

i
il

Neural Networks: the basics

e DNN: Dense Neural Network
o Also called Fully Connected Neural Network
o Inputis 1-dimensional: a number or a list of numbers
o Output can be:
m An absolute number: Estimate the price of a car based on the
features of that car
m A percentage: Estimate the odds of someone having a disease
based on test results
e CNN: Convolutional Neural Network
o Input is 2-dimensional: usually an image
o Output can be:
m An absolute number: Estimate someone's age based on an
image of their face
m A percentage: What are the odds this image is a dog?
m Animage: Turn this image into a Van Gogh-style image

Neural Networks: the basics

A simple neural network

e A Dense Neural Network looks like this image, but input hidden output
probably with a lot more hidden layers e er el

e All nodes are connected to every node in the next layer

e All connections have weights (the thickness)

e Inside a node the activation function decides what

value to propagate to the next node(s)

Inputs
Weights

Activation
function

a
Output

f(z)

Binary Step Function

Leaky RelLU

max(0.1 * x,x)

max(0.1 * x.x)

Linear

Sigmoid / Logistic

Parametric RelLU

fly)

> g T @ &

Take input and Add bias Feed the result, x, Take the output

multiply by the to the activation and transmit to the
neuron's weight function: f(x) next layer of
neurons

How does a network learn the weights +
bias?

e The calculated loss of the network is given back to the previous layer
of nodes and using the chain rule of calculus the weights are altered
to minimize the loss

e The speed of adaptation of the weights is determined by a learning
rate which is applied to an optimization algorithm.

e Pull your training data a few times (epochs) through your network

until your loss is minimal and then your network hopefully works!

i
il

=0+8+1+4+1+0+1+0+1
=16

Input image Filter Output array

Max pooling

2x2 pooling,
stride 2

Flattening

_—

Pooled Feature Map

Convolution Neural Network (CNN)

Pooling Pooling

3 SoftMax
Convolution Convolution Convolution '?:f‘tr']‘éaﬁtc'::]"
i} + rd
Kernel RelU RelU RelU
Fully
Feature Maps - ~———Connected———
Layer
| | | | |
Probabilistic

Feature Extraction Distribution

—)

Quantization

—min(f)

)

= round|(

q = round(=) + z
s

TensorFlow

Dynamic quantization

e Easiest form of quantization

e Quantizes the weights to 8-bits integers

e Converts activations to 8-bits integers dynamically, making int-8 matrix
multiplications possible

e But activations are both read and written in 32-bit float format

e Saves a lot of space (~75%), but only improves latency a bit

Full integer quantization / static quantization

e Converting weights, bias and activations to int-8
o Needs small representative data set to correctly convert activations

to keep the distribution of your activations in mind:

o Uniformly distributed activations can simply be mapped to [-128, 127] directly

o For non uniformly distributed activations we need something smarter

de-qUahtized to 32-bits since CPU's can't work with

'df the network

after pruning

before pruning

-——

n
[}
n
Q.
©
c
>
n

pruning

->

neurons

Pruning in DNN's

e What nodes/synapses are unimportant?
o Intuitively: synapses with weights close to 0 impact the network minimally

e But pruning synapses creates a sparse network, which doesn't improve
latency, so we need to prune whole nodes

e How to calculate nodes with a low magnitude?

o L,-norm: Taking the square root of all incoming weights squared (Euclidean distance)

=0+8+1+4+1+0+1+0+1

Input image Filter Output array

What filters to prune?

e Similar to pruning in DNN's, remove filters with the smallest norm?

e Only really works well if two criteria are met:
o The norm deviation of the filters should be large
—Otherwise it's hard to find a good threshold to prune
o The minimum norm of the filters should be small

—Otherwise you're still pruning away filters with a lot of influence on the outcome

e These criteria are not always met at all

Filter Space
g’ Large norm

7 Medium norm Previous
method

~ Small norm

Filters before pruning

Knowledge Distillation (Teacher - Student model)

e The original model (teacher) is used to train a smaller model (student)

e The model outputs something like: ‘A: 86%, B: 1%, C: 5%, D: 8%’

e By using these ‘soft labels’ as an extra in the loss function of the student
network, it knows a lot more about preferred outcomes.

e \With all this extra info, the student will need a smaller architecture to learn the

same thing

! Teacher model
|

\
|

D U U ————— 4

distillation
loss

{ student (distilled) model

