
ILWIS Reference Guide 163

Chapter 6

. Map & Table Calculation

6.1 Introduction
Calculating and modeling of spatial and attribute data is performed in ILWIS by
using Map calculation, Table calculation, the Pocket Line Calculator or by running
a script. Map calculations usually result in enhanced images or newly created maps
combining tabular and spatial data. Table calculation provides the user the
opportunity to calculate new parameters which are stored in a table. The Pocket
Line Calculator enables quick calculations and retrieval of information from maps
and tables. By running a script the user may perform a whole series of calculations
after one other which is comparable with running a batch-file. Operators and
functions used in MapCalc, TabCalc and the pocket line calculator are mainly the
same.

6.1.1 Overview of operators and functions

Operators on domain Value and Image
Arithmetic + - * / MOD DIV
Relational = < <= > >= <>

eq lt le gt ge ne

Operators on domain Bool
Logical AND OR XOR NOT

Functions on domain Value and Image
Undefined values ISUNDEF(a) IFUNDEF(a,b) IFUNDEF(a,b,c)

IFNOTUNDEF(a,b) IFNOTUNDEF(a,b,c)
Conditional IFF(a,b,c)
Relational INRANGE(a,b,c)
Exponential SQ(a) SQ(a,b) SQRT(a)

HYP(a,b) POW(a,b) EXP(a)
Logarithmic LOG(a) LN(a)
Random RND(n) RND(0) RND()
Sign ABS(a) -(a) NEG(a) SGN(a)
Rounding CEIL(a) FLOOR(a) ROUND(a)
MinMax MIN(a,b) MIN(a,b,c) MAX(a,b) MAX(a,b,c)
NDVl NDVI(a,b)
Trigonometric SIN(a) COS(a) TAN(a)

ASIN(a) ACOS(a) ATAN(a) ATAN2(y,x)
Angular DEGRAD(a) RADDEG(a)
Hyperbolic SINH(a) COSH(a) TANH(a)
Classify/Group CLFY(a, DomainGroup)
Conversion STRING (a)

(a, b and c refer to an expression resulting in a Value; n refers to a long integer; a in an IFF is a Bool)



Map & Table calculation

164 ILWIS Reference Guide

Predefined values
Predefined values PI PI2 PIDIV2 PIDIV4 EXP(1)

Operators and functions on non-value domains
Relational Class/ID = <> eq ne
Conditional Class/ID IFF(a,b,c)
Undefined Class/ID ISUNDEF(a) IFUNDEF(a,b) IFUNDEF(a,b,

c)
IFNOTUNDEF(a,b) IFNOTUNDEF(a,b,c)

Special Class/ID + IN(s1,s2) INMASK (s, mask) STRPOS
(s1,s2)

LENGTH(s) LEFT(s,i) RIGHT(s,i) SUB(s)
STRLT (s1,s2) STRLE

(s1,s2)
STRGT(s1,s2) STRGE(s1,s2)

Conversion VALUE (s)

(s refers to an expression resulting in a Class, Group ID or a String; i refers to an integer; a
in an IFF is a Bool)

Special Map Calculations
Predefined variables %L %C %X %Y
Create attribute map Map.Column Map.Table.Column
Two-dim tables TwodimTableName[Map1,Map2]
Neighbourhood operations NBMIN NBMINP NBMAX NBMAXP

NBSUM NBCNT NBPRD NBPRDP
NBPRDP NBFLT NBDIS NBPOS

Iterations ITER ITERP

Special Table Calculations
Predefined variables %R %K
Statistics AVG(col) STDEV(col)
Aggregations AGGAVG (col,g,w) AGGCNT (col,g,w)

AGGMIN (col,g,w) AGGMED (col,g,w)
AGGMAX (col,g,w) AGGPRD (col,g,w)
AGGSTD (col,g,w) AGGSUM (col,g,w)

Join columns ColumnJoin (Table,Column)

 (col refers to column, g refers to the key to group the values, w refers to weight)

6.1.2 Special Topics

Calculations on coordinates
Retrieval of coordinates MAPCRD PNTCRD CRDX

CRDY COORD MINCRDX
MAXCRDX MINCRDY MAXCRDY

Other functions TRANSFORM DIST DIST2
MAPVALUE MAPROW MAPCOL
RASVALUE

Calculations on point data
Retrieval of coordinates PNTNR PNTVAL PNTCRD



Map & Table calculation

ILWIS Reference Guide 165

Calculations on data properties
Retrieval of data properties MAPMIN MAPMAX PIXSIZE

PIXAREA MAPROWS MAPCOLS

Calculations on colors
Color separation CLRRED CLRGREEN CLRBLUE

CLRYELLOW CLRMAGENTA CLRCYAN
CLRGREY CLRHUE CLRSAT
CLRINTENS

Retrieval of colors MAPCOLOR RPRCOLOR
Assigning colors COLOR COLORHSI

6.2 Map calculation

6.2.1 Introduction
Map calculation is used for analyses and transformation of spatial data and
modeling operations. It integrates spatial and attribute data. Map calculation
enables the user to perform image enhancements and to produce and display new
maps.

One may type a map calculation formula directly on the command line of the Main
window or double-click the MapCalc item in the Operation-list.

The following operations are available:
n manipulation of one or more raster maps by using different types of operators

and functions
n creation of attribute maps from raster maps using an attribute table
n classification of a domain Value map according to a domain Group
n integration of 2 raster maps according to 2-dimensional tables
n neighbourhood operations
n calculations using map rows and columns
n calculations using X- and Y-coordinates
n calculations using colors
n application of user-defined functions

6.2.2 General syntax of MapCalc formulae
A MapCalc formula or statement consists of an output raster map name that will
contain the result of the calculation, a definition symbol (=) or an assignment
symbol (:=), and a expression.

OutputMap = Expression

or

OutputMap:= Expression



Map & Table calculation

166 ILWIS Reference Guide

Example

A simple MapCalc formula reads:

Map3 = Map1 + Map2

Map1 Map2 Map3

The values of the pixels in Map3 represent the sums of the values in the
corresponding pixels of Map1 and Map2.

Definition symbol = and assignment symbol :=
By using the definition symbol = on the command line a dependent map is created:
the definition of how this map was created is stored. In ILWIS 1.4, dependent maps
did not exist.
By using the assignment symbol := an editable map or table is created. This means
that the dependency link is broken and the output values are directly assigned to the
output pixels.
For more information, refer to Basic concepts: dependent data objects

Output map name
When typing a MapCalc formula on the command line, you generally start with an
output map name. Otherwise you fill in the dialog box after double-clicking the
MapCalc item in the Operation- list. If necessary, the output object's domain or its
domain and value range may be specified in a pair of curly brackets after the output
object name. Then the specified domain should be an existing one.
To create for instance a map OUT with domain value name 'MyVal', this would
look like:

OUT {dom=MyVal} = expression

To create for instance an output map OUT2 with domain MYVAL2 and to store
values in map OUT2 which range between minimum value 0 and maximum value
10000 with a precision of 1, this would look like:

OUT2{dom=MyVal2;vr=0:10000:1} = expression

Expression
The expression usually contains operators and/or functions to specify what
calculation has to be performed. Operators used in an expression are for instance: +
- / * etc. An overview of MapCalc operators and functions is presented in the next
topic.



Map & Table calculation

ILWIS Reference Guide 167

All data objects used on the command line, regardless of whether they are input or
output objects, should start with a character between A and Z. Further, the name of
a data object cannot exceed 8 characters (except for column names). When using
class or group names or IDs in an expression, "double quotes" are needed around
the class names, group names or IDs.

F When you type $ in front of an output map name, the output map is directly shown
in a map window.

F Advanced users who are sure about the correctness of an expression may end their
expression with a semi-colon(;). In this way, dialog boxes are skipped by accepting
all the default values.

Example

Coffee = Landuse = ”coffee”

This means in words: The output map, named coffee, shows where the landuse
class name is ”coffee” and where it is not. This is one of the most simple types of
expression. It returns an output map with a Bool domain. The expression Landuse
= ”coffee” is tested whether it is true of false.

Landuse Coffee

Read in the Landuse map for B: Bare Soil, for C: Coffee, and for S: Shrubland.
True (T) is returned in the pixel information when the land use was coffee. False
(F) indicates that the land use was something else.

F It does not matter whether you type spaces around the definition or assignment
symbol, or in the expression or not.

F It does not matter whether you type in capitals or in small characters; a MapCalc
formula is not case-sensitive. In the Reference Guide and in the ILWIS Help,
often capitals are used for operators and functions. This is only for editing
purposes. It is not necessary in MapCalc, TabCalc or the Pocket line calculator.

F The output map name may be a new or an existing map name. When you specify a
new output map name, the answers are written into a newly created map. When you
specify an existing output map name, a message appears, asking the user to confirm
to overwrite the existing map.

F A MapCalc formula does not really have a limitation on length; when the
command line seems full, you can just continue typing.

F With the left and right arrow keys and the Home and End key of the keyboard, you
can move back and forth in your formula. You can also use the somewhat larger
MapCalc dialog box where you can type a complicated MapCalc formula on
multiple lines.



Map & Table calculation

168 ILWIS Reference Guide

F The command line has a history: press the up arrow key to retrieve previously used
expressions; the down arrow key is used to 'scroll' forward again.

F Advanced users who are certain that the typed formula is a correct one may skip
dialog boxes of operations by ending the expression with a semi-colon (;).

6.2.3 Description of operators and functions

6.2.3.1 Operators on domain Value and Image
There are many similarities but also some differences in the way you can
manipulate images or maps with a domain Value and how you can manipulate
maps with a domain Class, Group or ID. Therefore they are listed separately.
Below, the operators and functions are explained that can be used in Map
calculation on images and maps with a domain Value.

Arithmetic operators

+ a + b add operator;
- a - b subtract operator;
* a * b multiply operator;
/ a / b divide operator;
MOD a MOD b modulus operator; returns the remainder of a divided by b,

e.g. 20 mod 3, returns 2
DIV a DIV b integer division operator; dividing integer a by b returns the

quotient, e.g. 20 div 3, returns 6

F The MOD and DIV operators require typed spaces.

Examples
Map3 = Map1 + Map2

Map1 Map2 Map3

A pixel value in Map3 is the sum of the corresponding pixel values of Map1 and
Map2.

The following example shows the creation of a new map in which the pixel values
of the input map are divided by a factor 20.

Map2 = Map1 DIV 20

Map3 = Map1 MOD 20



Map & Table calculation

ILWIS Reference Guide 169

Map1 Map2 Map3

A pixel value in Map2 is the corresponding value of Map1 divided by 20. Using
operator DIV returns an integer in the output map not paying attention to rest
values.

Map3 displays the modulus (rest value) of the division of Map1 by 20.

Relational operators

 = eq a = b a eq b equal to
< lt a < b a lt b less than
<= le a <= b a le b less than or equal to
> gt a > b a gt b greater than
>= ge a >= b a ge b greater than or equal to
<> ne a <> b a ne b not equal to

When a relational operator is used, ILWIS tests whether the outcome of the
statement containing this operator is true or false (Bool domain).
When using the symbols it does not matter whether you type spaces around the
operators or not. When using the characters spaces are required on both sides of the
operator.

Example
Result = DEM > 1400

DEM Result

The output map has a Bool domain. For pixels in map DEM (Digital Elevation
Model) that have a value greater than 1400, the expression is true. Otherwise
Result returns false.
Relational operators are often used in combined with a conditional IFF function. To
test whether values lie in a certain range, e.g. greater than 1000 but less than 1600,
the INRANGE function may be used as well.



Map & Table calculation

170 ILWIS Reference Guide

6.2.3.2 Operators on domain Bool

Logical operators

AND a and b returns true if both expressions a and b are true
OR a or b returns true if one or both of the expressions a and b is true
XOR a xor b returns true if only one of the expressions a and b is true
NOT not a returns true if expression a is false

Examples of the logical AND operator
The result of a and b is true if both expressions a and b are true; in other cases false
is returned.

Result1 = (DEM > 1000) AND (DEM < 1600)

DEM Result1

If a pixel in map DEM (Digital Elevation Model) has a value larger than 1800 and
at the same time the value of this pixel is less than 2400, then both expressions are
true. For pixels where not both expressions are true, False is assigned.

Result2 = (Landuse = ”Coffee”) AND (DEM > 1400)

Landuse DEM Result2

If pixels in map Landuse have class name Coffee, and the corresponding pixels
in map DEM have a value larger than 1400, both expressions are true which is
shown in the output map Result2. False is assigned when one or both of the
expressions is not true (in mathematics the logic AND is called an intersection).

Example of the logical OR operator
The result of a or b is true if either expression a, or expression b or if both
expressions a and b are true; in other cases false is returned.

Result = (Landuse = ”Coffee”) OR (DEM > 1400)



Map & Table calculation

ILWIS Reference Guide 171

Landuse DEM Result

For map Landuse read: C= coffee, S= shrubs and B= bare soil

True is assigned in map Result, if a pixel in map Landuse has class name
”Coffee”, or if the value of that pixel in map DEM is larger than 1400. By using
this expression, the output map will contain all areas where the landuse type is
Coffee, and all areas where the height is more than 1400 m. In mathematics the
logical OR is called a union.

6.2.3.3 Functions on domain Value and Image

Conditional IFF function
IFF(a,b,c) If condition a is true, then return the outcome of expression b, else

(when condition a is not true) return the outcome of expression c.
Mind the double ff in IFF (standing for IF Function). The
conditional IFF may be used for all types of input data: values, IDs,
groups and classes.

Examples of IFF functions on values

Result1 = IFF (DEM > 1400, 10, 0)

This means: if a pixel in map DEM (digital elevation model) has a value greater
than 1400, then assign the value 10 to this pixel in output map Result1, else
assign a 0.

DEM Result1

The IFF function can be combined with other operators and functions.

Result2 = IFF((Landuse=”coffee”) AND (DEM>=1400), 10, 0)

Landuse DEM Result2



Map & Table calculation

172 ILWIS Reference Guide

If a pixel belongs to class coffee in map Landuse and the corresponding pixel in
map DEM has a value greater than or equal to 1400, then assign 10 to this pixel in
output map Result2, else assign a 0. If you wish to assign undefineds to the
remaining pixels, you can replace the 0 in the formula by ?.

It is also possible to use more than one IFF function in a formula.

Result3 = IFF(DEM < 900, 1, IFF(DEM < 1100, 2, IFF(DEM <
1600, 3, 4)))

DEM Result3

In words this means: if the DEM has a value of less than 900 then the pixel value
will be 1. Then: if the value of the DEM is less than 1100 (in fact between 900 and
1100) a pixel will get value 2. From the remaining pixels the ones which have a
value lower than 1600 will get value 3 and the rest value 4.
This formula is nothing else then a kind of classification. You could also come to
the same result by applying a classification function (CLFY).

The INRANGE function

INRANGE(a,b,c) tests whether values of expression or map a are contained
by a range or closed interval with endpoints b and c.
Mathematic notation: b ≤ a ≤ c or a ∈ [b;c]

Example of the INRANGE function
Below, the INRANGE function is combined with a conditional IFF.

Result1 = IFF(INRANGE (DEM, 1000, 1600), 50, 1)

DEM Result1

If a pixel in map DEM (Digital Elevation Model) has a value that is larger than or
equal to 1000 and less than or equal to 1600, then 50 is assigned in output map
Result1. For other pixels, a 1 is assigned.

Result2 = IFF (INRANGE (DEM, 1000, 1600), DEM, ? )



Map & Table calculation

ILWIS Reference Guide 173

DEM Result2

If a pixel in map DEM (Digital Elevation Model) has a value that is larger than or
equal to 1000 and less than or equal to 1600, then the original height value of map
DEM is assigned in output map Result2. For other pixels, the undefined ? is
assigned.

Exponential functions

SQ(a)  a² square function: a*a; a square
SQ(a,b)  a² + b² square function: a*a + b*b; a square plus b square
SQRT(a)  √a square root function: calculates the positive square

root of a
HYP(a,b)  √(a² + b²) hypotenuse: calculates the positive square root of the

sum of a square and b square
POW(a,b) ab exponential function: a raised to the power b. The n-

th root of a is found by using this function in the
form of: POW(a, 1/n)

EXP(a) ea exponential function: value e (i.e. 2.718) raised to
the power a

Memory refreshment: Laws of exponents
Negative exponents: a-n = 1/an

Fractional exponents: am/n = n√(am)

Multiplication: anam = an+m

Division: an/am = an-m

Raising to a power: (an)m = an*m

Example of an exponential function
The exponential HYP function may be used to calculate slope values in
percentages, from 2 input maps which contain height differences in X-direction
(map DX) and in Y-direction (map DY). Map DX and DY were created by using the
filters dfdx and dfdy on a digital elevation model (DEM).

Slopepct = (HYP(dx,dy)/pixelsize) * 100

For the pixelsize fill in the pixel size of the maps (if pixels are 20 by 20m, use 20).
The results may be higher than 100% as a slope of 45° is equal to 100%. Slopes of
60° are equal to 173%.



Map & Table calculation

174 ILWIS Reference Guide

Logarithmic functions

LOG(a) 101og(a) logarithm: calculates the 10-based logarithm of a
LN(a) elog(a) natural logarithm: calculates the e based (2.718)

logarithm of a

Memory refreshment: Laws of logarithms
Multiplication: log(n*m) = log(n) + log(m)

Division: log(n/m) = log(n) - log(m)

Raising to a power: log(nm) = m * log(n)
ln(EXP(n)) = n

Memory refreshment: Changing the base of a logarithm
If you would like to calculate blog(a), the b-based logarithm of a, instead of
10log(a), you can divide the old logarithm by the logarithm of the new base:

blog(a) = 10log(a)/10log(b)

Example of a logarithmic function

Result2 = LOG(map1)/LOG(2)

Map1 Result2

Map Result2 contains the values of 2log(map1).

Random functions

RND(n) returns integer values in the range 1 to n. To simulate a die, use this
function in the form of: RND(6)

RND(0) returns a 0 or 1 at random
RND() returns random real values in the range [0;1> , i.e. between 0 and 1,

including 0 but excluding 1

F Use always := otherwise new random values will be assigned in every new
calculation.

F Integer n has a maximum value of 2 billion (2*109 )



Map & Table calculation

ILWIS Reference Guide 175

Example of a random function

For statistical purposes you might need a map with random values. That can be
done using the following formula:

Mapran := RND(0)

Then a dialog box appears to define the output raster map. Accept the default
domain Value. You can choose a georeference as well. The pixels in the output map
will get randomly the value 0 or 1.

Sign operator functions

-a returns a multiplied by -1
NEG(a) returns a multiplied by -1
ABS(a) returns the absolute (=positive) value of a
SGN(a) returns -1 for negative values of a, 0 when a is 0, and 1 for positive

values of a

Example of a sign function
The input map has both positive and negative values which are, when negative,
converted to positive values.

Map2 = ABS(Map1)

Map3 = NEG(Map1)

Map3 = -Map1

Map4 = SGN(Map1)

Map1 Map2 Map3 Map4

Rounding functions

ROUND(a) rounds a to a integer value, e.g. ROUND(3.5) returns 4,
ROUND(-3.5) returns -3

FLOOR(a) rounds down; returns the largest integer value smaller than input
value (truncation),e.g. FLOOR(3.6) returns 3, FLOOR(-3.6)
returns -4

CEIL(a) rounds up; returns the smallest integer value larger than input
value, e.g. CEIL(3.6) returns 4, CEIL(-3.6) returns -3



Map & Table calculation

176 ILWIS Reference Guide

MinMax functions

MIN(a,b) calculates the minimum of two expressions a and b
MIN(a,b,c) calculates the minimum of three expressions a, b and c
MAX(a,b) calculates the maximum of two expressions a and b
MAX(a,b,c) calculates the maximum of three expressions a, b and c

Using these functions, you can for instance calculate for each pixel the minimum or
maximum value of 2 or 3 input maps; substitute a,b,c with the map names.

Example of a MinMax function

Resmax = MAX(map1,Map2)

Map1 Map2 Resmax

NDVl function for images

NDVI(a,b) (b - a) / (b + a)
used to calculate the NDVI (Normalized Difference Vegetation
Index) of 2 images. Use for a the band with visible or red
reflectance and for b the band with near infrared reflectance
values.

Example of a NDVI function

VegInd = NDVI(TmBand3,TmBand4)

Output map VegInd contains NDVI values calculated from TmBand3 and
TmBand4. TmBand3 represents the visible reflectance and TmBand4 represents the
near-infrared reflectance.
n Vegetated areas will generally yield high values because of their relatively high

near-infrared reflectance and low visible reflectance.
n In contrast, water, clouds, and snow have larger visible reflectance than near-

infrared reflectance. Thus, these features yield negative index values.
n Rock and bare soil areas have similar reflectances in the two bands and result in

vegetation indices near zero.



Map & Table calculation

ILWIS Reference Guide 177

Trigonometric functions

SIN(a) sine; returns real values in the range -1 to 1
COS(a) cosine; returns real values in the range -1 to 1
TAN(a) tangent
ASIN(a) arcsin; returns real values in radians in the range -π/2 to π/2
ACOS(a) arccos; returns real values in radians in the range 0 to π
ATAN(a) arctan; returns real values in radians in the range -π/2 to π/2
ATAN2(y,x) returns the angle in radians of two input values (y is vertical, x is

horizontal) in the range -π to π

Example of a trigonometric function

Cosine = COS(Map1)

Map1 Cosine

Map1 has input values in radians. Map2 returns the cosine of the values in Map1.

F ATAN(y/x) = ATAN2(x,y) if x and y are both positive.
F The function ATAN and especially ATAN2 are often used in calculation of slope

maps and aspect maps. Then use RADDEG(ATAN2(DX,DY)+PI).
F For the functions SIN, COS and TAN, the input angles have to be specified in

radians. To convert degrees to radians, use the angular function DEGRAD. For
example, the formula SIN(DEGRAD(60)) calculates the sine of 60°.

F For the functions ASIN, ACOS, ATAN and ATAN2, the output values are in
radians. To convert radians to degrees, use the angular function RADDEG. For the
functions ASIN and ACOS, the input values must be in the range -1 to 1.

Angular conversion functions

DEGRAD(a) degrees to radians function: a*2π/360
RADDEG(a) radians to degrees function: a*360/2π MOD 360

The DEGRAD function converts degree values in map a to radians: a is multiplied
with 2π/360. The DEGRAD function is often used in combination with
trigonometric functions.

The RADDEG function converts radian values in map a to degrees: a is multiplied
with 360/2π MOD 360. ILWIS uses a default range of 0 - 360 with a precision of
0.01. The RADDEG function is often used in combination with trigonometric
functions.



Map & Table calculation

178 ILWIS Reference Guide

Examples of an angular conversion function
In the following example, the input map has pixel values in radians which are
converted to degrees in the output map and rounded to the nearest integer.

Degrees = ROUND(RADDEG(Map1))

Map1 Degrees

Examples of conversion functions
To calculate the tangent (in degrees) of map1, use the following formula:

map2 = TAN(DEGRAD(map1))

To convert a map with slope values in percentages (slopepct) to a map with
slope values degrees (slopedeg), use the following expression:

slopedeg = RADDEG(ATAN(slopepct/100))

Hyperbolic functions

SINH(a) hyperbolic sine: (ea - e-a)/2
COSH(a) hyperbolic cosine: (ea + e-a)/2
TANH(a) hyperbolic tangent: tanh(a) = sinh(a)/cosh(a)

Hyperbolic functions are related to a hyperbole ( x2 - y2 = r2), in the same way as
trigonometric functions are related to a circle ( x2 + y2 = r2 ). In the formulas above,
a represents the X of the hyperbole.

Predefined values
PI value π : 3.141593...
PI2 value 2 * π : 6.283185...
PIDIV2 Value ½ π : 1.570796...
PIDIV4 Value 1/4 π: 0.785398...
EXP(1) value e : 2.718282...

The predefined values available in ILWIS are often applied in combination with
trigonometric functions. Most calculations using predefined values are performed
in table calculations. For a more detailed description refer to the section Table
calculation.



Map & Table calculation

ILWIS Reference Guide 179

6.2.3.4 Operators and functions on non-value maps
Below, the operators and functions are explained that can be used in Map
calculation on maps with a domain Class, Group or ID. For an overview of all
operators and functions available, please, refer to the schematic overview at the
start of this chapter.

When using class or group names or IDs within an expression, these names and
IDs should be put between double quotes, e.g. ”coffee”. In domains of the Class or
Group type, you can enter codes and class names/group names. These codes can be
an abbreviation of your class or group names. In expressions, also the codes can be
used.

Relational operators

= eq a = b a eq b tests whether the outcome of expression a is
equal to the outcome of expression b

<> ne a <> b a ne b tests whether the outcome of expression a is
not equal to the outcome of expression b

Relational operators may be written as symbols (=, <>) or as letters (eq, ne). When
using the symbols it does not matter whether you type spaces around the operators
or not. When using the letters, e.g. in scripts, spaces are required on both sides of
the operator. Pixels are assigned True when the expression is true and else False.

Example of the relational = operator

Result1 = Landuse = ”coffee”

Read in the Landuse map for B: Bare soil, for C: Coffee, and for S: Shrubland.
Relational operators are often used in combination with a conditional IFF function.

Example of the logical AND operator
The result of a and b is true if both expressions a and b are true; in other cases false
is returned.

In the following example a Landuse map is use used indicating the Landuse of
16 square parcels and a map Commval giving the commercial value of those
parcels.

ResAND1 = (Landuse = ”residential”) AND (CommVal > = 20)



Map & Table calculation

180 ILWIS Reference Guide

Landuse Commval ResAND1

Read in the map Landuse for R: Residential, for C: Commercial and for I:
Industrial.

Using this expression, map ResAND1 is created from 2 maps: Landuse and
CommVal (commercial value). When a pixel has the class ”residential” in
map Landuse and the corresponding pixel in the map Commval has a value >
=20 the expression is true. Therefore True is assigned to that pixel in the output
map ResAND1. For all the other pixels the expression is False.

In the following example, a new map is created from a map showing the location
and numbers of parcels and its attribute table.

ResAND2 = (Parcel.Landuse = ”residential”) AND
(Parcel.Commval > = 20)

Parcel

Parcel
Parcelnr Landuse Commval Parcelnr Landuse Commval

1 Residential 10 9 Residential 10
2 Commercial 35 10 Residential 40
3 Industrial 20 11 Industrial 30
4 Residential 25 12 Residential 5
5 Industrial 35 13 Commercial 20
6 Commercial 15 14 Commercial 5
7 Commercial 40 15 Residential 20
8 Residential 15 16 Industrial 10

The attribute table Parcel contains columns with information on Landuse and the
Commercial Value for every parcel. Applying the ResAND2 formula gives the
following result:

ResAND2



Map & Table calculation

ILWIS Reference Guide 181

Using the second expression, map ResAND2 is created from a map with parcels
and its attribute table Parcel. When a record in the table has ”residential”
in column Landuse, and has a commercial value larger than 20 in column
CommVal the expression is True which is assigned to the corresponding pixels in
map ResAND2.

Example of the logical OR operator

The result of A or B is true if either expression A, or expression B or if both
expressions A and B are true; in other cases false is returned.

ResOR = (Landuse = ”bare”) OR (Landuse = ”shrub”)

Landuse ResOR

For pixels from the map Landuse belonging to the class ”bare” or to class
”shrub”, the expression is true. For class names, false is returned.

Of course, the OR operator can also be used to compare to different input maps, for
instance when you are interested in the total area where the landuse is coffee (map
Landuse), or the elevation is more than 1400 (map DEM). This can be done as
follows:

ResOR = (Landuse = ”Coffee”) or (DEM > 1400)

Landuse DEM ResOR

The map ResOR shows the result of testing for each pixel if one of the expressions
or both expressions are true.

Conditional IFF function

IFF(a,b,c) If condition a is true, then return the outcome of expression b,
else (when condition a is not true) return the outcome of
expression c. a,b,c may be class names, IDs, or group names,
columns of domain Class, ID, or Group or expressions.

F The conditional IFF may be used for all types of input data: values, Ids, groups and
classes.



Map & Table calculation

182 ILWIS Reference Guide

Examples of conditional IFF functions:

Result1 = IFF (Landuse = ”coffee”, 20, 1)

This is the most simple type of expression using an IFF function. In this case it
means: If in map Landuse a pixel belongs to class coffee, then assign value 20 to
this pixel in output map Result1, else assign 1.

Landuse Result1

Read in the Landuse map for B: Bare soil, for C: Coffee, and for S: Shrubland.
The IFF function can be combined with different other operators and functions.

Result2 = IFF ((Landuse=”coffee”) AND (DEM>=1400), 1, 0)

Landuse DEM Result2

If a pixel belongs to class ”coffee” in map Landuse and the corresponding pixel
in the DEM has a value greater than or equal to 1400, then assign 1 to this pixel in
output map Result2, else assign a 0.

Result3 = IFF((Landuse = ”coffee”) AND INRANGE(DEM,
1000,1400), 10, 0)

Landuse DEM Result3

If a pixel belongs to class ”coffee” in map Landuse and the corresponding pixel in
the DEM has a value in between 1000 and 1400, then assign a 1 to this pixel in
output map Result3, else assign a 0.

When you wish to keep the original height values in map Result3, you may
replace the 1 in the formula with DEM; when you wish to assign undefineds to the
remaining pixels, you may replace the 0 in the formula by ?.



Map & Table calculation

ILWIS Reference Guide 183

6.2.4 Special Map Calculations

6.2.4.1 Calculating with undefined values
In every data set (map or table) you might encounter missing values or illegal
outcomes of operations (e.g. a division by zero or the square root of a negative
value). These are called undefined and are represented by a question mark (?).
The outcome of calculations using an undefined value will always result in another
undefined value with only one exception. This and the testing for, and assigning of
undefined values is described below.

Testing for undefined values

ISUNDEF(a) tests whether a is undefined; returns a Bool
IFUNDEF(a,b) returns b when a is undefined, else a is returned
IFUNDEF(a,b,c) returns b when a is undefined, else c is returned
IFNOTUNDEF(a,b) returns b when a is not undefined, else the undefined

remains
IFNOTUNDEF(a,b,c) returns b when a is not undefined, else the undefined

is replaced by c

F Do not use for example the expression: Map1 = ? because then an undefined is
defined for every pixel and further calculations are of no use.

Example of testing for undefined values
The ISUNDEF function tests whether a is undefined or not known. Argument a can
be the outcome of an expression or simply a map name or a pixel in a map.
Function ISUNDEF may be used on maps with any domain type.

Below, the ISUNDEF function is combined with a conditional IFF function. Map
Result1 can be obtained by three statements:

Result1 = IFF(isundef(Map1), 10, Map1)

Result1 = IFUNDEF(Map1, 10, MAP1)

Result1 = IFUNDEF(Map1, 10)

Map1 Result1

If a pixel of Map1 is undefined, then value 10 is assigned to this pixel in map
Result1; else the original value is assigned.



Map & Table calculation

184 ILWIS Reference Guide

The function IFUNDEF(a, b, c) gives the same result as the expression
IFF(ISUNDEF(a), b, c).

Result2 = IFF(ISUNDEF(Landuse),”unknown”, landuse)

Result2 = IFUNDEF(Landuse,”unknown”, Landuse)

Result2 = IFUNDEF(Landuse,”unknown”)

Result3 = IFNOTUNDEF (Landuse, 10)

Landuse Result2 Result3

In Result2 ”unknown” is assigned for every undefined pixel in map Landuse.
All other pixels remain of the same value, class, id etc. as they were in the input
map.

In Result3, every undefined pixel in map Landuse remains undefined. Every
defined pixel is assigned a value of 10.

Assigning undefined values
To assign undefined values, use a question mark ? when the output domain is a
domain Value, and use ”?” when the output domain is a domain Class, Group or
ID. Below, an example is given combined with a conditional IFF.

Example of assigning undefined values

Result4 = IFF (Map1 = 10, ?, Map1)

Map1 Result4

If a pixel of Map1 has value 10, then undefined is assigned to this pixel in map
Result4; else the pixel will get the original value.

Result5 = IFF (landuse = ”unknown”, ”?”, landuse)



Map & Table calculation

ILWIS Reference Guide 185

Landuse Result5

If a pixel in map Landuse has class name ”unknown”, then undefined is assigned
to this pixel in map Result5; else the original class name is assigned.

6.2.4.2 Predefined variables
%C used to specify a column number in a raster map
%L used to specify a line number in a raster map
%X used to specify the X-coordinate in a raster map
%Y used to specify the Y-coordinate in a raster map

The predefined variables %C and %L are useful to perform calculations on specific
column or line numbers in raster maps.

Example of predefined variables %C and %L

Map2 = IFF(INRANGE(%C, 100,400) AND (INRANGE (%L, 200,
500)), Map1, ”?”)

Map1 Map2

Map 2 has the same content as map1 if the column number is in the range of 100 to
400 and the line number in the range of 200 to 500. Outside this area Map2 is
undefined. For more examples refer to Special Topics.

Example of predefined variables %X and %Y

Map2 =IFF((%X > 80000) AND (%Y < 8080000), Map1, ”?”)

Map1 Map2

Map 2 has the same content as map1 if the X-coordinate is higher than 800000 and
the Y-coordinate is lower than 8080000. Outside this area Map2 is undefined. For
more examples refer to Special Topics.



Map & Table calculation

186 ILWIS Reference Guide

6.2.4.3 Create an attribute map
Raster maps of the domain type Class, ID or Group can have an attribute table with
additional information on the elements in the map. An attribute table must share
the same domain Class, ID or Group as the map(s) to which it refers. The domain
provides the relational link between the table and the map. Therefore, the attributes
in a column from an attribute table, can be put in a map, a so-called attribute map.
Attribute maps may be created through operation Attribute Map. You can also
directly create an attribute map by typing one of the following statements on the
command line of the Main window:

Outmap = MapName.ColumnName

Outmap = MapName.TableName.ColumnName

Outmap = MapAttribute(MapName,ColumnName)

where:
Outmap is the name of your output map
MapName is the name of your input map (domain Class , Group or

ID)
TableName is the name of a table (using same domain as input map)
ColumnName is the name of a column

Example of creating an attribute map
In the following example a landuse map is used showing the geographic position
of five landuse classes. In the attribute table there are columns with the description
of the landuse class and a commercial value for a certain landuse. A new map is
created showing the commercial values for landuse.

Landval = Landuse.CommValue

This formula will do in this example because the attribute table has the same name
as the input map. Of course, you may also use the expressions:

Landval = Landuse.Landuse.CommValue

Landval = MapAttribute(Landuse, Commval)

Landuse(.mpr)



Map & Table calculation

ILWIS Reference Guide 187

Landuse(.tbt)

LUclass Description Comm Value
1 Bare 0
2 Shrub 50
3 Coffee 100
4 Grassland 75
5 unknown 0

Landval

The input values of the landuse map (which are the landuse classes) are replaced
by the commercial value of that specific landuse class.

The first statement only works when an attribute table is linked to the input map
(see the properties dialog box of the input map. For the second statement, the table
does not have to be linked to the map. However the second type of statement only
works when the domain used by the table is the same domain as used by the map.
In such a way you may also use histogram tables and representations (.his .hsa
.rpr).

6.2.4.4 Classifying a map
CLFY(a , DomainGroup) classifies the values of a according to a domain

Group.

Classified maps are less detailed then the original ones. But they often more easy to
read because of the limited number of groups or classes.
n To temporary classify a map, you can simply create a representation value or

gradual; a domain Group is not needed. For more information, see How to
classify a map.

n To permanently classify a map, you have to predefine a Domain Group in which
you indicate the upper limit for each class.

Example of classifying a value map
In this example an input map1 has values between 0 and 100 and you defined your
Domain Group with the name ”class” as follows :
Upper boundary 25: Low
Upper boundary 50: Intermediate
Upper boundary 100: High

You may classify your map according to this domain using the formula:

Classmap=(Map1, class)



Map & Table calculation

188 ILWIS Reference Guide

Map1 Classmap

All pixels of map1 with a value between 0 and 25 are assigned class Low (L) in the
classified map. If they are between 25 and 50 they get class Intermediate (I), else
class High (H) is assigned.

A domain Value map can be classified or sliced as well through the operation
Slicing. Ranges of values of the input map are grouped together into one or more
output classes. A domain Group should be created beforehand; it lists the upper
boundaries of the groups and the group names. Then, double click the Slicing
operation in the Operation-list and a dialog box appears on the screen. Fill in your
raster map that needs to be classified, an output map name and choose the domain
according to which your map needs to be classified or sliced. To force immediate
calculation tick the show box.

F For ILWIS 1.41 users: the domain Group acts as a classify table.

To perform a multi-spectral image classification, use Sample and then the Classify
operation.

6.2.4.5 Two-dimensional tables
Two-dimensional tables are used to combine or reclassify two raster maps with a
Class, Group or ID domain. It defines a new class or a value for each possible
combination of input classes, groups or IDs. A two-dimensional table view consists
of rows representing one domain, and columns representing another domain. In the
two-dimensional table, you have to assign a value, class name or ID to each
possible combination of your input domains

Application of a two-dimensional table on the command line of the Main window,
requires two input raster maps which have the domains as used by the two-
dimensional table. The output raster map then contains the values, classes or IDs
that you entered in the fields of the two-dimensional table.

When you create a new two-dimensional table, it is directly displayed in a table
window where you can also edit it directly. To open and edit an existing two-
dimensional table, double-click a two-dimensional table in the Catalog, double-
click the Open or Edit item in the Operation-list, or select the Edit Object command
on the Edit menu of the Main window and select a two-dimensional table.

A two-dimensional table can be applied by typing the following expression on the
command line of the Main window:

OUTMAP = Twodimtablename[map1,map2]



Map & Table calculation

ILWIS Reference Guide 189

where:
OUTMAP is the name of your output map
Twodimtablename is the name of your two-dimensional table (extension

.TA2)
Map1 and Map2 are your input maps from which the domains are used in

the two-dimensional table.

Example of a two-dimensional table
Two small raster maps are combined to one output map according to a two-
dimensional table. The domain of Map1 contains the IDs: A, B, C, D and E and
Map2 has the classes: P, Q, R, and S.

The two-dimensional table may for instance look like:

Twodim.ta2
P Q R S

A Very Low Very Low Very Low Very Low
B Very Low Low Intermediately Low Intermediate
C Very Low Intermediately Low Intermediate Intermediately High
D Very Low Intermediate Intermediately High High
E Very Low Intermediately High High Very High

Application of this table to Map1 and Map2 results in Map3 by using one of the
following formulas:

Map3 = Twodim.ta2[map1,map2]

Map3 = Twodim[map1,map2]

Map1 Map2 Map3

Map3 has pixel values according the classification given in the two-dimensional
table twodim. Each combination of corresponding pixel values is assigned its new
value.

6.2.4.6 Neighbourhood operations
Neighbourhood operations are a special spatial analysis in ILWIS. They are
calculations on pixels in which the outcome depends on the neighbouring pixels.
Neighbourhood operations may be performed on user-selected pixels as well as on
whole maps. Just as in filtering procedures, neighbourhood operations make use of
a filter. This window of 3 by 3 cells is moved over the raster map. Each cell of the
output map is calculated according to the specified neighbourhood expression. The
cell numbers in the moving window are coded as follows:



Map & Table calculation

190 ILWIS Reference Guide

This means that the left neighbour of the central pixel is coded number 4 and the
lower right pixel number 9. By definition the central pixel itself is included and has
a value of 5. The result of the calculation is stored in the central pixel.
If a neighbourhood operation is performed on a pixel on the top or bottom line or
on the very first or last column of a raster map, new neighbours are created by
duplicating this boundary line or column. In the case of the neighbour position
variable: NBPOS, the outer lines or rows added will have value 0.

Syntax of neighbourhood operations

Map2 = Map1#[expression]

where:
Map1 is the input map.
# is the neighbourhood operator indicating all neighbours are to be

used.
[ ] is used to indicate the selection of a specific neighbour .
expression is any expression with output values in the range 1 to 9 to select a

specific neighbour.

Examples
In this example the altitude difference will be calculated in the X and Y direction.
The DX and DY maps are the output maps using a digital elevation model as input
map.

DX = dem#[4] - dem#[6]

DY = dem#[2] - dem#[8]

This means in words:
Subtract the right neighbour of the central pixel from the left neighbour of the
central pixel and store the result in the central pixel. Subtract the lower neighbour
of the central pixel from the upper neighbour of the central pixel and store the
result in the central pixel.

Now the height difference is known over a horizontal distance of two pixels in two
directions. There are several neighbourhood functions available for performing
operations on neighbours of a pixel. These functions are listed below:



Map & Table calculation

ILWIS Reference Guide 191

Neighbourhood functions

NBMIN (nbexpr) returns for each pixel the lowest neighbouring value
NBMAX (nbexpr) returns for each pixel the highest neighbouring value
NBSUM (nbexpr) returns for each pixel sum of the neighbouring values
NBPRD (nbexpr) returns for each pixel the predominant of the

neighbouring values
NBCNDP (nbexpr) tests for which of the neighbouring pixels a certain

condition is true; when this is the case for more pixels,
then the precedence is: central pixel number 5, and then
1,2,3,4,6,7,8,9; when none of the neighbours satisfies the
specified condition the outcome value is 0

NBCNT (nbexpr) tests the number of neighbours which satisfy the specified
condition

NBFLT (fltname) applies a pre-defined linear filter of 3 by 3 cells to all
neighbouring pixels

NBDIS (nbexpr) returns the distance between the central pixel and its
neighbouring ones

NBPOS (nbexpr) returns the position of a neighbour in the neighbour
expression

NBMINP (nbexpr) returns the position of the neighbour with the lowest
value; when this is the case for more pixels, then the
precedence is: central pixel number 5, and then
1,2,3,4,6,7,8,9

NBMAXP (nbexpr) returns the position of the neighbour with the highest
value; when this is the case for more pixels, then the
precedence is: central pixel number 5, and then
1,2,3,4,6,7,8,9

NBPRDP (nbexpr) returns the position of the neighbour with the
predominant value; when this is the case for more pixels,
then the precedence is: central pixel number 5, and then
1,2,3,4,6,7,8,9

NBDIS is a predefined variable which is only useful when multiplied by the pixel
size (see example).

Examples of neighbourhood functions
Calculating a classified aspect map:
In this example a classified aspect map will be calculated which contains 9 classes.
The input map is a DEM (digital elevation model) By using the neighbourhood
function NBMINP, a pixel is assigned the position number of the lowest pixel in
the imaginative window. This indicates the direction of the slope as follows:



Map & Table calculation

192 ILWIS Reference Guide

Pixel
number

Direction

1 NW
2 N
3 NE
4 W
5 Flat
6 E
7 SW
8 S
9 SE

aspect = NBMINP (DEM#)

DEM  aspect

Iterations
Iterations are a special type of calculations. They are a successive repetition of a
mathematical operation, using the result of one calculation as input for the next.
The calculation stops when the difference of the output compared to the input is
negligible or if the number of steps is reached which was defined before. Iterations
are often used in combination with neighbourhood operations. Such an application
might be for instance the selection of an item or area which fits a certain condition,
starting from one pixel (see: example calculation of a flooded area)

In ILWIS, 4 iteration functions are available listed below:

MAPITER (startmap,
iterexpr)

performs iterations on the startmap according the
iteration expression until no pixel changes anymore

MAPITER (startmap,
iterexpr, times)

performs a specified number of iterations on the
startmap according the iteration expression

MAPITERPROP
(startmap, iterexpr)

performs iterations with propagation on a startmap until
no pixel changes anymore; the newly calculated value
for a pixel is used in calculating the next line instead of
in the next iteration

MAPITERPROP
(startmap,
iterexpr,times)

performs a specified number of iterations with
propagation on a startmap; the newly calculated value
for a pixel is used in calculating the next line instead of
in the next iteration

After each iteration ILWIS shows the number of changed pixels. This number is
the total of changes after performing one iteration in all directions (up, down, right
and left).



Map & Table calculation

ILWIS Reference Guide 193

Distance calculation
You may calculate the distance from pixels in a map to one or more specified
pixels. To do so you need to create a startmap in which you find these specified
pixels. It is recommended to give those pixels a value 0, because the output map
contains pixel values which are the sum of the distance between the two pixels and
the value of the pixel in the start map. The distance calculation in neighbourhood
operations uses a predefined filter NBDIS. This is a 3 by 3 filter as shown below:

√2 1 √2
1 0 1

√2 1 √2

Use the pixel editor to create the start map:
n Firstly, display a map showing the area in which you want to perform the

distance calculation and choose File, Create, Create Raster Map from the
menu in the map window. Then you fill in the dialog box. In this example
Start is filled in as the raster map name. Accept the default georeference
which is the same as in the map displayed in the map window and choose
domain Value. Then, choose one or more pixels which act as the starting
point(s) for the distance calculation. Give them value 0. When leaving the pixel
editor the map Start has one or several defined pixel with value 0, the rest is
undefined. Display the Start map to force calculation.

n Now the actual distance calculation can be performed. Iteration with
propagation is used until there are no changes anymore in any of the pixel
values. Type:

NBMIN(Start# + NBDIS * PIXSIZE)

Iterations sometimes take quite a lot of time, especially with large maps.
Therefore the calculation time may be reduced to split the calculation in two
steps. First, the distance filter has to be applied in the iteration and this
temporary result will be stored. Subsequently, this temporary result will be
multiplied with the pixel size.

n To start the calculation, double-click the Iteration item in the Operation-list of
the Main window. The Iteration dialog box appears on the screen. In this
example the initial map is raster map Start. In the expression box, type

NBMIN(Start# + NBDIS)

This means: Calculate for every neighbouring pixel the temporary distance to
the nearest specified pixel in the start map and store the result in map Temp.
The default is accepted for the Stop criterion: Until No changes. Keep the
option propagation selected because then the new pixel value is immediately
used in the calculation of the next pixel. Temp is filled in as the output raster
map; select the Show check box. The defaults are accepted for the domain and
then click OK.
You may also type directly in the command line of the Main window:

Temp = MAPITERPROP (Start, NBMIN( Start# + NBDIS))



Map & Table calculation

194 ILWIS Reference Guide

n After accepting the display options, map Temp is displayed in which the pixel
values represent the nearest distance to the earlier specified pixel(s). The pixel
size is not taken into account yet. The final result is obtained by multiplying the
temporary result with the pixel size. In this example the pixel size is 10m. Type
the following formula on the command line of the Main window:

Mapdis = (Temp * PIXSIZE(Start))

Startmap Temp Mapdis

The map Mapdis is the result of a distance calculation. The starting pixel has
value 0. After the iterations with propagation, each pixel in map Mapdis
represents the distance to the starting pixel.

Determining flat areas and pits in a DEM
An area is considered to be flat when in the moving window of 3 by 3 pixels all
pixels have the same value. By using one of the following expression you can check
which pixels have 8 neighbours with the same altitude as the central pixel.

Flat = NBCNT8(DEM#=DEM)=8

Flat = NBCNT(DEM#=DEM)=9

A so-called pit is a pixel which has a value lower than all of its surrounding pixels.
A DEM will be checked for the presence of pits. This is done using the following
expression:

Pit = NBMINP(DEM#)=5

This results in a map with domain Bool. If from all neighbours, the central pixel
has the lowest value, that central pixel will be assigned True, else False.

Calculation of the flooded area, given dam site and dam altitude
When a dam is constructed in a valley, an area upstream will be flooded up to a
certain water level. To determine the exact area to be flooded you can use
neighbourhood operations in ILWIS. Then, you can also calculate the volume of the
water body.
n The first step is determination of the dam site, dam altitude, freeboard and the

designed water level h.
n If not available create a DEM (digital elevation model) of the area.
n Then, make a raster map showing the exact location of the dam. To do so, start

with the display of the DEM and use the pixel editor to create a new raster map.
Choose in the menu of the map window File, Create, Create Raster Map.
The Create Raster Map dialog box appears on the screen. Fill in the new map
name (e.g. Dam). Then, select the georeference which is used by the DEM
(accept the default) and as domain select Value and press OK. Zoom in to the



Map & Table calculation

ILWIS Reference Guide 195

area where you want to build the dam. Now, you can select pixels which will
form the dam in map Dam. The pixels indicating the dam should be connected
in a proper way (see figures below). Otherwise pixels at the opposite site of the
dam are also used in the calculation later.

wrong correct

The left mouse button is used to select the pixels while holding down the Ctrl
key of the keyboard. When all pixels are selected double-click a pixel (still
holding down the Ctrl key) and give the dam the code of the altitude of the top
of the dam

n To combine the DEM and the raster map Dam.mpr type on the command line
of the Main window:
Demnew = IFUNDEF(Dam, DEM, Dam)

 This means that if map Dam is undefined the value of the DEM is assigned, else
the value given in map Dam. Thus the altitude of the dam (in this example
3360m) is included in the Digital Elevation Model.

n To determine the area to be flooded you need to create a map indicating one
pixel in this area. Using neighbourhood operations this pixel acts as the starting
point for the calculation. Use the pixel editor to create the new raster map.
Firstly, display the map Damnew.mpr and choose File, Create, Create
Raster Map from the menu in the map window. Then fill in the dialog box. In
this example fill in Start as the raster map name. Accept the default
georeference which is the same as in Demnew and choose domain Bool.
Choose a pixel in the area to be flooded, double-click the pixel and make it
”True”. When leaving the pixel editor the map Start has only one defined
pixel, the rest is undefined. Display the map to force calculation.

n Now the actual calculation of the area can be performed. Iteration with
propagation is used until there are no changes anymore in any of the pixel
values. To start the calculation, double-click the Iteration item in the
Operation-list of the Main window. The Iteration dialog bog appears on the
screen. In this example the initial map is raster map Start. Type in the
expression box:
IFF (Demnew > 3340, Start, NBMAX(Start1#))

This means: if the altitude in the new Digital Elevation Model is higher than
3340 m, than return the pixel values of raster map Start. Else, assign the
maximum value of the neighbouring pixels found in raster map Start (which is
”True”). In the first iteration there is only one starting pixel which is ”True”.
Every iteration, the neighbouring pixels which satisfy the conditions (altitude <
3340 m) will get the same value as that starting pixel. This will continue until
next neighbouring pixels have an altitude of more than 3340 m. (The upper side



Map & Table calculation

196 ILWIS Reference Guide

of the dam was at an altitude of 3360 m; the freeboard of the dam is 20 m; the
actual water level is at 3340 m altitude )

n The default is accepted for the Stop criterion: Until No changes. Keep the
option propagation selected because then the new pixel value is immediately
used in the calculation of the next pixel. Flooded is filled in as the output
raster map and select the show box. The defaults are accepted for the domain
and then click OK.

n After accepting the display options, the area which will be flooded appears on
the screen.

n To find out the size of the flooded area calculate a histogram by double clicking
the Histogram operation in the Operation-list. Open the list box and choose map
Flooded. The size of the area which is flooded (True) can be read from this
histogram table.

n The next step is the calculation of the volume of the water body. Therefore cross
the newly calculated map Flooded with the DEM Damnew. The crossing of
two maps is a relatively time consuming operation. You can limit the
calculation time and the size of the cross table by making a new DEM showing
only the flooded area. Do that by typing in the command line of the Main
window:
Demsmall = IFF(Flooded, Damnew, ?)

This means that outside the flooded area all pixels are undefined and not taken
into account in the crossing operations.

n The crossing is started by double-clicking the Cross operation in the Operation-
list of the Main window. Then, fill in the cross dialog box. The first map you
choose from the context-sensitive menu is the map Flooded and the second
map is the new reduced DEM Demsmall. Fill in Flooddam as the output
table name and select the show box. You do not need a cross map because the
calculation will be performed using the cross table. Therefore do not select the
option output map. Finally click on O.K. and the cross table is calculated and
appears on the screen. It shows the combinations of input values of the map
Flooded and the map Demsmall, the number of pixels that occur for each
combination and the area for each combination.

n To calculate the depth you only have to subtract the altitude given in the DEM
Demsmall from the planned water level (3340 m). Type in the command line
of the table window:
Depth = 3340 - Demsmall

n Now you can calculate the volume per area having a certain depth as follows:
Vol = Depth * Area

n Finally sum all volumes of all different water depths together. This can be done
using the aggregation function AGGSUM.
Sum = AGGSUM (Vol)

The column Sum shows the total volume of water in cubic meters for the entire
area which will be flooded after creating the dam.


