradation process, we suggest that long-term monitoring sites 
should established, regular soil samples and management aspect should be taken and stored in Master 
database. With such data, the model of temporal change in soil fertility can then be produced and SFI 
approach can be further improved for regular monitoring of the changes in soil fertility of Rwanda.  
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Appendix 3: Descriptive Statistics of 15 soil properties of topsoil of Rwanda 
 
 Soil variables  N  Range  Min.  Max.  Mean  Std. Dev.  Variance  Skew.  Kurtosis 
Depth (cm) 1296 103 -5 98 22.80 10.887 118.522 0.741 2.167 
Clay (%) 1300 86.0 2.60 88.60 35.800 15.353 235.739 0.611 0.465 
Silt (%) 1300 76.4 1.90 78.30 20.401 12.367 152.952 1.295 1.927 
Sand (%) 1300 91.2 0.00 91.20 43.792 17.821 317.595 -0.048 -0.380 
pH in water 1296 7.78 3.42 11.20 5.321 0.883 0.780 0.601 1.101 
pH in KCl 1261 10.04 0.67 10.71 4.398 0.812 0.659 0.890 3.132 
Org.C (%) 1297 47.73 0.27 48.00 3.352 4.410 19.451 5.714 40.537 
P (ppm) 651 485.0 0.00 485.00 20.411 48.105 2314.138 5.303 34.802 
Ca (cmol+/kg) 1250 92.80 0.00 92.80 5.082 7.072 50.023 3.816 27.115 
Mg (cmol+/kg) 1254 28.20 0.00 28.20 1.936 2.704 7.316 3.491 19.214 
K (cmol+/kg) 1255 12.40 0.00 12.40 0.505 0.835 0.698 6.051 55.603 
Al (cmol+/kg) 1095 30.45 0.00 30.45 1.811 2.289 5.240 3.218 25.528 
H (cmol+/kg) 1116 61.10 0.00 61.10 0.622 3.016 9.100 12.118 189.032 
CEC (cmol+/kg) 1244 114.7 1.60 116.30 18.192 13.626 185.684 2.486 9.369 
Porosity (%) 170 49.07 38.07 87.13 57.959 10.454 109.297 0.314 -0.594 

 
Appendix 4: Summary statistics of revisited soil profiles of CPR 1981 (MSFI 1981, N=17) 
 

Statistics 
pH 
H20 

pH 
KCl 

Org.C 
(%) 

Al 
cmol+/kg 

H 
cmol+/kg 

P 
(ppm) 

K 
cmol+/kg 

Ca 
cmol+/kg 

Mg 
cmol+/kg 

Mean 4.68 3.83 7.10 2.61 0.38 42.52 0.74 6.77 2.09 
Standard Error 0.14 0.15 0.65 0.50 0.07 5.38 0.08 0.81 0.30 
Median 4.72 3.76 7.21 2.34 0.40 47.00 0.58 5.80 1.80 
Stand. Deviation 0.57 0.62 2.66 2.07 0.31 22.17 0.34 3.32 1.25 
Sample Variance 0.33 0.39 7.10 4.28 0.09 491.3 0.12 11.04 1.57 
Kurtosis -0.73 -0.78 -0.78 -1.45 2.17 -0.92 1.69 0.65 -0.84 
Skewness -0.03 0.11 -0.04 0.16 1.26 -0.09 1.53 0.86 0.55 
Range 2.00 2.07 9.19 5.98 1.20 74.96 1.11 12.56 3.88 
Minimum 3.67 2.89 2.57 0.00 0.00 5.00 0.41 2.32 0.37 
Maximum 5.67 4.96 11.76 5.98 1.20 79.96 1.52 14.88 4.25 

 
 Appendix 5: Summary statistics of MSFI 2006 on the revisited MSFI 1981 (N=17) 
 

Statistics 
pH 
H20 

pH 
KCl 

OC 
(%) 

Al 
cmol+/kg 

H 
cmol+/kg 

P 
(ppm) 

K 
cmol+/kg 

Ca 
cmol+/kg 

Mg 
cmol+/kg 

Mean 4.14 3.41 5.45 4.50 6.13 32.29 0.51 4.74 1.17 
Standard Error 0.15 0.16 0.33 0.62 0.86 5.21 0.08 0.82 0.25 
Median 4.15 3.46 5.27 4.80 6.25 34.06 0.41 4.42 0.82 
Stand. Deviation 0.64 0.65 1.34 2.55 3.55 21.50 0.31 3.37 1.01 
Sample Variance 0.41 0.43 1.81 6.48 12.60 462.3 0.10 11.36 1.02 
Kurtosis -0.51 -0.55 -0.40 -0.53 -1.02 -1.28 7.29 -0.27 -0.59 
Skewness 0.01 0.23 -0.32 -0.78 -0.21 -0.02 2.55 0.86 0.90 
Range 2.12 2.20 4.80 7.30 11.11 65.12 1.29 10.80 2.91 
Minimum 3.12 2.42 2.56 0.00 0.51 1.00 0.24 1.04 0.21 
Maximum 5.24 4.62 7.36 7.30 11.62 66.12 1.53 11.84 3.12 
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Appendix 6: Summary Statistics of MSFI 2006 
 

Stat 
pH  
H20 

pH 
KCl OC Al H P Na K Ca Mg 

Mean 4.90 4.20 5.12 2.71 3.05 43.76 0.14 1.12 7.90 1.91 

Std Error 0.06 0.05 0.11 0.18 0.21 1.83 0.01 0.05 0.38 0.13 
Median 4.79 4.07 5.27 2.65 2.37 41.58 0.09 0.93 7.23 1.07 

Mode 4.12 3.81 5.63 0.00 0.23 56.11 0.02 0.46 8.35 1.46 
Std Dev. 0.81 0.72 1.54 2.49 2.95 25.82 0.13 0.76 5.36 1.90 

Sample Var. 0.66 0.52 2.37 6.18 8.73 666.6 0.02 0.58 28.7 3.62 

Kurtosis -0.59 -0.20 -0.12 -0.82 1.33 -0.15 2.22 1.31 1.01 1.27 
Skewness 0.42 0.48 -0.48 0.49 1.13 0.55 1.29 1.26 1.16 1.46 

Range 3.91 3.64 7.89 9.85 15.8 124.2 0.80 3.64 23.5 8.26 
Minimum 3.12 2.42 0.21 0.00 0.03 1.00 0.00 0.06 1.04 0.12 
Maximum 7.03 6.06 8.10 9.85 15.8 125.2 0.80 3.70 24.6 8.38 
Count 200 200 200 200 200 200 200 200 200 200 

 
Appendix 7: One-way ANOVA showing the significant change of MSFIs over 25 years  
 
MSFI pHW** pHKCl* OC* Al* H** Ps Ks Ca* Mg* 
Fischer value 
(F) 

8.402 4.574 6.59 5.24 41.12 2.547 3.559 4.488 6.034 

Probability (P) 0.00 0.04 0.01 0.02 0.00 0.10 0.06 0.04 0.02 
**: Significant difference at 01.0≤P    *: Significant difference at 05.0≤P   s: Significant trend 1.0≤P   

 
Appendix 8: One-way ANOVA of MSFI by Soil types 
 
Significant 
values pHW pHKCl 

OC 
(%) 

Al 
cmol+/kg 

H 
cmol+/kg 

P 
(ppm) 

K 
cmol+/kg 

Ca 
cmol+/kg 

Mg 
cmol+/kg 

Fischer value 4.064 5.059 1.159 1.565 1.082 0.977 3.610 5.647 7.131 
Probability 0.000 0.000 0.328 0.148 0.376 0.449 0.001 0.000 0.000 

 
Appendix 9: One-way ANOVA of MSFI by type of change in land use 
 
Significant 
values pHW pHKCl 

OC  
% 

Al 
cmol+/kg 

H 
cmol+/kg 

P 
ppm 

K 
cmol+/kg 

Ca 
cmol+/kg 

Mg 
cmol+/kg 

Fischer value 4.048 3.008 5.595 3.473 3.703 4.782 2.428 1.773 3.389 
Probability 0.004 0.019 0.000 0.009 0.006 0.001 0.049 0.103 0.010 

 
Appendix 10: One-way ANOVA of MSFIs by Landscape position 
 
Significant 
values pHW pHKCl 

OC  
% 

Al 
cmol+/kg 

H 
cmol+/kg 

P 
ppm 

K 
cmol+/kg 

Ca 
cmol+/kg 

Mg 
cmol+/kg 

Fischer value 6.782 5.951 0.316 8.103 5.345 6.247 2.376 3.892 1.967 
Probability 0.000 0.000 0.768 0.000 0.000 0.000 0.026 0.002 0.054 
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Appendix 11: Thresholds for interpretation of the pH results (after Mutwewingabo et al., 1987) 
 
pH Extremely 

acidic 
Very 
acidic 

Moderately 
acidic 

low acidic Neutral 

Score (max: 1) 0.2 0.4 0.6 0.8 1 
PH water 3,5 - 4,2 4,2 - 5,2 5,2 - 6,2 6,2 - 6,9 6,9 - 7,6 
PH KCl 3,0 - 4,0 4,0 - 5,0 5,0 - 6,0 6,0 - 6,8 6,8 - 7,2 
Source: After Mutwewingabo& Rutunga, 1987 
 
Appendix 12: Thresholds for interpretation of Soil nutrients availability (P, K, Ca, and Mg) 
 
Appréciation Extremely low  Very low Low Moderate High Very high 
Score (max: 1) 0.0 0.2 0.4 0.6 0.8 1 
P (ppm) - <3 3 – 20 20 – 50 50 – 80 >80 
K  (cmol+/kg) - < 0,1 0,1 – 0,2 0,2 - 0,6 0,6 – 1,2 > 1,2 
Ca (cmol+/kg) - < 2 2 -  4 4 - 10 10 - 20 > 20 
Mg  (cmol+/kg) < 0,2 0,2 - 0,5 0,5 – 1,5 1,5 - 3,0 3,0 – 8,0 > 8,0 
Source: After Mutwewingabo& Rutunga, 1987 
 
Appendix 13: Thresholds for interpretation of the results of org. carbon and Aluminum acidity 
 
Organic carbon (%) Appreciation Score (max:1) 
<0.29 Extremely low humic 0.0 
0.29 – 0.58 Very low humic 0.2 
0.58 – 1.16 Low humic 0.4 
1.16 – 2.90 Moderate humic 0.6 
2.90 – 4.64 Humic 0.8 
4.64– 8.12 and above Very humic 1 

(Al ×100) /CECE Limitation Score (Max : 1) 
>  60 High 0.2 
45 - 60 moderate 0.4 
30 – 45 Low 0.6 
0 - 30 Very low 0.8 
0.0 (not detected) No limitation 1 
Source: After Mutwewingabo& Rutunga, 1987 
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Appendix 14: Spatial correlation of SFI observation points 
 
Distance (m) Nr Pairs Moran’s I Geary’s C Average Lag Semi Variance 
0 73 0.548 0.39 143.2 0.55 
500 170 0.525 0.39 518 0.55 
1000 262 0.582 0.37 999.3 0.52 
1500 289 0.519 0.48 1501.9 0.67 
2000 395 0.370 0.43 2007.5 0.6 
2500 419 0.417 0.41 2513.2 0.57 
3000 428 0.372 0.44 3010.6 0.61 
3500 540 0.347 0.54 3517.8 0.76 
4000 578 0.306 0.61 4001.8 0.86 
4500 613 0.283 0.59 4496.9 0.82 
5000 563 0.220 0.6 4988.5 0.84 
5500 579 0.144 0.67 5511.4 0.94 
6000 578 0.129 0.73 5998.4 1.03 
6500 672 0.158 0.71 6496.9 1 
7000 588 0.109 0.82 6998.1 1.15 
7500 682 0.129 0.79 7504 1.1 
8000 721 0.083 0.9 7987.8 1.27 

 
Appendix 15: Linear relationship between soil types and soil fertility index (SFI) (R2=0.15) 
 

 Soil types Unit codes Estimate  Std. Error  t value     Pr (>|t|) 

Andaquepts (SMU1)     8.145       0.781     10.42     <2e-16 
Argiudolls (SMU2)             -1.025       0.902     -1.14     0.2574 
Eutrandepts (SMU3)           -1.246       0.791     -1.58     0.1169 
Eutropepts (SMU4)         -1.409       0.886     -1.59     0.1134 
Humitropepts (SMU5)            -2.086       0.832     -2.51     0.0130 
Troposaprists (SMU6)          -2.145       1.105     -1.94     0.0537 
Tropohumults (SMU7)         -2.072       0.794     -2.61     0.0097 
Tropudalfs (SMU8)     -2.168       0.811     -2.67     0.0082 


