UNIVERSITY OF TWENTE.

Acquisition and processing of point clouds to support building damage assessment

Kourosh Khoshelham

FACULTY OF GEO-INFORMATION SCIENCE AND EARTH OBSERVATION

Why building damage assessment?

- We spend nearly 90% of our time inside buildings.
- Buildings \rightarrow excessive loading, natural hazards, man-made hazards.
- Two aspects of building damage:
 - Before it happens: <u>structural health monitoring</u>
 - \rightarrow Maintenance, evacuation guidance.
 - After it happens: <u>detection and assessment of damage</u>
 - \rightarrow Planning for the recovery phase;
 - → Rebuilding damaged buildings;
 - → Repairing infrastructure.

Why point clouds?

- Most buildings have simple geometric shapes (polyhedron);
- Point cloud is an accurate representation of <u>3D geometry;</u>
- Automated processing = Fast, inexpensive, less labor intensive.

Aerial image: convenient for human interpretation

Point cloud: suitable for automated information extraction (e.g. classification, geometric modeling, etc.).

Acquisition of point clouds

Classification of damaged roofs in aerial point clouds

Port-au-Prince after the earthquake of Jan. 2010.

Classification of damaged roofs in aerial point clouds

- Assumptions:
 - \rightarrow Intact building roofs comprise a few large planar segments;
 - \rightarrow Damaged roofs appear as many small segments.
- Possibly relevant features:
- \rightarrow segment size;
- \rightarrow planarity;
- \rightarrow orientation;
- → height above terrain; \rightarrow ... ?
- Simple scenario:
- \rightarrow only buildings (existing map)
- \rightarrow two classes.

Post-event airborne laser data (3 pnts/m2).

What are features of damaged/intact roof segments?

Feature selection

Using Support Vector Classifier (SVM)

Feature selection

Using Linear Discriminant Classifier (LDC)

Visual analysis

Visual analysis

Challenges ...

- Classification to intact and rubble is not so useful in practice
 - More damage classes → damage grades
 - More damage classes = more difficult patterns
- Intact roof ≠ intact building
 - Damaged walls \rightarrow oblique images \rightarrow data fusion approach
- The question still remains: what are <u>relevant features</u> of damaged buildings (of different grades), which can be extracted from point clouds and/or images?
- Validation/verification?

Structural health monitoring

- Low-cost wireless sensor networks collect data of structural integrity of buildings;
- These data are linked to (just) locations inside the building;
- Semantically rich indoor models \rightarrow intelligent sensor networks
- Example: critical deformation, evacuation.
 - \rightarrow where are the exits?
 - \rightarrow what is the optimum route?
 - $\rightarrow \dots$

Smart cities: sensor networks coupled with 3D models

Image from ESRI City Engine UNIVERSITY OF TWENTE.

1st floor

2nd floor

Model from Google 3D warehouse

Why aren't there indoor maps/models in Google Maps?

- 3D Models created from 2D floor plans and evacuation maps do not necessarily show the current situation of the building;
- Up-to-date 3D models from point clouds or images
- Data acquisition challenge
 - $_{\odot}~$ Image-based \rightarrow low light
 - \circ Mobile mapping, e.g. mobile laser \rightarrow no GPS signals (deformed data)
 - \circ Static laser scanning \rightarrow time- and labor intensive;
 - SLAM techniques → not yet a mature technology
- Modeling challenge
 - $_{\odot}\,$ Manual method \rightarrow slow and costly
 - \circ Automated methods \rightarrow variety of indoor architectures

Oriented point cloud

Work of Lucia Diaz Vilarino

Segmented point cloud

• Intersecting adjacent planes \rightarrow vertices

Model with faces and vertices

Model with added texture

Discussion

- Data \rightarrow information, Q: what information?
- What are the challenges from your perspective?
- What are application requirements (e.g. for SHM)?

Extras

Simulated point cloud

Work of Mina Mehranfar

Segmentation and classification by clustering normals

Fitting cuboids to connected components

Subtraction

Modeling indoor environments using point clouds

- How to cope with the large variety of interior architectures?
 - \rightarrow Understand interior architecture
 - \rightarrow Translate it to a modeling algorithm

TC UNIVERSITY OF TWENTE.