
CROPS FROM SPACE 

IMPROVED EARTH OBSERVATION CAPACITY TO MAP 
CROP AREAS AND TO QUANTIFY PRODUCTION 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

MOBUSHIR RIAZ KHAN 

  



 

Examina

Prof. Dr. 
Prof. Dr. 
Prof. Dr. 
Dr. Ir. B.G
 

 

 

 

 

 

 

 

 

 
 
ITC diss
ITC, P.O
 
 
ISBN 97
Cover de
Cover ill
Printed b
Copyrigh

ation Comm

Ing. W. Verh
Ir. V.G. Jette
Ir. A.K. Bre
G.J.S. Sonne

ertation num
O. Box 217, 

78-90-6164-
esigned by B
lustration: V
by ITC Prin
ht © 2011 b

mittee 

hoef, Univer
en, Universit
gt, Wagening
eveld, Free U

mber 180 
7500 AE E

-301-2 
Benno Mas
Vincent van
nting Depart
by Mobushi

rsity of Twen
ty of Twente
gen Univers

University of

Enschede, T

selink 
n Gogh, 188
tment 
ir Riaz Khan

nte 
e 
ity and Rese

f Amsterdam

he Netherla

8, Sower at

n  

arch Centre 

ands 

t Sunset 

 



 

CROPS FROM SPACE 

IMPROVED EARTH OBSERVATION CAPACITY TO MAP CROP 
AREAS AND TO QUANTIFY PRODUCTION 

 
 
 
 
 
 
 
 
 

DISSERTATION 
 
 
 
 

to obtain 
the degree of doctor at the University of Twente, 

on the authority of the Rector Magnificus, 
prof. dr. H. Brinksma, 

on account of the decision of the graduation committee, 
to be publicly defended 

on Wednesday 23 February 2011 at 14:45 hrs 
 
 
 
 
 
 

by 
 

Mobushir Riaz Khan 
 
 

born on 27 November 1974 
 

in Faisalabad, Pakistan 
 



 

This thesis is approved by 
 
Prof. Dr. Ir. E.M.A. Smaling, promotor 
Faculty of Geo-information Science and Earth Observation (ITC), 
University of Twente, the Netherlands 

 
Prof. Dr. Ir. H. Van Keulen, promotor 
PRI Agrosystems Research, Wageningen University and Research 
Centre, the Netherlands 
 
Dr. Ir. C.A.J.M. De Bie, assistant promotor 
Faculty of Geo-information Science and Earth Observation (ITC), 
University of Twente, the Netherlands 
 



Table of Contents 
 
Table of Contents .............................................................................................................. i 
List of figures .................................................................................................................. iv 
List of tables .................................................................................................................... vi 
Acknowledgments .......................................................................................................... vii 
 
1. General Introduction ................................................................................................. 1 
1.1 Food security problems ............................................................................................... 2 
1.2 Need for enhanced agricultural monitoring ................................................................ 6 
1.3 Remote sensing data for acquiring agricultural land use information....................... 10 

Applications of remote sensing in agriculture ............................................................. 12 
1.4 Problem statement .................................................................................................... 14 
1.5 Objectives of the study ............................................................................................. 14 
1.6 Outline of this thesis ................................................................................................. 15 
 
2 Small Scale Land use mapping ............................................................................... 19 
Abstract .......................................................................................................................... 20 
2.1 Introduction .............................................................................................................. 21 
2.2 Study area ................................................................................................................. 23 
2.3 Data used .................................................................................................................. 24 
2.4  Methods ................................................................................................................... 26 

2.4.1 Image classification ...................................................................................... 26 
2.4.2 Linking hypertemporal RS images with existing land cover map ................ 27 
2.4.3 Linking hypertemporal RS images with crop statistical data 

by sub-district ............................................................................................... 27 
2.4.4 Legend construction and matching with known crop calendars ................... 30 

2.5 Results ...................................................................................................................... 30 
2.5.1 Image classification ...................................................................................... 30 
2.5.2 Linking hypertemporal RS images with existing land cover map ................ 33 
2.5.3 Linking hypertemporal RS images with crop statistical data 

by sub-district ............................................................................................... 33 
2.5.4 Legend construction and matching with known crop calendars ................... 36 

2.6 Discussion and conclusions ...................................................................................... 40 
 
3 Disaggregating and Mapping Crop Statistics using Hypertemporal Remote 

Sensing ..................................................................................................................... 43 
Abstract .......................................................................................................................... 44 
3.1 Introduction .............................................................................................................. 45 
3.2 Materials and methods .............................................................................................. 48 

3.2.1 Study area ..................................................................................................... 48 
3.2.2 Data used ...................................................................................................... 49 
3.2.3 Image classification technique ...................................................................... 52 
3.2.4 Validation of estimated crop maps ................................................................ 54 
3.2.5 Direct mapping using primary field data ...................................................... 54 

3.3 Results ...................................................................................................................... 55 
3.3.1 Image classification ...................................................................................... 55 



 ii 

3.3.2 Crop area maps ............................................................................................. 56 
3.3.3 Validation of the estimated crop maps .......................................................... 61 
3.3.4 Direct mapping using primary field data ...................................................... 63 

3.4 Discussion ................................................................................................................. 65 
 
4 Integrating soil maps in a model to map crop areas using hypertemporal NDVI 

images and crop statistics Abstract......................................................................... 69 
4.1 Introduction .............................................................................................................. 71 
4.2 Materials and Methods ............................................................................................. 73 

4.2.1 Study Area .................................................................................................... 73 
4.2.2 Data used ...................................................................................................... 74 
4.2.3 Image classification ...................................................................................... 77 
4.2.4 Resultant NDVI classes by agricultural area................................................. 78 
4.2.5 Area of soil units at municipal level ............................................................. 78 
4.2.7 Validation of rainfed wheat maps based on municipal area statistics 

using segments data (2001-2005) ................................................................. 80 
4.2.8 Direct mapping using segments data ............................................................ 82 

4.3 Results ...................................................................................................................... 83 
4.3.1 Image Classification ...................................................................................... 83 
4.3.2 Soil units ....................................................................................................... 84 
4.3.3 Rainfed wheat maps derived from municipal area statistics ......................... 84 
4.3.4 Validation of the rainfed wheat maps derived from municipal 

area statistics ................................................................................................. 87 
4.3.5 Direct mapping using segments data ............................................................ 89 

4.4 Discussion ................................................................................................................. 92 
4.5 Conclusions .............................................................................................................. 94 
 
5 Comparing a crop growth model driven by remotely sensed data with the 

European Crop Growth Monitoring System, agricultural statistics and 
primary field data ..................................................................................................... 95 

Abstract .......................................................................................................................... 96 
5.1 Introduction .............................................................................................................. 97 
5.2 Material and Methods ............................................................................................... 99 

5.2.1 Study Area .................................................................................................... 99 
5.2.2 Crop Growth Monitoring System (CGMS) ................................................. 101 
5.2.3 The Cƒ-Water model ................................................................................... 103 
5.2.4 Comparison of rainfed wheat production estimates from CGMS and 

Cƒ-Water ..................................................................................................... 108 
5.2.5 Accuracy assessment of the outputs of Cƒ-Water at field level .................. 110 

5.3 Results .................................................................................................................... 112 
5.3.1 Comparison of CGMS output (after time trend analysis) and results 

of Cƒ-Water at NUTS-3 scale with agricultural statistical data .................. 112 
5.3.2 Accuracy assessment of the results of the Cƒ-Water model with 

primary field data ........................................................................................ 113 
5.4 Discussion and conclusions .................................................................................... 114 
 
 



 iii

6 Users’ perspective on available land use data and the generated outputs; 
a top-down valorisation approach ......................................................................... 117 

Abstract ........................................................................................................................ 118 
6.1 Introduction ............................................................................................................ 119 
6.2 Methods .................................................................................................................. 121 

6.2.1 Study sample and procedure ....................................................................... 122 
6.2.2 Available land use data sets ........................................................................ 122 
6.2.3 Provided land use information .................................................................... 124 
6.2.4 Measures ..................................................................................................... 125 
6.2.5 Statistical analysis ....................................................................................... 125 

6.3 Results and discussion ............................................................................................ 125 
6.3.1 Land use data available to the respondents ................................................. 126 
6.3.2 Opinion of the respondents about available land use data .......................... 126 
6.3.2 Opinion of the respondents about the generated rainfed wheat map ........... 130 
6.3.3 Opinion of the respondents about available yield data................................ 131 
6.3.4 Opinion of the respondents about the generated yield map of 

rainfed wheat ............................................................................................... 132 
6.4 Conclusions ............................................................................................................ 133 
 
7 General Discussion ................................................................................................ 135 
7.1 Introduction ............................................................................................................ 136 
7.2 Agricultural land use mapping ................................................................................ 137 
7.3 Comparing crop growth models using agricultural statistics and field data ........... 141 
7.4 Users’ perspective ................................................................................................... 143 
7.5 Recommendations for future research .................................................................... 143 
 
Bibliography ................................................................................................................. 145 
Appendix 1 ................................................................................................................... 165 
Summary ...................................................................................................................... 177 
Samenvatting ................................................................................................................ 181 
Biography ..................................................................................................................... 185 
ITC Dissertation List .................................................................................................... 186 
 



 iv 

List of figures 
 
Figure 1- 1: Wheat area map of Spain, downloaded from FAO’s agro-maps  ............ 9 
Figure 1- 2: Rainfed wheat areas of Andalucia, Spain based on crop statistical data 

(2001-05) ................................................................................................. 9 
Figure 1- 3: Schematic diagram of the research framework ..................................... 16 
Figure 1- 4: Coherence of thesis chapters ................................................................. 18 
 
Figure 2- 1: Study area location ................................................................................ 23 
Figure 2- 2: Sequence of original SPOT 4 Vegetation 10-days composite NDVI 

images. .................................................................................................. 24 
Figure 2- 3: Existing land cover map (Left) and a pan-sharpened IRS- 

D image of 18 Jan. 2000 (Right). .......................................................... 28 
Figure 2- 4: Average and minimum divergence values produced through 

a number of unsupervised classification runs........................................ 31 
Figure 2- 5: Supervised grouping of the annual averages of the generated 

unsupervised NDVI classes. .................................................................. 32 
Figure 2- 6: 1 km2 NDVI unit map with 11 NDVI classes. ...................................... 32 
Figure 2- 7: Details about a mapping unit. ................................................................ 35 
Figure 2- 8: Monitoring land use modifications. ...................................................... 42 
 
Figure 3- 1: Relating NDVI-class area with crop statistics to prepare 

crop maps .............................................................................................. 48 
Figure 3- 2: Agricultural areas of Andalucia based on the CORINE 

land cover map 2000. ............................................................................ 49 
Figure 3- 3: Location of validation data set .............................................................. 51 
Figure 3- 4: Diagram showing area frame (segment) on the topographic map. ........ 51 
Figure 3- 5: General crop calendar for field crops in Andalucia............................... 52 
Figure 3- 6: Average divergence separability for predefined numbers 

of NDVI-classes. ................................................................................... 55 
Figure 3- 7: Map of 45 NDVI-classes based on unsupervised classification 

of hypertemporal NDVI-images. .......................................................... 56 
Figure 3- 8: Estimated rainfed wheat map (fractions per km2). ................................ 58 
Figure 3- 9: Estimated rainfed sunflower map (fractions per km2). .......................... 59 
Figure 3- 10: Estimated rainfed barley map (fractions per km2). ................................ 60 
Figure 3- 11: SPOT-Vegetation temporal NDVI-profiles for    classes representing 

studied crops (Andalucia). .................................................................... 60 
Figure 3- 12: Validation of NDVI-based rainfed wheat. ............................................ 61 
Figure 3- 13: Validation of NDVI-based rainfed sunflower map. .............................. 62 
Figure 3- 14: Validation of NDVI-based rainfed barley map. .................................... 63 
Figure 3- 15: Estimated fractions per km2 of crops using the primary data 

approach. ............................................................................................... 64 
Figure 3- 16: Comparison of coefficients estimated methods A and   B. ................... 65 
 
Figure 4- 1: Description of Study area. ..................................................................... 74 
Figure 4- 2: Soil types map of Andalucia, Spain ...................................................... 76 
Figure 4- 3: Soil geomorphology map of Andalucia, Spain ..................................... 77 



 v

Figure 4- 4: NDVI classes map based on unsupervised classification. ..................... 84 
Figure 4- 5: Estimated  rainfed wheat map based on option 1. ................................. 86 
Figure 4- 6: Estimated rainfed wheat mapbased option 2. ........................................ 86 
Figure 4- 7: Results of the jackknife analysis. .......................................................... 87 
Figure 4- 8: Actual versus estimated fractions of rainfed wheat  

presented in Figure 4- 7. ....................................................................... 88 
Figure 4- 9: Actual versus estimated fractions of rainfed wheat 

 presented in Figure 4- 8. ...................................................................... 88 
Figure 4- 10: Estimated rainfed wheat map of Andalucia (fractions km2) 

based on options 3. ................................................................................ 91 
Figure 4- 11: Estimated rainfed wheat ased on options 4. .......................................... 91 
 
Figure 5- 1: Schematic overview of yield prediction in CGMS ............................. 101 
Figure 5- 2: Ssimulated dry matter accumulation of rainfed wheat 

 with the Cƒ-Water. ............................................................................. 106 
Figure 5- 3: Map of rainfed wheat area of Andalucia ............................................. 108 
Figure 5- 4: Estimated rainfed wheat yield map of Andalucia for 2001 ................. 109 
Figure 5- 5: Validation data set consisting. ............................................................. 111 
Figure 5- 6: Comparison of estimated yields with observed yields 

 at NUTS-3 scale ................................................................................. 112 
Figure 5- 7: Accuracy assessment of estimated yields (Cƒ-Water; kg/ha)  ............ 113 
 
Figure 6- 1: Diagram showing area frame (segment) on the topographic map ....... 124 
Figure 6- 2: Land use data already used by the respondents. .................................. 126 
Figure 6- 3: Opinion about available land use maps ............................................... 127 
Figure 6- 4: Opinion about available specific crop maps........................................ 128 
Figure 6- 5: Opinion about available agricultural statistical data ........................... 128 
Figure 6- 6: Opinion about CORINE land cover map ............................................ 129 
Figure 6- 7: Opinion about the primary segments data ........................................... 129 
Figure 6- 8: Opinionabout the generated rainfed wheat map .................................. 130 
Figure 6- 9: Opinion about the available yield data ................................................ 131 
Figure 6- 10: Opinion about the generated rainfed wheat yield map ........................ 132 
 
Figure 7- 1: Average annual NDVI profiles for rainfed wheat along with  

the annual production of rainfed wheat (2003-2006) .......................... 138 
Figure 7- 2: Estimated production of rainfed wheat, Andalucia (2001) ................. 142 



 vi 

List of tables 
 
Table 2- 1:  Land cover classes used in this study. ............................................. 25 
Table 2- 2: Crop statistics for 6 Mandals. .......................................................... 29 
Table 2- 3: The fraction of each land-cover class by NDVI-unit (A) 

and vice-versa (B), plus totals (%) and areas (km2) ......................... 33 
Table 2- 4: Results of the multiple stepwise linear regression analysis. ............ 36 
Table 2- 5: Land cover legend of the NDVI Unit Map (see figure 7) ................ 38 
Table 2- 6: Crop calendars of agricultural zones of the NDVI Unit Map .......... 39 
 
Table 3- 1:   Stepwise linear regression results for rainfed wheat ....................... 57 
Table 3- 2: Stepwise linear regression results for rainfed sunflower ................. 58 
Table 3- 3: Stepwise linear regression results for rainfed barley ....................... 59 
Table 3- 4:  Stepwise linear regression results using primary field data p .......... 64 
 
Table 4- 1: Step-wise linear regression results using only 

 NDVI class areas as predictors of rainfed wheat areas ................... 85 
Table 4- 2: Step-wise linear regression results using NDVI class areas  

and areas of soil units as predictors of rainfed wheat area ............... 85 
Table 4- 3: Step-wise linear regression results using only the  

absence/presence of NDVI classes as predictor of rainfed  
wheat areas ....................................................................................... 89 

Table 4- 4: Step-wise linear regression results using the absence/presence 
of NDVI classes and soil units combined as predictor of rainfed 
wheat areas ....................................................................................... 90 

Table 4- 5: Area (1000 ha) and sample frequency (No. of segments) by 
predictors of rainfed wheat areas. .................................................... 90 

 
Table 5- 1: NUTS regions of Spain relevant to the study area ......................... 100 
Table 5- 2: Comparison of CGMS and Cƒ-Water. ........................................... 107 
Table 5- 3: Rainfed wheat production (Tg1) in Andalucia (1990 - 2001). ....... 110 
 
Table 6- 1: Constraints regarding effective use of land use system 

information as reported by stakeholders  ....................................... 121 
 
  



 vii

Acknowledgments 
 
I am heartily thankful to my promotor, Professor Eric Smaling, whose 
encouragement, guidance and support made me to accomplish this uphill task. It 
has been an honour to work with him. I am also thankful to my second promoter 
Prof Herman Van Keulen. Eric and Herman I really appreciate your critical and 
thorough insights while you were reviewing my work. I am highly indebted to 
Dr. Kees de Bie, my co-promotor, who enabled me from the initial to the final 
level to develop an understanding of the subject and successfully finish it. I 
could not have wished for a better coach. Kees, your contributions, detailed 
comments and insight have been of great value to me. I hope our collaboration 
continues for long. My wishes and prayers are always there for you and your 
family. 
 
I would especially like to thank Valentijn Venus for his valuable suggestions 
and great support to me while I was working on crop modelling. 
My special thanks to Higher Education Commission of Pakistan for providing 
me funding without which it might not be possible for me to carry on my 
project.  
 
Thanks also to the ladies and gentlemen of the supporting departments. My 
special thanks are to Loes for helping me a lot right from the beginning till the 
end of my doctoral study. 
 
Research without data? No way! Thanks Alfredo with your kind help in data 
collection and in the arrangements of meetings with the officials of the Ministry 
of Agriculture and Fisheries, Andalucía. Your kind support was always there 
whenever I needed, Thank you for that. 
 
I am and will forever be deeply indebted to my parents, especially my Late 
Father, for what they have enabled me to achieve today through their endless 
love and prayers. All I can say is it would take another thesis to express my 
deep love for them. Dear Father, I miss you sooo much and I pray that your soul 
rests in peace. 
 
Many thanks to my loving siblings and their families: Afshan, Mansoor Bhai, 
Kashif & Ayesha, Ashi & Adil and Bushra & Nadeem. Api you always gave me 
the confidence and courage to stay put and keep faith in my abilities – thanks 
for showing such a tremendous trust in me! You have played a ‘key’ role in my 
life right from the beginning of education and till now – Api and Ashi I don’t 
see myself anywhere without such a loving sisters like you in every walk of 
life! Above all I am really thankful to the great kids Haris, Zainab, Rubab, 
Hanan, Mannan, Ali, Eisha and Zoha for their all-time love for me.  



 viii 

Heartiest gratitude to my loving life partner Dr. Amna for helping me to 
concentrate on this dissertation and supporting mentally during the course of 
this work. I am also thankful to God for blessing me with ‘the best wife’ of this 
whole world. Love you sweetheart. I am also thankful to my extended family, 
Uncle Yusuf, Ali, Abdul Baseer and Fatima, for supporting me and Amna very 
warmly and for being enthusiastic and wishful for my studies. Uncle, you took 
care of Noor while we were studying abroad…Thanks a lot. 
 
Noor-ul-Ain -the light of my Eyes – my daughter  your innocent patience and 
love have upheld me, particularly in those many a times when I spent more 
moments with my computer than with you.  
 
Many thanks to Dr. Tariq for his all-time support, friendship and guidance in 
my professional career. 
 
Thanks to my friends for sharing your experiences with me and listening to 
mine – great support no doubt. Thank you Farrukh Abdullah, Ikram Ali, Ha, 
Amjad, Abel, Jazi, Mrs and Yasin, Khurram, Shafique, Saleem, Azmat….. 
 
I really appreciate my colleagues of Ph.D. and Masters who travelled with me to 
Andalucía for field works. Ha, Amjad, Tuan, Mumun, PK, Yanti and Amit, you 
guys have been a great company.   
 
Finally, I offer my regards and blessings to all of you who supported me in any 
respect during the completion of the project. I express my apology that I could 
not mention personally all names one by one. 
 



1 

1 
 
 
 
 
 

General Introduction  



General Introduction 

 2 

1.1 Food security problems 

Agriculture, as the basis of the supply of food for the human population, is one 
of the most important human activities, its origin dating back to the Neolithic 
Revolution, more than 10 000 years ago (Janick, 1974). Since then, agriculture 
has developed substantially, while in the last centuries the field of agricultural 
research has continuously been advancing in response to the demands of human 
society. Progress, however, has not been as smooth as desired: the world has 
witnessed many food crises and man has continuously been battling against 
hunger in efforts to achieve food security. Food security exists “when all 
people, at all times, have physical and economic access to sufficient, safe and 
nutritious food to meet their dietary needs and food preferences for an active 
and healthy life” (FAO, 1983; World Food Summit, 1996). 

Every generation has suffered hunger, famines are of all times, and hence 
feelings of food insecurity have always been part of human history. The 
endeavours to achieve food security to avoid hunger and famine are as old as 
civilization. In this section, a brief account is provided of various food crises 
since the third decade of the 20th century, followed by an overview of the main 
causes underlying such food crises. Finally, some global efforts to achieve food 
security are discussed. 

Food availability, at times, became precariously low for the rapidly increasing 
population. In 1928-29, famine in northern China caused about 2 million deaths. 
Drought in 1932 and 1933 resulted in severe shortages of food which affected 
more than 4 million people in many parts of the former Union of Soviet 
Socialist Republics (USSR). China was affected again in 1936 by a massive 
famine with an estimated 5 million fatalities.  During World War II, many parts 
of Europe were affected and experienced severe shortages of food, such as 
Poland (1940-43) and Greece (1941-44). The Netherlands experienced the 
‘hongerwinter’ in the transition from 1944 to 1945. Countries in Africa and 
Asia such as India, Vietnam, Rwanda and Malawi also were adversely affected 
by the ravages of World War II (Shaw, 2007).  

In the 1960s, southern Asia experienced monsoon failures from 1965-67, so that 
massive food aid was required to prevent large-scale starvation, and fears of 
impending world famine were widespread. In the early 1970s, a feeling of 
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despair prevailed, as famines ravaged hundreds of millions of the poorest 
citizens of the world. Ethiopia and the West African Sahel experienced large-
scale famine because of a persistent drought (Morgan and Solarz, 1994). In 
1972, world cereal production fell by 3% compared to 1971, instead of 
increasing by 2%, as required to keep pace with the growth of the population 
(Schnittker, 1973). Cereal stocks in the major exporting countries dropped by 
50% during 1972-73 crop year leaving almost no food reserves (Sarris and 
Taylor, 1976). The economic situation was further aggravated by the increasing 
oil prices in the same year. Consequently, world cereal prices increased 
fourfold. The combination of these events created serious financial problems for 
the food-deficit developing countries, a situation that was worsened by a 
simultaneous cutback in food aid supplies. The result was a real threat of 
worldwide food shortages, and even famine (FAO, 1974; UN, 1974).   

There was a widespread famine in Ethiopia in 1984-85, affecting the inhabitants 
of today's Eritrea and Ethiopia. Over three million people were affected by the 
Somalian famine of 1991-93. More than 4 million people died, mostly from 
starvation and disease during the period of 1998-2004 in Congo and Ethiopia. 
About seven million inhabitants of Zimbabwe faced starvation because of its 
food crisis during 2000–2009 caused by the post-2000 land reforms. The severe 
food security crisis in Malawi affected more than five million people. In 2006, 
an acute shortage of food affected Somalia, Djibouti and Ethiopia and the 
northeastern part of Kenya. In 2007-2008, the world witnessed a food crisis, 
associated with steeply rising food prices that aggravated the situation for many 
countries already in need of emergency interventions and food aid, because of 
natural disasters and local conflicts. In some countries, this resulted in food riots 
and political instability. Recently, in 2010, Sub-Saharan countries such as 
Niger, Mali and Chad – already among the poorest countries in the world – are 
in the grip of a food crisis. 

Major causes underlying food crises 

Following are some of the main causes that have always played a role in food 
crises, in combination with poverty. 

a) Population growth and urbanization: The world population continues 
to increase and is projected to reach 10.0 billion in the year 2050 (Lutz et al., 
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1997). Land is being overexploited to meet the increasing demand for food, 
fibre and shelter. Expansion of agriculture into marginal lands and clearance of 
natural vegetation, forests and wetlands, caused land degradation and resource 
depletion (Luck, 2007; Hedal Kløverpris, 2009; Bagan et al., 2010).  

Population growth, combined with industrialization, has triggered urbanization. 
It is expected that most population growth between now and 2030 will be urban 
(Dixon et al., 2001). To meet the demands of the urban consumers, that form 
the backbone of the electorate practically everywhere, governments want to 
keep food prices low. This negatively affects food production, because farmers’ 
decisions on growing crops strongly depend on the market situation. Moreover, 
urbanization causes changes in dietary habits and results for instance in a sharp 
rise in the consumption of animal products (CAST, 1999; Ma et al., 2004). 
Between 1993 and 2000, meat consumption in China almost doubled and is 
expected to grow in many other countries as well. Meat production is largely 
based on consumption of feed grains, an inefficient process, as 2 to 20 kg of 
feed dry matter is needed to produce 1 kg of meat. Currently, about one-third of 
the total world grain production is used for animal consumption (Keyzer et al., 
2005), which contributes to high food prices. 

b) Natural disasters: Natural disasters such as adverse weather, pest and 
disease attacks, floods and earthquakes have always affected world food 
production, e.g., droughts in major wheat-producing countries in 2005-06 were 
among the causes of the recent food crisis of 2007-08.  

c)  Increasing oil prices: High oil prices put pressure on agriculture by 
increasing the prices of inputs such as fertilizers and pesticides. Increasing oil 
prices played an important role in the food crises of the early 1970s and 2007-
08. 

d) Biofuels: The production of fuels from plant material is increasing, to 
reduce the dependence on fossil fuels and to cut carbon dioxide emissions, 
requiring ever more land. In 2008, one third of the US maize production was 
used for biofuel production. The industry is encouraged by high subsidies in the 
United States and Europe. Land use for the production of biofuels, currently 
occupying about 15% in the EU and about 10% in North America, is projected 
to expand three- to four-fold at global level (IEA, 2007; Searchinger et al., 
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2008). However, in Europe, emphasis is shifting towards second generation 
biofuels for reasons of sustainability, while addressing social aspects (such as 
preventing land grabs and environmental protection) and food security (EU 
Council, 2009). 

Global efforts to achieve food security 

Many initiatives have been taken to improve food security at both the global 
and individual country levels. For a very long time, concerted efforts have been 
made by international organizations and global governance groups such as the 
Food and Agriculture Organization (FAO), the World Food Programme (WFP), 
the International Fund for Agricultural Development (IFAD), the World Bank 
(WB), the World Health Organization (WHO) and the Consultative Group on 
International Agricultural Research (CGIAR) to strengthen global food security 
through research and aid programmes (Von Braun, 2010). Increasing 
agricultural production and reducing population growth are vital to achieve food 
security. High yielding varieties of crops are being developed through mutation 
breeding and biotechnology (Borlaug, 2000; Ingram et al., 2008). Increased 
crop production in many countries, as a result of the “Green Revolution”, has 
strongly contributed to their self-sufficiency in food. Breeding and improved 
agronomic practices, especially the increasing use of eternal inputs, such as 
fertilizers and irrigation, were successfully combined to improve the standard of 
living of billions of people through spectacular increases in crop yields. Since 
the 1960s, average yields of staples such as rice, wheat and maize have more 
than doubled in both developing and developed countries (Alexandratos, 1995; 
Dyson, 1996; Conway, 1997; Hafner, 2003). 

The countries that have been successful in achieving food security are 
developed countries, characterised by rapid economic growth, especially in the 
agricultural sector and relatively low population growth. However, many 
developing countries, exposed to unfavourable agro-ecological and/or economic 
conditions, are still facing the problem of food insecurity. In 2001, UN member 
states recognized the need to more strongly focus on eradicating poverty to fight 
against hunger, and adopted the UN Millennium Development Goals (MDG’s), 
of which the first one (MDG1) is "to eradicate extreme hunger and poverty" 
(UN, 2000). MDG1 calls for halving hunger and poverty by 2015 in comparison 
to 1990. 



General Introduction 

 6 

Summarizing, the most important strategies that have been adopted to address 
food security issues are: 

• Promote agricultural research: increase food production; 
• Improve food aid: monitor the situation around the world and assist the 

needy through food aid; 
• Stabilize food prices: prevent high prices, among others through control of 

the unpredictable and erratic behaviour of the food market; 
• Regulate food trade: increase the quickly diminishing food reserves; 
• Protect natural resources: safeguard natural resources such as land, water 

and biodiversity and increase water use efficiency; 
• Adapt to and mitigate climate change: minimize adverse effects of climate 

change. 

1.2 Need for enhanced agricultural monitoring 

The threat of imbalances in food supply and demand, globally and/or locally, 
will continue to rise, as crop production faces the challenges of climate change, 
limited and dwindling resources, increasing energy needs and energy prices and 
population growth. The focus of many national and international organizations 
is on how to minimize this threat, while guaranteeing sustainable use of natural 
resources (Becker-Platen, 1976; IGOL, 2006; Justice and Becker-Reshef, 2007). 

Sustainable use of land, one of the main natural resources, critically depends on 
continuous assessment and monitoring of the status of the land resources. To 
reduce the threat of local and/or temporary imbalances between food supply and 
demand, timely and accurate information on areas of crops and estimates of 
their production is needed. Policy makers, responsible for food security and 
land use planning, crop insurance companies and agricultural scientists need 
accurate and timely information on crop production at regional level. Such 
information is not only required to formulate policies aiming at food security 
and land use planning, but also to assess the success of policies implemented in 
the past. For trade organizations this is also relevant information, as a basis for 
making decisions on trade volumes, trade flows and price control and 
management of agricultural markets.  
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In this context, knowledge on the areas devoted to the various food crops is 
necessary baseline information for regional, national and/or international food 
production assessments. Such information should be regularly updated to 
account for the seasonality in agricultural production and for temporary or 
permanent agricultural land use changes. The value and relevance of such 
information substantially increases when it is geo-referenced. Following 
establishment of agricultural land use areas, regional crop production estimates 
are necessary. Currently, such information is lacking, not readily available 
and/or not compatible with other sources of information such as soil maps, 
interpolated weather data, thematic maps, etc.  

A literature search has been performed to prepare an inventory of currently 
available information on land use at various spatial levels and the methods used 
in its acquisition. The results are briefly summarized here. 

a) Farmers’ interviews: One of the simplest methods of acquiring land 
use and crop yield information is farmers’ interviews, in which a representative 
sample of farmers is asked to estimate the land area occupied by different 
commodities and their expected production. However, this method has 
limitations. Farmers can be suspicious of enumerators, especially when they 
feel that the information might be used for tax purposes. Moreover, farmers in 
developing countries often lack resources and skills for quantitative estimation 
at the required level of accuracy (De Groote and Traoré, 2005).  

b) Land use surveys: Land use surveys are carried out for inventorying the 
specific land use practiced on a known unit of land that is considered 
homogenous in land resources, as a basis for the preparation of land use maps. 
Conventional methods of surveying are labour-intensive and time-consuming. 
The information on agricultural land use from such surveys soon becomes 
outdated, particularly in rapidly developing areas. The frequency of preparation 
of land use maps is generally very low, and moreover their spatial resolution is 
insufficient. In Europe for instance, land cover/land use maps, comprising only 
generalized classes (mix of land cover/land use, e.g. all field crops are grouped 
as one class “arable land”), are prepared at 10-year intervals (Feranec et al., 
2007). Useful information from land use surveys should include at least reliable 
estimates, at various spatial scales, of crop areas and crop yields. Aerial 
photographs and other remotely sensed sources of information are being used 
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extensively in various types of land use surveys.  Aerial photographs are used to 
prepare the inventories of current land use, for instance, digitized boundaries of 
fields on aerial photographs are used in statistical sampling methods to collect 
data on crop areas and yield, livestock densities, forests, etc. (Carfagna and 
Gallego, 2005; Claggett et al., 2010), Aerial photographs and satellite data are 
also used for mapping of soil units, water resources and topographical features.  

c) Crop statistical data: Currently, many governments annually compile 
statistical information on cropped areas and crop yields in tabular form. 
Internationally comparable series of annual crop production data are available at 
national scale from the FAO, the European Commission’s Directorate-General 
of Eurostat and the United States Department of Agriculture (USDA). While 
rich in commodity coverage, these data give no insight in the geographical 
distribution of crop areas and yields within countries. Several (sub-)regional 
efforts have been made by centres of the Consultative Group on International 
Agricultural Research (CGIAR) and by FAO (Carter et al., 1992; ,  FAO, 1994; 
IFPRI, 2001; IGOL, 2006) to collect and use crop statistical data. However, 
even when available, such data give no clue as to where “exactly” various crops 
are grown. This lack of spatial explicitness prevents the use of such data for 
monitoring of crop conditions and estimation of crop production, but they 
constitute an important source of information that can be used in planning and 
decision making on land use. FAO stresses the importance of such statistical 
data and highlights their importance in recognizing their collection and storage 
as one of the three primary roles of the organization (FAO, 2000). 

Crop statistical data, though rich in information, lack detailed (mapped) 
information about specific land uses which makes their usefulness limited 
(Figures 1- 1 and 1- 2). The wheat area map of Spain (Figure 1- 1), based on the 
agro-maps initiative of FAO (http://www.fao.org/ag/agl/default.stm), shows 
the land area under wheat in various municipalities of Spain, without indicating 
exactly where those areas are located. The rainfed wheat area map at municipal 
scale (% of the agricultural area as defined by the CORINE land cover map 
(Figure 1- 2), does not show “exactly where” in the various municipalities the 
crop is grown. Such maps are not suitable for monitoring and early warning 
systems on crop production (Verburg et al., 2002; Aalders and Aitkenhead, 
2006). 
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developed to estimate crop yield, using weather conditions as the predictors 
such as regression models of relationships between monthly rainfall, monthly 
temperatures, and crop yields (e.g., Runge and Odell, 1958; Thompson, 1962). 
In the late 1960s, development of dynamic simulation models started. The rapid 
development and application of computers facilitated research on crop 
simulation models. As a result, in the past forty years, a wide variety of crop 
models has been developed all over the world to serve many different purposes 
(Matthews and Stephens, 2002). DSSAT (Decision Support System for Agro-
technology Transfer) was developed in the USA by IBSNAT (International 
Benchmark Sites Network for Agrotechnology Transfer) (Jones et al., 2003). 
The APSIM (Agricultural Production system SIMulator) modeling framework 
was developed by APSRU (Agricultural Production Systems Research Unit) in 
Australia (Keating et al., 2003; Thorburn et al., 2010). In the Netherlands, the 
late C. T. de Wit started work on crop growth modeling at the Department of 
Theoretical Production Ecology of Wageningen Agricultural University (Van 
Ittersum et al., 2003; Van Keulen et al., 2008). One of the crop growth models 
developed in the ‘Wageningen School’ (Bouman et al., 1996), in the framework 
of the Centre for WOrld FOod STudies, is WOFOST, which is the core of the 
Monitoring Agriculture with Remote Sensing (MARS) program of the 
European Union implemented at the Joint Research Center (JRC) (Van Diepen 
et al., 1989; Reidsma et al., 2009). Other models developed in Wageningen are 
SUCROS (Simple Universal CROp growth Simulator; Van Laar et al., 1997) 
and ORYZA (a crop growth model for rice; Bouman et al., 2001).  

However, only a limited number of systems for quantitative yield assessment 
are operational. 

1.3 Remote sensing data for acquiring agricultural land use 
information 

Remote sensing (RS) started in 1858 when Gaspard-Felix Tournachon first took 
aerial photographs of Paris from a hot air balloon. The initial planned uses of 
remote sensing were performed during the U.S. Civil War, when messenger 
pigeons, kites, and unmanned balloons were flown over enemy territory with 
cameras attached. The term ‘remote sensing’ was coined in the early 1960’s by 
the staff of the Office of Naval Research and Geography (Pruitt, 1979). Though 
the initial uses of remote sensing were military, the work on vegetation also 
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started in the middle of the 20th century, with the use of Colour Infra-Red (CIR) 
photographs for vegetation studies, such as classification of vegetation types, 
detection of diseased and damaged vegetation and detection of severe crop 
stress symptoms (Ustin and Gamon, 2010). Concurrently, the radar technology 
was being developed and side-looking airborne radar (SLAR) and Synthetic 
Aperture Radar (SAR) were developed to improve the angular resolution for 
better image interpretation (Jongschaap, 2006). 

The use of satellites started with the space race between the former USSR and 
the United States of America (USA) in the late 1950s, while the use of satellite-
based crop imagery began in 1971 through the launch of Landsat 1 by the 
National Aeronautics and Space Administration of the USA (Williams et al., 
2006). Data are acquired by sensors on board of such satellites. Since then, 
many satellites with sensors have been launched to acquire data. Of special 
importance are the National Oceanic and Atmospheric Administration (NOAA) 
satellite with the Advanced Very High Resolution Radiometer (AVHRR) sensor 
on board, the Terra satellite that carries the Advanced Spaceborne Thermal 
Emission and Reflection Radiometer (ASTER) sensor and the Moderate 
Resolution Imaging Spectroradiometer (MODIS). Another system is the 
Système Probatorie de la Observation de la Terre (SPOT) satellite that also 
carries a vegetation sensor (VGT). Currently, highly advanced satellite systems 
such as Quickbird and IKONOS obtain data from space that are comparable to 
aerial photography in terms of spatial resolution. 

Satellite remote sensing has enabled acquisition of land use/land cover and 
vegetation information at different spatial and temporal scales, including 
relevant information on agricultural land use. Remote sensing in combination 
with Geographical Information Systems (GIS) and Global Positioning Systems 
(GPS) can be used to assess the characteristics and growth of vegetation. 
Vegetation behaviour depends on its specific (physical, physiological and 
biochemical) characteristics and its interactions with the aerial and soil 
environments, characterized by weather conditions, such as solar radiation, 
temperature, humidity and rainfall, and the availability of plant nutrients and 
(soil) water. Vegetation indices (VIs) have been extensively used for monitoring 
vegetation and land cover changes (DeFries et al., 1995). Development of 
vegetation indices is based on differential absorption, transmittance, and 
reflectance of energy by the vegetation in the red and near-infrared regions of 
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the electromagnetic spectrum (Jensen, 1996). Many remote sensing studies of 
vegetation have focused on the use of spectral vegetation indices such as the 
Normalized Difference Vegetation Index (NDVI) and other simple ratios, 
calculated as combinations of near infrared (NIR) and red reflectance. These 
indices have been shown to correlate with plant variables related to primary 
production such as biomass, leaf area index (LAI) and absorbed 
photosynthetically active radiation (APAR). Dry matter production in plants is 
based on the process of photosynthesis, the rate of which is determined by the 
plant’s biochemical characteristics and absorbed solar radiation. Remote 
sensing systems, i.e. meteorological and earth-observing satellites can provide 
inputs for crop production estimates (Ray and Dadhwal, 2001; Lobell et al., 
2003; Prenzel, 2004; Launay and Guerif, 2005). The use of multitemporal 
images results in higher classification accuracy and leads to consistent accuracy 
in all classes being mapped. Multitemporal data are especially advantageous in 
areas where vegetation or land use changes rapidly. This offers many 
opportunities for more complete vegetation description than could be achieved 
with a single image. For example, the differences between evergreen and 
deciduous trees can be identified, as the former appear uniform throughout the 
year, whereas the latter strongly differ between leaf-on and leaf-off periods. The 
discriminative capabilities of multitemporal observations are based on their 
characterization of seasonal dynamics of vegetation growth (Agrawal et al., 
2001). 

Hypertemporal (long temporal sequences of regularly acquired data) remote 
sensing data serve as an important source of information on crops, because of 
their spatial and temporal resolution. Such imagery meets the requirements for 
land cover mapping at regional scale. 

Applications of remote sensing in agriculture 

Following is the brief account of various applications of remote sensing in 
agriculture: 

a) Land cover/land use mapping: Regional land cover mapping is 
performed to obtain an inventory of its vegetation to be used as a baseline map 
for monitoring of the dynamics of land use and land management. Satellite 
observations acquired by the hypertemporal remote sensor can be translated into 
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land cover information (Latifovic et al., 2004; Ran et al., 2010). Satellite remote 
sensing techniques have been shown to be effective in preparing accurate land 
use/land cover maps and in monitoring changes at regular intervals (Yang et al., 
2007; Zhang and Zhang, 2007). 

Remote sensing offers an efficient and reliable means of collecting the 
information required to map crop type and area. Hypertemporal imagery 
facilitates classification by taking into account changes in reflectance as a 
function of plant phenology (stage of growth) (De Bie et al., 2010).  

In areas of persistent cloud cover or haze, radar is an excellent tool for 
observing and distinguishing crop types, due to its active sensing capabilities 
and long wavelengths (McNairn et al., 2009). High resolution satellite imagery 
also provides an efficient tool for mapping crop types and is being used for area 
stratification purposes (Gallego and Bamps, 2008; Knorn et al., 2009). 

b) Crop monitoring and damage assessment: Remote sensing can provide 
information about possible pest and disease infestations of the vegetation. The 
spectral reflection of a field varies with changes in phenology (growth stage), 
and possible stress conditions can be monitored by multispectral sensors.  The 
wavelengths in the optical (VIR) range are highly sensitive to crop vigour, as 
affected by stress and crop damage. Recent advances in communication 
technology allow support in timely decision-making on crop management from 
images of agricultural fields. NDVI time series have also been used for 
monitoring anomalies, drought, phenology, land cover characteristics and crop 
yields (Goerner et al., 2009).  

c) Remote sensing and crop growth modelling:  Information from remote 
sensing observations can effectively be integrated into crop modeling 
methodologies. Such data have been used in crop models for regional yield 
assessment (Roebeling et al. 2004; Doraiswamy et al. 2005; Jongschaap, 2006; 
De Wit and Van Diepen, 2008). The use of satellite-based inputs highly 
simplifies the process, considering the amount of time and labor that regional 
level data collection requires. The remote sensing images can also be used for 
aggregation of results of crop growth models to regional scales. 
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1.4 Problem statement  

To increase food security for an increasing population, information is required 
on current land use, and the dynamics of land use should be monitored. Land 
use maps, including detailed temporal and spatial information, are needed for 
land use planning, crop monitoring and food security issues. At regional to 
global scales, land use data are either missing or, if available, the information is 
in most cases outdated and therefore not useful. Moreover, the quality of the 
available information is variable and often poor (Dalal-Clayton and Dent, 1993; 
Sombroek and Antoine, 1994; Fresco et al., 1997; De Bie, 2000; Nachtergaele, 
2000). This lack of information on land use is one of the major obstacles 
hampering efficient policy making and research to achieve food security. With 
these problems in mind, I identified the following objectives for my Ph.D. 
research. 

1.5 Objectives of the study 

This study aims at contributing to development of an operational methodology 
for quantitative mapping and monitoring of agricultural land use, including the 
assessment of the possibilities for crop growth modelling based on remotely 
sensed input data. The objective is to develop remote sensing- and GIS-based 
methods that result in timely availability of accurate agricultural land use/land 
cover information, as required by agricultural land use planners, policy makers, 
donor agencies and crop insurance companies for a variety of purposes. 

The specific objectives of the study are: 

1a To develop a method for compiling spatial and temporal land use data 
sets by combining hypertemporal NDVI images with other available 
data sources. 

1b  To further develop and validate a method for generating spatially 
explicit crop area maps by combining hypertemporal NDIV images, 
crop statistical data and primary field data. 

1c To test whether the information derived from NDVI images, used in 
generating spatially explicit crop area maps, is affected by soil type. 
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2 To compare crop yields estimated by a simple and new (under 
development) crop growth model with those generated through the 
Crop Growth Monitoring System (CGMS) of the European Union’s 
Monitoring Agriculture with Remote Sensing (MARS) project (Van 
Diepen et al., 1989; Reidsma et al., 2009). 

3 To test whether the intended stakeholders of the research have benefited 
from its results through top-down valorisation of the produced outputs. 

1.6 Outline of this thesis 

The present study makes use of satellite-based remotely sensed data, crop 
statistics, crop calendar information and in situ observations to allow reliable, 
unambiguous and quantitative interpretation of the data.  

The innovative characteristic of this study is identification of a combination of 
remote sensing, GIS and crop modelling as a basis for development of an 
operational system to monitor and map agricultural land use (Figure 1- 3). 
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Figure 1- 3: Schematic diagram of the research framework 

This thesis is organized in seven chapters (Figure 1- 4). 

Chapter 2: This chapter deals with mapping of agricultural land use on the 
basis of various data sources such as crop calendar information, agricultural 
statistics, maps of land cover and satellite-based hypertemporal SPOT NDVI 
images. The method illustrated in Chapter 2 has the potential to be incorporated 
in remote sensing- and GIS-based drought monitoring systems. 
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Chapter 3: In this chapter, a method is presented to generate crop area 
maps by combining hypertemporal SPOT NDVI images, agricultural statistics 
and primary field data. It is assumed that the NDVI data express the combined 
influences of all environmental variables such as soil, terrain, weather and land 
use conditions. 

Chapter 4: In this chapter, some of the assumptions from Chapters 2 and 3 
are tested by incorporating soil information derived from the soil type map and 
the soil geogenisis map. Moreover, the methods developed in Chapters 3 and 4 
are evaluated by selecting the “best crop map” from the maps generated, based 
on their accuracy. 

Chapter 5: In this chapter, the output of a new crop growth model (Cƒ-
Water) is compared with that of an operational model, WOFOST, as 
incorporated in the Crop Growth Monitoring System, by using published crop 
statistical data and primary field data. 

 Chapter 6: In this chapter, stakeholders, with a wide range of interests, 
have been involved in valorizing the products generated in this thesis (outputs 
of 3rd, 4th and  5th chapter) and in comparing and analyzing their opinions about 
currently available options.  

Chapter 7: In this chapter, a synthesis is presented, evaluating the strengths 
and weaknesses of the developed methods along with recommendations for 
further research to acquire and present timely, accurate and meaningful 
information on agricultural land use. 
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Figure 1- 4: Coherence of thesis chapters  
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Abstract 

Land use information is required for a number of purposes such as to address 
food security issues, to ensure the sustainable use of natural resources and to 
support decisions regarding food trade and crop insurance. Suitable land use 
maps often either do not exist or are not readily available. This chapter presents 
a novel method to compile spatial and temporal land use data sets using 
hypertemporal remote sensing in combination with existing data sources. 
SPOT-Vegetation 10-day composite NDVI images (1998-2002) at 1-km2 
resolution for a part of Nizamabad district, Andhra Pradesh state, India were 
linked with available crop calendars and information about cropping patterns. 
The NDVI images were used to stratify the study area into map units 
represented by 11 distinct NDVI classes. These were then related to an existing 
land-cover map compiled from high resolution IRS-images (Liss-III on IRS-
1C), reported crop areas by sub-district and practiced crop calendar information. 
This resulted in an improved map containing baseline information on both land-
cover and land use. It is concluded that each defined NDVI class represents a 
varying but distinct mix of land-cover classes and that the existing land-cover 
map consists of too many detailed ‘year-specific’ features. Four groups of the 
NDVI classes present in agricultural areas match well with four categories of 
practiced crop calendars. Differences within a group of NDVI classes reveal 
area specific variations in cropping intensities. The remaining groups of NDVI 
classes represent other land-cover complexes. The method illustrated in this 
chapter has the potential to be incorporated into RS/GIS based drought 
monitoring systems.  
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2.1 Introduction 

Population growth drives the increasing demand for food, consequently putting 
pressure on land resources for higher food production. This over exploitation of 
land resources causes land degradation, harvest shortfalls and ultimately the 
food shortage. Timely and accurate assessment of food production systems is 
required to counter the threats posed by land degradation, food shortages, 
adverse effects of climate change and natural disasters. Agronomic baseline 
maps are required not only for accurate assessment of the agricultural land use 
systems but also for optimization of inputs in these systems (Hatfield, 2001; 
Tilman et al., 2002).  

Timely and reliable information on crop areas and yields is required by the 
governments of all the countries and also by international organizations for 
planning and management of land resources. The international organizations 
such as the Food and Agriculture Organization (FAO) of the United Nations, 
the European Union (EU), the United Nations Environment Programme 
(UNEP) and the United States Geological Survey (USGS) stress on the 
importance of regional to global databases on crop areas and production (Cohen 
and Shoshany, 2002; George and Nachtergaele, 2002; Townshend et al., 2008). 
Spatial land use data is also needed for understanding the role of land use in 
natural resource management and environmental change studies. Many 
countries monitor land use change as a basis for policy guidelines and for 
implementing plans of action. Land use data has been considered as the second 
most fundamental set of statistics after the population data (Young, 1998). In 
many developing countries, however, there is a general paucity of reliable land 
use information or, even if such information exists, it is often difficult for all 
interested clients to access it. Preparation of conventional land use maps is both 
expensive and time consuming and the information contained in them quickly 
becomes outdated.  

Annual estimates of areas of agricultural land use (e.g., crop areas) are usually 
available in the form of tabular statistical data collected at various 
administrative levels. The user of such data, however, remains uninformed 
about the exact geographic locations of specific land uses within the 
administrative units (Jansen and DiGregorio, 2003). Consequently, such 
information is poorly suited for monitoring of crop production and food security 



Small scale land use mapping 

 22 

studies because of this lack of spatial reference. Remote sensing and GIS 
techniques provide means for analysing and monitoring the spatial and temporal 
aspects of land use (Walker and Mallawaarachchi, 1998; Oetter et al., 2001).  

The relation between remotely sensed data and crop characteristics is frequently 
described by means of vegetation indices. Vegetation indices are indictors of 
vegetation conditions and have been used to derive information about land use 
and land-cover (Maseli, 2004). The Normalized Difference Vegetation Index 
(NDVI) is calculated as the ratio of the difference between the red and infrared 
reflectance to their sum. NDVI expresses the photosynthetic activity of 
vegetation (Justice et al., 1985; Sellers, 1985; Drenge and Tucker, 1988; 
Ringrose et al. 1996; Unganai and Kogan, 1998; Maggi and Stroppiana, 2002; 
Archer, 2004; Weiss et al., 2004). Several studies have also discussed the 
suitability of temporal NDVI data for studying vegetation phenology, especially 
that of crops (Gorham, 1998; Murakami et al., 2001; Uchida, 2001; Groten and 
Octare, 2002; Hill and Donald, 2003; Huang and Siegert, 2006). Various 
authors have attempted to map land-cover phenology, land-cover dynamics and 
land degradation through the analysis of multi-temporal NDVI data (e.g. Cayrol 
et al., 2000; Ledwith, 2000; Eerens et al., 2001; Brand and Malthus, 2004; 
Budde et al., 2004; Fraser et al., 2009; Julien et al., 2009). Others have aimed at 
disaggregating agricultural statistics using NDVI data (Walker and 
Mallawaarachchi, 1998; Khan et al., 2010). The ‘MARS Food Aid’ project of 
the European Union’s Joint Research Centre (JRC) has even integrated SPOT 
images into their methods for integrated agricultural monitoring and yield 
forecasting for Africa (Rembold, 2004). 

In this chapter, we utilized 10-days temporal resolution SPOT-Vegetation 
NDVI data to develop a method for identification and describing areas with 
different vegetation cover types and agricultural areas that follow different crop 
calendars. Normally, crops are on the ground for 6-7 months and substantial 
information in terms of number of images is required. Therefore, the SPOT 
VGT satellite data with a spatial resolution of 1-km2 and a temporal resolution 
of one day was selected for this research. Although land use and land-cover 
change is an important issue (Lepers et al. 2005), the focus of present research 
was on mapping land use and land-cover rather than on change detection. The 
aim of the research is to develop methods to compile spatial and temporal land 
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(band 3 - band 2) / (band 3 + band 2). 

The index is converted to a digital number (DN-value) in the 0-255 data range 
using the standard formula:  

DN = (NDVI + 0.1) / 0.004. 

b) A land-cover map of the area at 1:50 000 scale, based on high 
resolution 1994-95 IRS-C images (Liss-III; 23m resolution) of two periods, i.e., 
Kharif (monsoon) and Rabi (post monsoon) was used. This map was compiled 
as a part of the Integrated Mission for Sustainable Development (IMSD) project 
which is an operational land use planning programme in the area (NRSA, 
1995). The map was based on visual interpretation techniques in conjunction 
with collateral data such as topographic maps, district records, and the field 
investigations. The original land-cover map has 18 legend entries (at 3 levels). 
In this study only seven renamed legend entries (at 2 levels) were used (Table 1; 
Figure 2- 3). 

Table 2- 1: Land cover classes used in this study 

 

(The 18 legend entries of the original land cover map as mapped at 1:50,000 by 
the IMSD project are re-assigned to seven legend entries) 

Level-1 Level-2 Level-3 Level-1 Level-2
Kharif 363.5 With green cover in Rabi only orange
Kharif+Rabi(double 
Cropped)

219.2
With green cover in Kharif only l.green

Rabi 294.2 With green cover in Rabi and Kharif d.green
Fallow 1.5
Plantations 0.8
Built-up 3.8
Towns/cities(Urban) 0.6
Villages(Rural) 5.7

Dense/Closed 77.4
Forest Blanks 2.3
Open 58.6
Scrub Forest 2.3

Barren Rocky/Stony Waste/Sheet 1.2
Land With Scrub 94.5
Land Without scrub 121.6

River 31.9
Sandy area 12.2

Tanks 26.6

Built-up (towns)

Crop land

Deciduous 
(Moist/Dry)

Assigned 
Colour

red

brown

white

blue

Agriculture

Built-up

Forest

Wastelands

Water bodies

Original Legend km-sq

Fields

Used Legend

River

Non-
Fields

With water (water bodies)

With trees (forests)

Almost bare

Units are ignored (too small)
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c) Crop calendar data were obtained from published literature (APAU, 
1989; Rao, 1995). The crop calendar data refer to major events (agronomic 
practices in the cropping system per year in a specific area) such as field 
preparation, sowing time and harvesting time. 

d) Crop statistics were collected by a District Agricultural Officer and his 
staff, who, as part of their regular duties, compile the data on a seasonal basis at 
village level and then aggregate them to different administrative levels. These 
data are published as an official record in the District Gazetteer by the Chief 
Planning Officer of the District (CPO, 2001).  

f) The meteorological data for this study were compiled from official 
monthly records. Rainfall data on a daily basis are available from the 
meteorological station located in the study area.  

e) Soil maps, produced at 1:50 000 scale, were obtained from the 
Integrated Mission for Sustainable Development (IMSD) project in India. The 
procedures used to compile these maps are discussed in detail in the IMSD 
Technical Guidelines (NRSA, 1995).  

2.4  Methods 

The methods of this study comprise four distinct steps: image classification, 
linking hypertemporal RS images with the existing land-cover map, linking 
hypertemporal RS images with crop statistical data by sub-district and finally 
the legend construction and matching with known crop calendars. 

2.4.1 Image classification 

The iterative self organized unsupervised clustering algorithm (ISODATA) of 
ERDAS IMAGINE software was used to perform an unsupervised classification 
of all 147 NDVI images. The ISODATA clustering method uses the minimum 
spectral distance formula to form clusters. The algorithm repeats the clustering 
of the image until either a maximum number of iterations have been performed, 
or a maximum percentage of unchanged pixel assignments have been reached 
between two iterations.  
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A series of unsupervised classification runs was carried out to generate 
classified NDVI maps with a pre-defined number of classes (5 to 35) with an 
increase of 1 in every proceeding step. The maximum number of iterations was 
set to 50 and the convergence threshold was set to 1.0. Each iteration produced 
a classification result with the desired number of classes. The algorithm is 
called "self organizing" because the procedure is not influenced by additional 
data or by expert’s knowledge. The ISODATA algorithm minimizes the 
Euclidian distances inherent in the data and locates clusters (ERDAS 2003). 
The divergence statistical measure of distance between generated cluster 
signatures by each run was used to select the optimal run (ERDAS, 2003; Swain 
and Davis, 1978). The optimal run with a distinguishable peak in divergence 
separability was selected for further study. From that optimal run, comparable 
NDVI classes (annual averaged classes) were explored visually and in this way 
a supervised grouping of the NDVI classes was performed.  

2.4.2 Linking hypertemporal RS images with existing land cover map 

After the supervised grouping of the NDVI classes, the resultant NDVI map 
was compared with the existing land-cover map of the area (Figure 2- 3). This 
comparison was made to derive quantified data on the mix of land-cover classes 
represented by each NDVI class. The land-cover map at 1:50 000 scale shows 
field patterns and specifically, reflects the cover status of those fields for the 
period of the imagery (1994-95) used to compile the map. Differences with the 
18 January 2000 pan sharpened IRS-1D image (Liss-III and PAN; 5.8m 
resolution; Figure 2- 3) can be detected visually taking the seasonality aspect of 
the IRS-1D image into consideration. This indicates the degree of land use 
change in the area from 1994/95 to 2000.  

2.4.3 Linking hypertemporal RS images with crop statistical data by sub-
district 

The area of all the NDVI classes in each Mandal was calculated through GIS 
analysis by combining the classified NDVI map and the administrative map of 
study area. 

Table 2- 2 reports crop statistical data for six Mandals (averaged from 1998-
2001) and the area of NDVI classes in each Mandal. These data were used to 
estimate the function:  
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Table 2- 2: Crop statistics for 6 Mandals 

KHARIF Bichkunda Birkoor Jukkal Kotagir Madnoor Pitlam Total(ha)
Irrig.Rice 3,255 6,919 793 7,325 1,282 3,200 22,774
Sorghum 718 4 2,305 1 371 564 3,963

Maize 12 27 52 7 0 384 482
Pulses 5,986 93 6,609 1,312 9,268 5,853 29,122

Sugarcane 230 372 4 951 64 774 2,395
Cotton 628 11 2,524 313 2,910 474 6,860
Other 
Crops 218 16 518 151 150 50 1,103

Total(ha) 11,047 7,442 12,805 10,060 14045 11,299 66,699
RABI 

Irrig.Rice 651 3,995 247 4,153 335 2,100 11,481
Sorghum 2,462 16 3,035 1,181 6,987 1,773 15,454

Millet 0 4 0 34 0 0 38
Maize 6 10 0 0 0 61 77
Pulses 885 4 368 243 1,001 323 2,823

Sugarcane 245 244 0 803 0 668 1,960
Groundnut 657 820 469 1,205 658 2,133 5,942

Other 
Crops 1,153 187 1,771 337 1,966 433 5,847

Total(ha) 6,059 5,280 5,890 7,956 10,947 7,490 43,622

NDVI- 
Class* Bichkunda Birkoor Jukkal Kotagir Madnoor Pitlam

Total
(km2)

1,2  0 1 0 1 0 0 2 
11  16 18 2 16 28 2 81 

3,4,5,6  33 0 91 0 10 3 136 
19,20  4 34 9 3 0 0 50 

16  3 8 6 3 0 15 34 
10,12,14  71 2 17 3 1 140 234 

7,8  112 0 105 13 173 4 407 
9  8 1 5 6 10 0 29 

13,15  7 15 1 30 0 38 91 
17  0 109 0 102 0 1 212 
18  0 12 0 28 0 0 40 

Total (km2) 254 200 237 204 222 202 1,318 

* Product of the image classification step discussed under ‘methods’. 
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The regression coefficients in the equation provided an estimate of the fractions 
(percent per unit area) of each related NDVI classes representing a specific 
crop. 

2.4.4 Legend construction and matching with known crop calendars 

The final stage of the study – compiling a legend and matching it with known 
crop calendars - was limited only to those areas where crops are grown as 
indicated by the statistical data and where ‘green’ fields were dominant in the 
existing land-cover map. For these areas, a legend for the NDVI map was 
compiled from the data generated by the method explained in sections 2.4.3 and 
2.4.2. Known crop calendars were assigned to the relevant legend entries and 
cross-checked by using the relevant NDVI classes. 

2.5 Results 

2.5.1 Image classification 

As described in section 2.4.1, image classification involved two steps. Firstly, 
the extent to which the generated signatures are separable across various 
classification runs was compared by using the divergence statistical values. 
Figure 2- 4 shows by each run i) the average and ii) the minimum of all 
generated divergence values between the  defined clusters. The ‘average’ 
separability values reflect a comparison of all generated clusters by run 
simultaneously and the ‘minimum’ separability values compare only those that 
are the most similar. The figure shows the best ‘average’ values of the runs for 
22 and 28 classes and the best ‘minimum’ values of the runs for 18 and 23 
classes.  We have considered the ‘minimum divergence’ as more appropriate 
than the ‘average divergence’ because of clearer peaks in values. Thus, in an 
unsupervised classification of the study area, somewhere between 18 and 23 
classes is optimum to classify the 1-km2 NDVI images from 1998-2002. Within 
that range, variation in the divergence values can be considered as ‘noise’ in the 
satellite data.  

Secondly, as input into the next step, the 20 classes map was selected and a 
supervised grouping of the 20 NDVI classes was carried out. The supervised 
(visual) grouping was undertaken to repair possible deficits because one single 
peak could not be identified in both the minimum and average divergence 
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2.5.2 Linking hypertemporal RS images with existing land cover map 

In the second stage of the methods, the NDVI unit map was compared with an 
existing map of land-cover. For this purpose, the area of each class of the 
existing land-cover map (Figure 2- 3) was compared with the area of each 
NDVI class. The results of this step are presented in table 2- 3. The difference 
in scales between the two maps was circumvented by using fractions only (in 
percentages). Using the area statistics for the six Mandals, an analysis of 
variance (ANOVA) was used to test the association between the NDVI classes 
(11x) and the seven underlying land-cover classes. This ANOVA revealed a 
significant relation (at the 1% confidence level) for both factors and for their 
interaction (385 degrees of freedom and 7 outliers).  

The original land-cover map reported ‘cropped’ fields based on image 
interpretation. ‘Cropped’ is a land use term and in table 2- 1 it is replaced by the 
term ‘green’ (as observed in the images).  

2.5.3 Linking hypertemporal RS images with crop statistical data by sub-
district 

Having linked the hypertemporal images with the existing land-cover map, the 
third stage of the work involved relating these images to crop statistical data. 
Stepwise multiple linear regression analysis was performed for each crop to 
estimate the function described in equation 1 using the data reported in table 2- 
2. The limited number of Mandals studied (6 statistical records versus 11 NDVI 
classes as parameters) provided only a limited number of statistical degrees of 
freedom. This called for further grouping of the NDVI classes as indicated in 
table 2- 4 (using the area coding presented in figure 2- 3).  

The process of grouping consisted of merging classes [7, 8] and 9 (Area A) on 
the basis of their relatively high fractions of green fields that are cropped only 
for one season per year and merging of classes [13, 15], 17 and 18 (Area C) on 
the basis of the dominant occurrence of green fields that are cropped during 
both seasons (Kharif and Rabi). This process resulted in a matrix of six 
statistical records versus eight NDVI classes as parameters. Table 2- 4 reports 
the average proportion (in percent) that a specific crop is grown within each 
map unit represented by a specific group of NDVI classes. NDVI classes [1, 2], 
11, [19, 20] and 16 seem to be related with non-crop areas. 
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Table 2- 3: The fraction of each land-cover class by NDVI-unit (A) and 
vice-versa (B), plus totals (%) and areas (km2) 

A Green Fields Other Total Area 
NDVI-

Unit 
Kharif 

only 
Rabi 
only 

Kharif
+Rabi 

Trees Bare Water
Built

-up
(%) (km2) 

1,2  0.6 3.8 0.0 0.0 0.0 95.6 0.0 100 2 
11  17.6 16.1 11.9 0.0 18.2 36.1 0.1 100 81 

3,4,5,6  32.9 8.7 1.0 4.9 51.3 1.2 0.0 100 136 
19,20  4.0 1.1 2.0 89.2 2.8 0.9 0.0 100 50 

16  16.6 5.8 1.3 66.2 7.4 2.6 0.1 100 34 
10,12,1

4  39.2 8.0 5.3 22.5 19.9 4.5 0.6 100 234 
7,8  39.2 43.6 1.9 1.2 12.2 1.4 0.5 100 407 

9  44.8 36.7 5.5 0.2 3.4 9.0 0.4 100 29 
13,15  31.8 22.7 23.0 6.4 9.1 5.8 1.2 100 91 

17  2.6 15.0 63.6 1.4 10.7 4.6 2.1 100 212 
18  0.8 16.5 72.8 0.0 1.0 6.8 2.1 100 40 

       
B Green Fields Other   

NDVI-
Unit 

Kharif 
only 

Rabi 
only 

Kharif
+Rabi 

Trees Bare Water
Built

-up
  

1,2  0.0 0.0 0.0 0.0 0.0 2.7 0.0   
11  3.9 4.5 4.4 0.0 6.8 41.1 0.6   

3,4,5,6  12.3 4.0 0.6 4.7 32.2 2.3 0.0   
19,20  0.5 0.2 0.5 31.8 0.6 0.6 0.0   

16  1.6 0.7 0.2 16.2 1.2 1.3 0.5   
10,12,1

4  25.1 6.4 5.6 37.5 21.4 14.8 14.0   
7,8  43.5 60.4 3.6 3.6 22.8 8.2 21.0   

9  3.6 3.7 0.7 0.0 0.5 3.8 1.2   
13,15  7.9 7.0 9.6 4.1 3.8 7.4 11.1   

17  1.5 10.8 61.5 2.1 10.5 13.9 43.3   
18  0.1 2.3 13.3 0.0 0.2 3.9 8.3   

Total (%) 100 100 100 100 100 100 100   
Area 

(km2) 366 294 219 141 217 71 10  1,318 
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Table 2- 4: Results of the multiple stepwise linear regression analysis 

  NDVI-profile Class Groups 
  Area B: Area C: Area A: 
KHARIF Adj.R2 3,4,5,6 10,12,14 ‘7,8’,9 ‘13,15’,17,18 Area (ha) 

Irrig.Rice 88%      49.6% 22,774  
Sorghum 95% 25.2%       3,963 

Maize 78%   2.2%     482 
Pulses 95%   34.0% 46.6%   29,122 

Sugarcane 89%   3.9%   4.6% 2,395 
Cotton 82%     14.8%   6,860 
Other 
crops 89% 5.9%       1,103 

       
RABI Adj.R2 3,4,5,6 10,12,14 ‘7,8’,9 ‘13,15’,17,18 Area (ha) 

Irrig.Rice 95%       28.4% 11,481 
Sorghum 89%     32.2%   15,454 

Pulses 87%     5.6%   2,823 
Sugarcane 85%   3.6%   3.6% 1,960 

Groundnut 88%   12.6%  6.7% 5,942 
Other 
crops 92%     11.7%   5,847 

 
Area 
(km2) 136 234 436 343 

Note: the Adjusted R2, when regression through the origin is forced, cannot 
be compared to R2s for models that include an intercept. Reported cropped 
areas are estimated by the extent of NDVI-profile classes. Coefficients are 
reported as percentages that are confined to the 0-100% range (0 to 1); each 
was significance at 5%. 

2.5.4 Legend construction and matching with known crop calendars 

In the final stage, the data presented in tables 2- 2, 2- 3 and 2- 4 were compiled 
into two comprehensive legends (Table 2- 5and table 2- 6) organized by the 
NDVI classes. Each legend item is linked to different land-cover and land use 
complexes. NDVI class areas are taken from table 2- 2, land-cover data from 
table 2- 3 and agricultural land use data from table 2- 4. In those cases where 
the 11 NDVI classes were grouped (areas A, B, and C) to derive cropped area 
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estimates by crop and season, the regression results are reported by group. 
Tables 2- 5 and 2- 6 also report the cropping intensity (%) of the area under 
cultivation during Rabi for areas A and C based on land-cover statistics and the 
relative shape of the NDVI class profiles. Crop calendar information was 
included in table 2- 6 based on the aforementioned information regarding where 
a crop is grown. Following facts are present in tables 2- 5 and 2- 6.   

• Area A: the bi-model shape (reflecting cropping in both Kharif and Rabi 
seasons) of the three underlying NDVI classes indicates sequential cropping 
of irrigated rice at three cropping intensities during the Rabi season. This 
cropping intensity relates to the farmers’ decision whether or not to grow 
rice depending on the availability of irrigation water during the Rabi season. 

• Area B: the NDVI class profiles of this area show high values during 
Kharif and low to very low values during the remaining part of the year. In 
this area, mainly pulses (grams) such as black, green, or red gram having a 
short growth cycle were cultivated (34% during Kharif). During Rabi, 
groundnuts were grown on about 13% of the area which was moderately 
reflected by the NDVI class profile [10, 12, 14]. 

• Area C: this area represents two NDVI classes that retain relatively high 
values in the Rabi season. This matched with either i) the growing of crops 
with a relatively long growing period such as cotton (15% of the area) or ii) 
late planting of sorghum (32%) and Bengal gram (chickpea; 6%). During 
Rabi, the NDVI class profile 9 remained significantly higher than the 
profile of [7, 8] due to relatively high cropping intensity in NDVI class 9. 
This indicates that a larger area was allocated to ‘late planted’ crops like 
sorghum, chickpea, Rabi sunflower, or safflower. 
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Table 2- 5: Land cover legend of the NDVI Unit Map  

 
  

Area
(ha) Period % Trees Bare Water
198 All year 4 0 0 96

Kharif 18
Rabi 16

Kh+Rabi 12
Kharif 33
Rabi 9

Kh+Rabi 1

5,030 All year 7 89 3 1

Kharif 17
Rabi 6

Kh+Rabi 1

Rabi 8
Kh+Rabi 5

Rabi 44
Kh+Rabi 2

Rabi 37
Kh+Rabi 6

Kharif 32
Rabi 23

Kharif 3
Rabi 15

Kharif 1
Rabi 17

Source: Soil and Land Cover maps (NRSA, 1995).
* Built-up area is not reported here.
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Table 2- 6: Crop calendars of agricultural zones of the NDVI Unit Map 

 

• Other areas: only the area with NDVI classes [3, 4, 5, 6] was under a 
significant cultivation of sorghum during Kharif (25% of its area). The 
NDVI class profile [3, 4, 5, 6] showed a noticeable, but relatively low, 
increase during the October-December period. 

Crop %-of Area Ju Ju Au Se Oc No De Ja Fe Ma Ap Ma

Sorghum 25

Other (Kharif) 6

Pulses 34 Bl.Gr.Red Gram
Maize 2

Groundnut 13 Irrigated:
Sugarcane 4

Pulses 47 Bl.Gr.Red Gram
Cotton 15

Sorghum 32
Pulses 6 Chickpea

Other (Rabi) 12
Irrig.Rice 21

Groundnut 7
2xIrrig.Rice 28
Sugarcane 5

Kharif sunflower:
Rabi sunflower:

Black gram:
Green gram:

Red gram:
Safflower:

Kharif groundnut:
Sesame:

Source crop statistics: interpreted 1998/99-2001/02 data (CPO, 2001).
Source crop calendars: Apau (1989) and Rao (1995).

Kharif Rabi
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2.6 Discussion and conclusions 

The results of series of unsupervised classifications of the SPOT NDVI images 
helped to draw the conclusion that the study area can optimally be stratified into 
i) between 22 and 28 classes on the basis of average divergence and ii) between 
18 and 23 classes on the basis of minimum divergence. Therefore, ‘visual 
supervised grouping’ of the annual averaged classes produced by the 
unsupervised ISODATA algorithm was performed to repair possible deficits in 
classification that were due to the absence of a very clear single peak in the 
divergence values. This method shows promise for application where similar 
kinds of uncertainties can arise because of, for example, missing satellite data as 
a result of cloud cover. Supervised grouping after unsupervised classification 
helps to eliminate the annual variations within the original classes without any 
loss of important detail. The results shown in table 2- 4 are comparable even 
with those where a clear peak in the average divergence has been reported for a 
larger study area (Khan et al. 2010). The method developed in this study 
resulted in a map that represents the 1998-2002 periods without considering 
land use changes that occurred during that period. 

In 2002, the first author carried out other research work in the Nizamabad area 
for several months. In the course of this work, area specific expert knowledge 
was obtained that closely matched with the results of this study (Figure 2- 7, 
which was taken during that period). The results of this research show 
promise for a variety of uses in agriculture. Our method enables the monitoring 
of the crop performances and/or cropping intensities over the years by 
comparing annual NDVI class profiles for selected map units. Furthermore, our 
approach provides a method to monitor changes in the extent of specific map 
units over time and thus to detect land use conversions. When required, more 
specific and detailed surveys on actual system management, user inputs and 
obtained outputs can be performed. This method of producing land use maps 
has the potential to support a broad range of applications in agriculture such as 
early warning about food security, yield gap analysis and regional to global 
assessment of agricultural productivity.  

In our research, we found that annual changes in the NDVI class profiles most 
frequently reflect changes in cropped areas (for the 1-km2 pixels). These 
changes could not be related directly to the monsoon rainfall amounts in the 



Chapter 2 

 41

region. Nevertheless, it would be incorrect to conclude that declining NDVI 
values over the years show crops being suffered from additional stress and that 
yields per hectare declined. On the other hand, it would be correct to conclude 
that the overall biomass by area (km2) declined causing lower production of the 
studied crops in the region. 

In other studies, NDVI classes have been used in combination with the rainfall 
data and crop characteristics to monitor drought (Ji and Peters, 2003; Bhuiyan et 
al., 2006; Ghulam et al., 2007). The IWMI’s prototype Drought Monitoring 
System (DMS) provides monitoring reports either by administrative areas 
(districts and provinces) or by pixels (Thenkabail et al. 2004). In its present 
version, however, the DMS does not distinguish between land use classes. It has 
been stressed that more reliable thresholds of numerical values of remote 
sensing indices should be developed to quantify drought severity (Smakhtin et 
al. 2005). Keeping this requirement in mind, the results of our study were used 
as an example of monitoring. An example related to the monitoring of land use 
modifications over time is provided in figure 2- 8 which shows profiles of 
NDVI classes [13, 15], 17, and 18 present in the irrigated areas where rice is the 
dominant crop during the Rabi season. The figure 2- 8 shows a decline in NDVI 
(DN values) starting in 2001 for the NDVI group [13, 15] and expanding one 
year later (2002) in all three NDVI classes. These declines are either a result of 
a poor performance of the rice crop or by a substantial number of fields not 
being cultivated during Rabi. From interviews with the farmers concerned 
(undertaken in September 2002), it became clear that the latter was the case. 
The interviewed farmers vehemently complained about the unreliable 
availability of electricity to run their water pumps. This was due to the practice 
of load shedding (power supply cuts) which started in 2001 as a result of low 
water levels in reservoirs across the state. Consequently, many farmers decided 
to decrease the paddy cultivation so that their pumps could pump up sufficient 
water for the cropped area. The method illustrated in this chapter can be 
incorporated into RS/GIS based drought monitoring systems like Famine Early 
Warning System Network (FEWSNET), US Drought Monitor 
(www.drought.unl.edu) and Southern African Development Community’s 
(SADC) Regional Remote Sensing Unit Drought Monitoring Center.  
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Abstract 

Governments compile their agricultural statistics in tabular form by 
administrative area, which gives no clue to the exact locations where specific 
crops are actually grown. Such data are poorly suited for early warning and 
assessment of crop production. 10-daily satellite image time series of 
Andalucia, Spain, acquired since 1998 by the SPOT Vegetation Instrument in 
combination with reported crop area statistics were used to produce the required 
crop maps. Firstly, the 10-daily (1998-2006) 1-km resolution SPOT-Vegetation 
NDVI-images were used to stratify the study area in 45 map units through an 
iterative unsupervised classification process. Each unit represents an NDVI 
profile showing changes in vegetation greenness over time which is assumed to 
relate to the types of land cover and land use present. Secondly, the areas of 
NDVI units and the reported cropped areas by municipality were used to 
disaggregate the crop statistics. Adjusted R-squares were 98.8% for rainfed 
wheat, 97.5% for rainfed sunflower, and 76.5% for barley. Relating statistical 
data on areas cropped by municipality with the NDVI-based unit map showed 
that the selected crops were significantly related to specific NDVI-based map 
units. Other NDVI-profiles did not relate to the studied crops and represented 
other types of land use or land cover. The results were validated by using 
primary field data. These data were collected by the Spanish government from 
2001-2005 through grid sampling within agricultural areas; each grid (block) 
contains three 700x700m segments. The validation showed 68, 31 and 23 
percent variability explained (Adjusted R-squares) between the three produced 
maps and the thousands of segment data. Mainly variability within the 
delineated NDVI-units caused relatively low values; the units are internally 
heterogeneous. Variability between units is properly captured. The maps must 
accordingly be considered “small scale maps”. These maps can be used to 
monitor crop performance of specific cropped areas because of using hyper-
temporal images. Early warning thus becomes more location and crop specific 
because of using hyper-temporal remote sensing. 
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3.1 Introduction 

Agricultural scientists, resource managers and policy makers require updated 
information on agricultural land use to address a broad range of issues.  
Increased production of food is required to meet the needs of global population 
estimated at over 10 billion by the year 2050 (Engelman et al., 2000; United 
Nations, 2005). Land resources are finite and overexploitation is leading to land 
degradation, declining crop yields and the risk of food shortages. Adequate 
knowledge on crop producing areas allows decision makers to locate 
populations that are most vulnerable to food insecurity and poverty. Crop 
monitoring is equally important for the developed countries to effectively and 
sustainably use their resources (Dymond et al., 2001; George and Nachtergaele, 
2002). The first component of improved monitoring of agricultural production 
is exact knowledge of where “what” is being grown (IAWG, 2000; Dixon et al., 
2001; FAO, 2003). 

Currently, annual estimates of land use per administrative unit are being 
compiled by relevant (government) agencies, and are generally available in 
tabular form. Such data lack information on the spatial distribution of specific 
land uses (Jansen and Di Gregorio, 2003). The agricultural statistics data 
contain important information and can be transformed into desired spatially 
explicit land use maps. Agricultural statistics have been used to produce 
agricultural land use density maps. Statistical information for agricultural land 
use at level 2 of so called Nomenclature of Territorial Units for Statistics 
(NUTS 2) regions, which correspond to administrative areas of 160 km2 to 440 
km2 was used in the economic model CAPRI (Common Agricultural Policy 
Regional Impact assessment) to distribute different crops to the individual 
HSMUs “Homogeneous Spatial Mapping Unit” (HSMU) i.e. soil, slope, land 
cover and administrative boundaries (Leip et al., 2008; Kempen et al., 2005).  

Detailed land use maps are not readily available for many countries (Fresco et 
al., 1994; Wood et al., 2000). Conventional methods of land use mapping are 
labor–intensive and time-consuming and as a consequence expensive. Land use 
maps are therefore infrequently prepared with often insufficient detail. In 
Europe for instance, land cover/use maps are prepared at 10 year intervals that 
contain only very generalized classes of agricultural activities (Feranec et al., 
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2007). Moreover, such maps soon become out-of-date, particularly in rapidly 
changing environments.  

In recent years, satellite remote sensing techniques have been shown to be 
effective in preparing accurate land use/land cover maps and for monitoring 
changes at regular intervals through multi-temporal remote sensing data (e.g. 
Loveland et al., 2000; Souza et al., 2003; Brand and Malthus, 2004; Budde et 
al., 2004; Wessels et al., 2004). The dynamic nature of agriculture, like 
seasonality and its occurrence almost everywhere are the strongest incentives 
for scientists to monitor agriculture from space (De Bie, 2000; Oetter et al., 
2001; Mayaux et al., 2004). 

The relation between satellite information and crop characteristics is described 
in terms of vegetation indices which provide information on conditions of 
vegetation and it allows inference regarding land use/land cover. Vegetation 
indices have been extensively used for monitoring and detecting vegetation and 
land cover changes (deFries et al., 1995; Liu and Kafatos, 2005). Vegetation 
indices are based on differential absorption, transmittance, and reflectance of 
energy by the vegetation in the red and near-infrared regions of the 
electromagnetic spectrum (Jensen, 1996). One type of spectral vegetation 
indices is the Normalized Difference Vegetation Index (NDVI), the ratio of near 
infrared (NIR) and red (R) reflectance. 

NDVI is usually assumed to be broadly indicative of crop photosynthetic 
activity (Sarkar and Kafatos, 2004) and therefore associated with greenness and 
thus above-ground dry matter production (Goward and Huemmrich, 1992). The 
vegetation instrument onboard the SPOT satellite with four spectral bands, i.e., 
blue (0.43-0.47 mm), red (0.61-0.68 mm), infrared (0.78-0.89 mm) and short 
wave infrared (1.58-1.75 mm), at a spatial resolution of 1 km and a temporal 
resolution of one day, meets the requirements for vegetation mapping at 
continental scale. Several studies have discussed the suitability of temporal 
NDVI-profiles for studying vegetation phenological development, especially 
that of crops (Hill and Donald, 2003). The use of multitemporal images not only 
results in higher and consistent accuracy in mapping different classes, they are 
especially advantageous in areas where vegetation or land use changes rapidly. 
Because of their correlation with green plant biomass and vegetation cover, 
long temporal sequence of regularly acquired data (Hypertemporal image data), 
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such as NDVI time series, have been used for monitoring anomalies, drought, 
vegetation phenology, land cover characteristics, estimation crop yields 
(Agrawal et al., 2001; Murthy et al., 2007; Gu et al., 2008) and area estimations 
for larger fields (Fritz et al., 2008; Verbeiren et al., 2008). 

Crops exhibit distinctive behaviors that are captured by temporal patterns of 
NDVI which have strong periodic characteristics in a year so cropland can be 
distinguished from other vegetation types through analysis of their respective 
phenologies captured by the NDVI-profiles (Guo et al., 2008). 

The use of NDVI time series has been focused on crop production monitoring 
and yield forecasting rather than on mapping crops (Maselli et al., 1992). The 
MARS project (Monitoring of Agriculture with Remote Sensing) of the Joint 
Research Center (JRC) has integrated use of SPOT4 images in their integrated 
agricultural monitoring and yield forecasting methods for Africa (Nègre et al., 
2004). Some studies used NDVI time series for mapping weather parameters 
(Creech and McNab, 2002; Champeaux et al., 2004; Stöckli and Vidale, 2004). 
Hypertemporal images are used for mapping major land cover types and to 
differentiate forest, pastures and shrubs (Craig, 2001; de Bie et al., 2008; 
Wardlow and Egbert, 2008). Their utility has yet to be explored for mapping 
various crops over large areas, i.e. at regional levels. The integration of satellite 
earth observations and ground survey data is a useful method to estimate crop 
acreage in small areas (Battese et al., 1988; Flores and Martinez, 2000). In this 
chapter, a properly tested improved methodology is described for preparing 
crop maps to be used for monitoring purposes. The method is based on ten-day 
temporal resolution SPOT Vegetation data to disaggregate tabular statistical 
data on cropped areas per administrative unit. The aim is to contribute to the 
development of methods for combining spatial and temporal land-use data sets 
using existing data sources and improved RS/GIS-based methods. In short: the 
extent of NDVI-classes by administrative areas is correlated with the reported 
area of crops in these areas and the resulting model is used to prepare individual 
crop maps (Figure 3- 1). 
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parameters with a frequency of about once a day at global basis with a spatial 
resolution of 1 km2. Its specifications are well suited for terrestrial applications 
like land cover mapping (De Wit and Boogaard, 2001). NDVI-values used in 
this study are DN-Values in 0-255 format based on the formula: 

0.004
0.1NDVIDN +=     (Eq. 1) 

Crop area statistics by municipality matching the period of the NDVI-images 
were obtained from the Consejeria de Agricultura y Pesca (Ministry of 
Agriculture and Fisheries), Andalucia. 

The CORINE (Coordination of Information on the Environment of the 
European Environmental Agency (EEA)) land cover 2000 (CLC) map (Bossard 
et al., 2000) was used for area masks, comprising the locations where crops are 
certainly grown in order to get a map of major agricultural areas (Figure 3- 2). 
The agricultural areas comprising of arable land, permanent crops, pastures and 
heterogeneous agricultural areas were retained and the rest were masked out. 
The scale of the CLC map is 1:100,000. The accuracy of the CLC map has been 
reported to be greater than or equal to 85% (Martín de Santa Olalla Mañas et 
al., 2003). 

The administrative map of Andalucia, obtained from Junta de Andalucia, 
including the boundaries of provinces and municipalities, constructed using 
European 1950 Datum for Spain Zone 30 N and projected in Universal 
Transverse Mercator (UTM). 

Plot-specific crop data, collected from 2001-2005 by the Ministry of 
Agriculture and Fisheries. The survey comprised 1451 randomly selected 
segments of 700 x 700 m. The areas with higher density of crops are sampled 
more intensively. i.e., additional segments are also sampled in the areas where 
crops dominate the land use (Figure 3- 3). The data were collected by visits to 
all the fields per segment. The spatial distribution of the surveyed segments was 
determined by dividing the territory in blocks of 10 X 10 km. Each block was 
sub-divided in 100 cells of 1 km2. In each block, three cells were randomly 
selected for surveying. In each cell, cropped area, production of each crop per 
unit area, irrigation scheme, etc. of agricultural areas present in the segment of 
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2003; Swain and Davis 1978) between defined cluster signatures by run was 
used to compare the various runs. The optimal run with a clear distinguished 
peak in the divergence separability was selected for further study. 

The NDVI-classes of Andalucia from the unsupervised classified raster map of 
NDVI time series after converting to polygons were masked by using the 
agricultural areas as defined by the CLC 2000 map. The masked map provided 
the NDVI-classes present in agricultural areas of Andalucia. Later on, the area 
of each NDVI-class for the agricultural areas in every municipality was 
calculated through GIS analysis by combining the classified NDVI map and the 
administrative map of Andalucia. The agricultural area covered by each NDVI-
class in every municipality as explanatory variable and the crop statistics by 
municipality as dependent ( a total number of 771 municipalities) were used to 
estimate an additive multiple linear function (Method A) that relates for a 
particular crop the reported cropped areas to the areas of the NDVI-classes. This 
was estimated through step-wise forward multiple regressions with no constant 
and coefficients constrained between 0.0 and 1.0 because the cropped area in a 
municipality can neither be in negative nor more that 100 percent of the 
municipality area. The model is thus:  

ii

n

0i
 i εxb Y += ∑

=

   (Eq. 2) 

 
Where 
 
 Y = Cropped area per municipality (ha) from 2001-05 
 bi = Regression coefficient 

 xi = Area of NDVI class i per municipality (ha) from 1998- 
               2006 

 n = Number of NDVI classes 
 εi  = Residual error 
 

By crop the function was applied on the masked NDVI-map to generate a map 
showing cropped fractions by map unit for various crops. The prepared maps 
reflect quantitatively the area status from 2001-05 for specific crops. 
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3.2.4 Validation of estimated crop maps 

Validation of the estimated crop maps was performed by using field data 
obtained from the Ministry of Agriculture and Fisheries (Figures 3- 3 and 4). 
First, the average fractions for the years 2001 to 2005 of each crop from the 
segments located in agricultural areas according to the CORINE land cover map 
were calculated. Then these data were correlated with the estimated cropped 
fractions for the surveyed segments using weighted linear regression analysis by 
using the total area sampled over five years (2001-2005) of specific crop in each 
segment as weight to estimate the following equation.  

iii

n

0i
 i ε)c(wb Y += ∑

=

      (Eq. 3) 

Where: 
F  = Average fractions of crops in each NDVI class per segment 

     from 2001-05 
bi  =   Regression coefficient 
ci =   Estimated fraction of crops per NDVI for segment i 
wi =  Weighing factor (total area sampled over five years (2001-  

     05) of specific crops in segment i 
n =   No. of segments 

iε  =   Residual error  

3.2.5 Direct mapping using primary field data 

The average fractions of various crops (2001-2005) by segments within 
agricultural areas (1428 segments) as dependent variable were correlated 
directly with the presence and absence of segments in 45 classes in NDVI-map 
as explanatory variables to estimate the function (Method B) that relates 
average fractions of particular crop per segment in each NDVI class with the 
presence and absence of each segment in that particular NDVI class. For 
various crops the following equation was estimated through stepwise linear 
regression.  

i i

n

0i
i εδb  F += ∑

=

      (Eq. 4) 

Where: 
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a 20% area fraction of rainfed wheat per sq-km. Especially classes 18, 19 and 
16 are representative for wheat. 

Table 3- 1:  Results of stepwise linear regression analysis for rainfed 
wheat 

 
NDVI-class

 
Coefficient

 
t-Value

 
Sig. (%)

18 0.47 55.8 0.00 
19 0.47 25.6 0.00 
16 0.42 58.8 0.00 
23 0.34 54.4 0.00 
20 0.29 23.4 0.00 
36 0.27 8.8 0.00 
9 0.27 24.3 0.00 

31 0.12 6.6 0.00 
7 0.09 8.1 0.00 

24 0.08 2.9 0.38 
5 0.08 13.3 0.00 

35 0.07 5.6 0.00 
22 0.07 5.3 0.00 
27 0.06 5.0 0.00 
10 0.02 3.6 0.03 

 
Rainfed Sunflower: The coefficients derived from the stepwise forward 
regression with an adjusted R2 of 97.5% for rainfed sunflower (Table 3- 2) were 
used to produce the rainfed sunflower map (Figure 3- 9). Figure 3- 11 shows the 
temporal NDVI-profiles of NDVI-classes that represent more than 20% rainfed 
sunflower. Profiles 18, 20 and 16 relate to rainfed sunflower. NDVI-profiles of 
rained wheat and sunflower exhibit close trends because these two crops are 
grown on the same areas (Figure 3- 11). 
 
Rainfed Barley: The coefficients derived from the stepwise forward regression 
with an adjusted R2 of 75.7% for rainfed barley (Table 3- 3) were used to 
produce the rainfed barley map (Figure 3- 10). ). Figure 3-  
11 shows the temporal NDVI-profiles for classes having more than 10% rainfed 
barley. The classes considerably include other land cover types as well. 
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maps produced have a good accuracy and that they can be used for monitoring 
purposes like food security and early warning and crop growth monitoring. 

The long term goal of Integrated Global Observations for Land (IGOL) as 
described in its report (IGOL, 2007) is “enhancement of agricultural survey / 
monitoring capabilities through the realization of satellite observations as an 
integral part of the overall agriculture survey and monitoring for all countries”. 
In order to achieve this goal the strategy which is being followed uses the 
combination of field survey and remote sensing observations. It has been 
stressed by the IGOL theme group that remote sensing can be used in 
agricultural surveys and its utility lies in stratification, model-based estimation 
in combination with ground surveys. Area frame sampling methodology is 
being supported by remote sensing (Tsiligirides, 1998; Pradhan, 2001). The 
National Agricultural Statistics Service (NASS) of the United States 
Department of Agriculture has used or considered since long, regression based 
estimators for small area crop acreage estimation with ancillary satellite data. 
These estimators use stratum level counts of pixels classified to crops (Bellow, 
1993). Remote sensing imagery and NASS survey data have been combined to 
produce improved acreage estimates (Kutz et al., 2005). 
 
The method described in this chapter also suggests the usefulness of NDVI 
regarding the generalization and stratification of the large spatial data set by 
supervised grouping following the unsupervised classification. The method 
applied in this research makes use of analysis of NDVI time-series using 
unsupervised ISODATA clustering algorithm. The divergence statistics was 
used for determining the optimal number of NDVI-classes which were then 
related to reported crop statistics. The NDVI time series has the ability to 
capture the crop phenologies (crop calendars) and thus has a good relationship 
with the cropped areas as shown in this chapter. Each land use class, in this case 
the studied crops, has been defined by its corresponding NDVI-profiles. The 
scope of using NDVI time series for area frame sampling has a greater benefit 
that will lead to true estimates of cropped areas. The timely and accurate 
estimation of cropped areas is the basic element in any kind of food security 
endeavour. 
 
Estimated maps of rainfed wheat, rainfed sunflower and rainfed barley are 
dependent on the quality of reported statistics which in case of rainfed 
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sunflower clearly identified a serious overestimation of reported statistics. 
Primary field data which is a direct approach of the method used gives better 
results as compared to reported statistics at municipal level because while 
compiling the municipal level crop statistics generalization method is applied. 
 
The spatially explicit crop statistics helps to identify the areas where the various 
crops are actually grown. This supports policy makers and researcher to identify 
the areas of their interest and makes it easier for devising policies and strategies 
concerning food security. The thorough validation of the prepared crop maps 
suggests the additional use of higher resolution images and additional spatial 
information to further improve the method of generating crop maps and to 
capture additional spatial heterogeneity that exists at local level. 
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*Integrating soil maps in a model to map crop 
areas using hypertemporal NDVI images and 
crop statistics 

                                          
* This chapter is based on Khan, M.R., de Bie, C.A.J.M., van Keulen, H., Smaling, 
E.M.A. and Real, R., 2010. Integrating soil maps in a model to map crop areas using 
hypertemporal NDVI images and crop statistics. Submitted to RSE for publication 
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Abstract 

Agricultural area statistics data are compiled and distributed in tabular form at 
administrative levels by governments but give no idea about the exact locations 
where specific crops are actually grown. Earlier presented (Khan et al, 2010) 
was a model to map and disaggregate crop area statistics using hyper-temporal 
NDVI images. It was proven that the NDVI data correlated very well to the 
spatial diversity of crops grown and cropping patterns over time. Assumed was 
however that the NDVI data comprised the combined influences of varying soil, 
terrain, weather and land use conditions. In this chapter, we tested that 
assumption with respect to soil-geogenesis information. Four modelling options 
were used to test if adding soil data to the NDVI data significantly improves 
model output. The first two options made use of officially reported wheat area 
statistics by municipality, whereas options 3 and 4 used field data on wheat. 
Options 1 and 3 used only NDVI data; options 2 and 4 also used soil maps. 
Model outputs comprised of the amount of variability explained and wheat 
maps. Options 1 and 2 and options 3 and 4 were compared regarding the 
variability explained. Results of option 1 showed that wheat statistics were 
significantly related with the NDVI map and explained 98% of the variability in 
cropped area by municipality. Option 2 that included soil information explained 
99% of the variability. Use of NDVI data proved additional use of soil data 
redundant because it improved the amount of explained variability by only 1 %. 
Option 4 provided also only 1% better result than option 3 (65 versus 64% 
variability explained). Map validations for options 1 and 2 showed 56% and 
61% variability explained respectively between the mapped information and the 
segment data. However, the slope of the regression line of option 1 comparing 
estimated versus actual cropped fractions was closer to the expected 1:1 ratio 
than option 2, i.e. 0.90 versus 0.85. Use of soil information to prepare a wheat 
map of Andalucia did not add substantially to the performance of the model 
solely based on NDVI data. The assumption that NDVI acts as an indicator of 
combined influences of varying spatial conditions is thus not proven false 
through this study. 
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4.1 Introduction 

Timely availability of accurate agricultural land use/land cover maps is required 
by agricultural land use planners, policy makers, donor agencies and crop 
insurance companies for a variety of purposes (Becker-Platen, 1976; Jansen and 
Di Gregorio, 2004). Currently, governments and international organizations 
compile annual estimates of crop areas by administrative units and present those 
in tabular form. Detailed (mapped) information on the spatial extent of specific 
land uses is generally lacking. Figure 4- 1 shows reported rainfed wheat area 
statistics (% by municipality) masked by CORINE agricultural areas, it does not 
show “exactly where” in various municipalities the crop is grown. Such maps 
are not suitable for efficient monitoring and early warning studies on crop 
production (Verburg et al., 2002; Aalders and Aitkenhead, 2006). Preparation 
of conventional land use maps is both expensive and time-consuming, and their 
information quickly becomes outdated. This necessitates the importance of 
developing properly tested methods with modern techniques for mapping crop 
areas using existing data sources such as crop statistical and the field data. 

Remote Sensing (RS) technologies combined with geographic information 
systems are efficient means to acquire, compile and distribute agricultural land 
use data. Satellite remote sensing techniques have been shown to be effective in 
preparing accurate land use/land cover maps and to monitor changes at regular 
intervals (Yang et al., 2007; Zhang and Zhang, 2007). International agencies, 
such as the Food and Agriculture Organization of the United Nations (FAO), 
European Space Agency (ESA), European Commission (EC), National Remote 
Sensing Center of China (NRSCC), United Nations Environment Programme 
(UNEP) and United States Geological Service (USGS) stress the importance of 
using remotely sensed images in combination with ground data/observations to 
generate necessary information for land use studies at both national and global 
scales (Townshend et al., 2008).  

RS based vegetation indices have been widely used to monitor land cover 
changes (Stow et al., 2004; Focardi et al., 2008). Such vegetation indices are 
based on the differential absorption, transmittance, and reflectance of energy by 
the vegetation in the red and near-infrared regions of the electromagnetic 
spectrum (Jensen, 1996). The Normalized Difference Vegetation Index (NDVI) 
is the most common index used in vegetation studies. NDVI is an indicator of 



Integrating soil maps in a model to map crop areas using NDVI and crop statistics 

 72 

greenness, and is therefore associated with photosynthetic activity and dry 
matter production (Cayrol et al., 2000; Han et al., 2004: le Maire et al., 2004).  

For studying crops, the spatial and temporal resolution of the RS images is very 
important. Normally, annual crops are in the field for 6-7 months. Therefore, 
substantial information in terms of images is required. The vegetation 
instrument onboard the SPOT satellite has four spectral bands, i.e., blue (0.43-
0.47 μm), red (0.61-0.68 μm), infrared (0.78-0.89 μm) and short wave infrared 
(1.58-1.75 μm), and provides information at a spatial resolution of 1 km2 and a 
temporal resolution of one day. This meets the requirements for land cover 
mapping at regional scale.  

Hypertemporal (long temporal sequence of regularly acquired) remote sensing 
and administrative level crop area statistics have been used to prepare crop 
maps and cropping pattern maps at a spatial resolution of 1 km2 for India, Iran, 
Spain and Vietnam (De Bie et al., 2008; De Bie et al., 2010; Khan et al., 2010; 
Nguyen et al., 2010). Relating crop area statistical data averaged from 2001-05 
for each crop with the unsupervised classified NDVI map has shown that the 
selected crops were significantly related to specific NDVI-based map units 
(Khan et al., 2010). Each 1 km2 pixel characterizes a specific land cover and 
land use mosaic. It was assumed that NDVI data comprise the combined 
influences of varying soil, terrain, weather, climate and land use conditions. The 
hypertemporal NDVI images were used to stratify the study areas and 
afterwards linked with current spatial information to produce land use maps. 
However, landscapes are efficient units to divide the earth’s surface into areas 
that share common management practices or resource opportunities and 
limitations. Cropping patterns and cultivation practices are conditioned by the 
gradient and configuration of the landscape (Schoeneberger and Wysocki, 
2002).  

Agricultural land use studies must include studies of land in combination with 
the management and operational activities, since decision-making on the use of 
land resources depends on many factors such as climate, soil, water availability, 
slope, relief etc. Soil is an important component of land that has a strong impact 
on crop performance and thus land is allocated to various crops in accordance 
with its soil characteristics. This necessitates to properly testing the explanatory 
behavior of NDVI data in the presences of other predictors such as soil, 
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weather, climate and land use conditions. Amongst others, soil characteristics 
such as water holding capacity and fertility play an important role in decision 
making about agricultural land use, because they affect crop productivity (De 
Bie, 2000; Arshad and Martin, 2002). How to use the land resources depends on 
the accessibility of the necessary information on factors such as climate, soil, 
water, or socio-economic factors (FAO, 1994; Barahona and Iriarte, 2001; 
Vandermeulen et al., 2009). Such data have been used for downscaling 
information on agricultural land use (Kempen et al., 2007).  

This follow up chapter aims to test if the NDVI data reflect the combined 
influences of varying soil, terrain, weather, climate and land use conditions with 
a specific focus on soil information. Therefore, soil data were included in the 
method of mapping agricultural land cover/use developed by Khan et al. (2010). 
The method used to test the hypothesis if NDVI data also reflect soil 
information is based on 10 daily Maximum Value Composite (MVC) SPOT 
VEGETATION data, soil types and soil geomorphic types. In the study tabular 
statistical data on cropped areas for rainfed wheat per administrative unit, 
averaged for the period 2001-2005 to make rainfed wheat maps valid for the 
period 2001-2005. The overall aim is to further test the developed method for 
combining spatial and temporal land-use data sets using existing data sources 
and improved RS/GIS-based methods.  

4.2 Materials and Methods 

4.2.1 Study Area 

Andalucia is the southernmost community of mainland Spain with an area of 
87,268 km2 comprising eight provinces and 770 municipalities (Figure 4- 1). 
The Mediterranean climate of Andalucia is characterized by mild rainy winters 
and hot dry summers. Almeria and Sevilla municipalities of the respective 
provinces have the highest average annual temperatures in Spain with 18.6 and 
18.7 ºC, respectively. The average annual temperature of Andalucia as a whole 
is above 16 ºC. Overall annual rainfall is highly variable and ranges from a 
maximum of 2000 mm to a minimum of 170 mm (Font, 2000). 

About 70% of Andalucia is utilized for agricultural purposes. Medium-sized 
mountains dominate the landscape, occupying 42% of the total area. 
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km2 resolution from the first decade1 of April 1998 to the last decade of 
July 2006 as obtained from www.VGT.vito.be [27 + (36 * 7) + 21 =300 
images]. De-clouded means that pixels with a ‘good’ radiometric quality for 
bands 2 (red; 0.61-0.68 μm) and 3 (near IR; 0.78-0.89 μm) were retained by 
using the supplied quality record by pixels. The pixels having shadow, 
clouds and uncertainty were removed and labeled as ‘missing’. The first 
VGT sensor was launched in March 1998 on the platform of the SPOT4 
satellite. Its specifications are well suited for terrestrial applications like 
land cover mapping (Zhou et al., 2009). The NDVI values used in this 
research are digital number (DN) values in 0-255 format. Data conversion, 
made for easy handling of the data, is based on the following formula: 

0.004
0.1NDVIDN +=

   (Eq. 1) 

All 300 combined NDVI images were classified to obtain an NDVI map 
representing differences in land cover / land use types existing in Andalucía. 

• Crop (rainfed wheat) area statistics per municipality (averaged from 2001-
2005), obtained from the Ministry of Agriculture and Fisheries, Andalucía. 
The crop statistics data is generated on the basis of areas reported by 
farmers at the time of application for subsidies. 

• The CORINE (Coordination of Information on the Environment of the 
European Environmental Agency (EEA)) land cover 2000 (CLC) map 
(scale 1:100,000) was used to extract agricultural area.  

• The administrative map of Andalucía, including the boundaries of provinces 
and municipalities.  

• Segments data, collected from 2001-2005 by the Ministry of Agriculture 
and Fisheries. The survey comprised 1451 segments of 700 m x 700 m, 
distributed evenly over the agricultural areas of study area (Figure 3- 3). All 
agricultural fields present in each segment were digitized and annual data 
were collected for all agricultural fields per segment through field visits. 
Cropped area, production per crop, irrigation regime, management practices 

                                          
1 Decade is understood in this chapter as a 10-day period 
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convergence threshold is reached (set to 1.0). This convergence value shows 
that the utility will stop processing as soon as 100 % of the pixels stay in the 
same cluster between iterations. Performing an unsupervised classification is 
simpler than a supervised classification, because the cluster signatures are 
automatically generated by the ISODATA algorithm. Various ISODATA runs 
were carried out to identify 10 to 100 classes. In each run the desired number of 
classes was produced by the ISODATA clustering algorithm. The divergence 
statistical measure of separability (Swain and Davis, 1978; ERDAS, 2003) 
between defined cluster signatures per run was used to compare the various 
runs. The optimum run, i.e. with a distinguishable peak in divergence 
separability values was selected to continue this study. 

4.2.4 Resultant NDVI classes by agricultural area 

The NDVI classes in the agricultural areas of Andalucia were extracted from the 
unsupervised classified map of NDVI time series (output of Section 2.3). For 
this purpose we used the agricultural areas as defined in the CLC 2000 map. 
Areas comprising arable land, permanent crops, pastures and mixed crops were 
retained to construct a map of major agricultural areas. For generating the mask 
of agricultural areas, all parts of these polygons were considered while 
overlaying with the NDVI classified map. The other CLC-classes were masked 
out. The area of each NDVI class per municipality in these agricultural areas 
was calculated through overlay of the extracted NDVI map of agricultural areas 
and the administrative map of Andalucia. 

 4.2.5 Area of soil units at municipal level 

The soil units were included as soil information in the method proposed for 
mapping crop areas using NDVI class areas and the reported crop statistics 
(Khan et al., 2010). The detailed soil parameters such as nutrient contents, 
water content, pH, etc., were not available to be included in the study. Soil types 
(according to FAO classification) and soil geomorphogenesis types (referring to 
the evolutionary material of the soils) were combined to generate the soil units 
(soil type - soil geomorphology combinations) for the study area. The areas of 
the various soil units per municipality in agricultural areas were calculated by 
combining this map after extraction of agricultural areas as defined in CLC 
2000 map with the administrative map. 
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4.2.6 Mapping rainfed wheat areas using municipal statistics 

The areas covered by each NDVI class and by each soil unit and the rainfed 
wheat area statistics per municipality were used in the regression model to 
estimate the areas cropped to rainfed wheat from (i) the areas of the NDVI 
classes only (Option 1 as shown by Eq. 2) and (ii) the areas of the NDVI classes 
combined with the soil units (Option 2 as shown by Eq. 3). 

ii

n

1i
 i εxb Y += ∑

=     (Eq. 2) 

Where, 

Y = Average rainfed wheat area (ha) per municipality from 2001- 
   05 

 bi = Regression coefficient for NDVI class i per municipality 

 xi = Average area (ha) of NDVI class i per municipality 
                from 1998-2006 

 n = Number of NDVI classes 

 iε   = Residual error 

ij2j

m

1j
 2j1i

n

1i
 1i εxbxb Y ++= ∑∑

==     (Eq. 3) 

Where, 

 Y = Average rainfed wheat area (ha) per municipality from 
                             2001-05 

 B 1i = Regression coefficient for NDVI class i 

 x1i = Average area (ha) of NDVI class i per municipality 
                from 1998-2006 

 n = Number of NDVI classes 
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 b2j = Regression coefficient for soil unit j 

 x2j = Area (ha) of soil unit j per municipality 

m = Number of soil units 

 εij  = Residual error 

The equations were estimated through forward step-wise multiple linear 
regression at 95% confidence interval with no constant. The coefficients were 
constrained between 0 and 1.0, because the cropped area can neither be negative 
nor exceed the total area available. The stepwise multiple regression analyses 
were continued until the adjusted R2 did not increase more than 1% in 
successive runs. Jackknife test was applied to the results of equation 2 to 
confirm the importance of soil units as predictors of rainfed wheat areas by 
municipality. For this purpose every single predictor was tested with an 
equation comprising all other predictors except the concerned predictor. The 
jackknife test yields the relative importance of each predictor by checking how 
much explained variability is decreased when a predictor is not used in the 
regression analysis (Efron and Gong, 1983; Lobo et al., 2002). 

4.2.7 Validation of rainfed wheat maps based on municipal area statistics 
using segments data (2001-2005) 

Validation of the estimated rainfed wheat maps was performed by using 
segments data for 2001 to 2005 (Figure 4- 2). The estimated rainfed wheat 
fractions from the maps (results of options 1 and 2) for the surveyed segments 
were compared to the average rainfed wheat fractions (2001 to 2005) of those 
segments. Since not all segments were surveyed every year and also many 
segments were only partially covered by the agricultural fields, a relative weight 
was used for this comparison.  

A weighted linear regression analysis was performed by using the total area of 
agricultural fields sampled over five years for each segment as weighting factor. 
This allowed for assigning a relatively higher weight to those segments that 
were sampled more. It was observed that each surveyed segment was covered 
by a single NDVI class and a single soil unit. Subsequently, equations 4 and 5 
were estimated by weighted linear regression for validation of the rainfed wheat 
maps produced using options 1 and 2, respectively. 
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iii

n

1i
 i ε)c(wb  F += ∑

=     (Eq. 4) 

Where, 

F  = Average actual fraction of rainfed wheat in each NDVI class per      
   segment from 2001-05 

bi  = Regression coefficient for NDVI class located in segment i 

ci = Estimated fraction of rainfed wheat per NDVI class for segment i 

wi =Weighing factor (total area sampled over five years (2001-05) 
   of rainfed wheat in segment i) 

n = Number of segments 

εij = Residual error  

ij2j2j

n

1i
 2j1i1i

n

1i
 1i ε)c(wb)c(wb  F ++= ∑∑

==   (Eq. 5) 

Where, 

F  = Average actual fraction of rainfed wheat per segment separately for 
each  NDVI class and for each soil unit from 2001-05 

b1i  = Regression coefficient for NDVI class located in segment i 

c1i = Estimated fraction of crops per NDVI class for segment i 

w1i = Weighing factor for NDVI classes (total area sampled over five years 
                 (2001-05) of specific crops in segment i) 

b2j  = Regression coefficient for soil unit located in segment i 

c2j = Estimated fraction of crops per soil unit for segment i 

w2j = Weighing factor for soil units (total area sampled over five 
                 years (2001-05) of rainfed wheat in segment i) 

n = Number of segments 

ijε  = Residual error  
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4.2.8 Direct mapping using segments data 

The average fraction of rainfed wheat (2001-2005) per segment within the 
agricultural areas (1428 segments) as dependent variables were correlated 
directly with the NDVI-map alone and with the NDVI along with soil unit 
maps, to establish the functions to estimate the average fractions of rainfed 
wheat from (i) the NDVI classes only (Option 3; Eq. 6) and (ii) the NDVI 
classes along with the soil units (Option 4; Eq. 7) in combination with segments 
data.  

i i

n

1i
i εδb  F += ∑

=     (Eq. 6) 

Where, 

  F     = Average fraction of rainfed wheat per segment from 2001- 
                              2005 

  bi  = Regression coefficient of NDVI class i 

  
⎥
⎦

⎤
⎢
⎣

⎡
=

i class NDVIin  locatednot  issegment   theif :0
i class NDVIin  located issegment   theif :1

       δi

 

  n   = Number of NDVI classes 

    iε  = Residual error term 

ij 2j

m

1j
2j 1i

n

1i
1i εδbδb  F ++= ∑∑

==    (Eq. 7) 

Where, 

  F     = Average fractions of crops per segment from 2001-2005 

  b1i = Regression coefficient of NDVI class i 

  
⎥
⎦

⎤
⎢
⎣

⎡
=

i class NDVIin  locatednot  issegment   theif :0
i class NDVIin  located issegment   theif :1

       δ1i
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 b2j = Regression coefficient of soil unit j 

 
⎥
⎦

⎤
⎢
⎣

⎡
=

junit  soilin  locatednot  issegment   theif :0
junit  soilin  located issegment   theif :1

       δ2j

 

  n     = Number of NDVI classes 

 m = Number of soil units 

εij = Residual error term 

The equations were estimated through forward step-wise multiple regression for 
the average fraction of rainfed wheat per segment, as explained in Section 2.6.  

4.3 Results  

4.3.1 Image Classification 

Average divergence, a statistical measure of distance between cluster 
signatures, was used to compare the signature separability across the various 
runs. Figure 3- 6 presents the average of separability values between the defined 
classes for all runs. It shows 45 clearly separable NDVI-classes from the 300 
NDVI images. Thus, an unsupervised classification, using 45 classes, appears 
statistically the optimal way to classify the 1-km2 NDVI image series and to 
stratify the study area into map units. The possible reasons for the peak in 
divergence statistics are; the 1 km2 resolution of the SPOT NDVI images where 
each pixel represents a mix of land cover/ land use which are clearly separable 
in case of homogenous land cover of the study area (Andalucía, Spain) at this 
scale. We applied the same classification on a heterogeneous area in 
Nizamabad, India where a clear peak could not be identified and to overcome 
this constraint we did supervised grouping after the unsupervised classification 
(De Bie et al, In press). Further, the pixels with clouds were not cleaned before 
the classification and were not used in the classification.  

Subsequently, the NDVI classes present in agricultural areas were extracted and 
the respective NDVI-class areas (in ha) per municipality were tabulated. In 
figure 4- 4, the 15 major NDVI classes in terms of area with in agricultural 
areas are presented. 
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The regression coefficients of estimated equations 2 and 3 to model rainfed 
wheat areas are reported in Table 4- 1 and Table 4- 2 respectively. These 
coefficients were used to make two rainfed wheat maps (Figures 4- 5 and 4- 6).  

Table 4- 1: Step-wise linear regression analysis results using only NDVI 
class areas as predictors of rainfed wheat areas 

Predictor Coefficient t-value Sig. (%) Adj. R2 when  
included (%) 

NDVI-18 0.47 42.9 0.00 74.8 
NDVI-16 0.41 44.2 0.00 84.7 
NDVI-23 0.35 45.5 0.00 92.1 
NDVI-19 0.59 30.5 0.00 95.3 
NDVI-9 0.28 20.3 0.00 96.9 

NDVI-20 0.31 19.7 0.00 98.0 
 
Table 4- 2: Step-wise linear regression analysis results using NDVI 

class areas and areas of soil units as predictors of rainfed 
wheat area 

Predictor Coefficien
t t-value Sig. (%) Adj. R2 when  

included (%) 
Vertisols-Denudative 0.11 8.8 0.00 76.4 

NDVI-23 0.37 41.0 0.00 89.6 
NDVI-20 0.36 20.0 0.00 93.0 
NDVI-16 0.42 32.0 0.00 95.4 
NDVI-19 0.58 25.2 0.00 97.0 
NDVI-18 0.33 21.8 0.00 99.1 
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The calculated regression equations are presented in Figures 4- 8 and 4- 9, 
where F is average actual fraction of rainfed wheat in each NDVI class per 
segment from 2001-05 and c is estimated fraction of rainfed wheat by NDVI 
(Figure 4- 8) and per NDVI classes along with soil units per segment (Figure 4- 
9). The equations suggest that the rainfed wheat areas per municipality are 10 to 
15% higher than the segment data. The box plots in figures 4- 8 and 4- 9 show 
that though the variability within the NDVI units is higher but still the 
regression lines are close to 1:1 line. Therefore, it can be deducted that these 
maps can be used at regional scales. The equations explained 56% and 61% of 
the total variability among segments, respectively; hence, the estimated wheat 
maps exhibit a substantial degree of generalization and are not of use at local 
level. 

4.3.5 Direct mapping using segments data 

The average area fractions of rainfed wheat (2001-2005) in field segments 
within agricultural areas (1428 segments) were correlated with the 45 NDVI 
classes (Table 4- 3 and Figure 4- 10) and with the NDVI classes along with soil 
units (Table 4- 4 and Figure 4- 11) to establish the associated statistical 
relationships.  

Table 4- 3: Step-wise linear regression analysis using the NDVI classes 
as predictor of rainfed wheat areas (option 3) 

Predictor Coefficient t-value Sig. (%) 
Adj. R2 when 
included (%) 

NDVI-18 0.42 24.1 0.00 36.7 

NDVI-20 0.29 23.5 0.00 50.7 

NDVI-19 0.41 16.3 0.00 57.5 

NDVI-23 0.32 11.7 0.00 60.9 

NDVI-9 0.22 11.0 0.00 64.0 
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Table 4- 4: Step-wise linear regression using the NDVI and soil units as 
predictor of rainfed wheat areas (option 4) 

Predictor Coefficient t-value Sig. (%) 
Adj. R2 when 
included (%) 

Vertisols-
Denudative 

0.08 7.3 0.00 22.9 

NDVI-16 0.40 25.3 0.00 33.5 

NDVI-20 0.27 21.4 0.00 42.6 

NDVI-18 0.38 21.2 0.00 53.0 

NDVI-19 0.40 16.2 0.00 59.3 

NDVI-23 0.32 11.9 0.00 62.7 

NDVI-9 0.20 10.2 0.00 65.2 

Table 4- 5 represents relevant sample frequency information.  

Table 4- 5: Area (1000 ha) and sample frequency (No. of segments) by 
predictors of rainfed wheat areas 

NDVI Class Other soil units Vertisols-Denudative 

NDVI-9 330 (33)  81 (13) 

NDVI-16 435 (41) 228 (37) 

NDVI-18 385 (38) 186 (25) 

NDVI-19 210 (28) 41 (3) 

NDVI-20   887 (95) 178 (22) 

NDVI-23 193 (31) 0 

Others  7159 (1000)  481 (62) 

Since the soil unit Vertisols-Denudative and NDVI class 23 do not coincide in 
the segment data, the combination is indicated in Figure 4- 11 as NA. 
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4.4 Discussion 

The present study evaluated the assumption that the NDVI data comprise the 
combined influences of varying soil, terrain, weather, climate and land use 
conditions for disaggregation and mapping of crop area statistics. Four 
modeling options were used to test this assumption with a specific focus on soil 
information. The results of rainfed wheat areas modeled by municipality 
(Options 1 and 2) show that almost all variability was explained by the NDVI 
classes data (Adj. R2 = 98%). In both analyses, the NDVI classes selected to 
estimate the rainfed wheat area are almost identical. Adding the soil data 
increased the explanatory value by only 1%. Noteworthy is that Table 4- 2 
(results of Option 2) shows that the first step in the multiple regression selected 
the soil unit as the strongest predictor; its explanatory power of 76%, however, 
reduced to 1% after NDVI classes entered the equation. The results of the jack-
knife analysis (Figure 4- 7), applied to establish the relative importance of each 
predictor, also indicated that the NDVI data are better predictors of rainfed 
wheat areas than the soil data. Clearly, the NDVI predictors sufficiently 
reflected the landscape variability related to differences in soil units, thus 
rendering the use of the soil map unnecessary. This strongly supports our 
assumption that NDVI data comprise the combined effects of varying land 
characteristics.  

The rainfed wheat maps produced by using segments data (direct mapping 
procedure, referred as options 3 and 4) also show that almost all the variability 
was explained by the NDVI classes data. In options 3 and 4 only 64% and 65% 
of the variability is explained respectively. The present study shows that NDVI 
data provided sufficient results for mapping crop areas and the use of soil units 
marginally increased the explained variability. This makes the mapping exercise 
simple and fast. In more complicated methods, crop areas statistics (at level 2 of 
the so-called Nomenclature of Territorial Units for Statistics (NUTS 2) regions) 
have been downscaled to the level of the homogenous mapping units (HSMU), 
comprising environmental characteristics (climate, soil properties, land cover, 
etc.) by statistical regression models (Leip et al., 2008).  

Validation of the prepared rainfed wheat maps (options 1 and 2) on the basis of 
the average fractions of rainfed wheat in the segments data revealed that 56% of 
the variability was explained by NDVI class data, and 61% following the 
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addition of soil units. Validation also suggested that the official rainfed wheat 
statistics data are 10-15% higher than the actual situation (Figures 4- 8 and 4- 
9). The results of rainfed wheat map produced by using option 3 were 
aggregated at NUTS level 3 and compared with the officially published crop 
statistical data (Khan et al., 2010). The aggregated results showed a very good 
agreement with the reported data (R2 = 98 %). Further the aggregated results of 
option 3 also show a good agreement with the the crop statistical data at 
municipal level (R2 = 91%). Therefore it may be inferred that the option 3 
which uses NDVI data in combination with segments data is the “method of 
choice”. This indicates that the prepared rainfed wheat maps have a substantial 
degree of generality, as a result of using a 1 km2 pixel size of the hypertemporal 
RS images. Each 1 km2 pixel of produced NDVI based rainfed wheat map is 
related to a mix of rainfed wheat and other land cover.  

As the variability within the NDVI classes is high due to 1 km2 resolution of 
SPOT NDVI images at local levels the accuracy of generated wheat map is low. 
Wheat maps produced by using options 1 and 2 show that each NDVI class 
related to wheat areas also represent other land covers/land use. Therefore, it 
can be deducted that the major reason of low variability explanation is that at 
local level the accuracy of generated wheat maps because of high local 
heterogeneity in land cover and use. Such land use maps can further be 
improved by using higher resolution imagery. The other reason is that 1-km2 

resolution NDVI images partially match the 700 m x 700 m segments data. 

Validation shows their accuracy (85-90 %, coefficients of figures 4- 8 and 4- 9) 
to be quite comparable to crop areas estimated by using different approaches. 
Verbeiren et al., 2008 reported accuracy of winter wheat areas estimated by 
applying linear mixture model (R2 =0.39) and Neural Networks (R2 =0.86) on 
SPOT-Vegetation time series. In another study, the reported Kappa coefficients 
are 0.69 to 0.74 for individual crop type mapping by using an eco-region 
stratification approach on MODIS NDVI data (Shao et al., 2010). Wardlow and 
Egbert in 2008 used a hierarchical crop mapping protocol by applying a 
decision tree classifier to NDVI time series data collected over the growing 
season and reported classification accuracy of 84% for the summer crop map. 
The use of our unsupervised classification method to make mapping units 
proved in comparison very successful, though results of options 1 and 2 depend 
upon the quality of the used crop statistical data by municipality. 
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4.5 Conclusions 

We conclude that NDVI data are suitable for mapping crop areas in 
combination with crop statistical data by municipality or with segments data. 
Options 1 and 2 depend upon the quality of crop statistics data by municipality. 
Thus selected “best” map which only relies on segment data of rainfed wheat 
(Figure 4- 10) can be used as an input in crop monitoring methods to improve 
production assessments. Knowledge on other land cover fractions (non-rainfed 
wheat) per NDVI class can then be a requirement that can be satisfied, using the 
same methodology. Such maps can be further improved by using higher spatial 
resolution hypertemporal images. The explanatory value can be further 
improved by using the NDVI map in the area frame sampling method. Similar 
behaving groups of NDVI classes can function as strata for various related land 
cover/land use types. Though soil data seemed relevant to explain the rainfed 
wheat area, the use of NDVI class areas rendered their use unnecessary. NDVI 
alone explained a substantial proportion of the variability in the rainfed wheat 
areas. This makes the exercise of mapping crop areas faster, easier and accurate. 
Further, such maps can be regularly updated because of the hypertemporal 
NDVI images. 

 



95 

5 
 
 
 
 
 

*Comparing a crop growth model driven by 
remotely sensed data with the European Crop 
Growth Monitoring System, agricultural 
statistics and primary field data 

                                          
* This chapter is based on M. R. Khan, V. Venus, C.A.J.M. de Bie, E.M.A. Smaling and 
H. van Keulen (in preparation). Comparing a crop growth model driven by remotely 
sensed data with the European Crop Growth Monitoring System, agricultural statistics 
and primary field data. 
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Abstract 

This study aimed at evaluating the performance of a crop growth model driven 
by remotely sensed data (Cƒ-Water) that estimates actual crop yields at 1-km2 

resolution. Evaluation included (i) comparing the output of Cƒ-Water at regional 
scale (province) with the output of an operational crop growth model, CGMS 
(Crop Growth Monitoring System), of the European Union’s Monitoring 
Agriculture with Remote Sensing (MARS) program and with published 
agricultural statistics and (ii) accuracy assessment of the output of Cƒ-Water 
using primary field data. CGMS only reports calculated water-limited and 
potential crop yields at NUTS-1 scale (group of counties/communities level) 
and after time-trend adjustments, actual crop yields at NUTS-0 scale (country 
level). Using the trend adjustment logic, CGMS estimates at NUTS-3 
(province) scale were derived for the required comparison. The Cƒ-Water 
model has lower data requirements than CGMS which requires also soil and 
historical yield data. For 2001, comparison of the estimated actual rainfed wheat 
production of Andalucía, Spain at NUTS-3 scale (province) by Cƒ-Water and 
the estimated actual rainfed wheat production by CGMS with published 
agricultural statistics showed for Cƒ-Water excellent agreement (R2 = 98%; 
RSME = 16 Mg) and for CGMS good agreement (R2 = 67 %; RSME= 41 Mg). 
The accuracy assessment of Cƒ-Water estimates using primary field data 
comprising 334 segments of 700 x 700 m showed excellent agreement (Adj. R2 

= 98%). We conclude that Cƒ-Water has a very high potential to support food 
security studies. However, before recommending incorporation in an 
operational system, Cƒ-Water needs to be tested for additional years, crops and 
regions. 
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5.1 Introduction 

Reliable and timely assessment of production of the main food crops is required 
so that appropriate decisions can be made in time to ensure food security. Food 
security exists “when all people, at all times, have physical and economic 
access to sufficient, safe and nutritious food to meet their dietary needs and 
food preferences for an active and healthy life” (FAO, 1983; World Food 
Summit, 1996). Simplified, it can be defined as the sufficiency of food available 
in any given year in any given region for the people living in that region during 
that time. The number of people living in a region can be determined through a 
census and other social data sets with a fair degree of accuracy (Matras, 1973; 
United Nations, 1973; Keyfitz, 1976; Elvidge et al., 1997). Reliable and 
relevant information on crop production systems then becomes a key factor in 
decision making and defining strategies related to food security. Timely 
information on crop production is also important for organizations working in 
the field of crop insurance, agricultural marketing, pricing and trading.  

The first component of an efficient monitoring system for crop production is to 
properly describe “where-what” is grown, before embarking on the “how much” 
is harvested question. Thus, first crop area maps are required, followed by maps 
of crop yield estimates for the crop-producing areas. Georeferenced land use 
information facilitates meaningful analyses. Crop area maps have been prepared 
by using hypertemporal SPOT NDVI images (S-10 product) and crop statistical 
data (De Bie et al., 2010; Khan et al., 2010; Nguyen et al., 2010). Spatially 
explicit crop statistics help to identify the areas where the various crops are 
actually grown. Such information supports policy makers and researchers to 
identify the areas of their interest and makes it easier to devise policies and 
strategies concerning food security.  

The use of remote sensing for crop monitoring started in 1974 with an initial 
focus on data for crop condition monitoring. The United States Department of 
Agriculture (USDA), the National Oceanic and Atmospheric Administration 
(NOAA), the National Aeronautics and Space Administration (NASA) and the 
United States Department of Commerce (USDC) carried out the “Large Area 
Crop Inventory Experiment (LACIE)” program (Leamer et al., 1975; Roberto, 
1993). From 1980 to 1986, these institutes carried out the “Redirected from 
Agriculture and Resources Inventory Surveys through Aerospace 
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(AgRISTARS)” program. Following that program, a global scale operational 
crop monitoring system was developed in 1986. The system not only 
established a crop condition assessment and production prediction for many 
crops (such as wheat, rice, maize, soybean and cotton) in the United States, but 
also monitored the main food producing countries in the world such as the 
former USSR, Canada, Mexico, Argentina, Brazil, China, India and Australia 
(NASA, 1984; Hogg, 1986).  

The United Nation’s Food and Agriculture Organization (FAO) developed its 
method to monitor crop conditions at global scale with GIEWS (Global 
Information and Early Warning System on Food and Agriculture). The system 
used 10-day composite NOAA-AVHRR NDVI data, which were pre-processed 
with the WINDISP software (Kileshye Onema and Taigbenu, 2009). 

In the late 1960s, following a long period of experimental and empirical work in 
agricultural research in combination with statistical analysis, the first dynamic 
simulation models were developed (Van Ittersum et al., 2003). Subsequently, in 
the 1970s the development of crop growth simulation models started 
(Jame,1992; Bouman et al., 1996). Since then, a wide variety of crop models 
has been developed all over the world to serve many different purposes. DSSAT 
(Decision Support System for Agrotechnology Transfer) was developed in the 
USA by IBSNAT (International Benchmark Sites Network for Agrotechnology 
Transfer) (Jones et al., 2003). APSIM (Agricultural Production system 
SIMulator) modeling framework was developed by APSRU (Agricultural 
Production Systems Research Unit) in Australia (Keating et al., 2003; Thorburn 
et al., 2010). In the Netherlands, at Wageningen, the late C. T. de Wit started 
the work on crop growth modeling at the Department of Theoretical Production 
Ecology of Wageningen Agricultural University. One of the most widely used ‘ 
products’ of the ‘Wageningen School’ (Bouman et al., 1996) is the WOFOST 
(World Food Studies) crop growth simulation model which is the core of the 
Monitoring Agriculture with Remote Sensing (MARS) program of the 
European Union implemented by the Joint Research Center (JRC’;  Van Diepen 
et al., 1989; Reidsma et al., 2009). Other recent models developed in 
Wageningen are SUCROS (Simple Universal Crop growth Simulator; Van Laar 
et al., 1997) and ORYZA (a crop growth model for rice; Bouman et al., 2001). 
The Crop Growth Monitoring System (CGMS) of JRC, developed in the MARS 
program, is based on the WOFOST crop growth simulation model (Supit et al., 
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1994; Boogaard et al., 1998). Monitoring results of CGMS have been applied in 
the Common Agricultural Policy (CAP) of the European Union such as for 
establishment of agricultural subsidies and verification of farmers’ declarations 
(MacDonald and Hall, 1980). CGMS has been widely applied to estimate crop 
production at various regional levels (Lăzar et al., 2009; Reidsma et al., 2009).  

Information from remote sensing observations can effectively be integrated into 
crop modeling methodologies. Such data have been used in crop models for 
regional yield assessment (Roebeling et al., 2004). An appropriate crop model 
and careful application of input information derived from satellite-based 
observations can be highly beneficial  in regional crop yield assessments, 
because satellite-based inputs can relatively be obtained, considering the 
amount of time and labor that regional level data collection requires 
(Doraiswamy et al. 2005). Remote sensing techniques can be used in calibration 
and validation procedures through supply of input data for spatial applications 
of crop growth simulation models (Jongschaap, 2006). Remote sensing can 
provide instantaneous information on important crop state variables at regional 
scale as a basis for assessing crop production. 

An experimental model (Cƒ-Water) that operates on the basis of satellite-
derived observations is under development at the Faculty of Geo-Information 
Science and Earth Observation (ITC), University of Twente. This chapter aims 
to test the capabilities of Cƒ-Water by comparing its production estimates and 
those of CGMS with published agricultural statistics and primary field data in 
Andalucía, Spain.  

5.2 Material and Methods 

5.2.1 Study Area 

Andalucía is located between 36º and 38º 44' NL, in the warm-temperate region. 
It is the southernmost community of mainland Spain, with an area of 87,268 
km2 comprising eight provinces and 770 municipalities. It is the most populous 
(8,285,692 inhabitants in 2009) of the seventeen autonomous communities of 
Spain. The Mediterranean climate of Andalucía is characterized by mild rainy 
winters and hot dry summers. Average annual temperature of Andalucía as a 
whole is above 16 ºC. Overall annual rainfall is highly variable, with a marked 



Testing the outputs of two crop growth models 

 100 

decreasing gradient of precipitation from west to east, and ranges from a 
maximum of 2000 mm to a minimum of 170 mm. 

About 70% of the land area of Andalucía is utilized for agricultural purposes. 
Medium-sized mountains dominate the landscape, occupying 42% of the total 
area. Consequently, 38% of the agricultural land is mountainous with crops 
generally restricted to the inner valleys or to gently sloping hillsides. The main 
agricultural system is dryland (rainfed) farming of cereals and sunflower in the 
vast countryside of the Guadalquivir valley. Geographically focused cultivation 
of barley and oats takes place in the high plains of Granada and Almeria. The 
major annual crops are wheat, sunflower, cotton, rice and maize, in addition to 
olives, grapes and oranges.  

The Nomenclature of Units for Territorial Statistics (NUTS) classifies the EU 
member states according to three spatial scales. Thus, the territory of Spain is 
classified for statistical purposes as NUTS-1 (groups of autonomous 
communities), NUTS-2 (individual autonomous communities) and NUTS-3 
(provinces of the autonomous communities) as shown in table 5- 1.  

Table 5- 1: NUTS regions of Spain relevant to the study area 

CODE LABEL NUTS LEVEL 
ES Spain  0 
ES6 SUR 1 

Subdivision of Sur region 
ES61 Andalucia 2 
ES62 Region of Murcia 2 
ES63 Autonomous city Ceuta 2 
ES64 Autonomous city Melilla 2 

Subdivision of Andalucia 
ES611 Almeria 3 
ES612 Cadiz 3 
ES613 Cordoba 3 
ES614 Granada 3 
ES615 Huelva 3 
ES616 Jaen 3 
ES617 Malaga 3 
ES618 Sevilla 3 
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Following this classification, the southern communities, known as Sur, are 
combined at NUTS-1 with code ES6. The Sur region is subdivided into four at 
NUTS-2 level with codes ES61-ES64. The eight provinces of Andalucia at 
NUTS-3 level are coded from ES611-ES618 (Table 5- 1). In this chapter, the 
estimates of the models are evaluated at NUTS-3 level (provinces of the 
community of Andalucia).  

5.2.2 Crop Growth Monitoring System (CGMS) 

The Crop Growth Monitoring System (CGMS) is used by the European 
Commission’s MARS program. The core of CGMS is the WOFOST crop 
growth simulation model which is combined with a Geographical Information 
System (GIS) and a yield prediction routine (Boogaard et al., 2002). CGMS 
comprises three main components (Figure 5- 1): 

 

Figure 5- 1: Schematic overview of yield prediction in CGMS 
(Modified after: http://supit.net/main.php?q=aXRlbV9pZD02Mg==) 
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Followings are the three levels as identified in figure 5- 1 

1 Interpolation of meteorological data for the whole territory to a square 
grid of 50 x 50 km. 

2 Simulation of crop growth for the whole territory 

3 Statistical evaluation of the results (time trend analysis) 

The first level in Figure 5- 1 is the weather system in which the weather data are 
collected, corrected and interpolated to the grid centre. The interpolated data are 
introduced in WOFOST at the second level, where crop growth simulation takes 
place. In addition to the interpolated weather data, crop characteristics and soil 
information are needed as input for WOFOST.  Execution of the model results 
in water-limited yield estimates for the whole grid that are corrected with a time 
trend analysis by using historical yield data at NUTS-1 scale. 

WOFOST simulates phenological development, leaf area development and 
aboveground dry matter accumulation of annual field crops from emergence (or 
sowing) to maturity in daily time steps, based on daily weather data, soil 
properties and crop characteristics. Crop growth rate depends on daily net CO2 

assimilation rate, calculated as a function of intercepted light, which is 
determined by the level of incoming radiation and the leaf area of the crop. 
From absorbed radiation and the photosynthetic characteristics of single leaves, 
the daily rate of potential gross photosynthesis is calculated (Boogaard et al., 
2002). The assimilates, after subtraction of respiration, are partitioned over the 
various plant organs, i.e. leaves, roots, stems and storage organs. WOFOST 
simulates crop production in two production situations (potential and water-
limited (Van Ittersum and Rabbinge, 1997). Potential yield of a crop is only 
dependent on weather (solar radiation and temperature) and crop characteristics 
(Boogaard et al., 1998). Water-limited yield is dependent on weather (solar 
radiation, temperature, rainfall, humidity and wind speed) and soil physical 
characteristics. 

In the CGMS system, the area of interest is divided into homogeneous units, 
EMU’s (Elementary Mapping Units), to each of which WOFOST is applied. 
Crop growth in each EMU is simulated based on soil characteristics, grid 
weather data, crop characteristics and crop calendar. EMU simulation results are 
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aggregated to NUTS-2 scale, after which the time trend analysis is performed to 
produce independent forecasts aggregated at NUTS-0 scale for the main crops 
(De Koning et al., 1993). 

Input data  

a) Weather data: Daily grid weather data, i.e. minimum and maximum 
temperature, wind speed (at 10 m height), vapour pressure, rainfall and 
global radiation or sunshine hours, are generated through interpolation 
of daily weather data from weather stations. Additional environmental 
characteristics (Van Diepen et al., 2004) such as daily evaporation from 
a free water surface (E0), evaporation from wet bare soil (ES0) and 
evapotranspiration for a reference crop (ET0) (Allen et al., 1998) are 
calculated for each weather station in CGMS. These characteristics are 
also interpolated during the grid weather generation.  

b) Soil data: The soil database used in CGMS is the Soil Geographical 
Data Base of Europe (SGDBE) at scale 1:1,000,000, containing 
information on maximum rooting depth, crop-specific suitability and 
water holding capacity. 

c) Crop characteristics: To characterize the crop (variety), about 40 crop 
parameters are used by WOFOST in CGMS.  

d) Crop calendar:  Crop calendar data, containing average sowing and 
harvest dates and the distribution of crops (showing which crop is 
grown in a particular location) is linked to the grid system. 

e) Historical yield data: Historical data on planted area, yield and 
production at NUTS-0 scale, used in the time trend analysis, are 
obtained from national statistical agencies of the EU member states. 

5.2.3 The Cƒ-Water model 

The Cƒ-Water model used in this study (Venus and Rugege, 2004), is adapted 
from modified algorithms of WOFOST documented by Driessen and Konijn 
(1992). The model has been programmed to improve the production situation 
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analysis for regional application, by including satellite-derived parameters to 
estimate canopy heating2.  

In the crop growth simulation model, Cƒ-Water, first the actual gross rate of 
assimilation is calculated from leaf area and radiation. Gross assimilate 
production is then partitioned over leaves, stem, root and storage organs as a 
function of development stage of the crop. Next, maintenance respiration losses 
are calculated for each plant organ and subtracted from gross assimilate 
allocations to obtain net assimilate available for growth. The available net 
assimilates are then multiplied by organ-specific ‘conversion efficiency’ 
coefficients to obtain the increments in dry organ masses (Rugege, 2002; Venus 
and Rugege, 2004).  

The Cƒ-Water model allows simulation of actual crop production/yield as a 
function of radiation and temperature, and compounded constraints to crop 
growth as reflected in the temperature difference between the canopy and 
ambient temperature. Thus, Cƒ-Water takes the following form: 

Production/Yield = ƒ (radiation, temperature, C3/C4
3, canopy heating) 

The canopy is heated by incident radiation and part of the absorbed energy is 
dissipated by transpiration (Barros, 1997; Kalluri and Townshed, 1998). 
Incoming radiation available for heating the canopy is set equal to net 
intercepted radiation minus the energy needed for assimilation and for 
vaporization of water lost in actual transpiration. The instantaneous difference 
between air temperature and canopy temperature is approximated from the 
sensible heat component of the energy balance equation. The ‘water sufficiency 
coefficient’ (Cƒ-Water) is then calculated (Equation 1). Cƒ-Water is used to 
estimate the relative rate of gross assimilation and represents the relative 
sufficiency of available water Venus and Rugege, 2004).  

Cƒ-Water  = TRact / TRmax   (1) 

where: 

TRact  is actual transpiration rate 
                                          
2  Program was written by Mr. Valentijn Venus 
3 C3/C4 refers to the photosynthetic mechanism characteristic for the crop simulated 
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TRmax  is maximum (potential) transpiration rate 

Or  

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡ Δ−
=

TCCFLEAFTROLATHEAT
AERODR
VHEATCAPTINTER

***

]*[

Water-Cƒ   

where 

INTER  is net radiation intercepted by the canopy 

ΔT  is temperature difference between canopy temperature 
and air temperature [K] 

VHEATCAP is volumetric heat capacity  [J m-3 K-1] 

AERODR  is aerodynamic resistance to heat transfer [s m-1] 

LATHEAT  is latent heat of vaporisation ([2.46 * 106 J kg-1]) 

CFLEAF  is ground cover fraction of the actual canopy [0-1] 

TR0  is potential transpiration rate (Penman) of the canopy 
[kg m-2 s-1] 

TC   is ‘actual turbulence coefficient’ 

Hence, actual crop growth rate follows from instantaneous measurements or 
derivations of canopy and ambient temperatures. On this basis, assimilation is 
adjusted and actual crop growth rate is calculated. Note that the value of Cƒ-
Water calculated in this way directly takes into account the combined effects of 
all yield-limiting and yield-reducing factors (stress due to water scarcity, water 
logging, nutrient shortages or excesses, pests, diseases, pollutants, etc.). In 
WOFOST, a serious error propagation component, i.e. the coarse resolution of 
all soil-based data is included, which is excluded in the Cƒ-Water model.  
 
Figure 5- 2 presents an example of the calculated dry matter dynamics of 
rainfed wheat, sown at 180 kg/ha and germinating on 1st of November in 
Andalucía, Spain during 2000-01.  
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c) Crop characteristics: 25 crop characteristics are used in the model 

d) Management data: Sowing date, germination date and seeding rate 

A brief overview of the similarities and differences between CGMS and the Cƒ-
Water model is presented in Table 5- 2. 

Table 5- 2: Comparison of CGMS and Cƒ-Water 

 
CGMS 

 
Cƒ-Water 

  
Crop growth simulation is based 
on daily weather data, soil 
properties and crop characteristics. 

Crop growth simulation is based on 
daily weather data and crop 
characteristics. 

 
Soil properties are taken into 
account. 

 
Soil properties are not taken into 
account. 

 
Remote sensing data are not used 
for yield estimation. 

 
Remote sensing data from thermal 
bands are used for yield estimation. 

 
Evapotranspiration is calculated 
from interpolated meteorological 
data from the weather stations 

 
Evapotranspiration is calculated from 
the surface temperature from remote 
sensing data and ambient air 
temperature 

Potential and water-limited yields 
are estimated 

Actual yield is estimated 

Adjustments are made through 
time-trend analysis based on 
historical yield data 

Time-trend analysis is not required. 

 
Estimated crop yields (kg/ha) are 
made available at country level 
through AGRI4CAST.  
 

 
Estimated crop yields (kg/ha) are 
generated at a 1 km2 resolution grid  
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Estimated production of rainfed wheat for 2001 by Cƒ-Water was aggregated to 
provincial level on the basis of the rainfed wheat area map of Andalucia at 
NUTS-3 (province level).  

Reported agricultural statistical data on crop yields 

Annual agricultural statistical data on crop yields were obtained from the 
Ministry of Agriculture and Fisheries, Andalucia. Each year, the data for 
various crops are complied and uploaded on the website  

(http://www.mapa.es/es/estadistica/pags/anuario/introduccion.htm; see also 
Table 5- 3).  Data for the year 2001 were used to compare the output of CGMS 
and Cƒ-Water at NUTS-3 scale. 

Table 5- 3: Rainfed wheat production (Tg1) in Andalucia (1990 - 2001) 

 

(1Tg = Teragram: 109; Source: Anuario de Estadísticas Agrarias y Pesqueras de 
Andalucía, 1990-2001 obtained from the website of the Ministry of Agriculture 
and Fisheries, Andalucia) 

5.2.5 Accuracy assessment of the outputs of Cƒ-Water at field level  

Estimated rainfed wheat yields of Cƒ-Water (Figure 5- 4) for the surveyed 
segments were compared to the rainfed wheat yields (2001) reported for those 
segments. Since not all segments were surveyed each year and many segments 
are only partially covered by agricultural fields, a weighted linear regression 
analysis was performed, using the total area sampled in each segment as 

NUTS 
LEVEL Region 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001

Almeria 11 8 7 7 1 1 3 3 3 1 5 5
Cadiz 252 331 323 270 144 48 252 157 219 45 213 241
Cordoba 372 356 273 118 245 83 382 227 218 30 390 362
Granada 37 34 31 21 12 2 24 18 18 3 17 32
Huelva 20 68 39 38 60 46 73 74 59 26 52 58
Jaen 60 51 45 26 31 1 42 25 23 23 30 58
Malaga 59 70 60 32 28 13 80 26 36 11 61 68
Sevilla 329 697 453 132 237 100 593 348 447 35 439 525

NUTS-2 Andalucia 1,140 1,615 1,231 644 760 295 1,447 880 1,024 176 1,207 1,347
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5.3 Results 

5.3.1 Comparison of CGMS output (after time trend analysis) and 
results of Cƒ-Water at NUTS-3 scale with agricultural statistical 
data 

Figure 5- 6 shows the comparison of rainfed wheat production estimated by 
CGMS and Cƒ-Water for 2001 with the reported official rainfed wheat 
production data (Table 5- 3). Data from the province of Almeria were omitted 
from the validation, because of the very low production and the small rainfed 
wheat area (<300 ha) compared to the other provinces, as shown in the map of 
rainfed wheat (Khan et al., 2010).  

 

Figure 5- 6: Comparison of estimated yields (kg/ha) with observed yields 
at NUTS-3 scale 

Estimated rainfed wheat production by both, CGMS and Cƒ-Water, shows good 
agreement with the reported values at NUTS-3 scale (R2 = 0.98 and 0.67 for 
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Almost all the points are situated within the 90% confidence interval; however, 
the estimated yields vary 500 kg/ha around the observed yields at segment 
scale. Overall RSME is 16 kg/ha (1% of the mean) 

5.4 Discussion and conclusions 

The aim of the study was to evaluate the outputs of a spatial crop growth model 
(Cƒ-Water) that uses remote sensing-based input data. The evaluation was 
performed at NUTS-3 scale, on the basis of output of the CGMS system and 
agricultural statistical data and at field scale on the basis of primary field data. 
At NUTS-3 scale, rainfed wheat production, estimated by the Cƒ-Water model 
showed good agreement with published statistical data, better than that 
estimated with the CGMS system. A possible reason for this better agreement 
could be that contrary to the Cƒ-Water model, in CGMS soil characteristics are 
used at a very coarse scale and the outputs are compared at sub-national level. 
De Wit and van Diepen (2008) compared the output of CGMS executed using 
remotely sensed input data, with information from EUROSTAT at national 
scale. They reported R2-values of 0.93 to 0.97 for Spain, i.e., at NUTS-0 scale.  

Agreement between estimated yield by Cƒ-Water and CGMS is more close than 
that reported by Mo et al. (2005) who used a remotely sensed input data in a 
crop growth model (SVAT) and reported an R2 of 0.57 between simulation 
results and statistical data. Our results are also better than those of Bai et al. 
(2010) who coupled satellite-derived solar radiation with temperature data from 
weather stations in a crop growth model to estimate the yield potential of maize 
and reported R2-values of 0.62 to 0.90 in comparison with experimental data.  

Comparison of results of Cƒ-Water at field level with observed yields reported 
in segment data (R2=0.98) showed close agreement. These results are more 
favorable than those reported by Duchemin et al. (2008). They used a crop 
growth model in combination with remotely sensed data for monitoring of 
wheat production and reported a correlation coefficient of 0.69 with 
experimental data at field level.  

Our results suggest that the Cƒ-Water model can be applied at regional scale 
(provincial or municipal) to estimate the production of crops with lower data 
requirements than CGMS, without a correction through time trend adjustments. 
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On the basis of comparison of the results of the Cƒ-Water model with the 
results of CGMS, reported agricultural statistical data and field data, we 
conclude that the model can potentially be used in food security studies. In 
principle, regional production of food crops can be calculated by combining 
crop yield maps (Figure 5- 4) with a crop area map (Figure 5- 3) and an 
administrative map. Currently, the arable areas or other land cover maps are 
used to aggregate the results of crop growth models at administrative levels. De 
Wit and van Diepen (2008) stressed the importance of updated crop area maps 
instead of using only the arable areas as reported in regional statistical data sets 
such as EUROSTAT. However, the model has only been applied in a single 
case study, thus before incorporating the model into an operational systems; 
more extensive testing of the model is required for different crops, years and 
regions. 
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Abstract 

In this chapter, the users’ opinion regarding available land use datasets and the 
generated outputs of previous chapters of the thesis (chapters 3, 4 and 5) is 
incorporated. This was done by requesting the researchers working on 
agricultural land use mapping and monitoring in Andalucia, Spain to provide 
their opinion through an online questionnaire. The respondents were asked 
about the availability, updating frequency, documentation (meta data), spatial 
level of detail and usefulness of the available datasets and the generated outputs 
of chapters 3-5 (crop area and crop yield estimation). Thirty two researchers 
were requested to respond out of which 21 responded with a response rate of 
66%. The respondents were having different research interests such as land use 
mapping (47%), land use monitoring (33%), policy related work in regional 
organizations (10%) and management of agricultural companies (10%). The 
responses obtained were analysed to appraise the problems faced by the 
respondents regarding the available land use datasets. The respondents were 
already using land use maps (50% of the respondents), specific crop maps 
(12.5%), agricultural statistical data (37.5%), CORINE land cover map (62.5%) 
and the primary survey data (12.5%). Analysis of the responses showed that the 
respondents were not satisfied about the availability, updating frequency and 
spatial level of detail of the land use data. Further, 72% of the respondents were 
satisfied with the spatial level of detail, the type of land use data and updating 
frequency of the generated rainfed wheat map. However, 28% of the 
respondents preferred to have more spatial level of detail and showed interest in 
having high resolution specific crop maps. Respondents had reservations about 
the quality and accuracy assessments of the available yield data owing to the 
use of different methods to collect these data. Responses about the generated 
rainfed wheat yield map revealed that 70% of the respondents were satisfied 
with the spatial level of detail in the yield map but they preferred to have such 
information prior to harvesting, whereas, our method provides yield estimation 
after harvesting of the crops.  

  



Chapter 6 

 119

6.1 Introduction 

Timely and accurate information on areas of crops and estimates of their 
production is needed for many purposes such as food security, land use 
planning, crop insurance, marketing of agricultural commodities and 
agricultural research. Trade organizations are interested in information on food 
production in various regions to decide ‘what to import’ from ‘where’ and vice 
versa. Timely information on agricultural land use in terms of both the area and 
the production is also required for price control and management of agricultural 
markets. Without such reliable information, problems of disruptions in food 
supply, artificial price hikes, and problems in implementation of policies are 
expected to occur. Land use decisions aim at better management of natural 
resources and environment. It is necessary to evaluate the outcome of such 
decisions that whether these are responsive to needs both at national and 
international levels (Young, 1998; Dore et al., 2001; Schlamadinger et al., 
2007) For such evaluation, up to date and accurate land use information is 
required. 

Regional to global land use databases constructed from the data collected by 
different countries face technical problems such as inconsistent use of 
definitions of land use, lack of harmonization and differences in the methods 
used for inventorying (George and Nachtergaele, 2002). Also, there is a paucity 
of regional to global land use datasets. In many cases the available information 
is incomplete or unreliable (FAO, 2005). Moreover, the quality of available 
information is quite variable and often presents a confused mixture of land use 
and land cover categories (De Bie, 2000).  

The available land use information often lacks the required level of user needs. 
This limitation is due to the conflicting purposes of land use data collection, 
differences in methods used to collect land used data and limitations in these 
methods (chapter 1). Further, the available land use information often lacks the 
required level of accuracy and is incompatible with other data sets. Therefore, 
the assessment of available land use information is an essential requirement for 
sustainable management of natural resources, food security and related studies 
(FAO, 2002; FAO, 2004). 
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International organizations such as the Food and Agriculture Organization 
(FAO), the European Union (EU), the United Nations Environment Programme 
(UNEP) and the United States Department of Agriculture (USDA) are now 
providing assistance to countries to build updated and accurate land use 
databases  (Cohen and Shoshany, 2002; Townshend et al., 2008). FAO supports 
developing countries in enhancing, processing and distribution of local 
agricultural land use data.  

The scarcity of data, substandard data quality at all scales and the lack of 
common data exchange formats and protocols occur everywhere with an 
exception of few developed countries (Sombroek and Antoine, 1994; Lepers et 
al. 2005; Ramankutty et al. 2007). The problem becomes more severe owing to 
poor communication between data producers/suppliers, information technology 
and users. Stakeholders report that the effective use of GIS technology is 
constrained by the limited adequacy of data on land use systems (Dalal-Clayton 
and Dent 1993; Zeijl-Rozema et al. 1997; FAO and UNEP, 2002; Dietz, 2003). 
The problems identified by users of land use data were reported by De Bie, 
(2000) which are summarized in table 6- 1. The constraints were recorded at 
selected (sub-) national institutes in a number of developing countries and in 
four European countries.  

To overcome these limitations, effective coordination is needed among potential 
data users of global land use data to identify, define and harmonize their data 
needs. It also asks for consistent land use classification systems at national and 
international level.  

In the present study, available land use information is assessed and information 
on desired characteristics of land use data is collected by conducting a survey 
through an online questionnaire. The questionnaire was presented to thirty two 
researchers working in the fields of agricultural mapping and monitoring in the 
Ministry of Agriculture and Fisheries, Andalucia to ask their opinion about the 
existing Land use/ land cover (LULC) information and their desired data 
qualities. The questionnaire comprised of both closed and open questions to 
obtain the user’s judgment about LULC data sets.  
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Table 6- 1: Constraints associated with effective use of land use system 
information as reported by stakeholders (Modified after De 
Bie, 2000) 

Data Aspect 
 

Problem 
 

Observation 
 

Availability Not accessible Often occurs 
 Limited Regularly occurs 
  Restricted Often occurs 

Format Inconsistent Often occurs 
 Data integrity problems Often occurs 
  Units used vary from region to region Regularly occurs 

Quality Lack of uniformity Often occurs 
  No accuracy assessment Regularly occurs 
Documentation Not available Sometimes occurs 
 Incomplete Sometimes occurs 
  Poor Often occurs 

Geo-referencing Absent Sometimes occurs 

Cost Expensive Regularly occurs 
Update Poor update frequency Regularly occurs 

Coordination Users are not involved in the surveys Often occurs 
  Poor coordination between organizations 

with the mandate of producing such 
information 

Often occurs 

6.2 Methods 

Experts/user consultation was performed to solicit (i) the opinion of respondents 
about the already available land use data and (ii) what is their opinion about the 
generated crop area maps and crop yield estimates (outputs of chapter 3, 4 and 5 
of this thesis). The respondents were also asked to explicitly mention possible 
reasons of disagreements with the provided outputs of the thesis in order to 
incorporate the suggestions/ requirements of the users for future 
recommendations.  
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6.2.1 Study sample and procedure 

Data were collected using a population of thirty two researchers working in the 
field of agricultural mapping and monitoring in the Ministry of agriculture and 
fisheries, Andalucia. Before developing the questionnaire two meetings were 
held in the Ministry of agriculture and fisheries, Andalucia in order to 
understand the terms and definitions used. This was done to ensure that the 
respondents understand the statements of the questionnaire. 

6.2.2 Available land use data sets 

The following land use data sets are used by the researchers which can be 
grouped into following five categories based on the land use information 
presented by these land use data sets.  

Agricultural Land use maps include those maps which contain the information 
about general land cover/land use classes and do not differentiate various crops 
grown in Andalucia. 

• Land Use map (Usos del Suelo), at 1/1,000,000 scale. It includes classes 
such as forests, arable land mixed with grass land, arable land, pastures etc.   

• Map of vegetation land cover/land use in Andalusia in 1999 (mapa de usos 
y coberturas vegetales de Andalucía, 1999), at 1/1,50,000 scale. The map of 
vegetation land cover/land use in Andalusia was updated in 2007  

(Source: Consejería de Medio Ambiente. Junta de Andalucía). 

• Map of irrigated areas (Mapa de las zonas de regadío). (Source: 
http://www.juntadeandalucia.es/agriculturaypesca/sigregadios/servlet/regadios) 

• Map of ecological assessment of natural resources (Mapa de evaluación 
ecológica de los recursos naturales), at 1:1,000,000. (1987).  

Specific crop type maps are those maps which present information about the 
spatial distribution of specific crops. Such maps are prepared to meet the 
requirement of European commission. These maps include: 
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• Map of CAP crops declared, updated each year at a scale of 1/50,000 by 
using the data obtained for subsidy claims of the framers and LPIS 
cartography (SIGPAC; http://sigpac.mapa.es/fega/visor/).  

• Other thematic maps of agronomic land use such as rice area map, olive 
area maps, other field crop maps and fruit trees maps such as  olive trees 
maps (SIG-Oleícola), vineyard maps (SIG-Vitivinícola), citrus map (SIG-
Citrícola) for the years 1980, 1987 and 2000.  

CORINE land cover map is the Coordination of Information on the 
Environment of the European Environmental Agency (EEA)) land cover map of 
2000. The CORINE land cover 2000 (CLC2000) was produced by photo-
interpretation of Landsat ETM+ images. The scale of the CLC map is 
1:100,000. The researchers in Andalucia, Spain use it as baseline information, 
i.e., to find locations of major agricultural areas and statistical sampling 
schemes for crop area estimations (Gallego and Bamps, 2008).  

Primary segments data are plot-specific crop data, collected annually (twice) 
by the Ministry of Agriculture and Fisheries. The survey comprises of randomly 
selected segments of 700 m × 700 m. The data are collected by visits to all the 
fields per segment. The spatial distribution of the surveyed segments is 
determined by dividing the whole territory in blocks of 10 km × 10 km. Each 
block was sub-divided into 100 cells of 1 km2. In each block, three cells were 
randomly selected for surveying. In each cell, cropped area, production of each 
crop per unit area, irrigation scheme, etc. of agricultural areas present in the 
segment of 700 m × 700 m is recorded (Figure 6- 1). 

Agricultural Statistics Data are the annual statistical data available in tabular 
format, comprising the information on cultivated area and production of crops 
at provincial level (available online) and at municipal level (available in the 
department of statistics, Ministry of agriculture and fisheries, Andalucía). 
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6.2.4 Measures  

Five data sources as described in section 2.2 were provided in the questionnaire 
(Appendix 1 question 5). In order to obtain the information on all the data 
sources which are being used, the respondents were also provided option to 
indicate other land use data available to them.  

All items in the questionnaire regarding the characteristics of different land use 
data used a 5 point scale with anchors of 1= strongly disagree and 5 = strongly 
agree.  

6.2.5 Statistical analysis 

Responses were analyzed using quantitative analysis of the close ended 
questions (descriptive statistics and graphical representation of data). Further, 
qualitative data obtained from responses of open ended questions were also 
summarized and presented. 

6.3 Results and discussion 

Twenty-one out of a total of 32 questionnaires were returned, giving a response 
rate of 66%. The respondents were having different research interests such as 
land use mapping (47%), land use monitoring (33%), policy related work in 
regional organizations (10%) and management of agricultural companies (10%). 
The respondents having their research interest in land use mapping, monitoring 
and policy related work in regional organizations working under the Ministry of 
Agriculture and Fisheries, Andalucía. Their main activities are farm 
management, research and knowledge transfer, systems and information 
technology, analysis of food production, rural development and international 
cooperation. For their work, they use various land use data as described in 
section 2.2. The respondents belonging to management of agricultural 
companies were the managers of agricultural cooperatives. They also use 
information about cropped areas and production for decision making. 

The respondent’s opinions on the available land use data and the outputs of 
chapters 3-5 of the thesis is given below. 
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6.3.1 Land use data available to the respondents  

The respondents identified 5 major types of land use data available to them 
from different sources (Figure 6- 2). None of the users mentioned other land use 
data available to them. 

 

Figure 6- 2: Land use data already used by the respondents 

6.3.2 Opinion of the respondents about available land use data 
 
Land use maps 
A majority of respondents using the land use maps were not satisfied with the 
update frequency, spatial level of detail and confused mixture of land use 
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Figure 6- 3: Opinion of the respondents about available land use maps 

Specific crop maps 

Contrary to land use maps, a majority of respondents were less happy about the 
availability and update frequency when it comes to specific crop maps. 
However, they were satisfied with the land use presented in the legend and the 
spatial level of detail (map resolution) in these specific crop maps (Figure 6- 4). 

Agricultural statistical data 

As to agricultural statistical data, a majority of respondents had reservations 
about the spatial level of detail. However, most respondents were satisfied with 
the availability, update frequency and documentation of these data (Figure 6- 5). 
The respondents preferred to have these data in the forms of maps rather than 
just in tabular format. 
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Figure 6- 4: Opinion of the respondents about available specific crop 
maps   

 

Figure 6- 5: Opinion of the respondents about available agricultural 
statistical data 
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The users of CORINE were less happy about the updating frequency and the 
confused mixture of land use classes and the spatial level of detail in the 
CORINE land cover map (Figure 6- 6). 

 

Figure 6- 6: Opinion of the respondents about CORINE land cover map 

 
 

Figure 6- 7: Opinion of the respondents about the primary segments 
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Primary segments data 

The users of primary segments were not happy with the availability of the 
primary segments data. However, they were satisfied with the rest of the data 
aspects of primary segments data (Figure 6- 7). 

6.3.2 Opinion of the respondents about the generated rainfed wheat map 
(output of chapter 3 and 4) 

The respondents, after evaluating the provided rainfed wheat map, were 
satisfied with the data aspects of the outputs of chapter 3 and 4. Seventy five 
percent of the respondents were comfortable with the spatial level of detail, data 
type requirements and update frequency of the generated wheat map. They also 
showed their keen interest in using the developed method to produce the 
specific crop maps for their own areas of interest (Figure 6- 8).  

 

Figure 6- 8: Opinion of the respondents about the generated rainfed 
wheat map 
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available land use data (section 2.2) are is not updated regularly and presents 
mixtures of agricultural land use classes. The high resolution crop maps (CAP 
crops) are produced by using the data obtained from the subsidy claims of 
farmers are not very reliable because of substantial over reporting (40%) in case 
of sunflower area (Khan et al., 2010). On the other hand, the rainfed wheat map 
produced can be easily updated because of using hypertemporal remote sensing 
inputs (NDVI). The spatial resolution of the rainfed wheat map can also be 
improved by using higher resolution imagery which is available from the 
Moderate Resolution Imaging Spectroradiometer (MODIS). 

6.3.3 Opinion of the respondents about available yield data 

Amongst the respondents who were using the yield data, only 29% were 
satisfied with the availability, 62% were satisfied with the update frequency, 55 
% reported the availability of documentation (Figure 6- 9).  

 

Figure 6- 9: Opinion of the respondents about the available yield data 

The yield data available to the majority of the users were obtained after the 
survey results and the respondents showed the reservations because of using 
different methods such as farmers reporting, counting and weighing fruits, 
estimation by an expert (as a rough guess) and machine harvests etc.  
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6.3.4 Opinion of the respondents about the generated yield map of 
rainfed wheat (output of chapter 5) 

The respondents after evaluating the provided rainfed wheat map were satisfied 
with the data aspects of the outputs of chapter 3 and 4. 76% of the respondents 
was comfortable with the spatial level of detail, accuracy assessment and 
quantitative yield estimation. 52% showed their keen interest in using the 
developed method to produce the specific crop maps for their own areas of 
interest (Figure 6- 10). Whereas, 25 % were of the opinion they would like to 
see the accuracy assessment after calibration as per authors’ suggestion (chapter 
5). 

 

Figure 6- 10:  Opinion of the respondents about the generated rainfed      
wheat yield map 

While responding to the open ended part of question 46 (see appendix 1), the 
respondents appreciated the accuracy assessment and the presentation of 
quantitative yields as mapped information. However, the respondents showed 
their concern for detailed calibration of the model used in the research. Further, 
it was also expressed that the yield estimates are required before harvesting of 
the crops. 
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6.4 Conclusions 

It is concluded that: 

• Amongst the problems identified in the data aspects of available land use 
data ‘easy availability’ (70 % of respondents) and ‘update frequency’ (70 % 
of respondents) are the most common. Further, thematic agricultural land 
use data (specific crop maps) are highly demanded by the respondents, of 
which 68% declared not to be satisfied with the capability of available land 
use data to properly differentiate land use/land cover classes.  

• Geo-referenced and high resolution maps are desired characteristics of the 
land use data as expressed by the respondents. 

• Remote sensing techniques should be used in combination with field 
observations to enhance the update frequency and availability of land use 
data. 

• The products of chapter 3-5 are of interest to users. They were keen to use 
the methods developed for crop area maps (75%) and crop yield maps 
(70%). The generated land use data has the potential of further 
improvement by using high resolution imagery e.g. MODIS 500 m and 250 
m images and further testing the method of yield estimation for other crops.  

• The method developed (output of chapters 2, 3 and 4) can help the 
researchers to improve the statistical sampling method in Andalucia in 
particular and in Europe in general, by including the NDVI based strata in 
the stratification. Such maps can also be used as input for crop monitoring, 
crop yield estimation, agricultural land use planning and crop insurance 
purposes. Further, the estimated yield map (output of chapter 5) has an 
excellent potential for the researchers and policy makers working in the 
field of crop monitoring. The method developed in chapter 5 can be used to 
estimate crop yield and production at any administrative level, i.e., 
municipal or provincial. 

• The major limitation of this research is small number of respondents (21).  
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7.1 Introduction 

The overall aim of the research described in this thesis is to extend and improve 
the existing toolbox to describe agricultural land use. Currently, this is largely 
made up of maps with scales or legends that are inappropriate for crop-level 
assessments. Annual updates are not common either, forcing staff to rely on the 
land use of one particular year for too long. Yield assessments are often also 
restricted to predetermined sampling frames, without clear tools to scale up the 
results. The final products of such exercises are often tabular data sets for 
administrative units, providing area and production totals, but without any 
notion of the spatio-temporal explicitness of agricultural land use in that unit, 
and a general lack of insight into data accuracy. The research in this thesis 
follows a systems approach to map and monitor agricultural land use using a 
combination of remote sensing, GIS, agricultural statistical data and crop 
modelling.  

The research had two focal points. In three chapters (2-4), the results are 
described of efforts to make hypertemporal NDVI imagery a useful instrument 
for collecting agricultural land use data, improving both the spatial and 
temporal explicitness. Case study areas include Spain and India. Also, ancillary 
environmental variables such as soil types and geomorphology, were tested on 
their contribution to explain the spatial distribution of agricultural areas. The 
second focus was on comparing the outputs of a new crop growth model (Cƒ-
Water) that also makes extensive use of remote sensing, with the well-known 
Crop Growth Monitoring System (CGMS) of the European Union’s Monitoring 
Agriculture with Remote Sensing (MARS) project. The aim was to investigate 
whether improvements as to the predictive value of crop growth models were 
possible, at different spatial scales. Finally, a qualitative validation was done by 
interviewing professionals working with agricultural land use maps and data 
bases, also investigating to what extent they thought they could benefit from the 
research products developed in this thesis.  

This chapter firstly synthesizes the main findings of the aforementioned 
research topics along with the practical relevance of these findings. Secondly, 
the limitations of the research are described and lastly, recommendations for 
future research have been put-forth.  
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7.2 Agricultural land use mapping 

In chapters 2, 3 and 4, SPOT4 and SPOT5 Vegetation (VGT) Sensor’s 10-day 
composite hypertemporal NDVI-images (S10 product) at 1 km2 resolution were 
used to produce agricultural land use information in the form of crop calendar 
and crop area maps. In chapter 2, hypertemporal NDVI images of Nizamabad 
District, India, were linked with the existing land cover maps. The latter lacked 
precise location of crops, and was based on an image of the 1994-5 season. 
After linking the classified map of the stack of hypertemporal images with the 
existing land cover map and then with the crop statistical and crop calendar 
data, we could appropriately define ‘what’ is grown ‘where’ and ‘how much’ is 
grown ‘there’. In chapter 3, specific crop area maps were generated by using the 
classified hypertemporal images of Andalucia, Spain in combination with the 
crop statistical and primary field data. The NDVI data explained 77% - 98% of 
the variability. The estimated crop maps in chapter 3 also showed good 
agreement with the primary field data. In chapter 4, soil and geomorphology 
data were included in the exercise of mapping crop areas to find out whether the 
NDVI data reflect their influence. The contribution turned out to be minimal, 
showing that NDVI alone reflects almost all the crop variability. The results of 
series of unsupervised classifications of the SPOT images helped to stratify the 
study area into an optimum number of classes on the basis of minimum and 
average divergence. ‘Visual supervised grouping’ of the annual averaged 
classes produced by the unsupervised ISODATA algorithm was performed to 
repair possible deficits in classification that were due to the absence of a very 
clear single peak in the divergence values.  

This method shows promise for application where similar kinds of uncertainties 
can arise due to, for example, missing satellite data as a result of cloud cover. 
Supervised grouping after unsupervised classification helps to eliminate the 
annual variations within the original classes without any loss of important 
detail. The method developed resulted in a map that represents the period of 
NDVI images (1998-2002 in case of Nizamabad, India as shown in chapter 2). 
The classification procedure adopted has the capability to capture the changes in 
land use. The temporal behavior of NDVI class profiles which are relevant to 
any land use/land cover depicts the changes on ground. Figure 7- 1 shows 
NDVI profile 19 along with reported production over the rainfed wheat growth 
period for 2003-2006. The 2005 was a bad year as reported by MARS bulletin 
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2005 and markedly lower peaks of NDVI profile 19 for 2005 confirms that the 
method of classification is capable of capturing the land cover features of such a 
year.  

 

Figure 7- 1: Average annual NDVI profiles for rainfed wheat along with 
the annual production of rainfed wheat (2003-2006). Red 
figures show the production (1000 tons) of Rainfed wheat 
reported by Ministry of Agriculture and Fisheries, 
Andalucia 

The land use maps produced in chapter 2-4 have the potential to support a broad 
range of applications in agriculture, such as early warning in relation to food 
security, yield gap analysis and regional to global assessment of agricultural 
productivity. Some of these applications are described below: 

Monitoring of land use modifications 

In chapter 2, we used the results as an example of monitoring of land use 
modifications over time. Figure 2- 9, for example, shows the irrigated areas 
where rice is the dominant crop during the Rabi season. The annual profiles of 
relevant NDVI classes indicate a decline in NDVI (DN values) starting in 2001 
and expanding one year later (2002). These declines represented a substantial 
number of fields that had not been cultivated during Rabi because of unreliable 
availability of electricity to run their water pumps.  
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Location specific crop monitoring 

Our method enables the monitoring of changes in crop over years by comparing 
annual NDVI classes for selected map units and the crop calendar information. 
Once NDVI map units have been delineated for a district or a larger 
geographical region, continuous monitoring of their specific performance over 
time can be related to the information presented in the legend. Stratified 
monitoring - based on units with a uniform known land cover and land use - 
allows the preparation of more specific early warning bulletins. The anomalies 
in the NDVI classes in time and duration of their state below predefined 
thresholds can be monitored continuously. This, in turn, could effectively lead 
to a continuous monitoring and prediction of various crop conditions at different 
scales – from pixel to region levels.   

Provision of input data required by regional crop growth modeling 
approaches 

The estimated crop maps can be used as an important input in the regional crop 
growth models for estimation of crop yields. De Wit and van Diepen (2008) 
reportedly had to aggregate their simulation results to regions for comparison 
with yield statistics available from EUROSTAT, using only ‘arable’ areas 
instead of wheat areas. Crop area maps can also be used in models such as 
Common Agricultural Policy Regionalised Impact (CAPRI) modeling system 
(Kempen et al., 2007; Britz and Leip, 2009). 

Provision of input data required by drought monitoring 

The method illustrated in chapters 2-4 can potentially be incorporated into 
RS/GIS based drought monitoring systems like Famine Early Warning System 
Network (FEWSNET), US Drought Monitor (www.drought.unl.edu) and the 
Southern African Development Community’s (SADC) Regional Remote 
Sensing Unit Drought Monitoring Center (Thenkabail et al., 2004; Smakhtin et 
al., 2005; Justice and Becker-Reshef, 2007). Including the land use maps 
generated in chapters 2-4 in such systems will take the outputs of these systems 
beyond drought monitoring at administrative unit levels to agricultural drought 
monitoring which is experienced by crops over severe water shortage periods. 
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Improving the statistical sampling methods for better estimates of crop areas 

The comparison of crop maps generated directly by using the segments data and 
the agricultural statistical data at municipal level shows that hypertemporal 
SPOT NDVI images can be used to improve statistical methodologies for 
estimation of crop areas. This holds for agricultural ministries (at country level) 
and for international organizations such as the European Union (EU), the Food 
and Agriculture Organization (FAO) of the United Nations and the United 
States Geological Survey (USGS) (IGOL, 2006; Townshend et al., 2008). 
Hypertemporal NDVI data provide the opportunity to improve the current 
stratified sampling methods for statistical data collection and up-scaling these 
data to administrative divisions. This can now be done by using the similar-
behaving NDVI classes (results of supervised grouping after unsupervised 
classification) as a stratum for sampling.    

The methods developed in chapters 2, 3 and 4 have meanwhile also been tested 
in Vietnam (Nguyen et al., 2010). This shows that it is a replicable approach for 
land use data acquisition.  

Further, the remote sensing data (Hypertemporal NDVI images) is freely 
available from SPOT, Moderate Resolution Imaging Spectroradiometer 
(MODIS) and MEdium Resolution Imaging Spectrometer (MERIS) satellite 
systems. 

Limitations of the research on land use mapping  

The land use maps produced by using the methods developed in chapters 2-4 
are based on hypertemporal NDVI images at 1 km2 spatial resolution. Each 
pixel of a produced NDVI based land use map is also related to a mix of other 
land cover. Therefore, such maps should be considered as ‘small-scale’ land use 
maps valid at regional scales. Further, the accuracy of produced land use map is 
low at local scales.  

The accuracy of produced specific crop area maps is dependent on the quality of 
crop statistical data. This issue was dealt by using the segments data directly for 
mapping crop areas (in chapters 3 and 4).  
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7.3 Comparing crop growth models using agricultural statistics 
and field data 

In chapter 5 the outputs of two spatial crop growth models were compared with 
a specific aim to test a new (still under development) crop growth model [Cƒ 
(Water)]. Currently, input data requirements in most operational crop growth 
models are substantial, which makes their use problematic, particularly in low 
data environments which is the case in many developing countries. This makes 
it necessary to look for models with fewer data requirements, but still capable of 
producing accurate estimates of crop yield/production.  

For 2001, comparison of the estimated actual rainfed wheat production at 
NUTS-3 scale by Cƒ-Water and the estimated actual rainfed wheat production 
by CGMS with published agricultural statistics showed an excellent agreement 
for Cƒ-Water and a good agreement for CGMS (R2 = 67 % and 98 %; RSME= 
16 Mg and 41 Mg, Figure 5- 6), respectively. The accuracy assessment of Cƒ-
Water estimates using primary field data comprising 334 segments of 700 x 700 
m showed excellent agreement (Adj. R2 = 98%). On the basis of these results we 
conclude that Cƒ-Water has a potential to be incorporated in food security 
studies. Two points should be noted. First, the Cƒ-Water model has lower data 
requirements than CGMS which requires also soil and historical yield data. 
Second, the outputs of CGMS are potential and water limited yields which are 
then adjusted by a time-trend analysis to produce actual yields. Whereas, Cƒ-
Water directly generates the actual crop yield estimates (Table 5.2). However, 
the model has only been applied in a single case study, thus before 
incorporating the model into operational systems; more extensive testing of the 
model is required for different crops, years and regions. Further research is 
needed to explore the extraction of sowing and harvesting time on regional 
scales to be used in the model which could not be explored in this thesis. 

Practical relevance of the outputs 

The outputs of chapter 5 (estimated crop yields) can be used along with the 
outputs of chapters 2-4 (crop area maps) for assessing the production at regional 
scales. By combining the estimated rainfed wheat area map (Figure 4- 10) and 
the estimated rainfed wheat yield map (Figure 5- 4) with the administrative map 
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combined from different satellites and used in crop growth models as shown by 
Venus and Rugege (2004).  

7.4 Users’ perspective on available land use data and the 
generated outputs 

Amongst the problems identified in the data aspects of available land use data, 
update frequency and limited availability of thematic agricultural land use data 
were the most common. Since the methods developed in chapters 2, 3 and 4 
make use of hypertemporal NDVI data, therefore, the demands of users 
pertaining to easy availability and update frequency are easily met. This was 
also reflected by the respondents, i.e., a majority was keen to use the methods 
developed for crop area maps (75%) and crop yield maps (70%). On the basis of 
stakeholders’ opinion on existing data sources and the outputs of this thesis we 
can conclude that remote sensing techniques should be used in combination 
with field observations to enhance the update frequency and availability of land 
use data.  

7.5 Recommendations for future research 

The following recommendations could be taken on board for future research: 

• The land use maps produced (chapters 2-4) can be further improved by 
using higher spatial resolution hypertemporal images. Hypertemporal NDVI 
images are available at a spatial resolution of 500 m and 250 m from 
MODIS which can be used to improve the spatial resolution of produced 
agricultural land use data. By using high resolution hypertemporal NDVI 
data the occurrence of the mixed pixels in the generated crop area maps can 
be overcome depending on the size of the fields.   

• The NDVI map can be used in the area frame sampling method to improve 
the crop statistical data. For this purpose similar-behaving groups of NDVI 
classes after unsupervised classification can function as strata for various 
related land cover/land use types. Currently, the generalized land cover 
classes present in the CORINE land cover map are used as strata for 
statistical sampling. 
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• The presented Cƒ (Water) model needs further testing for other crops and 
areas for multiple years in order to verify the results obtained and to gain 
confidence in their general applicability.  

• In the long run when other crops are included in the yield estimation 
method it is advisable to prepare sowing time and harvesting time maps at 
regional scales. This can be achieved by investigating the temporal behavior 
of relevant NDVI classes because in chapters 2 and 3 it was proven that the 
temporal behavior of NDVI match well with the crop calendars. Further, 
analyses of uncertainties that can arise should also be investigated. 
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Appendix 1 
 
1 Personal Information 
Please note that the questions marked with (*) are compulsory to be filled 
in 
Name:    Organization:  City/Town: 
Country:   Email Address: 
 
*2 Please mention your research interest/ nature of work 
Research in the field of agricultural land use mapping 
Research in the field of agricultural land use monitoring 
Research/ policy related work in government organization 
Research/ policy related work in global/regional level organization 
Research/ policy related work in an agricultural company 
Other (please specify) 
3 Do you use agricultural land use information? 

Yes  No 
4 Do you require agricultural land use maps/information, especially 
the specific crop type maps? 

Yes  No 
5 What kind of agricultural land use maps/ information do you 
require? 
Agricultural Land use maps   Specific crop type maps 
Agricultural statistical data  Primary survey data 
Other (please specify) 
 
6 What is your required update frequency of agricultural land use 
maps/information? 
One year   More than one year but less than 5 years 
More than 5 years  Other (please specify) 
 
7.    The required spatial level of detail is:  
(Please select from 7.a to 7.c) 
7.a.     If provided as aggregated data by administrative region:  
NUTS 1 (Country level)   NUTS 2 (Region/province level) 
NUTS 3 (Municipal/district level) Field level 



Appendix 

 166 

7.b.    If presented as raster maps:  
1000 m  500 m  250 m  100 m  10 m 
7.c.    If provided at the following spatial levels:  
Agro-ecological zones  Soil units  Land use zones/units 
Other (please specify) 
 
8 Which type of agricultural land use information do you use? 
Agricultural Land use maps  
Specific crop type maps 
CORINE land cover map 
Agricultural Statistics Data 
Other (please specify) 
9.    Please mention the following information about the land use maps you 
use: 
Name:   Source:   Description: 
 
10.     Update frequency (number of years) of the land use maps:  
One year  2-4 years  5 years  > 5 years 
 
11.     The spatial level of detail in these land use maps is: 
Please select from 11.a to 11.c 
11.a.     If provided as aggregated data by administrative region:  
NUTS 1 (Country level)   NUTS 2 (Region/province level) 
NUTS 3 (Municipal/district level) Field level 
11.b.    If presented as raster maps:  
1000 m  500 m  250 m  100 m  10 m 
11.c.    If provided at the following spatial levels:  
Agro-ecological zones  Soil units  Land use zones/units 
Other (please specify) 
12. Your opinion regarding aforementioned available agricultural land 
use information source(s)  
Please select one for each statement from Strongly Disagree, Disagree, 
Indifferent, Agree and Strongly Agree 
 
Their availability is not a problem 
Their updating frequency is sufficient 
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Their documentation (Meta data) is available 
Their documentation is sufficiently explained 
These differentiate required land cover/land use classes 
Their spatial level of detail is sufficient 
Other remarks about such data (please specify) 
13.    Please mention the following information about the specific crop 
maps you use: 
Name:   Source:   Description: 
14.     Update frequency (number of years) of the specific crop maps:  
One year  2-4 years  5 years  > 5 years 
15.     The spatial level of detail in these specific crop maps is: 

Please select from 15.a to 15.c 
15.a.     If provided as aggregated data by administrative region:  
NUTS 1 (Country level)   NUTS 2 (Region/province level) 
NUTS 3 (Municipal/district level) Field level 
 
15.b.    If presented as raster maps:  
1000 m  500 m  250 m  100 m  10 m 
 
15.c.    If provided at the following spatial levels:  
Agro-ecological zones  Soil units  Land use zones/units 
Others (please specify) 
 
16. Your opinion regarding aforementioned available specific crop 
maps 
Please select one for each statement from Strongly Disagree, Disagree, 
Indifferent, Agree and Strongly Agree 
 
Their availability is not a problem 
Their updating frequency is sufficient 
Their documentation (Meta data) is available 
Their documentation is sufficiently explained 
These differentiate required land cover/land use classes 
Their spatial level of detail is sufficient 
Other remarks about such data (please specify) 
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17. Your opinion regarding CORINE land cover map 
Please select one for each statement from Strongly Disagree, Disagree, 
Indifferent, Agree and Strongly Agree 
 
Its availability is not a problem 
Its updating frequency is sufficient 
Its documentation (Meta data) is available 
Its documentation is sufficiently explained 
It differentiate required land cover/land use classes 
Its spatial level of detail is sufficient 
18.    Please mention the following information about the agricultural 
statistical data you use: 
Name:                            Source:                              Description: 
19.     Update frequency (number of years) of the agricultural statistical 
data you use: 
One year  2-4 years  5 years  > 5 years 
 
20.     The spatial level of detail in these agricultural statistical data you 
use: 
20.a.     If provided as aggregated data by administrative region:  
NUTS 1 (Country level)   NUTS 2 (Region/province level) 
NUTS 3 (Municipal/district level) Field level 
20.b.    If presented as raster maps:  
1000 m  500 m  250 m  100 m  10 m 
 
20.c.    If provided at the following spatial levels:  
Agro-ecological zones  Soil units  Land use zones/units 
Other (please specify) 
 
21. Your opinion regarding aforementioned available agricultural 
statistical data you use: 
Please select one for each statement from Strongly Disagree, Disagree, 
Indifferent, Agree and Strongly Agree 
 
Their availability is not a problem 
Their updating frequency is sufficient 
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Their documentation (Meta data) is available 
Their documentation is sufficiently explained 
These differentiate required land cover/land use classes 
Their spatial level of detail is sufficient 
Other remarks about such data (please specify) 
 
22.    Please mention the following information about the primary survey 
data you use: 
Name:   Source:   Description: 
 
22.     Update frequency (number of years) of the primary survey data you 
use: 
One year  2-4 years  5 years  > 5 years 
 
23.     The spatial level of detail in these primary survey data you use: 
Please select from 23.a to 23.c 
 
23.a.     If provided as aggregated data by administrative region:  
NUTS 1 (Country level)   NUTS 2 (Region/province level) 
NUTS 3 (Municipal/district level) Field level 
23.b.    If presented as raster maps:  
1000 m  500 m  250 m  100 m  10 m 
 
24.c.    If provided at the following spatial levels:  
Agro-ecological zones  Soil units  Land use zones/units 
Other (please specify) 
 
24. Your opinion regarding aforementioned available agricultural 
statistical data you use: 
Please select one for each statement from Strongly Disagree, Disagree, 
Indifferent, Agree and Strongly Agree 
 
Their availability is not a problem   
Their updating frequency is sufficient 
Their documentation (Meta data) is available 
Their documentation is sufficiently explained 
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These differentiate required land cover/land use classes 
Their spatial level of detail is sufficient 
Other remarks about such data (please specify) 
 
25. Do you require additional data set(s) containing agricultural land 
use information? 

Yes  No 
26. What kind of agricultural land use maps/ information do you 
require? 
Agricultural Land use maps  Specific crop type maps   
Agricultural statistical data Primary survey data 
Other (please specify) 
27 What is your required update frequency of agricultural land use 
maps/information? 
One year  More than one year but less then 5 years 
More than 5 years Other (please specify) 
28.    The required spatial level of detail is:  
(Please select from 28.a to 28.c) 
28.a.     If provided as aggregated data by administrative region:  
NUTS 1 (Country level)   NUTS 2 (Region/province level) 
NUTS 3 (Municipal/district level) Field level 
28.b.    If presented as raster maps:  
1000 m  500 m  250 m  100 m  10 m 
 
28.c.    If provided at the following spatial levels:  
Agro-ecological zones  Soil units  Land use zones/units 
Other (please specify) 
29 Following is the rainfed wheat map produced by us. 
Please consult the BOX below map for details 
specify your opinion regarding this map in question 30: 
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30. Please give your opinion on the map shown above: 
 
Please specify the reason of your (dis)-agreement in the space provided at 
the end of this question 
 
It meets my required level of spatial detail 
It meets my requirement of specific land cover/ land use information 
It meets my required level of quality/ accuracy assessment 
It meets my requirement of regular update 
I would like to use the method to produce specific crop maps of my own interest 
Other (please specify) 
 
Please specify the reason of your (dis)-agreements 
 
31. Do you use yield data such as estimated or reported yield data of 
specific crops? 

Yes  No 
32. Do you use yield data such as estimated or reported yield data of 
specific crops? 

Yes  No 
33. Which type(s) of crop yield data do you require?  
Crop yield estimated by a crop growth model Agricultural statistical data 
Primary survey data 
 
34. When do you require crop yield estimates? 
At the end of harvesting Season 
One month prior to the end of harvesting   Others (please specify) 
35.    The required spatial level of detail is:  
(Please select from 35.a to 35.c) 
35.a.     If provided as aggregated data by administrative region:  
 
NUTS 1 (Country level)   NUTS 2 (Region/province level) 
NUTS 3 (Municipal/district level) Field level 
 
35.b.    If presented as raster maps:  
1000 m  500 m  250 m  100 m  10 m 
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35.c.    If provided at the following spatial levels:  
Agro-ecological zones  Soil units  Land use zones/units 
Other (please specify) 
 
Please mention what kind of crop yield estimates are available to you (For 
example the model/method used and source of this information) 
 
36.    Please mention the following information about the land use maps you 
use: 
 
Name:   Source:   Description:   
37.     Update frequency (number of years) of the land use maps:  
One year 2-4 years 5 years  > 5 years 
38.     The spatial level of detail in these land use maps is: 
Please select from38.a to 38.c 
38.a.     If provided as aggregated data by administrative region:  
NUTS 1 (Country level)   NUTS 2 (Region/province level) 
NUTS 3 (Municipal/district level) Field level 
38.b.    If presented as raster maps:  
1000 m  500 m  250 m  100 m  10 m 
39.c.    If provided at the following spatial levels:  
Agro-ecological zones  Soil units  Land use zones/units 
Other (please specify) 
40. Your opinion regarding aforementioned available yield estimates 
Please select one for each statement from Strongly Disagree, Disagree, 
Indifferent, Agree and Strongly Agree 
 
Its availability is not a problem 
Its updating frequency is sufficient 
Its documentation (Meta data) is available 
Its documentation is sufficiently explained 
Its spatial level of detail is sufficient 
It meets my required level of quality/ accuracy assessment 
41. Do you require additional crop yield data? 

Yes  No 
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characteristics Details 

Description 

It is based on a crop growth model with improved 
regional incorporating remote sensing data 
 
The model estimates actual yield as a function of 
available light, temperature, photosynthesis 
and compounded constraints reflected 
 by canopy heating. 

Data used 

Remote sensing data: MODIS LST PRODUCT 
Weather Data: Daily max. and min. temp.,  
Relative humidity, Evapotranspiration 
Crop information 
Management: seeding rate and sowing date. 

Spatial 
resolution 

It is a raster map with 1 km2 

Availability At the end of crop growing season 

Update 
frequency 

Annual 

Validation 
Validated by using actual rainfed wheat yields (322 segments of 700 
m X 700 m). The accuracy of estimated yield maps is 92%. 

 
46. Please give your opinion on the map shown above: 
 
Please specify the reason of your (dis)-agreement in the space provided at 
the end of this question 
It meets my requirement of spatial level of detail 
It meets my requirement of timely availability 
It meets my required level of quality/ accuracy assessment 
It meets my requirement of quantitative yield assessment 
I would like to use this method for my own crop and area of interest 
Please specify the reason of your (dis)-agreements 
 

Thank you for your time! 
 
Note: The questionnaire was designed in a way that only the relevant questions 
were displayed on the screen of the respondents. For this purpose, jump 
statements were used. 
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Summary 
Policy makers, responsible for food security and land use planning, need 
accurate and timely information on crop areas and production at regional level. 
Such information should be regularly updated to monitor changes in land use 
and agricultural production. The value and relevance of such information 
substantially increases when it is spatially explicit. Currently, governments and 
international organizations such as the Food and Agriculture Organization of 
the United Nations (FAO), the EUROpean STATistical Office (EUROSTAT) 
and the United States Geological Service (USGS) compile and distribute 
statistical data on crop areas and production. Such data are often tabular data 
sets pertaining to administrative units, providing area and production totals, but 
without any indication of the spatial distribution of agricultural land use in that 
unit. Consequently, such information is insufficient for monitoring of crop 
production and for food security studies.  

The objective of this study was to develop methods to quantitatively monitor 
and map crop production systems, including assessment of a prototype crop 
growth model that uses remotely sensed input data. The research had two focal 
points, namely land use mapping and crop yield estimation. We developed 
methods to generate agricultural land use maps and crop yield maps by 
combining remote sensing, Geographical Information Systems (GIS), crop 
statistical data and crop models. Hypertemporal SPOT-Vegetation (VGT) 
Sensor’s 10-day composite Normalized Difference Vegetation Index (NDVI) 
images (S10 product), at 1 km2 resolution, were used to disaggregate 
agricultural land use data in the form of crop maps showing fractions of area 
cropped by grid cell. The NDVI images were used to stratify the study areas 
(Nizamabad, India and Andalucía, Spain) in mapping units reflecting 
homogeneity in space and time. 

The classification results of SPOT-Vegetation NDVI images of Nizamabad 
showed that the study area can be stratified in 11 distinct mapping units. These 
mapping units were then related to an existing land cover map compiled from 
high resolution images, reported crop areas by sub-district, and crop calendar 
information. The existing land cover map only reports, at high spatial detail (1: 
50 000), the location of cropped fields for 1994-95. The NDVI-derived map on 
the other hand, was based on a number of images acquired between 1998 and 
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2002, and therefore reflected spatial and temporal variability. This NDVI-
derived map, after linking with crop areas and crop calendar information, 
depicts what is grown where. Thus an improved map was generated, containing 
baseline information on both land cover and land use.  

For Andalucía, the areas of the NDVI classes per municipality were correlated 
with the reported cropped areas per municipality to disaggregate the crop 
statistics. Relating statistical data on areas cropped per municipality with the 
NDVI-based unit map showed that the selected crops were significantly related 
to specific NDVI-based map units. The results were validated by using primary 
field data. These data were collected by the Spanish government from 2001 to 
2005 through grid samples of 700 m × 700 m within agricultural areas. In this 
part of the research, a properly tested methodology for preparing crop area 
maps, useful for monitoring crop performance, was developed. 

However, it was assumed that the NDVI data fully express the combined 
influences of varying soil, terrain, weather and land use conditions. This 
assumption was tested with respect to soil types and soil-geomorphological 
information. It was shown that the additional use of soil data increased the 
explained variability by only 1 %. Validity of the assumption made was also 
confirmed by applying the jack-knife procedure to establish the relative 
importance of each predictor of crop areas. The assumption that NDVI can 
serve as an indicator of the combined influences of varying spatial conditions 
was thus confirmed. 

After defining the methods of generating agricultural land use information, we 
proceeded with the evaluation of the output of a crop growth model (Cƒ-Water) 
driven by remotely sensed data that estimates actual crop yields at a 1-km2 

resolution. The evaluation was performed by (i) comparing the output of Cƒ-
Water at regional level (province) and the output of an operational crop growth 
model, CGMS (Crop Growth Monitoring System), of the European Union’s 
Monitoring Agriculture with Remote Sensing (MARS) program with published 
agricultural statistics and (ii) accuracy assessment of the output of Cƒ-Water 
using primary field data. Note that the CGMS, after time-trend adjustments, 
only reports generalized estimates of actual crop yields at NUTS-0 (country) 
level, after time-trend adjustments. The Cƒ-Water model has lower data 
requirements than CGMS which requires also soil properties and historical yield 
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data. Our results demonstrate that Cƒ-Water has a high potential to support food 
security studies; it showed excellent agreement with both primary field data and 
published statistical data. However, the model has only been applied in a single 
case study, thus before recommending the model as an operational system, more 
extensive testing is required for different crops, years and regions. 

To get an impression of the relevance of the study, the opinion of potential users 
was solicited on available land use datasets and the generated outputs of the 
thesis (crop area and yield maps). Analysis of the responses showed that the 
respondents were not satisfied with the updating frequency and the spatial level 
of detail of the land use data already available to them. On the other hand, 72% 
of the respondents were satisfied with the spatial level of detail, the type of land 
use data and the optional updating frequency of the generated crop maps. 
Responses to questions on the generated rainfed wheat yield map revealed that 
70% of the respondents were satisfied with the spatial level of detail in the yield 
map, but that they would prefer to have such information available prior to 
harvesting, whereas our method only provides yield estimates after harvesting.  
The products generated in Chapters 3-5 are of interest to potential users. They 
were keen to use the methods developed to generate of crop area maps (75%) 
and crop yield maps (70%). 

On the basis of results described in this thesis, we conclude that use of 
hypertemporal NDVI data is highly suitable to map crop areas through data-
mining of existing statistical data. Though soil data seemed relevant to explain 
the extent and location of the rainfed wheat area, the use of NDVI class areas 
rendered their use unnecessary. NDVI data can be incorporated in area frame 
sampling methods to compile more efficient and accurate statistical data on crop 
areas. Hypertemporal image analysis techniques can be used either to 
disaggregate crop statistics and map crop areas for homogenous farming 
systems (like commercial farming) or to prepare cropping pattern maps (for 
areas where mixed cropping systems prevail, such as Africa and Asia). We 
demonstrated that the crop area and crop yield maps generated in the thesis, can 
improve crop production assessments at regional scales. 
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Samenvatting 
Beleidsmakers, verantwoordelijk voor voedselzekerheid en landgebruik 
aansturing, hebben belang bij goede en tijdige informatie op regionaal niveau 
betreffende geteelde arealen en behaalde opbrengsten. Regelmatige vernieuwing 
van deze informatie ondersteunt bewaking van veranderingen in landgebruik en 
productie niveaus. De waarde en relevantie van zulke informatie neemt 
behoorlijk toe als het ruimtelijk expliciet is. Regeringen, internationale 
organisaties zoals de Food and Agriculture Organisation van de verenigde 
naties (FAO), the European Statistical Office (EUROSTAT), en de United 
States Geological Service (USGS), produceren en verspreiden momenteel 
statistische data betreffende arealen en behaalde producties. Deze zijn vaak in 
tabelvorm per administratieve eenheid maar missen de informatie waar per 
eenheid de gewassen werkelijk worden geteeld. Als gevolg zijn zulke data 
minder geschikt voor bewaking van gewasproductieniveaus, zoals nodig voor 
voedselzekerheidstudies.  

Het doel van deze studie was om methodes te ontwikkelen die kwantitatief 
gewasarealen kunnen bewaken via een cartografisch proces en om een 
prototype gewasgroeimodel te testen dat gebruikt maakt van satellietbeelden. 
Het onderzoek had twee zwaartepunten: landgebruikkartering en de raming van 
gewasopbrengsten. Bestudeerde methodes die gewas- en opbrengstkaarten 
genereren zijn ontwikkeld door gebruik te maken van satellietbeelden, 
geografische informatie systemen, gepubliceerde gewasstatistieken, en 
gewasmodellen. Geïntegreerde dagelijkse beelden (hyper-temporal) van de 
SPOT-Vegetatie  (VGT) satelliet tot 10-daagse producten (S10 product) die de 
Normalized Difference Vegetation Index (NDVI) representeren op een 1 km2 
resolutie, zijn gebruikt om landbouw statistische data in tabelvorm te splitsen 
naar een gewaskaart die per cel (1 km2) de geteelde areaal-fractie weergeeft. De 
NDVI beelden zijn gebruikt om een studiegebied (Nizamabad, India; 
Andalucia, Spanje) te stratificeren in kaarteenheden die homogeen zijn in 
ruimte en tijd. 

De classificatie resultaten van de SPOT-Vegetatie NDVI-beelden van 
Nizamabad lieten zien dat het gebied opgedeeld kon worden in 11 duidelijk 
verschillende kaarteenheden. Deze eenheden werden daarna gerelateerd aan een 
bestaande vegetatiekaart, gebaseerd op hoge-resolutie satellietbeelden, met 
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gemelde gewasareaal statistieken op sub-district basis,  en met teeltkalenders. 
De bestaande vegetatiekaart vermeldt met een hoog ruimtelijk detail (1:50.000) 
specifiek de locaties van gebruikte akkers in 1994-95, terwijl de kaart gebaseerd 
op een serie van NDVI- beelden (1998 – 2004) zowel ruimtelijke als de 
temporele variaties representeert. Na het koppelen van de NDVI kaart met de 
areaal-statistieken en de teeltkalenders, is een verbeterde kaart geproduceerd die 
bovendien aangeeft waar ieder gewas is geteeld met additionele achtergrond 
informatie t.a.v. bestaande vegetatie en landgebruik. 

De areaaldata per NDVI kaarteenheid en dorp in Andalucia zijn gecorreleerd 
met gerapporteerde statistieken per dorp en gewas betreffende het totaal geteeld 
areaal, om de statistieken te verdelen per 1 km2 cel. Deze oefening liet zien dat 
de bestudeerde gewasstatistieken significant gecorreleerd zijn met de NDVI 
kaarteenheden. De resultaten zijn bekrachtigd door gebruik te maken van 
primaire veldgegevens. Die gegevens zijn verzameld door de Spaanse overheid 
door jaarlijks (2001-05) 700x700m blokken binnen landbouwgebieden volledig 
te inventariseren. In dit deel van het onderzoek werd de methode om 
gewaskaarten te produceren verder ontwikkeld en uitvoerig statistisch getest. 

De methode is gebaseerd op de veronderstelling dat NDVI beelden volledig de 
gecombineerde verschillen in bodems, landschap, weer en landgebruik in zich 
bergen. Ten aanzien van bodems en geomorfologie is deze veronderstelling 
verder bestudeerd. Additioneel gebruik van bodem gerelateerde kaarteenheden 
verbeterde de hoeveelheid verklaarde variabiliteit door het NDVI model slechts 
met 1%. De Jack-Knife procedure, die de relatieve inbreng per parameter 
binnen het model test, bevestigde deze bevinding. NDVI kan dus gebruikt 
worden als een indicator die de gecombineerde verschillen in ruimtelijke 
condities weergeeft. 

Na het bepalen van een methode om gewaskaarten te genereren werd het 
onderzoek voortgezet met het evalueren van resultaten van een 
gewasgroeimodel (Cf-Water), dat op basis van satellietbeelden schattingen 
maakt van de reële behaalde opbrengst per 1 km2 cel. Na opschaling van de 
geschatte opbrengsten door Cf-Water naar provincie niveau zijn deze data 
vergeleken met de resultaten van het operationele model CGMS (Crop Growth 
Monitoring System) van het European Union Monitoring Agriculture with 
Remote Sensing (MARS) programma, en met gepubliceerde 
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opbrengstgegevens. Ook zijn Cf-Water resultaten vergeleken met primaire 
veldgegevens, verzameld door de Spaanse overheid. Te vermelden is dat 
CGMS, na een aanpassing via trendanalyse, slechts gegeneraliseerde 
statistieken op landniveau rapporteert. Cf-Water heeft een lagere 
gegevensbehoefte dan CGMS, waarvoor ook bodem- en historische 
opbrengstgegevens nodig zijn. De resultaten lieten de hoge potentie van Cf-
Water voor gebruik in voedselzekerheidsstudies zien; hoge correlaties met 
veldgegevens en met gepubliceerde statistieken werden gevonden. Het model is 
echter eenmalig getest en voordat het model aanbevolen kan worden voor 
operationeel gebruik zijn studies met andere gewassen, in andere jaren en 
andere gebieden nodig. 

Om een beeld te krijgen van de relevantie van dit onderzoek voor potentiële 
gebruikers, is hun mening gevraagd over momenteel beschikbare informatie en 
het nut van de in dit onderzoek geproduceerde gewas- en opbrengstkaarten. De 
gebruikers bleken niet tevreden met de updatefrequentie en met het ruimtelijk 
detail van bestaande landgebruiksinformatie, terwijl 72% van de gebruikers wel 
tevreden bleek met de in dit onderzoek geproduceerde kaarten, vooral met het 
ruimtelijke detail, het type informatie, en de potentiële updatefrequentie. Wel 
uitten 70% van de gebruikers de wens dat gewasproductiekaarten al ruim voor 
de oogst beschikbaar gesteld worden; de huidige methode heeft echter nog geen 
voorspellingsroutines. De gemaakte producten bleken interessant voor 
potentiële gebruikers; 75% wil de methode om gewaskaarten te maken 
gebruiken en 70% die van opbrengstkaarten. 

Op basis van resultaten beschreven in deze thesis is de conclusie dat het gebruik 
van hypertemporal NDVI beelden zeer geschikt is om gewaskaarten te 
produceren met hergebruik van gepubliceerde gewasstatistieken. Hoewel 
bodemkaarten verklaren waar regenafhankelijke tarweproductie plaatsvindt, 
bleek door gebruik van NDVI beelden incorporatie van deze relatie in het 
model overbodig. Gebruik van NDVI beelden voor het maken van een 
veldmeting plan (‘area frame’ design) zal de uitvoeringsefficiëntie en de 
kwaliteit van beoogde gewasareaalschattingen verbeteren. Gebruik van 
verwerkingstechnieken betreffende hypertemporal beelden kan worden ingezet 
voor het splitsen van landbouwstatistieken in tabelvorm naar een gewaskaart. 
Dit geldt zowel voor commerciële homogene landbouwgebieden als voor het in 
kaart brengen van gebieden waar een ruimtelijk en sequentieel patroon van 
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gewassen geteeld wordt. Dit laatste komt vaak voor in Azië en Afrika. Duidelijk 
is dat gebruik van verbeterde gewas- en productiekaarten, opbrengstschattingen 
op regionaal niveau ten goede komt. 
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PE&RC PhD Education Certificate  
 
With the educational activities listed below the 
PhD candidate has complied with the 
educational requirements set by the C.T. de Wit 
Graduate School for Production Ecology and 
Resource Conservation (PE&RC) which 
comprises of a minimum total of 32 ECTS (= 
22 weeks of activities)  
 
Review of literature (5.6 ECTS) 
- Review of crop monitoring capabilities (current and past and spatial crop growth 

modelling approaches 
 
Writing of project proposal (4.5 ECTS) 
- Quantitative mapping and monitoring of crop production systems 
 
Post-graduate courses (5 ECTS) 
- Learning IDL for building expert applications in ENVI; ITC (2009) 
 
Invited review of (unpublished) journal (1 ECTS) 
- Change detections using hypertemporal NDVI data; Remote Sensing of 

Environment 
 
Deficiency, refresh, brush-up courses (2.8 ECTS) 
- Principles and applications of GIS and remote sensing 
 
Competence strengthening / skills courses (5.8 ECTS)  
- Scientific writing course; ITC (2008) 
- Technical writing and editing; UT (2009) 
 
PE&RC Annual meetings, seminars and the PE&RC weekend (2.9 ECTS) 
- ITC-IPC PhD weekend (2009) 
- ITC-IPC PhD weekend (Resource person) (2010) 
- ITC PhD research day (oral and poster presentations) (2010) 
 
Discussion groups / local seminars / other scientific meetings (7.3 ECTS) 
- Biodiversity and fragmentation group discussion (NRS PhD) (2007-2011) 
- 139th “Themadag” of the NBV, Past and Future of Land Evaluation (2007) 
 
International symposia, workshops and conferences (3.4 ECTS) 
- AGRO 2010, the XIth ESA Congress (2010) 
- Presentation at the Central Offices of Consejería de Agricultura y Pesca (Ministry 

of Agriculture and Fisheries); Seville, Spain (2009) 
- Presentation at the departamento Biologia animal, Universidad de Malaga, Spain 

(Department of Animal Sciences, University of Malaga, Spain) on Hypertemporal 
image analysis and its results for Andalucía (2007) 
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