Bias correction of CMORPH satellite rainfall estimates in the Zambezi River Basin

W. Gumindoga^{ab}, T.H.M. Rientjes^a, A.T. Haile^c, H. Makurira^b, W. Verhoef^a and P. Reggiani^d

^aFaculty ITC, University of Twente, The Netherlands ^bUniversity of Zimbabwe, Civil Eng. Department, Zimbabwe ^cInternational Water Management Institute (IWMI), Ethiopia ^dUniversity of Siegen, Germany

16th Waternet/WARFSA/GWP-SA Symposium Le Meridien Holiday Resort Mauritius 28th – 30th October 2015

Outline

- The need for satellite rainfall estimates (SREs)
- Gauge based analyses
- Methods for bias correction
- Findings on bias correction
- Conclusions and implications on water resources management in the Zambezi Basin

Introduction

Rainfall plays a central role in the livelihoods of people

- Obtaining reliable measurements of rainfall is a major challenge
 - Iow number of rain gauges, poor spatial distribution of the rain gauges
- Satellite-derived rainfall estimates (SREs) are timely & cost efficient
- SREs are an indirect rainfall retrieval from visible, Infrared (IR), and/or Microwave (MW) based information of cloud properties
 - Prone to large systematic and random errors (also known as bias).
- Errors exhibit a topographical, latitudinal, regional and seasonal dependency in terms of rainfall depth, occurrence and intensity
- Overwhelming evidence compelling us to perform bias correction

Choice of bias correction algorithms

Depends on

- desired level of accuracy, reliability & quantitative consistency of corrected product.
- assumptions to represent spatial and temporal rainfall characteristics
- application the bias corrected product is to be used for (Habib et al., 2014).
- Methods for bias correction developed in multi-sensor, radar-gauge approaches (Vernimmen et al., 2012), climate models (Lafon et al., 2013) and triggered applications in satellite remote sensing.
 - Mean bias correction (Seo et al., 1999)
 - histogram equalisation (Thiemig et al., 2013)
 - regression analysis (Cheema and Bastiaanssen, 2010; Yin et al., 2008)
 - PDF matching (Gudmundsson et al., 2012; Gutjahr and Heinemann, 2013).

Review of bias correction algorithms

- Bias correction algorithms (e.g. empirical function & stochastic modelling, regression techniques) have background in climate models.
 - aim to adjust/correct errors in the magnitude of rainfall, but do not consider its temporal variability (Botter et al., 2007).
 - Reported distortion of frequency and intensity of rainfall (Botter et al., 2007).
 - For operation hydrology, the correct representation of daily precipitation and timing of rainfall frequency within the season is extremely important.
- Studies (e.g. Habib et al., 2014) recommend accounting for spatial patterns in bias
 - huge impact, particularly on volumetric estimation of rainfall
- Non-linear bias correction factors mitigates underestimation of SREs in dry months and overestimation during wet months

Why bias correction algorithms for Zambezi

- So far, bias correction algorithms focus on Europe, America & Australia
- No bias correction algorithm developed for Zambezi Basin
- Despite strategic importance of the basin in providing water to over 50 million people.

Objectives

Main Objective

7

 To perform bias correction of CMORPH satellite rainfall estimates in the Zambezi River basin using 54 rain gauge stations for period 1998-2013.

Specific objectives

1) To perform quality control on gauge based estimates

- 2. to develop spatially varying linear and non-linear bias correction algorithms using gauge based estimates
- 3) to apply and compare the developed correction algorithms to CMORPH satellite rainfall.

Materials and Methodology

Satellite derived rainfall & extraction

Daily CMORPH rainfall data was downloaded from the GeoNETCAST's ISOD toolbox

- CMORPH has near real time global coverage @ 8 km spatial res & 30 min temp res
- CMORPH uses motion vectors derived from half-hourly interval geostationary satellite IR imagery to propagate the relatively high quality precipitation estimates derived from passive microwave data (<u>Joyce et al., 2004</u>).
- CMORPH rainfall was extracted in a GIS environment for each of the 54 stations.

Gauge based Mean Annual Rainfall (MAR)

Zambezi Delta

.

ę

-

-20

Legend **Raingauge location** ę Isohyet (mm) Upper Zambezi Shire River Kabompo 1040 Lungue Bungo Luangwa ъ. Kafue Guanginga Mupata Barotse -16 Tete Cuando/Chobe 720 720 . 880 Kariba -18 sub-basin boundary

800 km

Quality \checkmark check on estimates gauge before bias correction

Gauge based analysis: topographic influences

- The Hierarchical cluster 'within-groups linkage' method used to classify the Zambezi basin into 3 regions based on elevation vs station correlation
- ASTER based 30m DEM was used to retrieve elevation values across the Zambezi domain
- Analyses using Taylor diagrams

Cluster	Elevation range	Cluster Membership									
Cluster 1	< 250 m	Marromeu, Caia, Nsanje, Makhanga, Nchalo, Ngabu, Chikwawa, Tete (Chingodzi)									
/		Chingodzi, Zumbo, Mushumbi, Kanyemba, Muzarabani, Monkey, Mangochi, Rukomechi									
Cluster 2	250- 950 m	Mutarara, Mfuwe, Mimosa, Balaka, Thyolo, Chileka, Neno									
Cluster 3	> 1600 m	Mt Darwin, Chipata, Makoka, Livingstone, Senanga, Petauke, Msekekera, Kalabo, Mongu Kasungu, Victoria Falls, Bolero, Zambezi, Kabompo, Chichiri, Chitedze, Lundazi, Guruve Kaoma, Bvumbwe, Kasempa, Kabwe, Chitipa, Mwinilungu, Karoi, Solwezi, Harare									
		(Belvedere), Harare (Kutsaga), Mvurwi, Dedza, Morrumbala									

 Bias in CMORPH rainfall estimates was assessed and corrected using 5 algorithms.

1. Spatio-temporal bias correction (STB)

- Linear bias correction algorithm with origin in the correction of radar based precipitation estimates (Tesfagiorgis et al., 2011) & climate models.
- Bias is corrected at individual station and at daily time scale (i.e., space & time varying)

$$BF_{STB} = \frac{\sum_{t=d}^{t=d-l} S(i,t)}{\sum_{t=d}^{t=d-l} G(i,t)}$$

The BF_{STB} calculated for a certain day for min of 5 rainy days recorded within the preceding 7-day window with a min rainfall accumulation depth of 5 mm

Advantages

- simplicity & modest data requirements
- it adjusts the daily mean of CMORPH at each station.

2. Elevation zone bias correction (EZB)

- New bias algorithm aimed at correction of satellite rainfall by understanding the topographic influences in the rainfall distribution and retrieval mechanism.
 - The method spatially groups raingauge stations into 3 elevation zones (clusters)
- Assumption: Stations in the same elevation zone have the same error properties and are assigned their lumped bias correction factor (BF_{EZB})

$$BF_{EZB} = \frac{\sum_{t=d}^{t=d-l} \sum_{i=l}^{i=n} S(i,t)}{\sum_{t=d}^{t=d-l} \sum_{i=l}^{i=n} G(i,t)}$$

- Merits of this bias correction algorithm:
 - daily time variability is preserved up to a constant multiplicative factor
 - accounting for spatial heterogeneity in topography.

3. Power Transform Bias correction (PT)

- Nonlinear correction algorithm aimed at achieving closer fit (monthly CMORPH vs gauge)
- Origins in climate models, extended to runoff modelling & drought monitoring (Vernimmen et al., 2012).
- The bias corrected CMORPH rainfall (P*) is obtained using equation:
 - $P^* = aP^b$

- P=Raingauge monthly rainfall
- a= prefactor such that the mean of the transformed CMORPH = mean of gauge values
- b =factor determined iteratively such that for each station the CV of CMORPH matches gauge estimates
- Merits of bias algorithm
 - variability of the daily series is preserved
 - adjusts extreme precipitation values in CMORPH estimates

4. Distribution transformation (DT)

- Additive approach with background in statistical downscaling of climate data (Bouwer, 2004)
- Statistical distribution of all raingauge and CMORPH data on a particular day and same stations.

Bias correction factor for the Mean and St dev $DT_{\mu} = \frac{G_{\mu}}{S_{\mu}}$ and $DT_{r} = \frac{G_{r}}{S_{r}}$

Where:

$$S_{\rm DT} = (S_{\rm o} - S_{\rm u}) DT_{\tau} + DT_{\mu} * S_{\tau}$$

 $S_{\rm DT}$ = corrected CMORPH $S_{\rm o}$ = uncorrected CMORPH

- Merit of bias algorithm
 - mean frequency of CMORPH above a certain threshold matches the gauge based mean frequency.

5. Probability Distribution Transformation Function Matching (PDF)

- PDF of CMORPH matched against daily gauge to define and remove the bias
- Collection of co-located pairs of gauge & CMORPH over grid boxes within a spatial window centering at the target grid box and a time period ending at target date
- Cross validation has been done for the PDF matching
 - Each time, gauge analysis at 10% randomly selected grid boxes is withdrawn
 - PDF bias correction performed using gauge data over the remaining 90% grid boxes
- Merits of bias correction algorithm

- corrects errors in rainfall depth
- important for long term water resources assessments

Performance evaluation of CMORPH rainfall types

18

$$Bias = \frac{\sum (P_{satellite} - P_{rain} gauge)}{N}$$

$$Rbias = \frac{\sum (P_{satellite} - P_{rain \ gauge})}{\sum P_{rain \ gauge}}$$

$$RMSE = \sqrt{\frac{(P_{satellite} - P_{rain \ gau \ ge})^2}{N}}$$

$$CC = \frac{\sum (P_{raingauge} - \overline{P}_{raingauge})(P_{satellite} - \overline{P}_{satellite})}{\sqrt{\sum (P_{raingauge} - \overline{P}_{raingauge})^2} \sqrt{\sum (P_{satellite} - \overline{P}_{satellite})^2}}$$

where:

N

 $P_{satellite}$ = rainfall estimates by satellite (mm/day) $\overline{P}_{satellite}$ = mean values of the satellite rainfall estimates Prain gauge = rainfall recorded by rain gauge (mm/day) $\overline{P}_{raingauge}$ = mean values of the rain gauge observations = sample size (days).

Visual comparison were also done using Double Mass Curves and Taylor Diagrams (Taylor, 2001)

Discussion

Quality check using double-mass curves for selected suspicious raingauges

d)

4000

20

C

Performance of CMORPH vs Gauge (1998-2013)

CMORPH Performance in Lower, Middle & Upper

Zambezi

LOWER ZAMBEZI					MIDDLE ZAMBEZI					
Stations	Bias	Rbias	RMSE	CC	Stations	Bias	Rbias	RMSE	CC	
Marromeu	0.24	8.71	10.89	0.50	Mushumbi	-0.10	-5.38	7.04	0.62	Poor performance
Caia	0.46	21.26	9.45	0.43	Kanyemba	-0.33	-13.57	9.16	0.42	
Nsanje	0.54	27.90	9.42	0.46	Muzarabani	0.42	17.69	9.06	0.51	by CMORPH
Makhanga	-0.06	-3. <mark>1</mark> 0	8.13	0.40	Rukomechi	-0.08	- <mark>3.86</mark>	7.22	0.50	
Nchalo	-0.05	-2.24	8.98	0.35	Mfuwe	-1.66	-20.86	14.58	0.44	
Ngabu	0.07	2.96	8.43	0.55	Mt Darwin	-0.15	-10.99	6.78	0.50	
Chikwawa	0.07	3.53	8.01	0.53	Petauke	0.16	6.96	8.19	0.44	Topporal & apatial
Tete	-0.57	-31.49	7.32	0.43	Msekera	0.46	22.49	7.81	0.49	samples different.
Chingodzi	0.12	6.10	6.41	0.56	Bolero	-0.54	-20.02	7.12	0.53	
Zumbo	-0.17	-8.35	7.62	0.53	Chitedze	-0.96	-24.45	9.80	0.58	
Morrumbala	0.84	38.25	10.70	0.51	Guruve	-0.05	-1.97	7.49	0.52	
Monkey	-0.38	-11.52	8.41	0.66	Kasempa	0.28	22.42	6.38	0.36	
Mangochi	-0.21	-8.32	7.84	0.51	Kabwe	0.16	6.91	7.81	0.50	
Mutarara	-0.32	- <mark>15.8</mark> 2	6.67	0.58	Karoi	0.03	1.07	7.32	0.51 📂	Low spatial
Mimosa	1.57	57.68	9.88	0.60	Harare (Belvedere)	0.21	9.93	8.57	0.25	
Balaka	0.20	9.13	8.42	0.42	Harare(Kutsaga)	-0.34	-16.96	8.51	0.21	coverage (e.g. for
Thyolo	1.47	68.11	9. <mark>4</mark> 4	0.50	Mvurwi	0.53	20.61	9.88	0.32	Angola
Chileka	0.31	14.32	8.26	0.42	Basin Average	-0.12	-0.59	8.39	0.45	Angolaj
Neno	0.41	18.30	10.65	0.30		UPPI	ER ZAMBE	ZI		
Chipata	0.94	36.49	11.54	0.43	Victoria Falls	-0.82	-46.41	7.22	0.23	
Makoka	0.82	40.59	7.65	0.57	Livingstone	-0.21	-10.51	6.64	0.47	
Kasungu	-0.08	-3.22	7.11	0.57	Senanga	0.07	9.24	(4.99)	0.35 📂	Quality of around
Chichiri	0.95	40.14	9.36	0.42	Kalabo	0.34	19.91	7.45	0.48	accurry or groond
Lundazi	0.18	10.25	6.75	0.41	Mongu	0.69	32.00	7.82	0.49	station records a
Bvumbwe	1.24	58.62	9.44	0.43	Zambezi	0.43	17.47	8.48	0.44	concorn
Chitipa	0.50	20.73	8.11	0.51	Kapombo	0.19	16.37	5.64	0.39	concern
Dedza	-0.43	-12.36	8.18	0.65	Kaoma	0.16	7.87	6.90	0.50	
Basin Average	0.32	14.32	8.63	0.49	Mwinilunga	0.93	40.06	8.27	0.42	
					Solwezi	0.75	26.38	8.31	0.51	
					Basin Average	0.25	11.24	7.17	0.43	

³ Elevation influences: CMORPH & gauge rainfall

- Made with adjusted rainfall stations
- ~ 90 % of stations fall below the reference mean std dev (8.4 mm/day).
- ~25 % (2/8) of stations in the lower elevation (<250 m) are above the reference 8.5 st dev
- Relationship between CMORPH and gauge rainfall not clearly elevation dependent.
 - in Indonesia, TMPA 3B42RT accuracy not elevation dependent (R2 = 0.0001)
 - in Ethiopia, TMPA 3B42RT accuracy elevation dependent

Bias correction of CMORPH rainfall (Taylor Diagram)

- No bias correction algorithm lies closer to the reference point on the X-axis
- Best performing bias correction algorithm in terms of corr is PDF and EZB- Upper & Middle Zambezi subbasins
- Blue contours indicate the RMSE values, most of the bias correction algorithms lies in the range 6 and 9 mm/day
- No consistent pattern of variability in the bias correction schemes.

Statistics for the gauge, uncorrected and bias corrected CMORPH for Zambezi basins.

Basin	B-scheme	Avg	Std dev	Max	Sum	Ratio	
Lower						_	
Zambezi	Gauge	2.62	9.17	142.77	10792.58	- 3	serious overestimation of max
	R-CMORPH	2.39	7.58	156.50	9540.65	0.88	rainfall amounts (e.a. STB: 216
	РТ	2.12	8.42	139.33	8883.26	0.82	mm vs Gauge: 107 mm)
	PDF	2.21	8.07	129.46	9349.42	0.8 7	Tim vs Odoge. To/ Tim)
	EZB	1.46	5.92	112.77	8529.38	0.79	
	DT	2.00	7.78	137.53	11683.35	1.08	
	STB	2.60	7.73	165.63	9494.89	0.88 📕	Underestimation of runoff
Middle Zambezi	Gauge	2.47	8 33	109.81	10112 74	N	volumes (ratios <1).
	P CMOPPH	2.51	7.74	142 30	10373 64	1.03	
	R-CMORTH	2.31	1.14	142.39	10373.04	1.03	
	PT	1.93	0.55	109.76	9186.37	0.91	
	PDF	1.86	6.78	114.87	8150.50	0.99	Overally DT effective in
	EZB	1.55	6.02	110.61	9039.03	0.89	analy broncente in
	DT	1.81	6.73	115.79	10555.56	1.05	emoving bids in the CMORFH
	STB	2.45	8.28	214.74	10488.24	1.04	raintall.
Upper	6	2 EE	7.92	117.24	12008 24	_	
Zambezi	Gauge	2.55	7.82	11/.24	13008.24		Bias algorithms effective in their
	R-CMORPH	2.12	6.44	103.25	10722.09	0.82	overall aim they are meant to
	PT	1.94	5.83	90.52	10284.19	0.79	, achieve
	PDF	1.98	6.22	94.32	8674.54	0.67	achieve
	EZB	1.67	5.56	96.43	9750.19	0.75	
	DT <	2.49	7.72	112.81	14415.79	1.04	
	STB	2.08	6.88	175.84	10850.88	0.83	

Conclusions

26

1. The relationship between CMORPH and gauge rainfall NOT clearly elevation dependent in the Zambezi Basin .

- Correction algorithms in the Zambezi Basin vary in the degree to which spatial and temporal variability in the CMORPH bias fields are accounted
- 2. Distribution transformation is the best performing correction algorithm. Results critical for water resources management in such a basin which is highly vulnerable to extreme weather and landuse changes yet remains largely ungauged.