Join our 70 years ITC anniversary 

Purpose of Observation:

The purpose of the Speulderbos research site is to provide a long-term monitoring of key state variables of forest physiology, soil physics and chemistry, hydrology and atmosphere. These data are used at ITC to develop remote sensing measurement techniques.

The site was established in 1985 and has since resulted in discoveries about: rain chemistry (acid rain), deposition, nitrogen and carbon budget of forest, rainfall interception, and soil micro-biology, microwave remote sensing in forests, and the advance of isotope discrimination methods in hydrology. See full list of publications below. Since 2019, the site is used in as the key fieldwork site in the education program of WREM.\

Participation in (inter)national programme/campaigns:

 Collaboration:

  • University of Amsterdam, The Netherlands
  • Cosine B.V. Warmond, The Netherlands
  • Leiden University, The Netherlands
  • Wageningen University, The Netherlands
  • Delft University of Technology, The Netherlands
  • Radboud Universiteit Nijmegen, The Netherlands

Externally funded projects:

  • NitroEurope: large EU project lead by ECN (http://www.nitroeurope.eu/), in which Speuld has been a key site.
  • In other projects where ITC was involved, the data of Speulderbos have been used as well:
    • NWO-SRON EcoRTM project, resulting in the SCOPE model. The data of Speuld served to develop the model and have been used in the first publication of SCOPE (Van der Tol et al., 2009).
    • Speuld was a key site in the airborne remote sensing campaign ‘EAGLE 2006’ funded by the ESA.
    • Speulderbos has also been used as a key site in the NWO-VENI project of Miriam Coenders of the TU Delft.

Major scientific achievements:

  • The major achievements reached by using data collected at the Speulderbos Earth Observation site are provided in the publication of several PhD dissertations, MSc theses and scientific articles detailed below.

 PhD dissertations (since 2006):

  • Timmermans, J. (2011). Coupling optical and thermal directional radiative transfer to biophysical processes in vegetated canopies. Enschede: University of Twente, Faculty of Geo-Information Science and Earth Observation (ITC).
  • Raj, R. (2016). Quality assured estimates of forest gross primary production : integration of flux tower data and a process-based simulator. Enschede: University of Twente, Faculty of Geo-Information Science and Earth Observation (ITC).
  • Mustafa, Y. T. (2012). Improving forest growth estimation : Bayesian networks for integrating satellite images and process - based forest growth models. Enschede: University of Twente, Faculty of Geo-Information Science and Earth Observation (ITC).
  • Cisneros Vaca, C. R. (2018). Effects of long-term changes in forest canopy structure on rainfall interception loss. Enschede: University of Twente, Faculty of Geo-Information Science and Earth Observation (ITC).

Ongoing:

  • Benjamin Brede (WUR)
  • Bert Schilperoort (TUD)

MSc theses:

  • Joseph Hahirwabasenga (2019) ‘Estimating rainfall interception loss using Sentinel-2 in the Veluwe Area, The Netherlands’
  • Shuai Hao (2017) ‘Tower contamination and radiation temporal variability in a Douglas fir forest

Publications (since 2006):

  • Brede, B., Bartholomeus, H., Suomalainen, J., Clevers, J., Verbesselt, J., Herold, M., … Gascon, F. (2016). The Speulderbos Fiducial Reference Site for Continuous Monitoring of Forest Biophysical Variables. In Proceedings of the Living Planet Symposium (p. 5).
  • Brede, B., Gastellu-Etchegorry, J.-P., Lauret, N., Baret, F., Clevers, J., Verbesselt, J., & Herold, M. (2018). Monitoring Forest Phenology and Leaf Area Index with the Autonomous, Low-Cost Transmittance Sensor PASTiS-57. Remote Sensing, 10(7), 1032.
  • Brede, B., Gastellu-Etchegorry, J.-P., Lauret, N., Baret, F., Clevers, J., Verbesselt, J., & Herold, M. (2018). Monitoring Forest Phenology and Leaf Area Index with the Autonomous, Low-Cost Transmittance Sensor PASTiS-57. Remote Sensing, 10(7), 1032.
  • Brede, B., Lau, A., Bartholomeus, H., & Kooistra, L. (2017). Comparing RIEGL RiCOPTER UAV LiDAR derived canopy height and DBH with terrestrial LiDAR. Sensors, 17(10), 2371.
  • Buiteveld, J., Vendramin, G. G., Leonardi, S., Kamer, K., & Geburek, T. (2007). Genetic diversity and differentiation in European beech (Fagus sylvatica L.) stands varying in management history. Forest Ecology and Management, 247(1), 98–106.
  • Cisneros Vaca, C., Van der Tol, C., & Ghimire, C. (2018). The influence of long-term changes in canopy structure on rainfall interception loss: a case study in Speulderbos, the Netherlands. Hydrology and Earth System Sciences, 22(7), 3701–3719.
  • Copeland, N., Cape, J. N., Nemitz, E., & Heal, M. R. (2014). Volatile organic compound speciation above and within a Douglas fir forest. Atmospheric Environment, 94, 86–95.
  • de Bruijn, A. M. G., Grote, R., & Butterbach-Bahl, K. (2011). An alternative modelling approach to predict emissions of N 2 O and NO from forest soils. European Journal of Forest Research, 130(5), 755–773.
  • Denef, K., Del Galdo, I., Venturi, A., & Cotrufo, M. F. (2013). Assessment of soil C and N stocks and fractions across 11 European soils under varying land uses. Open Journal of Soil Science, 3(07), 297.
  • der Tol, C., Verhoef, W., Timmermans, J., Verhoef, A., & Su, Z. (2009). An integrated model of soil-canopy spectral radiances, photosynthesis, fluorescence, temperature and energy balance. Biogeosciences, 6(12), 3109–3129.
  • Fowler, D., Pilegaard, K., Sutton, M. A., Ambus, P., Raivonen, M., Duyzer, J., … Erisman, J. W. (2009). Atmospheric composition change: Ecosystems–Atmosphere interactions. Atmospheric Environment, 43(33), 5193–5267.
  • Gallagher, M. W., Beswick, K. M., Duyzer, J., Westrate, H., Choularton, T. W., & Hummelshøj, P. (1997). Measurements of aerosol fluxes to speulder forest using a micrometeorological technique. Atmospheric Environment, 31(3), 359–373.
  • Haas, E., Klatt, S., Fröhlich, A., Kraft, P., Werner, C., Kiese, R., … Butterbach-Bahl, K. (2013). LandscapeDNDC: a process model for simulation of biosphere--atmosphere--hydrosphere exchange processes at site and regional scale. Landscape Ecology, 28(4), 615–636.
  • Heilmann-Clausen, J., Aude, E., van Dort, K., Christensen, M., Piltaver, A., Veerkamp, M., … Òdor, P. (2014). Communities of wood-inhabiting bryophytes and fungi on dead beech logs in Europe--reflecting substrate quality or shaped by climate and forest conditions? Journal of Biogeography, 41(12), 2269–2282.
  • Hoekstra, E. J., de Leer, E. W. B., & Brinkman, U. A. T. (1999). Findings supporting the natural formation of trichloroacetic acid in soil. Chemosphere, 38(12), 2875–2883.
  • Hoekstra, E. J., Verhagen, F. J. M., Field, J. A., Leer, E. W. B. D., & Brinkman, U. A. T. (1998). Natural Production Of Chloroform By Fungi. Phytochemistry, 49(1), 91–97.
  • Hofschreuder, P., Römer, F. G., Leeuwen, N. F. M. Van, & Arends, B. G. (1997). Deposition of aerosol on speulder forest: Accumulation experiments. Atmospheric Environment, 31(3), 351–357.
  • Jiménez--Rodr\’\iguez, C. D., Coenders--Gerrits, M., Bogaard, T., Vatiero, E., & Savenije, H. (n.d.). an alternative water vapor sampling technique for stable isotope analysis.
  • Klaassen, W., Bosveld, F., & de Water, E. (1998). Water storage and evaporation as constituents of rainfall interception. Journal of Hydrology, 212213, 36–50.
  • Lewis, T. E., Wolfinger, T. F., & Barta, M. L. (2004). The ecological effects of trichloroacetic acid in the environment. Environment International, 30(8), 1119–1150.
  • Maes, S. L., Blondeel, H., Perring, M. P., Depauw, L., Brūmelis, G., Brunet, J., … Verheyen, K. (2019). Litter quality, land-use history, and nitrogen deposition effects on topsoil conditions across European temperate deciduous forests. Forest Ecology and Management, 433, 405–418.
  • Manzillo, P. F., Van Dijk, C. N., Conticello, S., Esposito, M., Lussana, R., Villa, F., … others. (2015). ALART: a novel lidar system for vegetation height retrieval from space. In Lidar Technologies, Techniques, and Measurements for Atmospheric Remote Sensing XI (Vol. 9645, p. 96450E).
  • Molina-Herrera, S., Haas, E., Grote, R., Kiese, R., Klatt, S., Kraus, D., … Butterbach-Bahl, K. (2017). Importance of soil NO emissions for the total atmospheric NOx budget of Saxony, Germany. Atmospheric Environment, 152, 61–76.
  • Mustafa, Y. T. (2013). Satellite Remote Sensing for Spatio-Temporal Estimation of Leaf Area Index in Heterogeneous Forests. International Journal of Environmental Protection, 3(4), 10.
  • Mustafa, Y. T., Stein, A., & Tolpekin, V. A. (2012). Gaussian Bayesian network modeling to improve spatial growth estimates of heterogeneous forests. In American Society for Photogrammetry and Remote Sensing Annual Conference 2012, ASPRS 2012 (pp. 390–399).
  • Mustafa, Y. T., Stein, A., Tolpekin, V. A., & Van Laake, P. E. (2012). Improving forest growth estimates using a Bayesian network approach. Photogrammetric Engineering & Remote Sensing, 78(1), 45–51.
  • Mustafa, Y. T., Tolpekin, V. A., & Stein, A. (2012). Application of the expectation maximization algorithm to estimate missing values in Gaussian Bayesian network modeling for forest growth. IEEE Transactions on Geoscience and Remote Sensing, 50(5), 1821–1831.
  • Mustafa, Y. T., Tolpekin, V. A., & Stein, A. (2014). Improvement of spatio-temporal growth estimates in heterogeneous forests using Gaussian Bayesian networks. IEEE Transactions on Geoscience and Remote Sensing, 52(8), 4980–4991.
  • Mustafa, Y. T., Van Laake, P. E., & Stein, A. (2011). Bayesian network modeling for improving forest growth estimates. IEEE Transactions on Geoscience and Remote Sensing, 49(2), 639–649.
  • Mustafaa, Y. T., Tolpekin, V., & Stein, A. (2011). Application of the EM-algorithm for Bayesian Network Modelling to Improve Forest Growth Estimates. Procedia Environmental Sciences, 7, 74–79.
  • Neirynck, J., & Ceulemans, R. (2008). Bidirectional ammonia exchange above a mixed coniferous forest. Environmental Pollution, 154(3), 424–438.
  • Oertel, C., Matschullat, J., Zurba, K., Zimmermann, F., & Erasmi, S. (2016). Greenhouse gas emissions from soils—A review. Geochemistry, 76(3), 327–352.
  • Portillo-Estrada, M., Korhonen, J. F. J., Pihlatie, M., Pumpanen, J., Frumau, A. K. F., Morillas, L., … Niinemets, Ü. (2013). Inter-and intra-annual variations in canopy fine litterfall and carbon and nitrogen inputs to the forest floor in two European coniferous forests. Annals of Forest Science, 70(4), 367–379.
  • Qian, Y., Yan, G., Duan, S., & Kong, X. (2009). A contextual fire detection algorithm for simulated HJ-1B imagery. Sensors, 9(2), 961–979.
  • Raj, R., Hamm, N. A. S., Tol, C. van der, & Stein, A. (2016). Uncertainty analysis of gross primary production partitioned from net ecosystem exchange measurements. Biogeosciences, 13(5), 1409–1422.
  • Raj, R., Hamm, N. A. S., van der Tol, C., & Stein, A. (2014). Variance-based sensitivity analysis of BIOME-BGC for gross and net primary production. Ecological Modelling, 292, 26–36.
  • Raj, R., Hamm, N. A. S., van der Tol, C., & Stein, A. (2015). Uncertainty analysis of gross primary production partitioned from net ecosystem exchange measurements. Biogeosciences Discussions, 12(16).
  • Reyer, C., Lasch, P., Mohren, G. M. J., & Sterck, F. J. (2010). Inter-specific competition in mixed forests of Douglas-fir (Pseudotsuga menziesii) and common beech (Fagus sylvatica) under climate change--a model-based analysis. Annals of Forest Science, 67(8), 805.
  • Saikawa, E., Schlosser, C. A., & Prinn, R. G. (2013). Global modeling of soil nitrous oxide emissions from natural processes. Global Biogeochemical Cycles, 27(3), 972–989.
  • Shimadera, H., Kondo, A., Shrestha, K. L., Kaga, A., & Inoue, Y. (2011). Annual sulfur deposition through fog, wet and dry deposition in the Kinki Region of Japan. Atmospheric Environment, 45(35), 6299–6308.
  • Simpson, D., Butterbach-Bahl, K., Fagerli, H., Kesik, M., Skiba, U., & Tang, S. (2006). Deposition and emissions of reactive nitrogen over European forests: A modelling study. Atmospheric Environment, 40(29), 5712–5726.
  • Su, Z., Timmermans, W. J., Tol, C., Dost, R., Bianchi, R., Gómez, J. A., … others. (2009). EAGLE 2006--Multi-purpose, multi-angle and multi-sensor in-situ and airborne campaigns over grassland and forest. Hydrology and Earth System Sciences, 13(6), 833–845.
  • Van der Tol, C., Van der Tol, S., Verhoef, A., Su, B., Timmermans, J., Houldcroft, C., & Gieske, A. (2009). A Bayesian approach to estimate sensible and latent heat over vegetated land surface. Hydrology and Earth System Sciences, 13(6), 749–758.
  • van der Tol, C., & Parodi, G. N. (2012). Guidelines for remote sensing of evapotranspiration. INTECH Open Access Publisher.
  • Verheyen, K., Baeten, L., De Frenne, P., Bernhardt-Römermann, M., Brunet, J., Cornelis, J., … others. (2012). Driving factors behind the eutrophication signal in understorey plant communities of deciduous temperate forests. Journal of Ecology, 100(2), 352–365.
  • Weligepolage, K., Gieske, A. S. M., & Su, Z. (2012). Surface roughness analysis of a conifer forest canopy with airborne and terrestrial laser scanning techniques. International Journal of Applied Earth Observation and Geoinformation, 14(1), 192–203.
  • Weligepolage, K., Gieske, A. S. M., & Su, Z. (2013). Effect of spatial resolution on estimating surface albedo: A case study in Speulderbos forest in The Netherlands. International Journal of Applied Earth Observation and Geoinformation, 23, 18–28.
  • Weligepolage, K., Gieske, A. S. M., van der Tol, C., Timmermans, J., & Su, Z. (2012). Effect of sub-layer corrections on the roughness parameterization of a Douglas fir forest. Agricultural and Forest Meteorology, 162, 115–126.
  • Wilkes, P., Lau, A., Disney, M., Calders, K., Burt, A., de Tanago, J. G., … Herold, M. (2017). Data acquisition considerations for Terrestrial Laser Scanning of forest plots. Remote Sensing of Environment, 196, 140–153.
  • Zechmeister-Boltenstern, S., Michel, K., & Pfeffer, M. (2011). Soil microbial community structure in European forests in relation to forest type and atmospheric nitrogen deposition. Plant and Soil, 343(1–2), 37–50.

Till 2006:

  • Bosveld, F. C., & Beljaars, A. C. M. (2001). The impact of sampling rate on eddy-covariance flux estimates. Agricultural and Forest Meteorology, 109(1), 39–45.
  • Bosveld, F. C., & Bouten, W. (2001). Evaluation of transpiration models with observations over a Douglas-fir forest. Agricultural and Forest Meteorology, 108(4), 247–264.
  • de Vries, W., Leeters, E. E. J. M., Hendriks, C. M. A., van Dobben, H., van den Burg, J., & Boumans, L. J. M. (1995). Large scale impacts of acid deposition on forests and forest soils in the Netherlands. In G. J. Heij & J. W. Erisman (Eds.), Acid Rain Research: Do we have enough answers? (Vol. 64, pp. 261–277). Elsevier.
  • de Vries, W., van Grinsven, J. J. M., van Breemen, N., Leeters, E. E. J. M., & Jansen, P. C. (1995). Impacts of acid deposition on concentrations and fluxes of solutes in acid sandy forest soils in the Netherlands. Geoderma, 67(1), 17–43.
  • Duyzer, J. H., Verhagen, H. L. M., Weststrate, J. H., & Bosveld, F. C. (1992). Measurement of the dry deposition flux of NH3 on to coniferous forest. Environmental Pollution, 75(1), 3–13.
  • Duyzer, J. H., Verhagen, H. L. M., Weststrate, J. H., Bosveld, F. C., & Vermetten, A. W. M. (1994). The dry deposition of ammonia onto a Douglas fir forest in the Netherlands. Atmospheric Environment, 28(7), 1241–1253.
  • Duyzer, J., & Weststrate, H. (1995). The use of the gradient method to monitor trace gas fluxes over forest: Flux-profile functions for ozone and heat. In G. J. Heij & J. W. Erisman (Eds.), Acid Rain Research: Do we have enough answers? (Vol. 64, pp. 21–30). Elsevier.
  • Erisman, J. W. (1997). Atmospheric input. In G. J. Heij & J. W. Erisman (Eds.), Acid Atmospheric Deposition and its Effects on Terrestial Ecosystems in the Netherlands (Vol. 69, pp. 203–355). Elsevier.
  • Erisman, J. W., & Bleeker, A. (1997). Emission, concentration and deposition of acidifying substances. In G. J. Heij & J. W. Erisman (Eds.), Acid Atmospheric Deposition and its Effects on Terrestial Ecosystems in the Netherlands (Vol. 69, pp. 21–81). Elsevier.
  • Erisman, J. W., & Draaijers, G. P. J. (Eds.). (1995). Chapter 7 Three case studies. In Atmospheric Deposition (Vol. 63, pp. 253–395). Elsevier.
  • Erisman, J. W., Draaijers, G., Steingrover, E., van Dijk, H., Boxman, A., & de Vries, W. (1997). Research at the speulder forest: Assessment of the effects of acidification eutrophication and ozone. In G. J. Heij & J. W. Erisman (Eds.), Acid Atmospheric Deposition and its Effects on Terrestial Ecosystems in the Netherlands (Vol. 69, pp. 391–454). Elsevier.
  • Erisman∗, J. W., Draaijers, G., Duyzer, J., Hofschreuder, P., Leeuwen, N. Van, Römer, F., … Wyers, P. (1997). The aerosol project: Introduction and some background information. Atmospheric Environment, 31(3), 315–319.
  • Haselmann, K. F., Ketola, R. A., Laturnus, F., Lauritsen, F. R., & Grøn, C. (2000). Occurrence and formation of chloroform at Danish forest sites. Atmospheric Environment, 34(2), 187–193.
  • Heij, G. J., & Erisman, J. W. (Eds.). (1997). Annex 3 Project literature. In Acid Atmospheric Deposition and its Effects on Terrestial Ecosystems in the Netherlands (Vol. 69, pp. 653–678). Elsevier.
  • Heij, G. J., & Erisman, J. W. (Eds.). (1997). Appendix 1 Project reports published in the context of DPPA-III. In Acid Atmospheric Deposition and its Effects on Terrestial Ecosystems in the Netherlands (Vol. 69, pp. 181–191). Elsevier.
  • Heij, G. J., & Schneider, T. (Eds.). (1991). Annex 3 Projects and Publications First and Second Phase Dutch Priority Programme on Acidification. In Acidification Research in The Netherlands (Vol. 46, pp. 663–771). Elsevier.
  • Heij, G. J., de Vries, W., Posthumus, A. C., & Mohren, G. M. J. (1991). 4. Effects of Air Pollution and Acid Deposition on Forests and Forest Soils. In G. J. Heij & T. Schneider (Eds.), Acidification Research in The Netherlands (Vol. 46, pp. 97–137). Elsevier.
  • Oss, R. Van, Duyzer, J., & Wyers, P. (1998). The influence of gas-to-particle conversion on measurements of ammonia exchange over forest. Atmospheric Environment, 32(3), 465–471.
  • Peters, R. J. B., Johannes, A. D. V, Duivenbode, R. V, Duyzer, J. H., & Verhagen, H. L. M. (1994). The determination of terpenes in forest air. Atmospheric Environment, 28(15), 2413–2419.
  • Ruijgrok, W. (1995). Dry deposition of acidifying and alkaline particles to forests: model and experimental results compared. In G. J. Heij & J. W. Erisman (Eds.), Acid Rain Research: Do we have enough answers? (Vol. 64, pp. 431–438). Elsevier.
  • Tietema, A., Boer, W. De, Riemer, L., & Verstraten, J. M. (1992). Nitrate production in nitrogen-saturated acid forest soils: Vertical distribution and characteristics. Soil Biology and Biochemistry, 24(3), 235–240.
  • Tiktak, A., & Bouten, W. (1994). Soil water dynamics and long-term water balances of a Douglas fir stand in the Netherlands. Journal of Hydrology, 156(1), 265–283.
  • Tiktak, A., van Grinsven, J. J. M., Groenenberg, J. E., van Heerden, C., Janssen, P. H. M., Kros, J., … de Vries, W. (1997). Application of three forest-soil-atmosphere models to the speuld experimental forest. In G. J. Heij & J. W. Erisman (Eds.), Acid Atmospheric Deposition and its Effects on Terrestial Ecosystems in the Netherlands (Vol. 69, pp. 455–606). Elsevier.
  • van der Eerden, L. J., de Vries, W., Dueck, T., & de Visser, P. (1997). Thematic report on effects (with special emphasis on combination stress). In G. J. Heij & J. W. Erisman (Eds.), Acid Atmospheric Deposition and its Effects on Terrestial Ecosystems in the Netherlands (Vol. 69, pp. 357–390). Elsevier.
  • van derEerden, L. J., de Vries, W., de Visser, P. H. B., van Dobben, H. F., Steingröver, E. G., Dueck, T. A., … Graveland, J. (1997). Effects on forest ecosystems. In G. J. Heij & J. W. Erisman (Eds.), Acid Atmospheric Deposition and its Effects on Terrestial Ecosystems in the Netherlands (Vol. 69, pp. 83–128). Elsevier.
  • van Grinsven, H., Groenenberg, B.-J., van Heerden, K., Kros, H., Mohren, F., van der Salm, C., … van de Veen, J.-R. (1995). Effects of acid deposition on forest ecosystems in the Netherlands: Analysis of the Speuld Douglas fir site. In G. J. Heij & J. W. Erisman (Eds.), Acid Rain Research: Do we have enough answers? (Vol. 64, pp. 245–260). Elsevier.
  • Vermeulen, A. T., Wyers, G. P., Römer, F. G., Draaijers, G. P. J., van Leeuwen, N. F. M., & Erisman, J. W. (1995). Fog deposition on Douglas fir forest. In G. J. Heij & J. W. Erisman (Eds.), Acid Rain Research: Do we have enough answers? (Vol. 64, pp. 453–454). Elsevier.
  • Vermeulen, A. T., Wyers, G. P., Römer, F. G., Leeuwen, N. F. M. Van, Draaijers, G. P. J., & Erisman, J. W. (1997). Fog deposition on a coniferous forest in The Netherlands. Atmospheric Environment, 31(3), 375–386.
  • Walton, S., Gallagher, M. W., & Duyzer, J. H. (1997). Use of a detailed model to study the exchange of NOx and O3 above and below a deciduous canopy. Atmospheric Environment, 31(18), 2915–2931.
  • Warneck, P. (Ed.). (2000). Chapter 1 Bulk composition, physical structure, and dynamics of the atmosphere. In Chemistry of the Natural Atmosphere (Vol. 71, pp. 1–53). Academic Press.
  • Wijk, M. T. Van, Dekker, S. C., Bouten, W., Kohsiek, W., & Mohren, G. M. J. (2001). Simulation of carbon and water budgets of a Douglas-fir forest. Forest Ecology and Management, 145(3), 229–241.
  • Wyers, G. P., & Duyzer, J. H. (1997). Micrometeorological measurement of the dry deposition flux of sulphate and nitrate aerosols to coniferous forest. Atmospheric Environment, 31(3), 333–343.
  • Wyers, G. P., Vermeulen, A. T., & Slanina, J. (1992). Measurement of dry deposition of ammonia on a forest. Environmental Pollution, 75(1), 25–28.
  • Wyers, G. P., Vermeulen, A. T., Otjes, R. P., Wayers, A., Mols, J. J., & Slanina, J. (1992). Automated Denuder Systems for Dry Deposition Studies of Acidifying Compounds. In T. Schneider (Ed.), Acidification Research: Etvaluation and Policy Applications (Vol. 50, p. 537). Elsevier.

Contact person: