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AIminify

● Matthijs Plat (founder)

● Steven van Blijderveen (AI engineer)

Goal of today: 
Learn about smart ways to compress neural networks



AIminify

● Spin-off from tinify (TinyPNG.com)

● Innovating to make the world more easy

● Compression without settings

● Automated pipeline

● Focus on computer vision



Neural Networks: the basics

● DNN: Dense Neural Network
○ Also called Fully Connected Neural Network
○ Input is 1-dimensional: a number or a list of numbers
○ Output can be:

■ An absolute number: Estimate the price of a car based on the 
features of that car

■ A percentage: Estimate the odds of someone having a disease 
based on test results

● CNN: Convolutional Neural Network
○ Input is 2-dimensional: usually an image
○ Output can be:

■ An absolute number: Estimate someone's age based on an 
image of their face

■ A percentage: What are the odds this image is a dog?
■ An image: Turn this image into a Van Gogh-style image



Neural Networks: the basics

● A Dense Neural Network looks like this image, but 

probably with a lot more hidden layers

● All nodes are connected to every node in the next layer

● All connections have weights (the thickness)

● Inside a node the activation function decides what 

value to propagate to the next node(s)



Activation functions





So what happens inside a neuron?



How does a network learn the weights + 
bias?

● The keyword is backpropagation

● Your network starts with some basic weights and biases

● You propagate your training data through the network to get 

expected output 'y' and real output 'ŷ'

● Using a loss function you calculate the loss, for example a simple 

one is Mean Squared Error:



How does a network learn the weights + 
bias?

● The calculated loss of the network is given back to the previous layer 

of nodes and using the chain rule of calculus the weights are altered 

to minimize the loss

● The speed of adaptation of the weights is determined by a learning 

rate which is applied to an optimization algorithm.

● Pull your training data a few times (epochs) through your network 

until your loss is minimal and then your network hopefully works!



CNN’s, what’s different?

● Not that much, except for 2-dimensional data

● Next to that, some new layers get introduced:

○ Convolutional layers (hence CNN)

○ Pooling

○ Flattening

○ Etc.



Convolutional layers

● A filter or kernel is slid over the input matrix

● You can decide:

○ Filter size

○ Stride (stepsize)

○ Padding (adding numbers to 

the borders of the input matrix)

○ Amount of filters

● All these parameters influence the 

size of the output matrix

● Usually a shrinks the matrix, but

adds in the third dimension



Pooling Layer

● Pooling is used to prevent overfitting

by generalizing the input

● It has two parameters:

○ Filter size

○ Stride (stepsize)

● There are many different pooling layers:

Min/Max/Average etc.

● Pooling shrinks the matrix without adding

in the third dimension



Flattening layer

● Very simple, turns your data from 

a 2-dimensional matrix into 

a 1-dimensional list

● After a flattening layer 

you can use Dense layers 

again



What does a complete CNN look like?



Compression

● Quantization

● Pruning

● Knowledge Distillation



Quantization

● Changing weights, biases and 

activations from 32-bits floats to 

16-bits floats or 8-bits integers

● Mostly a storage saver, but can also 

increase speed

● Highly depending on hardware

● Can cause accuracy loss 



Quantization - a bit of math

● Basic int-8 quantization involves mapping all your weights to the 

range [-128, 127]

● Do this by finding the scale s:
○ Where f are your weights

● Then find the zero-point z:

● Finally quantize your weights to q by doing: 



Quantization in AIminify

● Dynamic range quantization

● Full integer quantization

● Float-16 quantization

● Dynamic quantization

● Static quantization



Dynamic quantization

● Easiest form of quantization

● Quantizes the weights to 8-bits integers

● Converts activations to 8-bits integers dynamically, making int-8 matrix 

multiplications possible

● But activations are both read and written in 32-bit float format

● Saves a lot of space (~75%), but only improves latency a bit



Full integer quantization / static quantization

● Converting weights, bias and activations to int-8

● Needs small representative data set to correctly convert activations

to keep the distribution of your activations in mind:
○ Uniformly distributed activations can simply be mapped to [-128, 127] directly

○ For non uniformly distributed activations we need something smarter



Float 16 quantization (Tensorflow only)

● Does what is says: quantize to 16-bits floats

● Halfs your model size

● Doesn't improve speed on CPU's
○ Internally all weights have to be dequantized to 32-bits since CPU's can't work with 

16-bits

● Improves speed a lot on certain GPU's



Pruning in AIminify

● Pruning is removing unnecessary parts of the network

● In AIminify we use various pruning techniques, depending on the 

input network

● Besides looking at the complete network, we determine the 

pruning strength per layer



Pruning in DNN’s

● Quite simple in theory:
○ Remove nodes or synapses 

that are not important
● Difficulties:

○ What nodes are 
unimportant?

○ CPU’s/GPU’s have a hard 
time with sparse networks

○ Removing a node also 
impacts the next node



● What nodes/synapses are unimportant?
○ Intuïtively: synapses with weights close to 0 impact the network minimally

● But pruning synapses creates a sparse network, which doesn't improve 

latency, so we need to prune whole nodes

● How to calculate nodes with a low magnitude?
○ L2-norm: Taking the square root of all incoming weights squared (Euclidean distance)

Pruning in DNN's



Pruning in CNN’s

● Theoretically we want to prune 
weights from a filter

● But CPU’s/GPU’s have a hard time 
with that

● So we prune whole filters
● Less calculations → speed 

improvement!



What filters to prune?

● Similar to pruning in DNN's, remove filters with the smallest norm?

● Only really works well if two criteria are met:
○ The norm deviation of the filters should be large

→Otherwise it's hard to find a good threshold to prune

○ The minimum norm of the filters should be small

→Otherwise you're still pruning away filters with a lot of influence on the outcome

● These criteria are not always met at all



FPGM pruning

● The norm tells us how much 
the filter influences the 
outcome

● But what if a small norm has 
a very critical small 
influence?

● So we prune the ‘geometric 
median’

He, Y., Liu, P., Wang, Z., Hu, Z., & Yang, Y. (2019). Filter 
pruning via geometric median for deep convolutional 
neural networks acceleration. In Proceedings of the 
IEEE/CVF conference on computer vision and pattern 
recognition (pp. 4340-4349)

Filter Pruning via Geometric Median



Knowledge Distillation (Teacher - Student model)

• The original model (teacher) is used to train a smaller model (student)

• The model outputs something like: ‘A: 86%, B: 1%, C: 5%, D: 8%’

• By using these ‘soft labels’ as an extra in the loss function of the student 

network, it knows a lot more about preferred outcomes.

• With all this extra info, the student will need a smaller architecture to learn the 

same thing





DistilBERT

● BERT is one of the predecessors of ChatGPT

● Researchers used Knowledge Distillation and:
○ Reduced the size of BERT by 40%

○ Retrained to 97% of the original model's language understanding capabilities

○ Made the model 60% faster

Sanh, V., Debut, L., Chaumond, J., & Wolf, T. (2019). DistilBERT, a distilled version of BERT: 
smaller, faster, cheaper and lighter. arXiv preprint arXiv:1910.01108.
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