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Abstract

Applications of geological remote sensing and GIS-based spatial data integration for mineral potential
mapping are still not fully integrated in the activities of Geological Survey of Ethiopia. The area of Bikilal
Layered Gabbro Complex (BLGC) with associated apatite-magnetite-ilmenite deposits was chosen as a test area
for the application of lithologic remote sensing and predictive mapping of potentially mineralized zones. The test
area is remote and not easily accessible. It is also characterized by moderate to dense vegetation, presence of
moderate to thick soil overburden, and scarce rock outcrops, which could render lithologic remote sensing
difficult.

Landsat TM and ASTER data sets are available for testing and demonstrating usefulness of lithologic remote
sensing. A systematic procedure, to select useful multi-spectral bands for lithologic classification, was followed
and consists of the following. Spectral measurements from rock samples by PIMA (Portable Infrared Mineral
Analyzer), descriptive statistical analysis of multi-spectral data based on published lithologic map, multi-spectral
image transformations (principal component analysis and band ratioing) and multi-spectral image classification of
lithologic units.

It was found that the Landsat TM data sets provide more useful information than the ASTER data set, in
terms of lithologic remote sensing. The reason for this is that the Landsat TM data set was acquired during a
relatively dry period, while the ASTER data set was acquired during the rainy season. Based on systematic
analysis of multi-spectral image data, it was found that Landsat TM bands TM1, TM3, TM5 and TM7 and band
ratios of TM7/TM2, TM5/TM2, TM5/TM1, TM5/TM4 and TM3/TM1 are potentially useful for lithologic
remote sensing in the test area. However, using these potentially useful Landsat TM bands and band ratios in
supervised image classification for lithologic mapping resulted in poor classification accuracy.

To improve discrimination of the different lithologic units of the test area, the Landsat TM bands were fused
with digital elevation model (DEM) derived from the ASTER data set. The basis for image fusion is the
noticeable differences in terrain features of the different lithologic units. A new lithologic map was created based
on color composite images of fused potentially useful multi-spectral TM bands and DEM.

By SAM (Spectral Angle Mapper) classification of the Landsat TM bands, a mineral map was created. The
mineral map indicates predominance of hornblende in the northern parts of the test area. This information
supports interpretation of a different unit of meta-amphibole gabbro in the northern part of the test area is
depicted in the new lithologic map. The mineral map also indicates presence of hydroxyl-apatite mineral in zones
that coincide with known apatite-mineralized zones. This information also supports interpretation of prospective
gabbro units depicted in the new lithologic map of the test area. The SAM-classified map and the new lithologic
map suggest presence of undiscovered apatite-mineralized zones in the test area.

A predictive map of apatite-mineralized zones was created by using known apatite-mineralized zones as
training variable and using the published lithologic map and the Landsat TM data as sources of explanatory
variables representing recognition criteria for apatite deposits. The maps representing recognition criteria for
apatite deposits include (a) proximity to olivine gabbro units, (b) proximity to faults/fractures digitized from
published geological map and from derivative (filtered) images of Landsat TM data, and (c) TM5/TM4 band
ratios reflecting clay-rich and iron-rich soil overburden in vicinity of known apatite deposits.

Predictive modeling of apatite-mineralized zones was carried out by application of evidential belief functions
because (a) this method is appropriate to represent uncertainty in spatial data and (b) of perceivable presence of
uncertainty (in terms of accuracy) of the data sets used to represent recognition criteria for apatite deposits. The
resulting predictive map indicates that known apatite deposits coincide with predicted moderate to high potential
zones. The results also show good to very good agreement between predicted moderate to high potential zones
with the interpreted prospective gabbro in the new lithologic map and with the SAM-classified apatite pixels.
Because of this, an optimized predictive map of promising exploration targets for apatite deposits was finally
created by integrating predicted moderate to high potential zones, interpreted prospective gabbro and SAM-
classified apatite pixels. The optimized predictive map of promising exploration targets for apatite deposits can
be used, with caution, to guide further exploration of apatite deposits in the test area.

The result of the study indicates usefulness and limitations of application of remote sensing and spatial data
integration modeling to map apatite-mineralized zones in the test area. Similar techniques can be applied to other
areas with similar geologic settings.
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Lithologic Remote Sensing and Predictive Modeling of Apatite Deposit Potential, BLGC, Western Ethiopia
M.Sc. Thesis by Berhe Gebreselassie Abera

Chapter 1: Introduction

1.1. General information

1.1.1.  Mineral exploration activities of GSE

Mineral resources are important natural assets and it is a nation’s best interests to stimulate a
greater understanding of its indigenous wealth. Information on extent, quality and distribution of
potential economic mineral resources is essential for an effective and informed decision, which is
critical to meet the objectives of national socio-economic development.

To fulfill the above objectives, the Geological Survey of Ethiopia (GSE) was established in 1968
as a national institution responsible for geological mapping, ground geophysical surveys, mineral
exploration and evaluation, as well as geotechnical, hydrogeological and geothermal activities. In
addition to these, the survey collects, archives and disseminates earth science information to create
earth-resources awareness among the population. Based on these backgrounds, GSE had conducted
and continue to conduct several prospecting and exploration works to assess and locate indigenous
phosphate and iron resources in different parts of the country mainly by using conventional field
methods without the benefit of geological remote sensing methods.

1.1.2. Important mineral deposits of Ethiopia

The geological formations in Ethiopia range in age from Precambrian to Recent. The Phanerozoic
sedimentary and volcanic rocks cover much part of the central highlands, rift valley and eastern
lowlands part of Ethiopia. The Precambrian metamorphic rocks, which consist of low-grade volcano-
sedimentary metamorphic rocks and high grade gneiss and schists, outcrop only in the northern,
western and southern parts of the country. The most important economic minerals that are found in
Ethiopia can be grouped into metallic minerals, industrial minerals and energy resources.

The metallic minerals, which are hosted mainly in the Basement rocks, include various
occurrences of gold (Adola), platinum (Yubdo), rare earth elements, columbo-tantalite, copper, zinc,
iron and nickel. Base-metal indications are also present in Mesozoic sediments.

The industrial minerals such as feldspar, marble, granite, talc, graphite, kyanite, mica, kaolin and
quartz are mostly found in Precambrian rocks. The construction materials are hosted in Tertiary to
Quaternary volcanics and sediments. Chemical raw materials of salt, sulphur and potash are mainly
found in the Afar depression. Igneous phosphate, which is hosted in the Bikilal gabbroic rocks, is
associated with iron-titanium minerals and it is the most promising potential for phosphate resources.
The known reserves of apatite-magnetite-ilmenite deposits are 181Mt containing average of 3.5%
P,05 and 6 % TiO, (Consult 4 International, 2002) [11].

The energy resources, which include coal and oil shale, are also found within Cenozoic volcanics
for example, the Yayu (SW of Ethiopia) have a thickness ranging from 4 to 25 m about 121 million
tonnes of coal.

1.1.3. Importance of igneous phosphate (apatite) deposit

Some soil studies showed that most of Ethiopia’s soils are deficient in phosphorus and nitrogen
and need applications of chemical fertilizers to increase the fertility of the soils. The low fertility of
the soil, which is a major agricultural production constraint, is a problem for the existing and future
generations of this country whose economy is largely dependent on agriculture. Due to this, Ethiopia
is forced to import processed fertilizer in order to increase the demand for phosphate fertilizer in the
agriculture sector. The government of Ethiopia is doing not only to import but also to have a program
for any opportunity to assess and to develop indigenous phosphate production. One of the efforts that
have been made so far is to study the phosphate potential areas of Bikilal igneous phosphate deposit
that has a promising raw material for phosphorus based fertilizer production in Ethiopia.

Adding fertilizers to soils and/or plants that are deficient in primary plant nutrients ((N-P-K) are
vital to have a good plant growth, quality and quantity of crops. In sense of this, apatite is a mineral
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that is very important raw material source for phosphate fertilizer production. Apatite can concentrate
in different geochemical environments. In igneous complexes, apatite deposits are mainly confined to
carbonatites, some nepheline-syenite complexes, alkaline ultramafic and basic intrusive complexes.

1.2. Research problem

The key elements in mineral exploration are to gain understanding of geologic area through
lithological mapping and to assist in defining potential exploration targets prior to intensive field
exploration activities. To map bedrock and identify presence and abundance of specific diagnostic
minerals at specific scale, it is possible to use remote sensing methods. Remote sensing is an
additional tool for geologist/researchers to understand the overall lithologic and structural history of
the area and to define potential exploration targets, (Floyd F. Sabins, Jr., 1986) [32].

In Ethiopia, the lack of modern exploration methods, such as space-and airborne surveys
combined with ground surveys, cause to take more time and money for studying large arecas to
delineate promising zones for more detailed studies by ground follow-up. The lack of a clear
definition of geological features related with phosphate deposits and, consequently, the lack of a
comprehensive phosphate potential map are among the major factors that contributed to the many
years of studying limited areas for igneous phosphate exploration. There is also need to search for
new deposits in less-known areas within the gabbroic intrusives occurring in the western Precambrian
terrain. So far, all the previous studies have been done using traditional field exploration methods.
GSE, however, has difficulty in accessing remotely sensed data, and remote sensing techniques have
not been applied to explore for gabbroic-associated apatite mineralization.

The western Ethiopia Precambrian terrain constitutes several gabbroic complexes. The Bikilal
layered gabbroic complex (BLGC) is one of the most interesting gabbroic complexes hosting igneous
phosphate deposit. Unlike other prospective belts for phosphate deposit in the country, the Bikilal
terrain is less explored. Thus, in the last 15 years, the Bikilal area has been the objective of several
geological and mineral exploration studies. The aim was to produce a geological map at different
scales by using available information and in most of the cases, the exploration efforts have been
concentrated solely on known targets, whereas other zones have been practically left unexplored.
Consequently, previous works on the integration of all available geological data to map phosphate
potential of the terrain have been inadequate.

It is hypothesized that remote sensing can be useful in geological mapping and exploration for
gabbroic associated apatite-magnetite-ilmenite bearing deposits. Many common rock-forming
minerals can be detected by remote sensing because they have diagnostic spectral absorption features
in the visible-near infrared (VNIR, 0.4 to 1.0 um), short-wave infrared (SWIR, 1.0 to 2.5 um), and
thermal infrared (TIR, 8 to 12 um) regions of the electromagnetic spectrum. These features are related
to fundamental vibrational frequencies of anion groups such as SiO,, PO,, COs, and SO,, and are
diagnostic, exhibiting measurable variations such as band shifts with cation substitution that permit
mineral species identification. For example, spectral-mineral groups, which can be mapped using
Landsat TM and /or ASTER, SWIR data include carbonates, Al-OH, Fe, Mg-OH, H-O-H and Fe-
oxide groups. In addition, analysis of five ASTER bands representing thermal emittance data permits
estimation of silica content and, therefore, discrimination between siliceous, intermediate, and mafic
rocks, (Hunt and Salisbury, 1970) [33], (1973) [34], Aussois (Modane), 1988) [4]. In view of this,
predominant minerals of BLGC (e.g., olivine, clino-pyroxene (augite, diopside), ortho-pyroxene
(enstatite, hypersthene), plagioclase, amphiboles (hornblende, actinolite), magnetite, ilmenite and
apatite) are probably identifiable using ASTER and/or Landsat TM data. Therefore, from the
economic importance of the gabbro-hosted apatite deposits in agriculture sector as raw material for
making chemical fertilizer, it is envisaged to study usefulness of remote sensing techniques in
detection of gabbroic rocks that could be prospective for apatite deposits.

1.3. Research objectives
The major objective of this study is to test usefulness of remote sensing in mapping of apatite-
mineralized zones in the BLGC. To support this major objective, the research specifically aims to:
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1. To determine which bands of Landsat TM and/or ASTER data are useful for lithologic
discrimination in the Bikilal area.

2. To map the different lithologic units of the BLGC using Landsat TM and/or ASTER data.

3. To delineate unknown apatite-mineralized zones using Landsat TM and/or ASTER data.

1.4. Overall research methodology

The research will be carried out in four major phases. These are literature review phase, database

creation phase, surface characterization phase and method development phase.

1. The literature review phase consists of previous exploration works of the area, previous works
on lithologic remote sensing in similar geological settings and geological set-up of gabbroic
rocks.

2. Database creation phase is undertaken to offer an organized mechanism for storing, managing
and retrieving information using GIS operations.

3. The surface characterization phase consists:

» PIMA analysis on representative rock samples - to know the general spectral
properties of the major rocks and to select suitable bands (as suggestive information).
» Spectral (or thermal) characterization - to determine spatial variability, especially in
relation to lithology of DN-values in individual bands and/or band ratios of satellite
images - to know the mean and mean ratio DN-value.
4. The method development phase is to study and test various techniques for geological remote
sensing of various lithologic units based on the results of surface characterization phase. For example,
band rationing, principal component analysis and image -classification techniques (Maximum
likelihood, etc). The last parts of this phase is devoted to spatial data integration modeling to delineate
promising targets for further exploration of apatite deposits.
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Chapter 2: Description of Study Area and Data Sets

2.1. Location and accessibility of Ghimbi-Bikilal area

The Ghimbi-Bikilal area (Figure 2.1) is situated in Oromia National Regional State, Western
Wollega zone, Ghimbi Wereda, 441 km west of Addis Ababa. It lies between latitudes 9°320" -
9°21'06" N and longitudes 35°48'03"- 35°55'03" E. The area is accessible by a four-wheel drive
vehicle through an asphalted road of 331 km from Addis Ababa to Nekemte and a fairly all weather
road of 110 km from Nekemte to Ghimbi. The study area covers 412 km?.
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Figure 2.1: Location map of Ghimbi-Bikilal area (the whole area of the phosphate deposit)
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2.2. Physiography
2.21. Landscape and topography

The Bikilal Mountain is mainly made up of a gabbro intrusive and has a maximum altitude of
2222 meters above mean sea level (a.m.s.l.). The phosphate deposit and surrounding area lie in a
mountainous terrain at an altitude of 1400-2100 meters (a.m.s.l), with local relief as high as 500
meters. Slopes are commonly steep (15-40°), rarely gentle, and flat. The mountain slopes are
overgrown by bushes, scattered trees and elephant grass.

Distributions of outcrops in the area are irregular and vary from place to place. Most frequently,
outcrops occur along streambeds characterized by abrupt elevation changes and steep gradient, at
minor divides and in the upper part of slopes. Blocks of substratum (floats) and elluvium usually 1-3
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meters thick and occasionally reaching 11 meters cover the greater part of slopes including the ore
zone in thickness. In gentle slopes, intense weathering is common such that saprolite is observed in
pits and road cuts. There are several perennial small springs and streams draining the area. The major
ones are Jejeba and Soti rivers that bounded the study area in the eastern and western side
respectively.

2.2.2. Climate and vegetation

Climatic data can obtained from the Ghimbi weather station, which is located about 24 km south
of the phosphate deposit. The mean maximum temperature is 26.5°C (24.2°C in July to 29.1°C in
March) and the mean annual rainfall is 1320.7 mm (2.0 mm in December to 396.0 mm in August).
The driest seasons are in December to February, while the highest precipitations occur during June to
September.

The Bikilal lies at the junction of two contrasting avifauna regions, the western Ethiopian low
lands and the western highlands. The Bikilal area is situated between the Didessa lowlands to north
and the highlands of Bikilal Mountain at 2222 meters. Due to this, within the area there are faunal
mixes of lowland and highland species. The riverine forest and the tall elephant grass bush support a
wide range of species at Bikilal.

2.2.3. Human activities and land-use

The Bikilal villages cover the area of known phosphate deposits located at the northern part of the
study area and include Soji, Abo, Figa, Jire and Gerjo Villages. The inhabitants of the area are Oromo
people, who lead their life by agriculture and breeding. The estimated population of the area as of
1995 is 3417. Most of the land of the area is cultivated and some of it is used for grazing. Land status
of the area is suitable for cropping of coffee, maize, sorghum, teff and vegetables. The cropped area
covers about 2964 hectares whereas the uncropped area is about 2287 hectares, (Western Wollega
Administrative Zone Department of Agricultural Development, Landuse and Environmental
Protection team at Ghimbi).

2.3. Previous geological works
2.3.1. Regional geological set up of Ghimbi-Bikilal area

Regionally, western Wollega is underlain by Precambrian rocks composed of gneiss, low-grade
metamorphic rocks, which are further classified into metavolcano-sediments, marbles, mafic to felsic
plutons, and minor ultramafics, which are intruded by syn- to post-tectonic granite and gabbro, later
covered by Tertiary volcanics. The gabbroic plutons are mainly syn-tectonic and a few, including the
Bikilal intrusive, are late to post-tectonic intrusive (Amenti A, 1989) [2].

Based on major differences in lithology, type of mineralization and field relationships, a tentative
stratigraphic unit for Ghimbi-Bikilal area was erected from the oldest to the youngest as: biotite
and/or granitic-gneiss, meta-amphibole gabbro, apatite-iron bearing meta-amphibole gabbro, olivine
gabbro, granite, and granite and pegmatite dikes, (Efrem B., 2001) [18].

The biotite and/or granitic-gneiss occupy relatively high topography in the northern, north
eastern, central east, southeastern, southern and southwestern part of mapped area (Figure 2.2). This
unit is light gray to pinkish even dark gray in color. It varies from medium to coarse grained in texture
and shows gneissose to granoblastic in structure. It consists mainly of quartz, K-feldspar, plagioclase
and hornblende. Accessory minerals include muscovite, sphene, chlorite, zircon, epidote, garnet and
ilmenite.

The meta-amphibole gabbro outcrops and runs a considerable distance from the village of Keki
in south till the northern tip of the map area. It occupies high ridges and small hills in the northern,
north western and central part of the target area. It is black to dark gray medium to coarse grained in
fresh samples and shows reddish brown to yellowish color in weathered specimens. The major rock-
forming minerals are plagioclase and green fibrous actinolite aggregates of hornblende after pyroxene,
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showing relictic to granoblastic texture, with accessory minerals of ilmenite, apatite, chlorite, biotite,
epidote, calcite, muscovite, sericite, rutile and sphene.

The apatite-iron-bearing meta-amphibole gabbro unit is found, stretching from the village of
Keki to the northern part of the study area, as a series of small-disconnected alternating bands in a
narrow belt zone within the meta-amphibole gabbro. Apatite-iron-bearing meta-amphibole gabbro is
well pronounced in the NE part of the area shown as prospective gabbro in the geological map. It is
dark green to greenish color, generally fine to medium grained. It shows well schistosity to
granoblastic texture. It consists of hornblende, magnetite, muscovite, plagioclase, chlorite, and apatite
with minor tremolite-actinolite, quartz and biotite. Apatite-iron-bearing meta-amphibole gabbro runs
from a northeast-southwest strike direction and dipping towards northwest at 40-70° in the southern
part of the unit and to a northwest-southeast, strike direction in the northern part of the unit with a
south westerly dip angle ranging from 40°-85°.

Zeological map of Ghimbi-Bikilal area
{after Efrern B.,2001)
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Figure 2.2: Geological map of Ghimbi-Bikilal area (After Efrem B., 2001)

The olivine gabbro occupies a ridge, which is east of Ghimbi town and in the central upper half
portion of the mapped area. The olivine gabbro is dark color, medium to coarse grained composed
mainly of plagioclase (labradorite), anhedral-subhedral pyroxene (augite), anhedral olivine, flaky
biotite, and anhedral to subhedral opaque minerals. It is fresh, massive, and compact featured by local
variation in grain size and composition from place to place; that is, it is medium-coarse grained and
mafic-rich at the core with porphyritic crystals of pyroxene but is less-enriched in mafic minerals of
pyroxenes and relatively fine grained towards the outer margin.

The granite unit, which occurs in the northern part of the area, consists of small unmappable
mostly localized intrusions within the meta-amphibole gabbro unit. It is pinkish, white, light gray, fine
to coarse-grained rock consisting of K-feldspars, quartz, plagioclase, and biotite. It shows granitic
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texture under the microscope. Granite and/or aplitic dikes were observed in meta-amphibole gabbro,
with an average thickness of 0.07-0.50 m and a length of 6-8 m. Besides, pegmatite dikes were also
seen in biotite and/or granitic gneiss and meta-amphibole gabbro, with an average thickness ranging
from few centimeters to half a meter and visible length of 10-15 meters.

Even though the Bikilal layered gabbroic intrusive as a whole extends from Bikilal as far as
Ghimbi town for about 20 km south, the follow-up geological exploration works in the Soji-Gerjo
Bikilal area were carried out mainly in the mineralized portion, which forms an elliptical zone around
the olivine gabbro intrusive and measures about 12 km long and 9 km wide has been studied well. The
mineralization zone is bounded by latitude 9°14'52"N and 9°21'48"N, and longitudes 35°51'42"E and
35°54'49"E. The mineralized zone has 0.7-1.2 km width in this part of the intrusive and there are
scattered exposures of apatite-magnetite-ilmenite-bearing meta-amphibole gabbro throughout the
extent of the intrusive. This area consists of meta-sedimentary rocks, basic rocks (olivine gabbro,
meta-amphibole gabbro, anorthosite, diorite, ultrabasic rocks (apatite-magnetite-ilmenite-bearing
meta-amphibole gabbro) and granitic-gneiss. The gabbroic intrusive itself is composed of zones
(layers) of olivine gabbro at the core, leuco-gabbro (with minor anorthosite) and hornblende gabbro at
the periphery which make up the bulk of the mass. A narrow zone of repetitive lenses-like thin and
elongated horizons of meta-amphibole gabbro is intimately associated with massive and disseminated
ilmenite and magnetite at places with apatite. This zone itself shows compositional and textural
variation within it.

2.4. Mineral resources of Bikilal area

241. Iron ore deposits

The Bikilal Phosphate deposit is a complex Fe-Ti-P (phosphorus) mineralization of great regional
significance. Detailed studies of the extent and volume of the various ores revealed that the tonnage of
the iron ore deposit is 57.8 million tonnes (Mt) of indicted (C;) and inferred (C,), reserves, (EKIEP,
1988 phase II) [19]. The average grade of the total iron is 41.65% (23.29% magnetite iron), 0.36 %
P,0s, 0.77 % S, 16.72%Ti0, and 0.24%V,0s.

2.4.2. Apatite-magnetite-ilmenite deposits

The most common mineral deposits occurring in the area are apatite, magnetite-ilmenite and rare
sulfides. The type of the apatite is hydroxylfluor-apatite variety (IFDC, 1987) [28]. The apatite-
magnetite-ilmenite deposits are genetically intimately associated with the crystallization and intrusion
history of the Bikilal layered gabbro intrusive. Fe-Ti-oxide-apatite association is common to gabbroic
intrusive complex in the world. The ore deposit is syn-genetic segregated late magmatic type that is
associated with a basic magma. As a result of this, the mineralized bodies are localized and restricted
in a certain complex that is in basic petrographical zone. The mineralized rocks are composed of
amphibole, chlorite, plagioclase, apatite, ilmenite and magnetite. From textural and mineralogical
relationship point of view, beneficiation is possible by using grinding, magnetic separation and
flotation methods.

The Fe-Ti-P mineralization occurs as lenses are hosted in the meta-amphibole gabbro. The nature
of the contact between the mineralized lenses and the host rocks is not very clear. In some places, the
contacts are gradational but in some places are abrupt. The preliminary resource of apatite- magnetite-
ilmenite deposits of the Soji-Gerjo Bikilal, using results of outcrops, trenches and some core samples
from boreholes of EKIEP was estimated 127 Mt to 200 meters depth, (Sisay A.,1992) [37], later
revised as 141.09 Mt at reconnaissance stage, (Berhe G., 2001) [5]. The grade of this resource is in
the range of 3-6 % P,0s. Further detailed studies were conducted at Soji-Bikilal area, which is part of
Soji-Gerjo Bikilal that covers about 4.5 km? in order to delineate more apatite-bearing ore bodies and
finally the mineable reserves were estimated 181 Mt at 3.5% P,Os and 6.0% TiO, (Consult 4
International, 2002) [11]. The overall economic viability of this deposit has been conducted.
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2.5. Available data sets

2.5.1. Multi-spectral digital datasets

Multi-spectral datasets of ASTER (Advanced Spaceborne Thermal Emission and Reflectance
Radiometer) and Landsat TM (thematic mapper) are used in this study. The radiometric
characteristics of ASTER and Landsat TM data are given in table 2 .1.

ASTER image data set:

The ASTER instrument was launched on the Terra satellite in December 1999 as part of the
NASA Earth Observing System (EOS). It is one of five sensors on the Terra satellite and designed to
acquire repetitive, high spatial resolution, multi-spectral data from the VNIR to the TIR region, the
first time for any commercial satellite. It comprises three separate subsystems operating with three
channels in the VNIR region (with 15 m pixel resolution), six channels in the SWIR region (with 30 m
pixel resolution), and five channels in the TIR region ( with 90 m pixel resolution).

Data granules AST L1B.003:2006001688 and AST L1B.003:2015319479 (path 170 and row 54),
which were acquired in February 2002 are used in this study. These Level 1B products contain
radiometrically calibrated and geometrically co-registered data for all ASTER channels. These
products were created by applying the radiometric and geometric coefficients to the Level 1A data.
The bands have been co-registered both between and within telescopes, and the data have been
resampled to apply the geometric corrections. The Level 1B radiances are generated at 15 m, 30 m
and 90 m resolutions corresponding to the VNIR, SWIR and TIR channels respectively,
(http://ww.science.aster.ersadac.or.jp/en/about_aster/sensor/tokutyou.html), [26]. The swath width of
the ASTER imagery is 60 x 60 km.

The Landsat TM data set:

The Landsat TM is a multi-spectral scanner with seven channels. Landsat TM imagery has been
widely used for geological mapping applications. There are three basic classes of spectral information
that can be obtained information from Landsat TM imagery for geological purpose in identifying the
presence of iron bearing minerals/rocks in the visible (TM1, TM2 and TM3), hydroxyl or carbonate
groups as well as hydrous minerals in rocks/soil in the mid infrared (TMS and TM7) and the intensity
of green biomass in the near infrared (TM4). The swath width of the Landsat TM is 185 x 185 Km,
altitude 705 km and orbit type Sun-synchronous. A sub-scene of Landsat TM (path 170, row 54)
acquired 8 March 1986 was used. It has 7 bands with (TM1 to TM5 and TM7), which have a 30 m
and thermal TM6 of 60 m spatial resolutions.

Table 2-1: Radiometric characteristic of ASTER and Landsat TM bands

Regionofl | Spatial Spectral ASTER Landsat Speciral Spatial
Spectrum | Resolution | Kange (pm Bands Bands Range (pm) Kesolution
1 045052
0.52-0.60 1 2 0. 52-0.60
3 m
VIR 15 0L63-0.69 2 3 0.63-0.69
Sm
0.76-0.86 3N (nadir looking) - 0.76-0.90
’ 3b (backward-look) & 0.52-0.90 15m
1.60-1.70 + 5 1.55-1.75
21452, 185 5 A m
7 2.0B8-2.35
2.185-2.225 &
SWIR 30m
22352 285 7
2.295-2.365 &
2.360-2 430 9
B 125-8.475 10
BE.475-8.825 11
TIR 90 m 8.925.9.275 12
10.25-10.95 13
& 10.40-12.50 0 m
10.95-11.65 14
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2.5.2. Analogue data sets
Geological maps:

The geological map of Ghimbi-Bikilal area (1:50,000 scale), which has 412 km?, covers the whole
Bikilal layered gabbroic complex starting from 20 km south of Ghimbi town and extending up to 26
km north of Ghimbi town. The main rocks of the Ghimbi-Bikilal area are olivine gabbro, meta-
amphibole gabbro, the apatite-magnetite-ilmenite mineralized meta-amphibole gabbro (Efrem B.,
2001), [18] granite and granitic-gneiss. Detail geological map of Soji-Gerjo Bikilal area (1:10,000),
with 46 km? that covers the most prospective for apatite and iron in the NE part of the geological map
of Ghimbi-Bikilal area. It consists of several units of basic rocks (porphyritic and massive olivine
gabbro), meta-amphibole gabbro, leuco-gabbro and/or anorthosite, iron-ore-bearing and apatite-
bearing meta-amphibole gabbro, diorite, granitic dyke, meta-sedimentary rocks, migmatite and
granitic-gneiss.

Topographic map:

The whole area is covered by the topographic map at 1:50,000 scale, which was published by the
Ethiopian Mapping Agent in 1983. The topographic map consists of the Sayi and Ghimbi sheets
covering the northern and southern part of the study area respectively were used for georeferencing
the two images. The topographic map uses grid UTM zone 36 grid for northern hemisphere,
Projection Transverse Mercator, spheroid Clark 1880 and Datum of Andindan.

2.5.3. GIS database creation and image pre-processing

The common coordinate system used for the data sets is Bikilal, having UTM projection, zone 36
northern hemisphere, 33° Central Meridian, Scale factor of 0.9996, datum and ellipsoid of WGS84.
The two types of images were georeferenced tie point type using the points that can recognized in the
imageries and topographic map of 1:50,000 scale. Using corner pixels of images as control points,
ASTER and Landsat TM images were georeferenced in order to be used during rasterize operations,
or to create north-oriented (georeferenced) images in resampling of raster maps. The geological map
of Ghimbi-Bikilal area was digitized and rasterized. It was used as reference data for crossing
operation in statistical descriptive analysis of mean and mean ratio DN-value of the lithology units in
each band of the image, for training and validation.

The SWIR bands of ASTER image were resampled to VNIR pixel size using the bicubic
algorithm to spatial resolution of 15 m for combining or rationing with the VNIR bands in order to
obtain some geologic features from combination of these different channel domains. In the pre-
processing stage, histogram analysis of each band was done in order to know the overall DN-value
distribution of the image. The haze correction was done using dark-pixel subtraction method for each
band in order to remove additive effect of atmosphere because haze results in overall higher DN-
values that cause reduction of the contrast in an image. Since vegetation impedes observation of
spectral properties (reflectance) of underlying rocks, the vegetation effect has been masked from each
band using a threshold value of NDVI (normalized difference vegetation index) before statistical
descriptive analysis of DN-value was done for each lithology unit in each image band.
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Chapter 3: Multi-spectral Lithologic Remote Sensing

The objective of this chapter is to study whether the different lithologic units in the Ghimbi-
Bikilal area are distinguishable from each other based on remote sensing data from the visible to the
short-wave infrared region (0.5-2.5um) of the electromagnetic (EM) spectrum. These data are mostly
used in lithologic remote sensing.

3.1. Introduction

Interaction between electromagnetic (EM) radiation and the atoms and molecules that make up the
rock or minerals produces vibrational-rotational or electronic processes that create spectral features.
Reflectance spectra of minerals and rocks in the visible to short-wave infrared wavelength (0.5-
2.5um) region of the EM spectrum are characterized by absorption features caused primarily by
electronic transitions and vibrational transitions (F. van der Meer, 2002) [21]. These diagnostic
spectral features can provide a way to detect or identify minerals, to distinguish lithologic units and to
determine wall rock alteration products (Michael J. Abrams) [1] by using remote sensing.

Multi-spectral (ASTER and Landsat TM) data sets can contain information about the composition
of the rocks of the study area in terms of their spectral response in the visible to SWIR ranges of the
electromagnetic spectrum. Image processing methods are applied to multi-spectral data for
information extraction and mapping geologic features. The overall methodology of multi-spectral
remote sensing of the different lithologic units, especially the apatite-mineralized gabbroic rocks, in
the study area is shown in Figure 3.1. PIMA analysis was taken on 20 fresh rock samples that
represent the major rock types of the study area in order to have an overall picture of the spectral
characteristics and spectral separability of the rocks and it is used to select suitable bands for
classification. After image pre-processing (i.e., haze correction, masking of vegetated areas) of the
Landsat TM and ASTER data sets, a descriptive analysis of the statistics of the DN values per
lithologic unit, according to the published geologic map, is undertaken. This descriptive analytical
stage is carried out to determine which of the individual spectral bands or spectral band ratios of the
Landsat TM and ASTER data are useful in multi-spectral classification of lithologic units from the
remotely-sensed datasets. In addition to this, image transformation such as principal component
analysis (PCA) and band ratioing were also done to further determine most suitable bands for
lithologic discrimination.

3.2. PIMA analysis

3.21. The PIMA instrument

The PIMA (Portable Infrared Mineral Analyzer) is a portable infrared spectrometer, which
operates in the SWIR range of the EM spectrum for the analysis of minerals. Some of the applications
of PIMA are mineral identification, alteration mapping, remote sensing ground-truthing and lithology
mapping. The instrument measures spectra in the 1.3-2.5um wavelength regions with a 7-10 nm
spectral resolution and a 2.5 nm sample interval (Spectral International Inc. (SII) [38]. Reflectance
spectra of rock samples could be measured by PIMA in order to have an overall picture of the spectral
characteristics of surficial materials and spectral separability of lithologic units and to select areas that
are spectrally representative for different rocks that can be detected in the image data. The PIMA data
can indicate absorption features in the SWIR, which are due to stretching of bonds OH- (1400 nm,
1550 nm, 1750-1850 nm), Al-OH (2160-2220 nm), H,O (1400 and 1900 nm), Fe-OH (2230-2295 nm),
Mg-OH (2300-2360 nm), CO;5™ (2300-2350 nm) and NH, (1870 nm, 1990 nm and 2155 nm). The
mineral groups suitable for PIMA analysis are phyllosilicates (clays, chlorite and serpentine
minerals), hydroxylated silicates (epidote, amphiboles), sulphates (alunite, jarosite and gypsum),
carbonates (calcite, dolomite, ankerites and magnesite) and ammonium bearing minerals
(buddingtonite, illite). There are features that make PIMA analysis not very useful, such as broad
water bands associated with fluid inclusions and clay absorption due to weathering/alteration of
feldspathic components in the samples. There are also some very problematic minerals in mixtures
such as opaque minerals (magnetite and sulphides) finely disseminated in a sample and present in
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proportions of >5-10%. Due to this, the effect on the spectrum is to lower the reflectance and to
weaken the spectral absorption features of other minerals in sample.
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Figure 3.1: Flowchart of methodology for multi-spectral remote sensing of lithologic units in the study area

3.2.2. PIMA measurements

PIMA measurements were done on 20 fresh rock samples that represent the major lithologies in
the study area. These rock samples were collected from the field in order to have an idea about the
spectral behavior or separability of the major lithologic units. The rock samples can be classified into
two major rock groups: (1) BLGC group and (2) country rock group. The BLGC group consists of
massive olivine gabbro (MOG), porphyritic olivine gabbro (POG), apatite-magnetite-ilmenite-bearing
meta-amphibole gabbro (hbt) and meta-amphibole gabbro (AG). The country rock group consists only
of granitic-gneiss (GG). The acronyms given here refer to prefixes of rock sample labels. Each rock
sample was measured four times and a total of 80 measurements were obtained.
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Figure 3.2: (a) Spectral reflectance properties of rock samples and (b) spectral slice of the PIMA data
corresponding to litho-stratigraphic column

The results of the PIMA measurements, as shown in Figure 3.2, indicate the spectral reflectance
properties, stratigraphic column and spectral slice for 10 rock samples that represent the major rocks
of Ghimbi-Bikilal area. It is apparent that the porphyritic olivine gabbro (POG), massive olivine
gabbro (MOG), meta-amphibole gabbro (hbt) and outcrop (OC) 36 of mineralized zone showed a very
low reflectance comparing to other units.

As shown in the Figure 3.2, even though the reflectance is very low and full of noise, samples of
granitic-gneiss (GG) show absorption features at 1916 and 2350 nm. Rock samples collected from
meta-amphibole gabbro (hbt) and outcrops (OC) 34 and 36 (apatite-ilmenite-bearing meta-amphibole
gabbro) show absorption features at 1400 and 2300-2400 nm, whereas samples of porphyritic and
massive olivine gabbros (POG and MOG, respectively) show featureless absorption features within
this range. In general, rock samples of meta-amphibole gabbro (AG) show at least two types of
absorption features, one group with relatively good absorption features between 2300 to 2400 nm and
another group without clear absorption feature. Some rock samples such as sample AG15 of meta-
amphibole gabbro and olivine gabbro show similar absorption features to diorite and gabbro,
respectively, as compared with USGS igneous rock spectral library.

In general, as shown in the Figure 3.2, it is not easy to distinguish between lithologic units in the
study area based on the PIMA measurements, since it is almost noisy and featureless absorption
features may be a result of low reflectance and the presence of opaque minerals that can weaken the
spectral absorption features of other minerals in the rock samples. However, based on clear
differences in intensity of reflectance of the rock samples in the SWIR of EM spectrum, it is apparent
that the different lithologic units in the area can be spectrally separable or identifiable from each other
in multi-spectral datasets. To test this assumption, the PIMA spectral measurements were re-sampled
to the spectral band pass of Landsat TM and ASTER (Figure 3.3).
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Figure 3.3: PIMA measurements on rock samples re-sampled to band pass of (a) Landsat TM and (b) ASTER

3.2.3. Implications for usefulness of Landsat TM and ASTER spectral bands

The PIMA spectral measurements for some representative of rock samples were re-sampled to
Landsat TM and ASTER band pass as shown in the Figure 3.3 in order to determine, which spectral
bands of Landsat TM and ASTER imagery can be useful in remote sensing of the different lithologic
units in the study area. Based on PIMA spectral data re-sampled to Landsat TM band pass (Figure
3.3a), Landsat TMS and TM7, and therefore band ratio TM5/TM7, are indicated to be useful in
remote sensing of the major lithologic units in the study area. Based on PIMA spectral data re-
sampled to ASTER band pass (Figure 3.3b), ASTER bands Rb04, Rb05, Rb06, Rb08 and Rb09, and
therefore band ratios Rb04/Rb06, Rb08/Rb06, Rb04/Rb08, Rb07/Rb09 and Rb09/Rb08, are indicated
to be useful in remote sensing of the major lithologic units in the study area. These implications of the
PIMA analyses will be further studied through descriptive analysis of the DN values of lithologic
units in the available Landsat TM and ASTER imageries.

3.3. Descriptive analysis of image data
The following procedures were followed to process the multi-spectral Landsat TM and ASTER
images and to study the characteristics of the different lithologic units in the images.
e Analysis of histograms of each spectral band
e Haze correction by dark pixel subtraction method for each band
e Creation of NDVI images
o For Landsat TM: NDVI=(TM4-TM3)/(TM4+TM3)*127+128
o For ASTER: NDVI=(Band3-Band2)/(Band3+Band2)*127+128
e Analysis of NDVI images to determine a threshold value for highly vegetated areas
o For Landsat TM bands a threshold of 175 NDVI was used
o For ASTER bands a threshold of 135 NDVI was used
e Masking of highly vegetated areas in the de-hazed bands using NDVI threshold values
e Crossing raster map of published geological map with the haze and vegetation masked bands
e Determining the mean and standard deviation of DN values for each lithologic unit in images of
individual bands and band ratios
e Creating graphs of mean DN values for each lithologic unit to determine bands or band ratios that
are useful in remote sensing the different lithologic units.

3.3.1. DN values of lithologic units in Landsat TM data
Figures 3.4 and 3.5, respectively show the mean DN values for the different lithologic units in
images of single bands and band ratios of Landsat TM. In general, all lithologic units show low and
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narrow differences between the mean DN values, which are nearly below 50 in bands TM1 to TM4
(Figure 3.4). The lithologic units show wider difference in mean DN values in bands TMS5 and TM7.
The granitic-gneiss and the meta-amphibole gabbro have slightly higher mean values in TMS5 and
TMY7. In general, the mean values of TMI1 are lower compared to mean values of TM3 may be due to
strong iron absorption and reflection. The mean values of TMS5 are greater than the mean values of
TM?7, which might be due to strong clay mineral reflection and absorption. In the band ratio images,
mean DN values for TMS/TM1 and TM5/TM2 in all lithologic units are high and widely different
(Figure 3.5). The prospective gabbro has highest mean DN value in band ratio image TM5/TM2.
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Figure 3.4: Mean DN values of lithologic units in individual spectral bands of Landsat TM data
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Figure 3.5: Mean DN values of lithologic units in spectral band ratio images of Landsat TM data

3.3.2. DN values of lithologic units in ASTER data

Figures 3.6 and 3.7, respectively show the mean DN values for the different lithologic units in
images of single bands and band ratios of ASTER respectively. As shown in Figure 3.6, the granitic-
gneiss unit has higher mean DN values than the gabbroic rocks in all single bands. Most of the
lithologic units, except the granitic-gneiss, have similar mean DN values in all bands except in RbO1,
Rb02 and RbOS. The prospective gabbro has similar mean DN values with the non-prospective
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gabbros in all bands. Generally, Figure 3.6 shows that the gabbroic rocks and the granitic-gneiss are
distinguishable in the ASTER multi-spectral data.
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Figure 3.6: Mean DN values of lithologic units in individual spectral bands of ASTER data
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Figure 3.7: Mean DN values of lithologic units in spectral band ratio images of ASTER data

In regard to ASTER band ratios (Figure 3.7), Rb04/ Rb09, Rb04/Rb05, Rb06/Rb08 of ASTER
image are the possible band ratios that can be useful to discriminate the major rock types of the area.

3.3.3. Implications for multi-spectral lithologic remote sensing

Generally, as shown in the figures above, TM5, TM7, TM3, TM1 and TM3/TM1, TM5/TM1,
TM7/TM2, TM5/TM2 from Landsat TM imagery and Rb01, Rb02, Rb08, Rb04/Rb09, Rb04/Rb05,
Rb04/Rb07, Rb06/Rb0OS from ASTER imagery are potentially useful in multi-spectral classification of
the major lithologic units in the study area. The results of descriptive analysis also suggest that band
ratio images rather than individual bands of ASTER data are more useful in multi-spectral
classification of the major lithologic units in the area. All these implications from the statistical
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analyses of DN values of lithologic units in the Landsat TM and ASTER datasets will be further
tested here.

3.4. Image transformation and visualization

3.4.1. Principal components analysis of individual bands

The Principal Component Analysis (PCA) was used for lithologic feature detection from the
Landsat TM and ASTER data. PCA is a statistical method that is widely used and useful to produce
uncorrelated output bands, to segregate noise components and to reduce the dimensionality of data
sets. Since multi-spectral data bands are often highly correlated, the principal component (PC)
transformation is used to produce uncorrelated output bands, (Floyd F. Sabins, 1986 [32], (John A.
Richards, 1993) [31], (E.J.M. Carranza, 2002, [7]). This is performed by finding a new set of
orthogonal axes that have their origin at the data mean and that are rotated so that the data variance is
maximized. By using principal components analysis, most of the variance in bands of Landsat
TM/ASTER data sets can be explained in two or three components.

3.4.1.1. Principal components analysis for Landsat TM bands

The standard principal component analysis for Landsat TM bands was done using ILWIS software
for 6 TM bands excluding the thermal band TM6. The relative weights of the original bands in each
component (Table 3.1) are explained as loadings that show correlations in the data original bands.
High positive loadings, high negative loadings, and near zero loadings indicate positive correlation,
negative correlation and lack of correlation in the data in the original bands, respectively.

Table 3-1: Loadings of the different bands in each PC component for Landsat TM data

T™I T™M2 ™3 T™4 ™S5 ™7 Variance (%)
per band
PCI 0.16 0.123 0.247 0.359 0.768 0.425 96.88
PC2 0.037 0.13 0.24 0.621 0.01 20.734 1.72
PC3* 0.677 0.324 0.391 0.038 -0.472 0.245 0.94
PC4 0.051 0.142 0.504 -0.683 0335 -0.381 0.30
PC5 -0.674 0.042 0.615 0.124 20274 0276 0.15
PC6 20242 0.917 20312 20.05 0.023 0.007 0.02

N.B. * negated image

The PC1 explains 96.88 % of the total variance and has positive loadings from all bands with
highest loading in TM5 (0.768) and TM7 (0.425). The first PC is generally a weighted average of all
data and represents albedo and topography effect found in the scene (S.A. Drury, 1993) [16]. The PC2
accounts for 1.72% of the total variance and has high positive loading in TM4 (0.621), low positive
loading in TM3 (0.24) and high negative loading in TM7. The PC2 represents the effect of vegetation.

The PC3, which accounts for 0.94% of the total variance, has high positive loading in TM1
(0.677), negative loading in TMS5 (-0.472) and low positive loading in TM7 (0.245). The PC3 possibly
represent presence of clay-rich zones because of opposite signs of loadings in TMS and TM7 (Crosta,
A.P. and Rabelo A., 1993) [12]. When this component is multiplied by -1, clay zones will appear as
bright pixels in the image, because clays should have bright reflection pixels in TM5 and dark pixels
absorption in TM7 (Figure 3 .8).

The PC4 explains 0.3% of the total variance and has high positive loading in TM3 (0.504) and
very low positive loading in TM1 (0.051). This represents presence of iron-oxide zones (Crosta, A.P.
and Rabelo A., 1993) [12]. The PC4 has also positive loading in TM5 and negative loading in TM7,
which represents presence of clay zones. So PC4 possibly represents overlap between iron oxide
zones and clay zones.

The PCS5 explains 0.15% of total variance and has high negative and high positive loadings in
TM1 and TM3, respectively and this implies presence of iron oxide zones. The PC6 explains 0.02%
of the total variance, and has very high positive loading in TM2 (0.917) and low and negative loadings
for the rest bands. The PC6 probably represents zones that were masked due to high NDVI values
reflecting dense vegetation. In general, results of the PCA suggest useful bands and band ratios to be
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TMI1, TM3, TMS and TM7 and TM5/TM7, TM5/TM1, TM5/TM2, TMS5/TM3, TM5/TM4 and
TM3/TML.
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Figure 3.8: Typical reflectance spectra of Landsat TM for vegetation, iron oxides and clays (from Fraser and
Green, 1987)

To extract lithologic information from the Landsat TM data based on the results of Principal
Component Analysis (PCA), the PC3, PC4 and PC5 were selected for making a color composite
(Figure 3.9) to map zones of clay and iron oxide. The color composite image is formed by assigning
PC3 as red for clay variation, PC4 as green for iron and clay overlap zones and PC5 as blue for iron
variation. Even though the total variances of PC3, PC4 and PC5 are very low, the color composite
image PC3-4-5 (RGB) shows at least four main lithological units that can be discriminated well since
they contain high reflectance and absorption features for iron and clay variations.

210000 215000 220000

210000 215000 220000

Figure 3.9: Colour composite Landsat TM PC 3-4-5 (RGB)

The mineralogical compositions of the major rocks found in the study area based on the literature
review of the regional geological works are as follow. The olivine gabbro is composed of plagioclase,
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pyroxene, olivine, biotite and opaque minerals. The meta-amphibole gabbro is composed of mainly of
plagioclase and amphiboles (hornblende, tremolite, actinolite) and some accessory minerals such as
chlorite, epidote, muscovite, sericite and sphene. The prospective gabbro consists of meta-amphibole
gabbro and mainly the minerals are plagioclase and amphibole varieties in addition to the economic
minerals (apatite, ilmenite and magnetite). The granitic-gneiss is mainly composed of k-feldspar,
quartz, plagioclase, hornblende, micas and some epidote and chlorite.

As shown in Figure 3.9, the light blue-cyan color shows areas covered by the well exposed unit
that is mapped as olivine gabbro and part of meta-amphibole gabbro in the published geological map
and runs almost north-south direction. The purple to reddish brown color represents areas covered by
the prospective gabbro and part of meta-amphibole gabbro in north, NE and NW of the area forming
half-circle like shape surrounding the olivine gabbro unit of the northern part as shown in the
geological map of the area. The green color represents areas covered by the granitic-gneiss of the
northeastern and extreme northwestern part of the area, which is mapped as meta-amphibole gabbro.
The area covered by granitic-gneiss in south and southeastern extreme in the geological map is shown
by yellowish color. The SSW and the SSE parts of the study area that is mapped as granitic-gneiss can
be discriminated into sub-units.

3.4.1.2. Principal components analysis for ASTER bands

Similarly, principal component analysis was done for nine bands of ASTER. The relative weights
of the original bands in each component (Table 3.2) are explained as loadings that show correlation
between original bands.

Table 3-2: Loadings of the different bands in each PC component for ASTER data

Variance
RbO1 Rb02 RbO3 Rb04 RbO5 RbO 6 Rb0O7 RbO8 Rb0O9 (%) per
band
PC1 0.302 0.401 0.345 0.384 0.298 0.354 0.311 0.321 0.259 96.93
PC2 0.500 0.474 0.364 -0.131 -0.204 -0.232 -0.308 -0.347 -0.256 2.02
PC3* 0.414 0.253 -0.598 -0.561 0.080 0.076 0.130 0.208 0.144 0.71
PC4 0.277 -0.052 -0.521 0.555 0.141 0.263 -0.108 -0.313 -0.376 0.19
PC5* 0.506 -0.695 0.291 -0.223 0.202 0.246 -0.097 -0.091 0.088 0.06
PC6 0.353 -0.251 -0.030 0.238 -0.419 -0.458 0.459 0.342 -0.204 0.03

PC7 -0.166 0.044 0.181 -0.313 0.206 0.253 0.339 0.111 -0.778 0.02
PC8 -0.027 0.014 0.022 -0.050 -0.763 0.638 0.044 -0.034 0.051 0.02
PC9 -0.029 0.022 0.009 -0.075 0.038 -0.064 0.666 -0.705 0.218 0.01

N.B. * negated image

The PC1 explains 96.93 % of the total variance and has positive loadings in all bands. The PCl is
generally is a weighted average of all data and represents albedo and topography effects in the scene.

The PC2 accounts for 2.02% of the total variance and has high positive loading in Rb01, Rb02
and Rb03 and negative loadings in the rest bands. The PC2 represents differences in spectral
characteristics of surficial materials in the VNIR and in the SWIR bands.

The PC3, which explains 0.71% of the total variance, has positive loadings in Rb01 (0.414) and
RbO05 (0.080) and high negative loadings in Rb03 (-0.598) and Rb0 4 (-0.561). If PC3 is negated, the
image can show bright pixels implying presence of clay minerals.

The PC4, which accounts for 0.19% of the total variance, has high positive loading in Rb04
(0.555) and low positive loading in Rb05 as well as negative loading in Rb02 (-0.052). The PC4 also
possibly implies presence of clays as it shows high reflectance in Rb04 and low reflectance in the
other bands.

The PC5 explains 0.06% of the total variance and has positive loading in Rb01 (0.506) and
negative loading in Rb02 (-0.695). This suggests presence of iron oxides since band 2 and band 1 have
opposite signs. This component was multiplied by -1 (negating), to map iron zone as bright pixel and
this PC was used in making color composite image.
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The PC6, which accounts for 0.03% of the total variance, has positive loadings in Rb01, Rb04,
Rb07, Rb0 8 and negative loadings in Rb02, Rb03, Rb05 and Rb06. In general, PC6 possibly
represents overlap between clay and iron oxide zones (see Table 3.2).

The PC7, which accounts for 0.02% of the total variance, has low positive loadings in Rb0S5,
Rb06, Rb07 and highest negative loading in Rb09 (-0.778). The PCS8 explains 0.02% of total variance
with highest positive loadings in Rb06 (0.638) and negative loading in Rb05 (0.763). The PC9, which
explains 0.01% total variance, has highest loading in Rb07 (0.666) and low and negative loadings in
the other bands. It is difficult to interpret what PC7, PC8 and PC9 represent. In general, results of
PCA of ASTER data indicate that PC3, PC5 and PC6 can give geological information. This suggests
further that the potentially useful bands and band ratios are Rb01, Rb02, Rb04, Rb05, Rb03, Rb09,
Rb06 and Rb04/Rb05, Rb02/Rb01, Rb04/Rb03, Rb04/Rb02, Rb04/Rb06, Rb04/Rb09.

In order to extract lithologic information of the study area from the PCA of the ASTER data, the
geologically meaningful PCs were selected in terms of their indications for the presence of clay and
iron oxide in the surficial materials in the study area. Therefore, a RGB color composite image
(Figure 3.10) was created by assigning PC3 as red for clay variation, PC6 as green for clay and iron
overlaps, and PC5 as blue for iron variations. Characteristic of some alteration minerals in ASTER is
shown in Figure.11.
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Figure 3.10: Color composite of ASTER PC 3-6-5 (RGB)

As shown in Figure 3.10, the central part, which is mapped as olivine gabbro mainly composed of
iron bearing minerals (pyroxene and olivine), is clearly indicated by blue to purple pixels. The image
shows that, even though the olivine gabbro, which is mapped as one unit in the geological map, can
probably be differentiated into two sub-units. The prospective gabbro, as shown in the geological
map, is indicated by bright-pink pixels in the composite image, almost making as ring-like zone
around the olivine gabbro in the northern part of the area. The NNW extreme part of the study area,
which was mapped as meta-amphibole gabbro and granitic-gneiss separately, but in this image it is
almost similar. Areas covered by granitic-gneiss in southeastern and eastern part of the area are shown
as cyan-light-green color. The meta-amphibole gabbro, which is mapped in the central and western
part, is shown as reddish brown and it is clearly discriminated from the olivine gabbro. In general, this
PC composite image discriminates well the central part of the study area which is mapped as olivine
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gabbro, the granitic-gneiss mapped in eastern, south-eastern and south, prospective gabbro and meta-
amphibole gabbro of the central part of study area.
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Figure 3.11: Spectral of some alteration minerals showing their characteristic absorption peaks, and wavelength
intervals of Landsat ETM and ASTER bands (after Raul Pablo Andrada de Palomera, 2004; modified from
Sabins, 1999)

3.4.2. Band ratio images for Landsat TM and ASTER

The band ratio method can be used in order to enhance spectral differences between bands and to
reduce the effects of shadowing and illumination variations caused by differences in ground slope. In
band ratio, dividing one spectral band by another produces an image that provides relative band
intensities or enhances subtle difference in spectral reflectance that is a characteristic for rocks and
soils (Floyd F. Sabins, 1986) [32], (John A. Richards, 1993) [31], F. van der Meer, 2002) [21]. Three
ratio images can be combined into a color-ratio-composite (CRC) image to determine the approximate
spectral shape for each pixel's spectrum. Even though, a band ratio is simply a numerator band divided
by a denominator band, to calculate useful band ratios, the useful numerator and denominator bands
were selected based on the PIMA analysis, statistical descriptive analysis and PCA of the image
datasets.

3.4.2.1. Band ratio of Landsat TM bands
The potentially useful bands and band ratios of Landsat TM data for discrimination of the rocks in
the study area based on the PIMA analysis, statistical descriptive analysis of the mean and mean ratio
DN-value of lithology and the PCA of 6 TM bands are summarized as:
e From PIMA analysis (1.3-2.5 um)-TMS5, TM7, and TM5/TM7.
e From statistical descriptive analysis of band mean and band ratio mean DN-values of each
lithologic unit in images of individual bands and band ratios
o Single bands -TM7,TMS5 ,TM3 and TM1
o Band ratios - TM7/TM2,TM5/TM2,TM5/TM1,TM3/TM1
e From PCA of six TM bands (excluding thermal band TM6)
o Single bands - TM5,TM7, TM4, ,TM3, TM1
o Band ratios -TM5/TM7, TM3/TM4, TM5/TM4 ,TM3/TM1, TM4/TM3
= Band ratio TM5/TM7 as indicator for clay variations
= Band ratio TM3/TM1 as indicator for iron variations and the other band ratios as
indications of overlaps between iron and clay zones.
Band ratio of TM3/TM1 enhances contribution of iron minerals since reflectance and absorption
of iron occur at TM3 and TM1, respectively (S.A. Drury, 1993), [16]. In addition to this, band ratio
TMS5/TM4 can also show iron variation due to crystal field effect. The implication of TM5/TM?7 is for
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clay-rich minerals, which have high reflectance in TM5 and low value in band TM7 due to the
hydroxyl molecular bonds in minerals stretch and the resultant electronic vibration causes absorption
of energy around 2.2um.

The band ratios TMS5/TM2 and TMS/TM1 are helpful for mapping granites, (Hurtado, 2004) [24]
and to emphasize mafic igneous rocks, (Jennifer Inzana, et al., 2003) [29]. This may show the
variability of Fe in minerals/rocks having broad spectral reflectance features. For instance, the band
ratio TM5/TM2 and TM5/TM1 may enhance the spectral differences of such as minerals hydroxyl-
apatite and ilmenite, since they have a broad spectral reflectance starting from around 0.5- 2.0 um as
shown in USGS spectral library description. The broad reflections for hydroxyl-apatite suggest poor
crystallinity and/or compositional heterogeneity. The very broad spectral feature of ilmenite extending
from 0.5um into the infrared with a maximum at 2.0 um is due to crystal defects, the presence of
impurities, as well as conduction bands due to the iron and titanium extending out from the ultraviolet
into the visible, (speclab.cr.usgs.gov) [25]. The possible TM band ratios and their relative spatial
feature in the study area are displayed in the following figures for comparison (Figure 3.12). As
shown in the different band ratio images, some spatial features and surficial materials are accentuated
if the bands used are chosen to cover the peaks, absorption troughs and changes in slope on the curve
of spectral signature, (S.A. Drury, 1993) [16].

TMSTM?  TMUTMZ TM 3T TM7/ThA4

Figure 3.12: Different TM band ratios showing their spatial features in the scene
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From visual comparison of the band ratio images, the most suitable band ratio images for
lithologic mapping and delineation of known mineralized zones are TM3/TM1, TMS5/TMI,
TMS/TM2, and TM7/TM2. TM3/TM1 highlights the olivine gabbro in the central part of the area. It
also shows that the northern parts of the area are underlain by different lithology than those in the
castern and western parts the area. This inference is based on the darker spectral contrast and
smoother topographic expression of pixels in the northern parts, as compared to the brighter spectral
contrast and rougher topographic expression of pixels in the eastern and western parts of the area.
TMS/TM1 is more or less similar to TM3/TM1, but it shows that pixels of the western parts have
slightly darker contrast than the pixels in the eastern parts, which suggest that these areas are probably
underlain by different lithologies. TMS5/TM1 also accentuates the bright pixels in the known
mineralized zone. TMS5/TM2 accentuates the known mineralized zone as bright pixels and also
accentuates differences in spectral contrast and in topographic roughness of the northern parts as
compared to other parts of the area. TM7/TM2 clearly indicates the northern mineralized zones and
shows the northern parts to have brighter contrast as compared to other parts of the area. The band
ratios images considered most suitable for lithologic interpretation were then combined into two to
create color ratio composites of TM7/2-5/1-3/1 and TM7/2-5/2-3/1 (RGB) as shown in Figure 3.13a
and Figure 3.13b, respectively.
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Figure 3.13: Color composite (a) TM 7/2-5/1-3/1 (RGB) and (b) TM 7/2-5/2-3/1 (RGB)

At least three major geological features can be discriminated from the image, in Figure 3.13a, as
denoted by color variations in blue-cyan, bright yellow-orange and red-brown pixels. In Figure 3.13b,
the different major units are also explained by blue, bright yellow and dark yellow-orange pixels. The
area indicated by the bright yellow color in both images covers the spatial features of prospective
gabbro as indicated in the published geological map. The band ratio color composite images suggest
the presence of at least two lithologic groups. One group, which represents mapped units of
granite/granitic-gneiss and meta-amphibole gabbro, occupies the northernmost parts of the area. The
other group, which represents mapped units of olivine gabbro, meta-amphibole gabbro and granitic-
gneiss, occupies the other parts of the area. A third group, which represents the prospective gabbro, is
situated between the first two groups. The bright yellow to bright orange pixels, which represent the
third group, indicates enrichment in Fe-O and OH-bearing minerals or rocks or denotes areas of rock
alteration and mineralization. The band ratio color composite images show that lithological
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discrimination is enhanced in the northern part. The band ratio color composite images suggest that

the rest of the study area is covered by almost by one unit (class) except for some smaller and

different features in the extreme SSE and SE parts of the area, which were mapped previously as
granitic-gneiss in the published geological map. Generally, the results of band ratioing method for

Landsat TM data indicate the followings:

o The presence of distinct spectral features, representing major lithologic units, is detectable using
TM3/TM1, TM5/TM2, TM5/TM1 and TM7/TM2.

e The color composite image, based on TM7/TM2, TM5/TM2 (or TM5/TM1), and TM3/TM1 in
Red, Green and Blue channels, respectively, enhances mainly hydroxyl- and iron-oxide-bearing
minerals/rocks.

e Spectral anomalies of mineralized rocks are displayed in bright yellow pixels in the band ratio
color composite images (Figure 3.13).

3.4.2.2. Band ratio of ASTER bands

The potentially useful bands and band ratios of ASTER data for discrimination of the rock units in
the study area based on the PIMA analysis, statistical descriptive analysis of the mean and ratio mean
DN-values of each lithology and PCA results of 9 ASTER bands are summarized as:
=  From PIMA analysis (1.3-2.5 pm) - Rb04, Rb05, Rb06, Rb08, Rb09 and Rb04/Rb06, Rb08/Rb06,

Rb04/Rb08, Rb07/Rb09 and Rb09/Rb0S.
= From statistical descriptive analysis of band mean and band ratio mean DN-values of each

lithologic unit in images of individual bands and band ratios

o Single bands — Rb08, Rb02, Rb01

o Band ratios — Rb04/Rb05, Rb04/Rb09, Rb06/Rb08, Rb04/Rb07
=  From PCA of nine ASTER (VNIR-SWIR) bands

o Single bands — Rb01, Rb02, Rb04, Rb05, Rb06, Rb08, Rb09 , ,

o Band ratios — Rb04/Rb05, Rb04/Rb06, Rb08/Rb06, Rb04/Rb03, Rb04/Rb09, Rb04/ Rb07,

Rb02/ RbO1.

* Band ratio Rb04/Rb05 as indicator for clay variations.

* Band ratio Rb02/Rb01 as indicator for iron variation and the other band ratios as
indication overlaps between clay and iron zones.

However, the band ratio images and band ratio color composite images of the ASTER data did not
produce better results as compared to the Landsat TM data. This confirmed unseen observation of
better results from the Landsat TM single band data (Figure 3.9) as compared to the poor results of
the ASTER single band data (Figure 3.10).

3.5. Multi-spectral image classification

Image classification is a method that converts the image data to thematic data. In general, multi-
spectral classification is grouping of features, which resemble each other, and separation of unlike
ones, and finally to derive an output denoting ground cover and surface characteristics and to
recognize anomalous patterns in the image data set. In this research, a supervised type of classification
was used based on the selected potentially useful bands or band ratios. The objective of using
supervised classification process was to categorize all pixels in a digital image into five lithology
classes and from this data, finally to produce thematic map of the area.

The maximum likelihood classification (MLC) including the prior probability, were chosen over
other classifications methods to assist in the classification of overlapping signatures. This is because
MLC assigns pixels in the images to the class of highest probability and it also considers the cluster
center, shape, size and orientation (generally class variability) by calculating a statistical distance
based on the mean value and covariance matrix of the clusters (Lucas L.F. Janssen and Gerrit C.,
2001), [30].
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3.5.1. Image classification for Landsat TM bands

3.5.1.1. Image classification for each band

The Landsat TM multi-spectral data were used to perform the classification based on the spectral
pattern present within the data. Based on the implication of PIMA analysis, statistical descriptive
analysis and PCA of TM bands, the TM7, TMS5, TM3 and TM1 were used as image variables and
tested using maximum likelihood classification. Five types of classes similar to the published
geological map were used for the training sites. The main aim was to identify examples of the
information classes (lithology type) of interest in the image. Before doing classification, a sample set
was prepared with five classes consisting of 3532 training pixels. The total number of training pixels
used for granite, olivine gabbro, meta-amphibole gabbro, prospective gabbro and granitic-gneiss were
513, 810, 754, 672 and 783, respectively. The image processing software system used develops a
statistical characterization of the reflectance for each information class. This stage is often called
signature analysis and may involve developing a characterization as simple as the mean or the range
of reflectance on each bands, or as complex as detailed analyses of the mean, variances and
covariance over all bands. Once a statistical characterization has been achieved for each information
class, the image is then classified by examining the reflectance for each pixel and making a decision
about which of the signatures it resembles most (Eastman, 1995) [17].

Maximum likelihood classification (MLC) for sample sets containing image variables of TM7-
TMS5-TM1, TM7-TM3-TM1 and TM7-TM5-TM3-TM1 showed some reasonable lithological feature
patterns. In addition to these, classification using prior probability was done for these sample sets in
order to favor for some classes over other classes after creating a value column in the table having the
same domain as the sample set. The column created contains a prior probability value for each class,
in this case the area coverage (%) of each class within the area.

The classification accuracy (%) for the different classes in different image variables were
evaluated and plotted as shown in Figure 3.14. The classification accuracy is defined as the proportion
of correctly allocated training samples against miss-allocated training samples, (Ernst M. Schetselaar,
et al., 2000) [20]. As shown in Figure 3.14, using maximum likelihood classification, the granite
(GRT) and olivine gabbro (OLG) have more than 50% and 35-42% classification accuracy,
respectively for the different TM band combinations used as image variables. The prospective gabbro
(PRG) also showed more than 37% of classification accuracy. The granitic-gneiss (GGn) showed very
low classification accuracy in all image variables. The overall classification accuracy is higher in
image variable TM7-TM3-TM1 than for other image variables used.
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Figure 3.14: Classification accuracy for each lithology class using various TM band variables in MLC. (O.Acc =
overall accuracy, GRT = granite, OLG = olivine gabbro, MAG = meta-amphibole gabbro, PRG = prospective
gabbro and GGn = granitic-gneiss)

25



Chapter 3

In the prior probability classification (PPC) (Figure 3.15), the classification accuracy for meta-
amphibole gabbro (MAG) is more than 40% and prospective gabbro (PRG) is 24-28%, which is lower
than in the maximum likelihood classification. The classification accuracy for granitic-gneiss (GGn)
however, has increased as compared to the results of MLC. In general, the PPC showed a relatively
good improvement in overall classification accuracy, which is 4-7% higher than for the MLC.
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Figure 3.15: Classification accuracy (%) for each lithology class using various TM bands variable in PPC.
(O.Acc = overall accuracy, GRT = granite, OLG = olivine gabbro, MAG = meta-amphibole gabbro, PRG =
prospective gabbro and GGn = granitic-gneiss)

The classified image by MLC using input bands of TM7, TMS5, TM3 and TM1 (Figure 3.16) has a
good pattern of lithologic units with reference to the published geological map and as compared to the
other classified images. The confusion matrix result showed an overall and average classification
accuracy of 30.62% and 37.46%, respectively.
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Figure 3.16: Classified image by maximum likelihood using input bands TM1, TM3, TMS5 &TM7
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3.5.1.2. Image classification for TM band ratios

Band ratios TM5/TM7, TM7/TM2, TM5/TM1, TM5/TM2 and TM3/TM1 were selected based on
statistical descriptive analysis and PCA and used as input bands to image classification.

As shown in Figure 3.17, using MLC, the granite (GRT) and olivine gabbro (OLG) have more
than 58% classification accuracy almost for all TM band ratios used as inputs. The prospective gabbro
(PRG) showed more than 30% of classification accuracy by using as inputs TM7/2-TM5/2-TM3/1
and TM7/2-TM5/2-TM3/1, but has only 24% classification accuracy by using as inputs TMS5/7-
TMS5/1-TM3/1. The granitic-gneiss (GGn) has very low classification accuracy in all classifications.
In general, in this classification the olivine gabbro, granite and prospective gabbro have higher
classification accuracy as compared to the other lithologic units, but the overall accuracy is only about
20%.

The classified images using MLC of the TM band ratios TM7/2-TM5/2-TM3/1 and TM7/2-
TMS5/2-TM3/1 are shown in Figure 3.18a and 3.18b, respectively. These two classified images show
properly the distribution of the acidic rocks (granite/granitic-gneiss), basic rocks (olivine gabbro) and
prospective gabbro.
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Figure 3.17: Classification accuracy (%) for each lithology class using band ratios as inputs to MLC. (O.Acc =
overall accuracy, GRT = granite, OLG = olivine gabbro, MAG = meta-amphibole gabbro, PRG = prospective
gabbro and GGn = granitic-gneiss)

3.5.2. Image classification for ASTER bands

A sample set was prepared with five classes consisting of total 41857 training pixels for five
classes. The number of training pixels for granite, olivine gabbro, meta-amphibole gabbro,
prospective gabbro and granitic-gneiss were 2285, 9893, 13474, 5334 and 10871, respectively.

3.5.2.1. Image classification using each ASTER band

For image classification purpose, Rb01, Rb02, Rb03, Rb04, Rb05, Rb06, Rb08 and Rb09 were
used since these are considered the suitable bands based on the results of the statistical descriptive
analysis and PCA. The classification accuracy for each class based on MLC is shown in figure 3.19.
The olivine gabbro (OLG) has good classification accuracy relative to other units in all combinations
of input bands used in this classification. The classification accuracy for prospective gabbro (PRG) is
31% based on input bands Rb08, Rb05, Rb04, which resulted in a classified image with an overall and
average classification accuracy of 34.72% and 36.06%, respectively. The classified image (Figure
3.20) shows more distribution of olivine gabbro occupying the central part of the area. The
prospective gabbro also covers more area in the northern part of the area as compared with its smaller
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area coverage in the published geological map. The granitic-gneiss also has relatively good area
coverage.
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Figure 3.18: Classified images by MLC using input bands (a) TM 7/2-TM5/2-TM3/1 and (b) TM7/2-TM5/1-
TM3/1.
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Figure 3.19: Classification accuracy (%) for each lithology class by using ASTER bands in MLC. (O.Acc =
overall accuracy, GRT = granite, OLG = olivine gabbro, MAG = meta-amphibole gabbro, PRG = prospective

gabbro and GGn = granitic-gneiss).
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Figure 3.20: Classified image by MLC using ASTER bands Rb08, Rb05 & Rb04

3.5.2.2. Image classification using ASTER band ratios

Different band ratios of the ASTER data were used as inputs to MLC in order to create a thematic
map. However, the overall classification accuracy of all combinations of input band ratios was below
30%. The classification accuracy (Figure 3.21) for granite (GRT) is more than 90% and for olivine
gabbro (OLG) is more than 60%. The prospective gabbro (PRG) has very low classification accuracy
of less than 20%. In general, the granite and the olivine gabbro are more enhanced than other units
using band ratios as inputs to MLC.
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Figure 3.21: Classification accuracy (%) for each lithology class using ASTER band ratios in MLC. (O.Acc =
overall accuracy, GRT = granite, OLG = olivine gabbro, MAG = meta-amphibole gabbro, PRG = prospective
gabbro and GGn = granitic-gneiss)
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The classified image created from input band ratios Rb02/Rb0O1, Rb04/Rb09, Rb04/Rb02,
Rb08/Rb06 and Rb04/Rb05 (Figure 3.22) show limited spatial patterns of prospective gabbro in the
northern parts of the area. This classified image has overall and average classification accuracy of
25.60% and 40.63%, respectively.
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Figure 3.22: Classified image by MLC using input ASTER band ratios (Rb02/1, Rb04/9, Rb04/2, Rb08/6,
Rb04/5)

3.6. Discussion and conclusion

3.6.1.  Discussion

Landsat TM and ASTER satellite images having different sensor domains and with variable and
broad spectral ranges can aid in mapping surficial geological features based on the diagnostic spectral
features of minerals/rocks. Available multi-spectral data sets of Landsat TM and ASTER were tested
to map lithology and mineralized zone in the study area.

The multi-spectral lithological remote sensing in this study includes PIMA analysis of rock
samples, statistical descriptive analysis of DN-values of the lithologies in each band, and image
transformation techniques (PCA and ratioing). All these procedures helped to select bands and band
ratios that can be useful to discriminate the major lithologic units and prospective target area and
these suitable bands were used in supervised classification methods in order to create a thematic map
from image data.

Discriminating of major units and identifying the target area (prospective gabbro) from the
background was possible through PCA as shown in image combination of TM PC3-4-5 and ASTER
PC3-6-5 since they can express hidden information and relations between data sets. The PCA showed
which bands that can show clay and iron variations as well as their overlaps in the study area.

The band ratio color composite image of Red=TM7/2, Green=TM5/2 (or TMS5/1) and
Blue=TM3/TM1 and band ratios Rb02/Rb01, Rb04/Rb09, Rb04/Rb02, Rb04/Rb05 and Rb0O8/Rb06,
from ASTER, were found to be useful in enhancing the main rock groups as well as the prospective
gabbro from the background since band ratios are less correlated than the original bands and enhance
the mineralogical composition information in multi-spectral data.
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The bands and band ratios of Landsat TM that were used as inputs to maximum likelihood
classification were found to be better in identifying the prospective gabbro as compared to the ASTER
bands. The better results obtained from the Landsat TM data rather than from ASTER data is
probably due to the fact that the former data sets were acquired during relatively drier months (see
section 2.5.1).

Supervised classification with five classes was tested using the suitable bands to map the major
lithologic units in the study area. Using the confusion matrix, each image classification was tested and
their results were compared to the published geological map as ground truth map. The confusion
matrix identified the nature of the classification errors, as well as their quantities and the results of the
confusion matrix highly depend on the selection of test set pixels. The overall accuracy for all image
data used was less than 35%, which is very low. The poor results are probably due to vegetation and
soil cover, scarcity of outcrops, nearly similar spectral response of rocks, landforms of the area that
can affect the spectral property and the reliability of the published geological map.

However, the applied methods were useful in selection of optimal bands that can be useful in
spectral pattern recognition of geological features in relatively dense vegetation area for mapping not
only the major lithologic units of the area but also identifying of known mineralized zone.

3.6.2. Conclusion

e The methods used in this study based on PIMA analysis, spectral-lithology study based on
statistical descriptive analysis, and image transformation (PCA and ratioing) assisted greatly in
selecting the best bands and band ratios for lithologic remote sensing in the study area. The best
bands and band ratios selected were useful not only in mapping major lithologies in the area but
also suggest presence of clay, iron and their overlap zones in the geological set up of the area.

e In general, however, there is discrepancy between the ground truth map and the image units
mainly in terms of contacts of units found in the northern part of the area.

e The overall accuracy of the lithologic classification based on single bands or band ratios is low,
which can be due to some factors: presence of dense vegetation cover that hide the spectral
contrast, similarity in mineral composition between rock units that implies similarity in spectral
response, scarcity of outcrops, landforms of the area that can affect the spectral property and the
reliability of the published geological map.

31






Lithologic Remote Sensing and Predictive Modeling of Apatite Deposit Potential, BLGC, Western Ethiopia
M.Sc. Thesis by Berhe Gebreselassie Abera

Chapter 4: Spatial Data Integration Modeling

This chapter has four objectives. The first objective is to integrate multi-spectral bands of Landsat
TM data set, which were found to be more useful than the ASTER data set in lithologic mapping in
the study area as shown in the previous chapter, with ancillary spatial data. The concept behind this
first objective is to further enhance lithologic information by integration of multi-sensor data in order
to create a new lithological map. The second objective is to apply the Spectral Angle Mapper (SAM)
method to Landsat TM data in order to map minerals related to known apatite-mineralized zones in
the study area. The idea behind this objective is to create images of minerals of interest that could be
used to validate the newly created lithologic map, especially the interpretation of prospective gabbro
units. The third objective is to create a predictive model of apatite-mineralized zones using old
lithologic map and known apatite-mineralized zones in the study area. The idea behind this third
objective is to cross-validate remotely-sensed prospective gabbro units and SAM-derived apatite
image against predictive model of apatite-mineralized zones. The fourth objective is to integrate geo-
information from remote sensing and predictive modeling to create an optimized map of promising
targets for further exploration of apatite deposits.

4.1. Integration of multi-sensor data for lithological mapping

The objective of integrating data of different sensors is to further enhance information of interest
(Christine Pohl, 1996) [9], (Nguyen Dinh Duong, 2002) [15]. In the previous chapter, it was found
that some bands of Landsat TM data are useful in providing spectral information that allows mapping
of the different lithologic units in the study area, although with poor accuracy. From the different
derivative images from Landsat TM and/or ASTER data shown in the previous chapter (see for
example Figure 3.12), there are noticeable differences in surface morphology and roughness of areas
underlain by different lithologic units. In addition, the clear differences between mineralogical
compositions of granitic rocks and gabbroic rocks suggest that each type of rocks have different
resistance to weathering and therefore, produce different topographic features. Topographic data can
be integrated with other spectral data for perspective visualization of unknown terrain, introduction of
relief displacement into remotely sensed image to give stereo-optic viewing potential and the
correction of remotely sensed data for variable solar illumination, (S.A. Drury, 1993) [16]. For this
reason, topographic data are integrated or fused with the multi-spectral bands of Landsat TM data that
were found useful in the previous chapter. The topographic data used here are in the form of a digital
elevation model (DEM) derived from the same ASTER data sets used in the previous chapter.

41.1. Fusion of Landsat TM bands and ASTER DEM
To integrate multi-sensor images, remote sensing techniques such as pre-processing, adjusting to

common coordinate system, geocoding to common georeference in order to have the same pixel

position, fusing and visualization were applied, (Figure 4.1).

In order to integrate information of spectral features from Landsat TM and texture/pattern features
from DEM image, the Brovey Transform image fusion, which is a simple technique to merge data
from different sensors (E. Saroglu, et al.) [35], (Christine Pohl, 1996) [9] was applied. Generally, the
Brovey Transform normalize the TM bands for RGB display and multiplies the result by other data to
add the intensity or brightness component to the image, (Christine Pohl, 1996), [9]. The main steps
used to form the fusion images were:

e Selection of bands and band ratios from Landsat TM that found useful in chapter 3 to discriminate
the lithologic units of the area (in this case TM7, TM3, TM1 and band ratios TM7/2, TM5/1,
TM3/1).

e Creating of combined intensity (CI) of the selected TM bands (in case of single bands as CI=
TM7+TM3+TM1).

e Normalizing of each TM band as TM7/CI, TM3/CI, TM1/CI

e Creating of RGB image: Red= (TM7/CI)*DEM; Green= (TM3/CI)*DEM; Blue=
(TM1/C)*DEM.
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e The same procedures were applied for band ratios TM7/2, TM5/1, TM3/1.
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Figure 4.1: Flowchart of methodology for Landsat TM and DEM image fusion

4.1.2. Lithologic interpretation of fused image

To discriminate the different lithologic units found in the study area, the Landsat TM bands and
band ratios were merged with ASTER DEM image. The fused images are in the form of a color
composite (RGB) for visualization and interpretation as shown in Figure 4.2. The key elements
applied to lithologic interpretation of the fused images are spectral patterns (in terms of color
combination) and terrain features such as drainage pattern and density. These key elements for
lithological analysis were applied simultaneously or interactively to the two fused images. The
published geological map (Figure 2.2) was also consulted during lithologic interpretation of the fused
images. The lithologic map based on interpretation of the fused images is shown in Figure 4.3.

41.3. Comparison of lithologic maps

As a result of fusing of multi-sensor data, different lithologic units are enhanced. For example, the
fused image TM7-3-1 (RGB) can show differences of spectral features denoted by the dominance of
OH-Fe minerals/rocks as reddish, Fe-bearing rocks denoted by greenish pixels and at the same time,
surface roughness (for example areas mapped as meta-amphibole gabbro in the central and northern
part) are different. The elliptical to irregular shape of body mapped as olivine gabbro shows smooth
surface and the intrusion relationship of olivine gabbro with its surroundings is represented by
lenticular shape with N-S trend appearing in the central to southern part of the area. Clear lithologic
contacts marked by sharp color boundaries are enhanced in the northern part of the study area.
Similarly, the fused band ratio image TM7/2-5/1-3/1(RGB), also show areas of iron-oxide bearing
rocks in blue pixels and areas covered by hydroxylated minerals/rocks in reddish pixels and the
overlap of TM7/2 and TM5/1 in yellowish pixels with the same terrain features as mentioned earlier.
In the fused images, peculiar spectral signatures are apparent in areas mapped as prospective gabbro
in the northern part of the study area and some small pixels with similar spectral signatures are also
present within areas mapped as granitic-gneiss in the SE part of the study area. The areas mapped as
granitic-gneiss are indicated to be composed of two sub-units based on the differences in spectral-
terrain features. So combination of these interpreting elements was used to enhance the information
and to interpret the different image units of the study area. Using such technique helps for human
perception, improves the reliability and capability, and finally to discriminate the lithological
boundaries and to highlight the subtle structures that unobserved by optical data (Christine Pohl,
1996), [9].
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The new lithologic map is compared quantitatively with the published lithological map by
crossing (or overlaying) these maps to create a confusion matrix (Table 4.1) and the results were
interpreted as follows. The overall classification accuracy 1is about 68% [i.e.,
(418+55602+135844+10495+107724)/(456710)*100]. The classification accuracy for granite, olivine
gabbro, meta-amphibole gabbro, prospective gabbro and granitic-gneiss is 20%, 73%, 78%, 52% and
59%, respectively. The results are better than in the previous chapter.

Table 4-1: Confusion matrix result for new geological map versus published geological map. (Values are number
of pixels)

Published lithologic map
Granite Olivine |Meta-amphibole | Prospective Gran%tic- Total
gabbro gabbro gabbro gneiss
Granite 418 844 1262
Olivine gabbro 55602 26758 4729 16825 |103914
New Meta-amphibole gabbro (A & B) 1262 | 10728 135844 4704 50176 | 202714
lithologic Prospective gabbro 403 10091 7999 10495 8548 37536
map Granitic-gneiss (A & B) 3281 279 107724 | 111284
Total 2083 | 76421 173882 20207 184117 | 456710
Clgsmﬁcatlon accuracy (%} of 20 73 78 57 59
interpreted lithologic unit

+.

(b)

Figure 4.2: Color composite images based on (a) fusion of TM7-TM3-TM1 and ASTER DEM and (b) fusion of
TM7/2-TM5/1-TM3/1 and ASTER DEM
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F igure 4.3: The integrated and generalized remote sensing geological map of the study area

4.1.4. Validation of interpreted of prospective gabbro unit

A binary map of apatite-mineralized zones was created from the geologic map (Figure 2.2). A
binary map of interpreted prospective meta-amphibole gabbro was also created from new geological
map (Figure 4.3). The two binary maps were then crossed (or overlaid) to obtain a confusion matrix,
shown in Table 4.2, from which to estimate prediction rate of interpreted prospective gabbro in terms
of delineating apatite mineralization in the study area.

Table 4-2: Cross table for binary maps of interpreted prospective gabbro and apatite-mineralized zones. (Values
are number of pixels)

Binary map of mineralized zone
Mineralized Barren Total
Binary map of Prospective gabbro present 10495 27041 37536
interpreted Prospective gabbro absent 9712 409462 419174
prospective gabbro Total 20207 436503 456710

The overall accuracy of the interpreted prospective gabbro (in terms of prospective gabbro being
present and absent) with respect to mapped prospective gabbro is 91.9% [i.e.,
(10495+409462)/(456710)*100]. The classification accuracy of interpreted prospective gabbro with
respect to mapped prospective gabbro is 51.9% [i.e., (10495/20207)*100]. These all mean that
prediction rate of interpreted prospective gabbro lies within the range of 51.9-91.9%, which indicates
some degree of uncertainty for mineral exploration purposes. The high overall accuracy of the binary
map of interpreted prospective gabbro is mainly due to the large area mapped as non-mineralized
zone. The low classification accuracy of interpreted prospective gabbro could be due to presence of
undiscovered apatite deposits in the study area and thus not indicated in the reference map. The
validity of this latter hypothesis will be explored later (in sub-section 4.3.5) in this chapter.

4.2. Surficial Mineral Mapping
The objective of this section is to create surficial mineral map by comparing spectral data in
Landsat TM band with reference spectrum using Spectral Angle Mapper (SAM) method. The most
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common minerals found in the known mineralized zones in the study area are apatite, ilmenite,
magnetite and hornblende. The last mineral (hornblende) is the main constituent of the host rock of
the mineralization made up of the first three minerals. Reference spectrum for each of these four
minerals was selected from the USGS mineral spectral library.

4.21. Spectral Angle Mapper (SAM) method

The Spectral Angle Mapper (SAM) calculates the spectral similarity between a test reflectance
spectrum and a reference spectrum assuming the data are correctly calibrated to apparent reflectance
with dark current and path radiance removed. The spectral similarity between the test spectrum and
the reference spectrum is expressed in terms of the average angle between the two spectra (F. van der
Meer, et al., 1997) [22]. The SAM algorithm maps spectral similarity using the arccosine of the dot
products of image and reference spectra as vectors in n-dimensional space (where n is the number of
bands) and computes the spectral angle between them. The SAM formula is defined as:

n

2iphy
b=1

1 1,
b=1bb=1 b

where, r represents amplitude of the reference spectrum at band b, and i represents amplitude of the
test spectrum to be matched at band b.

The SAM classification is used because it is insensitive to gain factors (topography). It enables the
user to compare image spectra with library spectra in a fast and interactive way that allows the user to
easily adjust the lower and upper boundaries for a class and enables the user to work with training
areas if there are no library spectra available.

COS71

4.2.2. The application of SAM method on Landsat TM data

A mini-library was created for reference spectra derived from the USGS mineral spectral library
for known economic minerals (flour-apatite, hydroxyl-apatite, ilmenite, and magnetite) and gangue
mineral (hornblende) in the study area. It was tried to compare these with Landsat TM image spectra
using SAM method to create surficial mineral map of the study area. The classification threshold
minimum values used for flour-apatite, hornblende, ilmenite, magnetite and hydroxyl-apatite were
0.45, 0.18, 0.46, 0.51 and 0.27, respectively. The result of the SAM classification is shown in Figure
4.4. The presence of economic minerals (mainly hydroxyl-apatite and ilmenite) is indicated to be
mainly in the northern parts of the area. The distribution of hydroxyl-apatite more or less coincides
with the known prospective gabbro (see Figure 2.2). Hornblende is also indicated to be present mostly
in the northern parts of the area. Ilmenite is indicated to be interspersed in areas rich in hornblende.
These areas rich in ilmenite and hornblende coincide with areas interpreted to be underlain by meta-
amphibole gabbro “B” (see Figure 4.3). The mineral map, therefore, indicates differences in
composition of meta-amphibole gabbros in the northern part and in other parts of the area. The
mineral map (in terms of hornblende and ilmenite) validates interpretation of two units of meta-
amphibole gabbro based on the fused images. However, the classified hydroxyl apatite pixels will be
validated against known apatite-mineralized zones to quantify the accuracy of mineral map.

37



Chapter 4

~ Unclassitied |
Rule {hornblel.spe Hornhlenide™Mg' NMNHILS“GI
MERul¢ (ilmenite.spe [Imenite HS231.38}
Rule {flucrapa.spe Fluorapatite Wod18)
MEule {magnetiZ.spe Megnetite H378.38)
BRule (hapatitespe By dm*’ﬂ-&pahh“ Wo4e 5)'3;_

Figure 4.4: Surficial mineral map by SAM classification of Landsat TM bands

4.2.3. Validation

A binary map of apatite-mineralized zones and apatite-barren was created from the geologic map
(Figure 2.2). A binary map indicating presence-absence of hydroxyl-apatite was also created from the
SAM-classified mineral map. The two binary maps were then crossed (or overlaid) to obtain a
confusion matrix, shown in Table 4.3, from which to determine prediction rate of SAM-classified
hydroxyl-apatite in terms of delineating apatite mineralization in the area.

The overall accuracy of the mineral map (in terms of apatite being present or absent) is 94.8%
[i.e., (3170+429739)/(456710)*100]. The classification accuracy of mapped hydroxyl-apatite with
respect to known mineralized zone is 15.7% [i.e., (3170/20207)*100]. These all mean that prediction
rate of SAM-classified hydroxyl-apatite lies within the range of 15.7-94.8%, which indicates high
degree of uncertainty for mineral exploration purposes. The high overall accuracy of the binary
hydroxyl-apatite map is mainly due to the large area where apatite mineralization has not been
mapped in the field. The low classification accuracy of mapped hydroxyl-apatite could be due to (a)
presence of vegetation and/or soil cover, which inhibits remote detection of bedrock mineralogy, or
(b) presence of undiscovered apatite deposits, which are thus not indicated in the reference map. The
validity of this latter hypothesis will be explored later (in sub-section 4.3.5) in this chapter.

Table 4-3: Cross table for binary maps of SAM-classified hydroxyl-apatite and apatite-mineralized zones.
(Values are number of pixels)

Binary map of mineralized zone
Mineralized Barren Total
Binary map of Hydroxyl-apati.te present 3170 6764 9934
hydroxyl-apatite Hydroxyl-apatite absent 17037 429739 446776
Total 20207 436503 456710

4.3. Predictive mapping of potential for apatite mineralization
The objective of this section is to create a predictive map of apatite-mineralization zones in the
study area, and to compare the predictive mineralized zones with the interpreted prospective gabbro
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(Figure 4.3) and the mapped hydroxyl-apatite (Figure 4.4). The predictive map is created based on
published geological map. Because this published geological map can be considered imprecise (or
having high degree of uncertainty), based on noticeable discrepancy when compared to the images
derived from bands of Landsat TM and/or ASTER data, the predictive modeling is performed by
application of Evidential Belief Functions (EBFs). The EBFs are considered to be adequate for
representation and management of uncertainty in exploration data (An et al., 1994) [3].

4.3.1. Evidential Belief Functions method and its Implication

The Dempster-Shafer theory of evidence provides framework for estimation of EBFs (Dempster,
1967) [13]; Shafer, 1976) [36], which are integrated according to Dempster’s (1968) [14] rule of
combination. The following discussion for the application of EBF in this research is simplified and
informal, because the theoretical formalization of EBFs is very involved.

Estimation of EBFs for spatial data is always in relation to a proposition, which in this case study
is: “This location contains apatite deposits based on given spatial evidence”. The EBFs are Bel
(degree of belief), Dis (degree of disbelief), Unc (degree of uncertainty) and Pls (degree of
plausibility) (Figure 4.5). Bel and Pls represent, respectively, lower and upper probabilities that
evidence supports a proposition (Dempster, 1967) [13]. Thus, Pls is often greater than or sometimes
equal to Bel. Unc is equal to Pls—Bel and represents ignorance (or doubt) of one’s belief in the
proposition based on a given evidence. If Unc=0, then Bel/=PIs. Dis is belief that the proposition is
false based on given evidence; it is equal to 1-Pls or 1-Unc—Bel. Thus, Bel+Unc+Dis=1. However, if
Bel=0, then Dis=0 because there can be no disbelief if there is no belief; there can only be uncertainty.
Interestingly, if Unc=0, then BeltDis=1, as in probability approach. The Bel, Unc and Dis are the
EBFs used to integrate evidences according to Dempster’s rule of combination (1968).

Procedures for data-driven estimation of EBFs proposed by Chung and Fabbri (1993) [10] and An,
Moon and Bonham-Carter (1994) [3] are appropriate if locations of both mineralized and
unmineralized zones are sufficiently known. In the case when locations of mineralized zones are fairly
known but locations of “truly” unmineralized zones are insufficiently known, Carranza and Hale
(2003) [8] proposed similar but different data-driven estimation procedures, which are adapted here
and explained below.

1.0
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=
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belief JSunction
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_ Map class or value
Figure 4.5: Schematic relationships of EBFs (modified after Wright and Bonham-Carter, 1996)

Suppose an exploration area 7T consists of N(7) total number of unit cells or pixels and mineral
deposits D occur in N(D) number of pixels. Suppose further that spatial evidence maps JX;

(i=12...,n), with Cy; (j=12,.,m) classes of attributes, have been created for certain recognition
criteria. By overlaying binary map of D on each evidential map, number of Cj; pixels overlapping
with pixels containing D [i.e., N(C;\D)] and number of C; pixels not overlapping with pixels
containing D [i.e., N(C; )~-N(C;(\D )] are determined. The EBFs can then be estimated as follows.
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We..
Belcy —— CiiD )
2 WC,'J'D
j=1
N(Cy)
where Weyp = N(D)-N(C;ND) "
N(T)-N(Cy)

The numerator to estimate parameter WCij p 1s conditional probability that D exists given presence
of Cj;, which means that D occurs more (or is more present) in Cj; than would be expected due to
chance. The denominator to estimate parameter WCij p 1s conditional probability that D exists given
absence of Cj;, which means that D occurs more outside (or is more absent in) C; than would be
expected due to chance. The parameter WCij p 18, therefore, weight of Cj; in terms of D being more
present than absent as may be expected due to chance. Thus, the degree of belief for Cj; Belcl.j , as

defined in Equation 1, is relative strength of WCij p for every j” Cj; class of evidence in map X;.

Weq. 5
g - em_ o)
Z WC,']‘B
j=r -
where W,. 7 = M)
P~ N(T)=N(D)~[N(Cy)-N(C;ND)]
N(T)-N(Cy;)

The numerator to estimate parameter WC,-jB is conditional probability that D does not exist given

presence of Cj;, which means that D occurs less (or is more absent) in Cj; than would be expected

due to chance. The denominator to estimate parameter WCijB is conditional probability that D does

not exist given absence of Cj;, which means that D occurs less outside (or is more present in) Cj;

than would be expected due to chance. This means that parameter WC,-jB is weight of Cj; in terms of
D being more absent than present as may be expected due to chance. Thus, the degree of disbelief
for Cy; Disc;; , as defined in Equation 2, is relative strength of Wcl.jﬁ for every ;" Cj class of
evidence in map X;.

Equations 1 and 2 for data-driven estimation of Be/ and Dis, respectively, were developed and
demonstrated by Carranza and Hale (2003) [8] based on recommendations by (Chung and Fabbri ,
1993)[10] to take into account not only (a) spatial relationship between an evidential map layer and
target deposits but also (b) spatial relationships between classes of evidences in an evidential map
layer. Note that, if for C;; estimated Weyp =0, which means that Belc,-j =0, then the corresponding

estimated WC,-jB should be re-set to zero, even if it is not, so that the corresponding DiSCl'j =0

according to Figure 4.5. Unc and Pls can then be estimated, respectively, as:
Unc; = 1- Belcl.j —Disc 3)

Plscl.j = Belcl.j +Uncg; or Plscl.j =1—Discl.j “4)
Estimates of EBFs are usually held in attribute tables associated with spatial evidence maps X,

maps so that attribute maps of EBFs for X, can be readily created. Maps of EBFs for X, can then be
combined with maps of EBFs for X, according to Dempster’s (1968) rule of combination in order to
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generate an integrated map of EBFs. The formulas for combining maps of EBFs of two evidential
maps (X, and X, ) are the following (adopted from Wright and Bonham-Carter, 1996) [39]:

Bel y, Bely, + Bel y,Uncy, + Bel y,Uncy,

BeIX1X2 = ﬂ (5)
. Dis y, Dis x, + Dis y,Uncy., + Dis y,Uncx
DlSX]Xz — 1 2 lﬂ 2 2 1 (6)
Unc xy,Uncy,
Uncxx, = IT (7)

where S =1- Bely, Dis x, — Dis x,; Bely, is a normalizing factor to ensure that Bel + Unc + Dis =1.
Pls x, x, 1s estimated according to Equation 4. Only maps of EBFs of two spatial evidences can be

combined each time; maps of EBFs representing X5,..., X, are combined one after another by

repeated applications of Equations 5 to 7. Note however that the formulas for combining EBFs of two
spatial evidences are commutative and associative, which means that different groups or orders of
evidence combinations do not affect the final result. Final combination of maps of EBFs results in
integrated Bel, Dis, Unc and Pls for the proposition based on given spatial evidences.

4.3.2. Deposit recognition criterion and spatial data sets

The known apatite deposits and associated Fe-Ti-oxide deposits are localized in zones within the
meta-amphibole gabbro proximal to the contact with the olivine gabbro. The reason for this is that the
deposits are probably associated with a basic magma that was fractionated from an olivine gabbro-rich
composition to a hornblende-rich composition (EKIEP, 1988) [19], (Sisay A., 1992) [37]. In the study
area, the mineralized zones occur near faults/lineaments (Figure 2.2) although it is unclear if these
structures controlled the formation of apatite and Fe-Ti oxide deposits. However, similar deposits
elsewhere are known to be associated with gabbro intrusive complexes deposited along deep-seated
faults/fractures (Gross, 1995) [23]. In the field, as observed by the researcher during several
exploration campaigns there, clay-rich and iron-oxide-rich soils characterize the overburden in the
vicinity of the known apatite-magnetite-ilmenite deposits.

Based on the above discussion, the following three recognition criteria can be defined for
predictive modeling of potential for apatite mineralization:

e Proximity of olivine gabbros;
e Proximity to faults/fractures; and
e Presence of clay-rich and lateritic soils.

The first recognition criterion is represented by first extracting the olivine gabbro unit from the
published geological map, and then creating a map of distances around the olivine gabbro unit. The
second recognition criterion is represented by a map of distance to faults/fractures. The
faults/fractures used for predictive modeling were (a) digitized from the published geological map and
(b) digitized from derivative images of Landsat TM band 4 after application of directional filters to
enhance linear features (John A. Richards, 1993) [31]. The third recognition criterion is represented
by a band ratio image of TM5/TM4, because both clay minerals and iron-oxide minerals generally
have high reflectance in TMS5 and low reflectance in TM4.

4.3.3. Estimation and integration of EBFs

The values in each of the maps used to represent the deposit recognition criteria were partitioned
into a number of classes using 10-percentile intervals of the values. The classified deposit recognition
criteria maps were then crossed with binary map of known mineralized zone, to obtain the parameters
needed for the estimation of EBFs (see Equations 1 to 4) in section 4.3.1. The table below shows the
estimated EBFs for the classes of values in the maps representing the deposit recognition criteria.

Most of the pixels in the known mineralized zone occur between 0.3-2.3 km away from the
mapped olivine gabbro units. Therefore, the proximity classes of 290-1030 m, 1030-1675 m and 1675-
2255 m have higher values of Bel, lower values of Dis and lower values of Unc as compared to the
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other classes of proximity to olivine gabbro. These suggest that zones within 2.3 km from the olivine
gabbro units could be prospective for apatite deposits, if the other recognition criteria are also present.

Most of the pixels in the known mineralized zone occur within 350 m of faults/fractures.
Therefore, proximity classes up to 345 m have higher values of Bel, lower values of Dis, and lower
values of Unc as compared to other classes of proximity to faults/fractures. These suggest that zones
within 350 m of faults/fractures could be prospective for apatite deposits, if the other recognition
criteria are also present.

A high proportion of pixels in the known mineralized zone occurs in areas with the highest class
of TM5/TM4 ratio (2.945-23.5), therefore, the highest class of TM5/TM4 ratio has highest value of
Bel, lowest value of Dis, and lowest value of Unc as compared to the other classes of TM5/TM4 ratio.
These mean that areas with high TM5/TM4 ratio could be prospective to apatite deposits, if the other
recognition criteria are also present.

Table 4-4: Estimates of EBFs for classes of values in maps of deposit recognition criteria for apatite mineral
otential, Ghimbi-Bikilal

Proximity to olivine gabbro (m) N(Cy) N(C;nD) Bel Dis Unc
0 (olivine gabbro unit) 76421 0 0.0000 0.0000 1.0000
1-290 15317 99 0.0349 0.1120 0.8531
290-1030 46022 1629 0.2448 0.1085 0.6467
1030-1675 45849 2701 0.5528 0.1056 0.3416
1675-2255 45947 1123 0.1504 0.1098 0.7398
2255-2830 46080 53 0.0057 0.1128 0.8815
2830-3465 46082 37 0.0040 0.1128 0.8832
3465-4200 45995 2 0.0002 0.1129 0.8869
4200-5215 45956 52 0.0056 0.1128 0.8816
5215-8730 46063 14 0.0015 0.1129 0.8856

Proximity to faults/fractures (m) N(Cy) N(C,;nD) Bel Dis Unc
0-60 44802 966 0.1773 0.0990 0.7237
60-120 42068 811 0.1546 0.0992 0.7462
120-190 45610 908 0.1614 0.0992 0.7394
190-260 45925 993 0.1784 0.0990 0.7226
260-345 49842 794 0.1249 0.0996 0.7755
345-430 41581 544 0.0996 0.0999 0.8005
430-550 48539 381 0.0570 0.1005 0.8425
550-695 46964 141 0.0209 0.1011 0.8780
695-925 44527 60 0.0093 0.1013 0.8894
925-2470 46852 112 0.0166 0.1012 0.8822

Alteration map (TMS/TM4) N(Cy) N(Cy;nD) Bel Dis Unc
0-1.385 44836 189 0.0296 0.1009 0.8695
1.385-1.705 46684 516 0.0821 0.1001 0.8178
1.705-1.935 46293 729 0.1221 0.0996 0.7783
1.935-2.105 43853 605 0.1050 0.0998 0.7952
2.105-2.255 45674 489 0.0793 0.1002 0.8205
2.255-2.395 47728 394 0.0598 0.1005 0.8397
2.395-2.525 45322 324 0.0514 0.1006 0.8480
2.525-2.675 45876 309 0.0482 0.1006 0.8512
2.675-2.945 47104 466 0.0727 0.1003 0.8270
2.945-23.5 46362 1689 0.3498 0.0973 0.5529

In order to integrate the EBFs of the classes of values in maps representing the deposit recognition
criteria, attribute maps of Bel, Dis and Unc for the three sets of evidential data were first created
(Figures 4.6 to 4.8). Maps of integrated Bel, Dis and Unc were then derived by application of
Equation 5 to 7. A map of integrated Pls was created by addition of maps of integrated Bel and Unc
(Equation 4).

The mapped apatite-magnetite-ilmenite deposits were overlaid on the maps of integrated EBFs
(Figure 4.9). Most of the known apatite occurrences lie on areas with high degrees of Bel, low degrees
of Dis, low degrees of Unc, and high degrees of Pls. This indicates that the maps of integrated EBFs
can indicate other zones with potential for apatite mineralization in the study area.
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Figure 4.6: Maps of EBFs for classes of proximity to olivine gabbro with respect to known apatite-mineralized
zone: (a) Bel, (b) Dis, (c) Unc.
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Figure 4.9: Maps of integrated Bel, Dis, Unc and Pls. Areas in black are known apatite-magnetite-ilmenite
deposits

4.3.4. Classification and validation of potential apatite-mineralized zones

In order to map zones with potential for apatite deposits, the map of integrated Be/ was used
because high degrees of Bel relate directly to the known apatite occurrences. The map of integrated
Pls can also be used for this purpose, but it includes degree of Unc (see equation 4). The map of
integrated Bel was classified using values corresponding to 50, 75, 90 and 100 percentiles to map
zones of different degrees of potential for apatite deposits. The different degrees of potential for
apatite deposits are very low (0-50 percentile), low (50-75 percentile), moderate (75-90 percentile)
and high (90-100 percentile). The classified map of potential for apatite deposits is shown in Figure
4.10.

The classified apatite potential map (Figure 4.10) was crossed with binary map of mineralized to
estimate success rate of predictive modeling. From the resulting cross table (table 4.5), it can be
observed that the sum of pixels of mineralized zone delineated in predicted moderate to high potential
zones is 16658. This means that 82.4% of mapped mineralized zone pixels coincide with portions of
predicted moderate to high potential zones. From table 4.5, it can be also observed that the sum of
pixels of absent for mineralized zone predicted by very low to low potential zones is 338904. This
means that 77.6% of mapped barren zone pixels coincide with portions of predicted very low to low
potential zones. These all mean that success rate of predictive modeling lies in the range 77.6-82.4%,
which (a) indicates a satisfactory fit between the evidential data and training target data (i.e., known
mineralized zone) and (b) suggests usefulness of predictive apatite potential map for further
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exploration of undiscovered apatite deposits. The latter needs further verification by estimation of
prediction rate.
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Figure 4.10: Predictive map of apatite deposit potential based on integrated Be/

Table 4-5: Cross table for predictive map of apatite potential and map of known apatite-mineralized zone.
(Values are number of pixels)

Mineral potential Binary map of mineralized zones Total
classification Mineralized Barren
Very low potential 183 227970 228153
Low potential 3366 110934 114300
Moderate potential 6946 61486 68432
High potential 9712 36113 45825
Total 20207 436503 456710

The classified apatite potential map (Figure 4.10) was also crossed with a binary map of
known apatite-magnetite-ilmenite deposits (see Figure 2.2) in order to estimate prediction rate of
classified apatite potential map. From the resulting cross table (table 4.6), it can be observed that the
sum of pixels of known apatite-magnetite-ilmenite deposits present in predicted moderate to high
potential zones is 4640. This means that 80.7% of known apatite-magnetite-ilmenite deposit pixels
coincide with portion of predicted moderate to high potential zones. From table 4.6, it can be also
observed that the sum of pixels representing absence of known apatite-magnetite-ilmenite deposit
predicted by very low to low potential zones is 341383. This means that 75.7% of pixels representing
absence of known apatite-magnetite-ilmenite deposits coincide with portions of predicted very low to
low potential zones. These all mean that prediction rate of classified apatite potential map lies in the
range 75.7-80.7%, which indicates (a) satisfactory prediction of potentially apatite-mineralized zones
and (b) low degree of uncertainty of the predictive model for exploration purposes. The predictive
apatite potential can therefore be useful for further exploration of undiscovered apatite deposits in the
study area.

45



Chapter 4

Table 4-6: Cross table for map of predictive apatite potential and map of known apatite-magnetite-ilmenite
deposits. (Values are number of pixels)

Mineral potential Binary map of apatite-magnetite-ilmenite deposits
. . : — - - - — - - Total
classification Apatite-magnetite-ilmenite deposits present | Apatite-magnetite-ilmenite deposit absent
Very low potential 154 227999 228153
Low potential 916 113384 114300
Moderate potential 1755 66677 68432
High potential 2885 42940 45825
Total 5710 451000 456710

Because of satisfactory success and prediction rates of classified apatite potential map, it can be
used to further cross-validate the interpreted prospective gabbro (Figure 4.3) and the mapped of
hydroxyl-apatite by SAM method (Figure 4.4).

4.3.5. Cross validation of remotely-sensed information with predictive model

The binary map of interpreted prospective gabbro, created from the new lithologic map (Figure
4.3), was crossed with the classified predictive map shown in Figure 4.10. From the resulting cross
table shown in table 4.7, sum of pixels of interpreted prospective gabbro in predicted moderate to high
potential zones is 22997. This means that at least 61.3% interpreted prospective gabbro pixels
coincide with portions of predicted moderate to high potential zones. From table 4.7, the sum of pixels
of interpreted non-prospective gabbro in predicted very low to low potential zones is 327914. This
means that at least 78.2% interpreted non-prospective gabbro coincide with portions of predicted very
low to low potential zones. These all mean that there is good agreement (61.3-78.2%) between the
new lithologic map (in terms of interpreted prospective gabbro) and the predictive map of apatite
potential. In addition, the cross-validation result suggests that interpreted prospective gabbro unit can
be useful to guide further exploration for undiscovered apatite deposits in the study area.

Table 4-7: Cross table for map of predicted of apatite potential and map of interpreted prospective gabbro.
(Values are number of pixels)

Classification Prospective gabbro present Prospective gabbro absent Total
Very low potential 7429 220724 228153
Low potential 7110 107190 114300
Moderate potential 14933 53499 68432
High potential 8064 37761 45825
Total 37536 419174 456710

The binary map indicating presence-absence of hydroxyl-apatite, created from the SAM-classified
mineral map (Figure 4.4), was also crossed with the classified predictive map shown in Figure 4.10.
From the resulting cross table shown in table 4.8, the sum of pixels of mapped hydroxyl-apatite in
predicted moderate to high potential zones is 9370. This means that at least 94.3% of mapped
hydroxyl-apatite pixels coincide with portions of predicted moderate to high potential zones. From
table 4.8, the sum of mapped non-hydroxyl-apatite pixels in predicted very low to low potential zones
is 341889. This means that at least 76.5% of mapped non-hydroxyl-apatite pixels coincide with
predicted very low to low potential zones. These all mean that there is good agreement (76-94%)
between binary map of remotely-sensed hydroxyl-apatite and predictive map of apatite potential. In
addition, the cross-validation result suggests that the SAM-classified pixels can be useful to guide
further exploration for undiscovered apatite deposits in the study area.

Table 4-8: Cross table for map of predicted apatite potential and map of SAM-classified hydroxyl-apatite.
(Values are number of pixels)

Classification Hydroxyl-apatite present Hydroxyl-apatite absent Total
Very low potential 244 227909 228153
Low potential 320 113980 114300
Moderate potential 6441 61991 68432
High potential 2929 42896 45825
Total 9934 446776 456710
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4.3.6. Optimization of a predictive map for promising exploration targets

Because high proportions of interpreted prospective gabbro and SAM-classified hydroxyl-apatite
pixels coincide with predicted moderate to high potential zones, these three sets of geo-information
can be integrated to derive an optimized predictive map of promising exploration targets for apatite
deposits. The following steps were undertaken to derive an optimized predictive map of promising
exploration targets for apatite deposits.

Classified predictive map of apatite potential (Figure 4.10) was further classified into a binary
value map by assigning a score (Sp) of 1 to moderate to high potential zones and assigning a score (S5)
of 0 to low to very low potential zones. The other binary thematic maps were also converted to binary
value maps. Map of unit of interpreted prospective gabbro was given a score (Sp) of 1, whereas other
map units were given a score (S,) of 0. Pixels of SAM-classified hydroxyl-apatite were given a score
(Sp) of 1, whereas other SAM-classified pixels were given a score (S;) of 0. Each of the three binary
score (S,) maps were then assigned weights (/,,) equal to average prediction rate of the corresponding
maps from which the binary score maps were created. For the binary score (S,) map of interpreted
prospective gabbro, the weight (W,,) assigned is 0.719 (i.e., average of prediction rate range of 51.9-
91.9%; see section 4.1.4). For the binary score (S,) map of SAM-classified hydroxyl-apatite, the
weight (W,,) assigned is 0.5525 (i.e., average of prediction rate range of 15.7-94.8%; see section
4.2.3). For the binary score (S,) map of predicted apatite potential, the weight (#,,) assigned is 0.782
(i.e., average of prediction rate range of 75.7-80.7%; see section 4.3.4). The weighted binary score
maps are integrated through a simple index overlay model, to derive exploration target scores (S)),
which range from 0 to 1, according to the following formula (after Bonham-Carter, 1994)[6]:

_ Z(beWm) )
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2 W
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The output target score map was then classified as follows. Zones with S, <0.333 were considered
“poor” exploration targets. Zones with S, of 0.333-0.666 were considered “good” exploration targets.
Zones with S, > 0.666 were considered “very good” exploration targets. Figure 4.11 shows the
optimized predictive map of promising exploration targets for apatite deposits.

The prediction rate of the optimized predictive map of promising exploration targets was
estimated by crossing it with the binary map of known apatite-magnetite ilmenite deposits. The
resulting cross table is shown in Table 4.9. Considering map units classified as “good” and “very
good” targets as one map unit, the overall classification accuracy of the optimized predictive map is
72.7% [i.e., (2386+2629+327219)/(456710)*100]. The classification accuracy of “good” and “very
good” targets is 87.8% [i.e., (2386+2629)/(5710)*100]. The classification accuracy of “poor” targets
is 72.6% [i.e., (327219)/(45100)*100]. The prediction rate of the optimized predictive map of
promising exploration targets lies in the range of 72.6-87.8%, or probably an average prediction rate
of 80.2%. Integration of the remotely-sensed information with the geo-information from the predictive
modeling results in an optimized predictive map of promising exploration targets with an increased
prediction rate, from an average of 78.2% to an average of 80.2%. Based on this good prediction rate,
the optimized predictive map of promising exploration targets for apatite deposits could be used in
guiding further exploration for apatite deposits in the study area. In particular, many portions of zones
classified as “very good” targets that do not coincide with known apatite deposits warrant further field
ground-truthing.
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Figure 4.11: Optimized predictive map of promising exploration targets for apatite deposits

Table 4-9: Cross table for optimized predictive map of exploration targets and map of known apatite-magnetite-
ilmenite deposits. (Values are number of pixels)

Classification | Apatite-magnetite-ilmenite deposits present | Apatite-magnetite-ilmenite deposit absent Total
Poor targets 695 327219 327914
Good targets 2386 103413 105799

Very good targets 2629 20368 22997
Total 5710 451000 456710

4.4. Discussion and conclusion

441. Discussion

In the fused images as shown in Fig 4.2a & b, the BLGC of the area is expressed by variation in
color (tone, texture) and terrain features (roughness, drainage density and pattern). The distinguishing
features for unit2, which is mapped as olivine gabbro in the published geological map that covers the
central and northern part of BLGC, are its shape and structural relationship with rocks, which it
intrude is clearly observed. The olivine gabbro unit occurs as elliptical body with relatively smooth
terrain and sub-parallel drainage patterns. Other units of the olivine gabbro intrusion are present in
southern parts of the area as narrow and long vertical dyke-like bodies running in almost N-S
direction. The area underlain by image unit3, is shown by rough (rugged) surface and dense drainage
pattern, which is different from the northern part (unit4), which is mapped as the same unit as meta-
amphibole gabbro as shown in the published geological map. Similarly, the unit7 and unit6, which
were mapped as granitic-gneiss underlain in south, SE and eastern part of the area, showed different
spectral signatures, surface roughness (rugged) and drainage patterns. The previously mapped areas of
granitic-gneiss can be discriminated from the meta-amphibole gabbro and the olivine gabbro and can
be divided into two sub-units based on the fused images.

The band ratio images TM7/2, TM5/1, TM3/1 fused with DEM image as shown in Figure 4.2b
shows areas of alteration and mineralization associated with hydroxyl and iron variations. In general,
fusing of multi-sensor satellite data sets is found to be useful in this study, because the various
lithologic units including the prospective gabbro are fairly distinct from each other due to their
spectral signatures and topographic features, which are together vital for lithologic mapping.
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The selected common minerals used as reference in SAM classification method are generally
distributed in the northern part of the study area and cover some part of the known prospective gabbro
as indicated in the published geological map. The result of SAM classification indicates presence of
hornblende and ilmenite in unit4 as shown in the interpreted geological map (Figure 4.3), whereas this
unit was mapped mostly as granitic-gneiss as shown in the published geological map (Figure 2.2). The
result of SAM classification also confirms presence hydroxyl-apatite, which consists with known type
of apatite in the area (IFDC, 1987) [28]. But the interesting thing is the mineral map shows the
occurrence of apatite with similar spatial pattern with prospective gabbro and areas enhanced well by
band ratio combination TM7/2-TM5/1 (or TM5/2)-TM3/1 (RGB).

The application of evidential belief functions to mapping of apatite mineral potential in the study
area showed importance of spatial evidences such as TM5/4 ratios (representing clay-rich and iron-
rich soil), and proximity to olivine gabbro and to faults/fractures. The Dempster’s rule of combination
also helped to integrate the selected evidential data to create final evidential belief functions. Based
on this, final belief, disbelief, uncertainty and plausibility maps were created for the study area. From
the map of integrated Bel, predictive apatite deposit potential map was created. Finally, an optimized
predictive map of promising exploration targets for apatite deposits was created from the combination
of interpreted prospective gabbro, SAM-classified hydroxyl-apatite and predictive potential map.

44.2. Conclusion

e Merging data sets of spectral reflectance (characteristic of materials) and of topographic
information served to enhance geological features and facilitates mapping of the lithologic units in
the study area.

e ASTER DEM data was useful to enhance structural and terrain features that can assist in
geological mapping. Information variation in texture and surface roughness are important in areas
or objects having similar spectral characteristics.

e Using SAM method, the reference spectrum was compared with image spectrum and finally, the
distributions of the most common minerals were identified. The importance of SAM methods here
is twofold, one is in identifying the most economic minerals and secondly the possibility in
discriminating lithologic units, which were mapped previously as one unit. This shows that the
SAM method in Landsat TM data can be helpful in geological mapping and targeting potential
areas for mineral exploration.

e The potential map created by EBFs was crossed with SAM-classified apatite occurrence map and
interpreted prospective gabbro for validation. High proportions of the mapped apatite and
interpreted prospective gabbro lie within the moderate to high potential classes of predictive map.
Therefore, to derive an optimized predictive model, binary maps of interpreted prospective
gabbro, SAM-classified hydroxyl-apatite and predictive potential map were integrated through a
simple index overlay technique.

e Resulting optimized predictive map of promising exploration targets for apatite deposits has an
estimated average prediction rate of 80.2%. It could be useful in guiding further exploration for
apatite deposits in the study area.

e In general, the different methods applied in this study helped to extract, to compare and to
integrate the geological information and finally to create a new geological map and an optimized
predictive map of new exploration targets for apatite deposit in the study area.
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Chapter 5: Overall Conclusions and Recommendations

5.1. Conclusions

The application of remote sensing and spatial data integration modeling with optimal methods as
applied in this study, were useful in lithologic mapping even though the area is characterized by
less spectrally separable surficial geological features due to similarity in rock composition,
presence of dense vegetation and soil cover.

PIMA analysis, descriptive analysis of image data, and image transformation were altogether
useful in selection of multi-spectral bands or band ratios that can be very useful in lithologic
mapping in the study area.

The overall accuracy of multi-spectral image classification for lithologic mapping is very low.
This may be due to vegetation and soil cover, similarity in mineral composition of the lithologic
units, landforms of the area that can affect the spectral property, scarcity of outcrops and
reliability of the published geological map.

Fusion of multi-spectral data with digital elevation data was useful in enhancing the different
lithologic units in the study area. The method allowed creation of new lithological map.

Satellite imagery data, processed by appropriate methods, as used here are useful not only in
interpreting the geologic features, but also locating new information in addition to the previously
known geologic features and identifying specific and important geologic features for economic
minerals in the geological environment of the study area at reconnaissance scale.

The use of SAM classification helped to confirm the presence of compositional difference in units
previously mapped as one unit (in terms of the mineral distribution) and the occurrence of
economic minerals. The economic minerals are spatially distributed almost with similar pattern
with the known prospective zone of the northern part of the study area. This means that the SAM
classification in Landsat TM can be helpful in geological mapping and targeting the potential
areas for mineral exploration.

The potential map created by EBFs, showed that the apatite deposits of the study area lie in
moderate to high potential zones and these coincide with high proportions of interpreted
prospective gabbro and SAM-classified apatite. Therefore, the combination of these three sets of
spatial data information was considered useful to derive an optimized predictive map of promising
exploration targets for apatite deposits.

5.2. Recommendations

The result of this study showed the usefulness of remote sensing in geological mapping of BLGC
and its associated mineralization, and it is recommended to implement it for mapping other
gabbroic intrusion with associated Fe-Ti-P mineralization that occurs in similar geological setting
in remote areas of poor accessibility.

The optimized predictive map of promising exploration targets for apatite deposits can be used,
with caution, to guide further exploration of apatite deposits in the test area.

It is also recommended to use remote sensing data with high spectral and spatial resolutions to
delineate the apatite-bearing units in more detail. In addition to this, using complementary
geophysical data sets such as magnetics to discriminate mafic rocks as well as the iron deposit of
Bikilal area, which is closely associated with the apatite deposits and radiometric data to
discriminate the different type of granitoid rocks found in the study area may help to improve the
result obtained in this research.
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