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ABSTRACT 
 

The remote sensing of grass quality as determined by nitrogen, phosphorous, potassium, calcium 

and magnesium concentration is critical for a better understanding of wildlife and livestock feeding 

patterns. Although remote sensing techniques have been proven useful to assess the concentration of foliar 

biochemicals under controlled laboratory conditions, more investigation is required to assess their 

capabilities at field level where inconsistent results have been obtained so far. We investigated the 

possibility of estimating the concentration of biochemicals in a savanna rangeland using spectral 

reflectance of five grass species. Canopy spectral measurements were taken in the field using a GER 3700 

spectroradiometer. We tested the utility of using three methods: (i) continuum removed derivative 

reflectance (CRDR), (ii) band depth (BD) and  (iii) band depth ratio (BDR) derived from continuum 

removed absorption features to estimate canopy N, P, K, Ca and Mg. Stepwise linear regression was used 

to select wavelengths from the absorption feature based methods. Using the training data set, the three 

methods could explain the variation in foliar nutrient concentration with R2 values ranging from 0.43 to 

0.80. Results were highest from CRDR data, which yielded R2 values of 0.70, 0.80, 0.64, 0.50 and 0.68 for 

N, P, K, Ca and Mg, respectively. Predicting biochemicals on a test data set using regression models 

developed from a training data set resulted in R2 values ranging from 0.23 to 0.70 between the measured 

and predicted biochemicals. The method may be extended to data acquired by airborne and space borne 

imaging spectrometers to estimate and to ultimately map the concentration of macronutrients in tropical 

rangelands.  
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1. INTRODUCTION 
 
The remote sensing of macronutrients (nitrogen, phosphorous, potassium, calcium and magnesium) that 

largely determine grass quality is critical for a better understanding of wildlife and livestock feeding 

patterns. Macronutrients are mainly responsible for plant growth, development and health. Therefore, they 

determine nutritional quality for herbivores (Salisbury and Ross, 1985). To prevent malnutrition and 

diseases, wildlife exhibit preference for certain sites and certain plant species or communities based on 

quality (Muya and Oguge, 2000). Therefore, the remote sensing of grass quality is important to explain the 

distribution and feeding patterns of wildlife and livestock (Styles and Skinner, 1997; van Soest, 1994). 

 The remote sensing of foliar biochemicals developed rapidly from the late 1970s (Curran et al., 

1995; Peterson et al., 1988; Wessman, 1994; Yoder and Pettigrew-Crosby, 1995), mainly using methods 

from laboratory near-infrared spectroscopy (NIRS) (Marten et al., 1989; Norris et al., 1976). The extension 

of the empirical laboratory NIRS to estimate biochemicals at canopy level has not been very successful to 

date (Curran et al., 2001; Kumar et al., 2001). This is because the presence of water in fresh canopies 

masks the biochemical absorption features especially in the short wave infrared (Clevers, 1999; Kokaly and 

Clark, 1999). In addition, leaf orientation, soil background effects as well as atmospheric absorption further 

complicate the remote sensing of biochemicals at field level (Asner et al., 2000). As a result, studies that 

used NIRS methods such as multiple linear regressions to predict canopy chemistry yielded inconsistent 

results when applied across different vegetation types (Grossman et al., 1996). In addition, NIRS based 

techniques such as stepwise regression suffer from problems of overfitting, especially when more 

wavebands than samples are used (Curran et al., 2001).  

To overcome these problems, Kokaly and Clark (1999) applied a refined method (band depth 

analysis of absorption features) that enhances and standardizes known chemical absorption features in order 

to minimize the effect of spectral variability that is independent of the biochemical concentration. Like 

NIRS, this method uses stepwise regression. However, the effect of overfitting is minimized by 

concentrating on known absorption pits that are enhanced by continuum removal (Clark and Roush, 1984). 

The band depth analysis method showed strong correlation (r2 = 0.95) with nitrogen concentration 

measured on dried ground plant material. Recently, Curran et al., (2001) applied the Kokaly and Clark 

methodology on 12 biochemicals with high accuracy. However, the above studies were conducted under 

controlled laboratory conditions. The extension of the method to field level has not been made to our 

knowledge. In addition, only a few studies have attempted to estimate the foliar nutrient status of 

potassium, phosphorous, magnesium and calcium. 

In this study, we aimed at improving and extending the band depth analysis method to estimate the 

concentration of macronutrients in grass (nitrogen, phosphorous, potassium, calcium and magnesium) 

measured at field level in the Kruger National Park, South Africa. Apart from the short wave infrared 

absorption features used by Kokaly and Clark, we added the two major absorption features located in the 
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visible region, where the effect of water is minimal.  A modified first derivative reflectance approach was 

also developed and tested. 

 
 
2. MATERIALS AND METHODS 
 
2.1 The Study Area 
The study area was located in the Northern plains of the Kruger National Park in South Africa.  The Kruger 

National Park comprises an area of 1 948.528 km2. A strip of 4 by 25 km stretching from the west (22 0 49
�

 

S and 31 0  01
�

 E) to the east  (22 0 44
�

 S and 31 0  22
�

 E) covering granitic and basaltic formations was 

selected. Generally, the site is flat especially on the eastern part, which is underlain by basalt rocks. The 

area is covered by open grassland in the east, mixed mopane and grass in the basalt – granite transition and 

dense woodland in the granite area.  

  Stratified random sampling with clustering was adopted in this study. The area was stratified into 

open grassland in the basalt, mixed woodland and woodland in the granite area. Coordinates (x y) were 

randomly generated in each polygon to select plots. To increase the number of samples in a time and labour 

constraint situation, extra two samples were clustered at least 100 m from the initially generated plots.  A 

total of 96 samples were collected. Each plot covered 20 m by 20 m. The dominant species (covering at 

least 30 % of the area) in each polygon were recorded.  

 

2.2 Canopy Spectral Measurements 

Canopy spectral measurements were taken for the dominant species in each plot using a GER (Geophysical 

and Environmental Research Corp.) spectroradiometer. The GER 3700 is a three dispersion grating 

spectroradiometer using Si and PbS detectors with a single field of view. The wavelength range is 350 nm - 

2500 nm with a resolution of 1.5 nm in the 350 nm - 1050 nm, 6.2 nm in the 1050 nm - 1900 nm range and 

9.5 nm in the 1900 nm - 2500 nm range. The fiber optic sensor, with a field of view of 10 º was pointed on 

the target at nadir position from about 1 m height for each spectral measurement. The radiance was 

converted to reflectance using scans of a Spectralon 100 % reference panel. Every target measurement was 

made after measuring the reference (Spectralon) panel to control for possible variations in illumination 

conditions. The resulting spectrum was determined as an average of 25 spectral measurements per species 

in each plot. The fieldwork was contacted at the beginning of the dry season (from mid April to mid May of 

2002) to maximise a large number of bright sunshine days. Measurements were taken on clear sunny days 

at high sun angle between 11:30 A.M and 2:00 P.M.  
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2.3 Biochemical Analysis 

The spectrally measured grass species in the plots were clipped and oven dried at 70º C for 24 hours. Plant 

tissue analysis was done in South Africa using the wet  extraction techniques.   Atomic Absorption flame 

spectroscopy using air-acetylene was used for the detection of K, Ca, Mg and Na. The detection of N and P 

was based on the colometric method. For P detection, the phosphomolybedenum complex was read at 660 

nm and for N detection, ammonia-salicylate complex was read at 640 nm. 

 

 
2.4 Data Analysis 
 

2.4.1 Absorption features 

Six known chemical absorption features were selected for this study (Table 1). These include the 

chlorophyll absorption features in the visible domain (R470 – 518 and R550 – 750), which have been found to be 

related to nitrogen concentration and other bio chemicals on fresh standing canopies (Mutanga et al., 2002) 

as well as on dried ground plant material (Curran et al., 2001) and also short wave absorption features 

(R1116 – 1284, R1634 – 1786, R2006 – 2196 and R2222 – 2378) that have hitherto been applied on dried plant material 

(Curran et al., 2001; Kokaly and Clark, 1999). Kokaly and Clark (1999) as well as (Curran et al., 2001) 

used chemical absorption features located in the short wave infrared for three and twelve biochemicals 

respectively, but emphasized that the effect of water should be computationally removed to an accuracy of 

within 10 %.  In order to minimise the effect of water, data was collected during the early dry season in 

May 2002 when standing biomass was still high but most of the grass was dry.  

 

Table 1.  Location of the absorption (R� a- � b) features used in this study  

Absorption feature Short wavelength end Long wavelength end 
R 408 - 518 408 518 
R550 - 750 550 750 
R1116 – 1284 1116 1284 
R1634 - 1786 1634 1786 
R2006 - 2196 2006 2196 
R2222 - 2378 2222 2378 
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Continuum removal was applied to the selected absorption features. Continuum removal normalizes 

reflectance spectra in order to allow comparison of individual absorption features from a common baseline 

(Kokaly, 2001). The continuum is a convex hull fitted over the top of a spectrum to connect local spectrum 

maxima. The continuum-removed reflectance R′ (� ) is obtained by dividing the reflectance value R (� ) for 

each waveband in the absorption pit by the reflectance level of the continuum line (convex hull) Rc(� )  at the 

corresponding wavelength. Stated formally:  

R′ (� i) 
 = 

)(

)(

ic

i

R

R

λ

λ
.                                                                (1) 

The first and last spectral data values are on the hull and therefore the first and last values of continuum-

removed spectrum are equal to 1. The output curves have values between 0 and 1, in which the absorption 

pits are enhanced (Schmidt and Skidmore, 2001).  Enhancement of bands by continuum removal is done by 

correcting for apparent shifts in the band minimum caused by wavelength dependent scattering, which 

imparts a slope to the spectrum. Removal of the continuum slope corrects the band minimum to that of the 

true band centre (Clark and Roush, 1984). Figure 1 shows continuum removed absorption features in the 

visible region, with a variation in band depth for different species.  
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Figure 1.  The absorption features (R408 – 518 and R550 – 750) enhanced by continuum removal for three species in the 
visible domain.  
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Continuum removal has been found useful in mapping the distribution of minerals by comparing remotely 

sensed absorption band shapes with those in a reference library (Clark and Roush, 1984). Efforts to apply 

the method in vegetation science have been made using dried plant material in the laboratory (Kokaly, 

2001; Kokaly and Clark, 1999). This method has not to our knowledge been extended to estimate foliar 

biochemicals of grass canopies in situ. 

Three variables were calculated from the continuum removed absorption features, viz. Continuum 

removed derivative reflectance (CRDR), Band depths (BD) and band depth ratio (BDR). 

CRDR was calculated by applying the first difference transformation on the continuum removed 

reflectance spectrum. This transformation calculates the slope values from the reflectance and can be 

derived from the following equation (Dawson and Curran, 1998): 

CRDR � (i)= ( R′ � (j+1)- R′ � (j))/ ∆ � ,  (2) 

where CRDR is the first derivative reflectance at a wavelength i midpoint between wavebands j and j+1. 

R′ � (j) is the continuum removed reflectance at the waveband j, R′ � (j+1) is the reflectance at the waveband 

j+1  and ∆ �  is the difference in wavelengths between j and j+1. Band depth (BD) was calculated by 

subtracting the continuum – removed reflectance by 1. Formally stated: 

BD (� i)
   = 1- R′ (� i).

                                                                                            (3) 

Since remotely sensed measurements of vegetation canopies are affected by factors such as atmospheric 

absorptions, soil background and water, a normalisation procedure using band ratios was also done to 

minimise these influences (Kokaly and Clark, 1999). The normalised band depth ratio (BDR) was 

calculated by dividing the band depth (BD) of each channel by the band center (Dc).  Formally stated: 

    BDR (� i)
    = 

c

i

D

BD )(λ
.                           (4) 

 

2.4.2 Feature selection 

Although the number of spectral bands used for analysis in this study had been reduced from 647 bands to 

294 by concentrating on known chemical absorption features, we further reduced them using a feature 

selection algorithm. Forward stepwise linear regression was used to select bands that best explain 

biochemical variability in grass species. Stepwise regression fits a dependent data set using a linear 
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combination of independent data sets. Stepwise regression has been widely used to relate remotely sensed 

data to vegetation variables (Curran et al., 2001; Kokaly and Clark, 1999; Martin and Aber, 1997; Serrano 

et al., 2002). The maximum number of steps in the stepwise regression analysis was set at six to avoid over 

fitting problems. Most authors recommend 10 to 20 times as many observations as variables, otherwise the 

regression line estimates are very unstable and unlikely to replicate if the experiment is repeated (Serrano et 

al., 2002; Skidmore et al., 1997).  

 

2.4.3 Testing the predictive capability of regression models 

A modified bootstrap procedure was used to test the predictive capability of multiple linear regression 

models developed between selected absorption feature variables and biochemicals. The standard bootstrap 

method involves resampling of the original data in order to generate a distribution for the statistic. It 

simulates the sampling distribution of any statistic by treating the observed data as if it were the entire 

statistical population under study (Efron, 1982).  On each replication, a random sample of size N is 

selected, with replacement from the available data (Efron and Tibshirani, 1994; McGarigal et al., 2000). 

The statistic of interest (in this case R2) is calculated on this bootstrapped subsample and recorded. The 

process is repeated for several replications in order to obtain the sampling distribution.  

In this study, since we aimed at testing the predictive capability of regression models on an 

independent data set, we modified the bootstrap procedure by first dividing data into training and test 

samples (n = 72 and 24 respectively). A regression model was developed from the training data set. Next, 

the test data set was bootstrapped with replacement for n = 1000 times and for each iteration, a regression 

model from the training data set was used to predict biochemicals on the test sub sample and R2 values 

recorded. The mean and standard deviation of R2 values for the test data were calculated and recorded. A 

routine, developed in IDL (Interactive Data Language) was used. The method permits the calculation of 

standard error and confidence intervals, which indicate statistical accuracy (Efron and Tibshirani, 1994; 

McGarigal et al., 2000).   
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3. RESULTS 

 
3.1 Foliar Biochemical Concentration 
 
The ranges of biochemical concentration were large as shown in table 2. This is mainly due to the variation 

in both biotic (species type) and abiotic (soil, slope, altitude) factors in the study area.  Results in table 3 

show that most of the foliar bio chemicals recorded are intercorrelated (p < 0.05) except for the correlation 

between nitrogen and calcium. Most of the biochemicals measured constitute the productive function in 

plants and are responsible for metabolic processes; hence there is a positive correlation among the 

biochemicals.  

 

Table 2. Descriptive statistics of the chemical variables measured in the laboratory by species 

 Mean (%) Minimum (%) Maximum (%) CL (95 %) 
N 0.78 0.38 2 0.055 
Mg 0.21 0.06 0.41 0.017 
Ca 0.44 0.14 1.03 0.031 
K 0.96 0.21 2.71 0.098 
P 0.18 0.04 0.48 0.018 
 

 

Table 3. Intercorrelation of biochemical concentrations measured in the laboratory 

 P K Ca Mg 
P 1.00    
K 0.74** 1.00   
Ca 0.53** 0.39** 1.00  
Mg 0.75** 0.78** 0.60** 1.00 
N 0.41** 0.72** 0.26 0.50** 

**  Significant: p < 0.05 
 
 
3.2 Wavelength Selection Using the Training Data Set 
 
Stepwise linear regression was executed between biochemicals and the three methods (CRDS, BD, BDR) 

using the training data set (n = 72).  The maximum number of selected wavelengths was set at six for each 

regression equation to avoid overfitting. Detailed results of the frequency of wavelengths selected by 

stepwise regression using the three data sets (CRDR, BD, BDR) are shown in table 4. The frequency of 

bands that occurs within ± 12 nm of a known chemical absorption wavelength as well as bands that have 

been reported in previous studies is shown. The ± 12 nm range was defined by Curran et al., (2001) to 

indicate causal chemical absorption. The highest frequencies of bands occur in the R1634 - 1786 and R550 – 750 

absorption features (frequency = 46). A total of 74 % of the bands selected are attributed directly (± 12 nm 

of the biochemical of interest) or indirectly (± 12 nm of a biochemical with which the biochemical of 
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interest was correlated) to known causal wavelengths (Curran et al., 2001) as well as to bands reported in 

previous studies.  

 
Table 4.  Frequency of wavelengths selected for all dependent variables by stepwise regression on the three data sets (CRDR, BD, 
BDR) and their relation with known absorption wavelengths. The unattributed are wavelengths that are not within ± 12 bands of 
known chemical absorption as well as bands that have not been reported in other studies. The total number of bands selected in each 
absorption feature is also expressed as percentage of the total (in brackets). 
Absorption feature 
centre 

Wavelengths of known 
chemical influence 
(nm) 

Known causal bio 
chemical 

Reference Frequency of bands 
selected (± 12 nm of 
known wavelength) 

430 Chlorophyll a (Curran, 1989; Kumar 
et al., 2001) 

7 

460 Chlorophyll b (Curran, 1989; Kumar 
et al., 2001) 

1 

Unattributed   3 

 
 
R408 - 518 

Total 
  11 (12.4) 

570 Chlorophyll + nitrogen (Penuelas et al., 1994) 7 
640 Chlorophyll b (Curran, 1989; Kumar 

et al., 2001) 
4 

660 Chlorophyll a (Curran, 1989; Kumar 
et al., 2001) 

3 

Red edge (700 – 750) Chlorophyll + nitrogen (Clevers and Buker, 
1991; Curran et al., 
1991; Fillella and 
Penuelas, 1994; Horler 
et al., 1983; Mutanga et 
al., 2002) 

6 

Unattributed    3 

 
 
 
 
 
 
 
R550 - 750 

Total   23 (25.8) 

1120 Lignin (Curran, 1989; Kumar 
et al., 2001) 

2 

Unattributed    4 

 
R1116-1284 

Total   6 (7) 
1690 Nitrogen (Curran, 1989; Kumar 

et al., 2001) 
6 

1730 Nitrogen (Curran, 1989; Kumar 
et al., 2001) 

7 

Unattributed   10 
Total   23 (25.8) 

 
 
 
 
R1634- 1786 

    
2060 Nitrogen (Curran, 1989; Kumar 

et al., 2001) 
1 

2130 Nitrogen (Curran, 1989; Kumar 
et al., 2001) 

5 

2180 Nitrogen (Curran, 1989; Kumar 
et al., 2001) 

8 

Unattributed   
 

 0 

 
 
 
 
R2006 - 2196 
 

Total   14 (15.7) 

2240 Nitrogen [Curran, 1989 (Kumar 
et al., 2001) 

4 

2300 Nitrogen (Curran, 1989; Kumar 
et al., 2001) 

2 

2350 Nitrogen (Curran, 1989; Kumar 
et al., 2001) 

3 

Unattributed    3 

 
 
 
 
R2222 - 2378 

Total   12 (13.5) 
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3.3 Developing Regression Models From a Randomly Selected Training Data Set to Predict 
Foliar Biochemicals on a Test Data Set 
 
Regression models developed from the training data set were used to predict foliar biochemicals on an 

independent test data set. To install confidence in the predictive capability of the regression models, a 

modified bootstrap procedure was adopted as explained before. Figure 4 shows an example of the predicted 

versus measured biochemicals using a randomly selected training and test set on CRDR data. Histograms 

showing the sampling distribution of the R2 values calculated from the predicted and measured 

biochemicals on the test sub samples generated by the bootstrap method (CRDR data) are shown in Figure 

5.The standard deviations are low for all chemicals, implying that the bootstrap method estimated with a 

high precision. The low standard deviations also indicate the stability of the regression models in predicting 

foliar biochemicals on an independent test data set. However, nitrogen yielded the highest standard 

deviation as compared to other biochemicals.  Table 5 details the R2 values for the training data set as well 

as the mean bootstrapped regression results of the accuracy with which biochemical concentration was 

estimated for a test data set using the three methods (CRDR, BD and BDR). The standard deviations for the 

test data sets are presented. Foliar biochemicals on the test data set could be predicted with mean R2 values 

ranging between 0.40 and 0.70 using CRDR. Phosphorous and nitrogen were predicted with a high 

accuracy (R2 > 0.70 using the training data set) as compared to the other biochemicals.  

 

Table 5. Results of R2 values for the training data set (Train) and mean of the test data sets (µtest). Data was randomly 
divided into training and test data sets (n = 72 and 24 respectively). Next, the test data set was bootstrapped with 
replacement for n = 1000 times and for each iteration, a regression model from the training data set was used to predict 
biochemicals on a test sub sample and R2 values recorded. The mean and standard deviation of R2 values for the test 
data are presented. 

Chemical CRDR BD BDR 
 Train µtest Stdev Train µtest Stdev Train µtest Stdev 
N 0.70 0.60 0.18 0.62 0.50 0.20 0.53 0.38 0.21 
K 0.64 0.53 0.17 0.72 0.60 0.16 0.56 0.33 0.18 
P 0.80 0.70 0.11 0.69 0.54 0.14 0.51 0.32 0.15 
Ca 0.50 0.40 0.12 0.47 0.29 0.13 0.46 0.26 0.16 
Mg 0.68 0.52 0.14 0.58 0.42 0.14 0.43 0.23 0.15 
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Figure 4.  Measured versus predicted biochemicals using CRDR. A randomly selected test data set (n = 24)  was 
plotted against biochemical concentration estimated using regression equations developed from the training data set (n 
= 72). 
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Figure 5. Histograms showing the frequency of R2 values between the measured and predicted biochemicals on a test 
data set. Data was randomly divided into training and test data sets. Next, the test data set was bootstrapped with 
replacement for n = 1000 times and for each iteration, a regression model from the training data set was used to predict 
biochemicals on a test sub sample and R2 values recorded.     
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4. DISCUSSION 

Results from this study indicate that hyperspectral data contains information on the nutrient status of grass. 

Using the training data set, the methods presented in this study could explain between 43 % and 80 % of 

the variation in nutrient concentration of standing grass canopies measured in the field. The accuracy with 

which foliar nutrient concentration could be predicted on an independent data set also ranged between      

23 % and 70 %. Considering that data was collected in the field under natural atmospheric and illumination 

conditions, this study has shown that there is potential to estimate in situ grass quality in rangelands using 

reflectance spectra. 

 The methods benefited from continuum removal that enhances differences in absorption strength, 

while normalising for absolute differences of reflectance peaks (Clark and Roush, 1984). Since this study 

concentrated on known absorption features, the continuum removal method enabled an increase in the 

variation of the band depths of individual absorption features. In a study on spectral discrimination of 

vegetation types in a salt marsh, Schmidt and Skidmore (2003) found out that continuum removal increases 

the spectral separability of vegetation types on absorption features as compared to the reflectance peaks in 

the near infrared.  Our results are therefore consistent with previous studies. In addition the collection of 

data during the early dry season when most of the grass was dry reduced the effect of water on chemical 

absorption features, especially in the short wave infrared region. However, the results in this study are 

lower than those of Curran et al. (2001), who found higher correlations between the normalized band depth 

ratios and biochemicals (R2 = 0.99 for nitrogen) using dried ground plant materials in the laboratory. This 

difference was to be expected since this study applied the methodology at field level where atmospheric 

absorptions as well as BRDF affects the signature.  

There was a marked difference in the R2 between estimated and observed biochemical 

concentration for the three methods derived from absorption features. The R2 for N prediction ranged from 

0.70, 0.62 and 0.53 for CRDR, BD and BDR respectively using the training data set. The same pattern was 

realized for the other biochemicals. Therefore, the new method, CRDR estimated biochemicals in grass 

with a higher accuracy than the other methods tested.   

The selection of wavelengths by stepwise regression is an important step towards the development 

of general models for the prediction of chemicals in plants as well as serving as a guideline to select 

wavebands for mapping.  The method presented in this study has partly solved the problem of 

inconsistencies found in wavelength selection from a full spectrum (Grossman et al., 1996) by 

concentrating on a few known features of chemical absorption. However there is still need to understand 

particular absorption features as well as wavelengths that are important for biochemical estimation. 

 Wavelengths selected for biochemical estimation in the visible region (40 % of the selected 

wavelengths were in the visible) are linked to pigment absorption (Table 4). Several publications have 

shown a strong relationship between the concentration of nitrogen and the concentrations of chlorophyll a 

and b (Katz et al., 1966; Penuelas et al., 1994; Ponzoni and Goncalves, 1999). Nitrogen is related with the 
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protein synthesis that promotes the photosynthetic process. Therefore, nitrogen deficiency disturbs the 

metabolic function of the chlorophyll, which is the photosynthetic element responsible for the absorption of 

electromagnetic energy at specific wavelengths in the visible region (Ponzoni and Goncalves, 1999). Since 

chlorophyll largely determines spectral reflectance in the visible, a strong relationship between visible 

absorption bands and nitrogen concentration is also expected.  

This study has also shown a strong intercorrelation among biochemicals themselves, particularly 

NPK (Table 3). Phosphorous is fundamental for tissue composition as well as being one of the components 

of the nucleic acids and enzymes. Potassium is also important for activating enzymes responsible for the 

carbohydrates metabolism as well as in the apical dominance (Ponzoni and Goncalves, 1999). These 

elements are therefore responsible for both the photosynthetic process and tissue composition of plants, 

hence related with the visible absorption bands (Salisbury and Ross, 1985).  

Most wavelengths selected in the SWIR (66% of selected wavelengths in the short wave infrared) 

are  ± 12 nm of the known protein absorption bands, specifically bonds including nitrogen. The 

intercorrelation of chemicals (Table 3) explains the selection of most bands close to regions of nitrogen 

absorption. The selected wavelengths (Table 4) are linked to the absorption of electromagnetic radiation by 

biochemicals that originates from energy transition of the molecular vibration (rotation, bending and 

stretching) of the C-H, N-H, O-H, C-N and C-C bonds in plant tissues (Elvidge, 1990). The chemical 

constituents of the plant tissue determine the nature and number of bonds present. Therefore, the 

wavelengths and the amount of energy reflected from the plant are partly a function of the chemical 

composition of that plant material (Foley et al., 1998). Overall, the two chlorophyll absorption features and 

the nitrogen absorption feature in the SWIR (R1634 – 1735) accounts for most wavebands selected in this 

study. 
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5. CONCLUSION 

 
This study has applied an empirical method to estimate grass quality at field level. Normalized band depths 

as well as derivatives calculated from continuum-removed reflectance spectra, were used in stepwise 

regression using six major absorption bands in the visible and the short wave infrared. The following 

conclusions can be drawn from this study: 

 

(i) Stepwise regression on normalized bands calculated from continuum-removed reflectance 

spectra could explain the variation of in situ grass quality with an accuracy ranging between 

43 % and 80 %.  

(ii) The new method, CRDR performed better than any other method tested in estimating grass 

quality (R2 of 0.70, 0.80, 0.64, 0.50 and 0.68 for N, P, K, Ca and Mg, respectively) using the 

training data set  

(iii) From the three absorption feature based methods tested, the accuracy with which biochemical 

concentration was estimated for a test data set ranged from an R2 of 0.23 to an R2 of 0.70 

(iv) The highest frequencies of bands selected by stepwise regression occur in the R1634 - 1786 and 

R550 – 750 absorption features (frequency = 46).  This serves as a guideline for the selection of 

important absorption features for mapping grass quality in tropical rangelands. 

Overall, the successful use of absorption features for estimating grass quality at field level is an important 

step towards the remote sensing and mapping of rangelands. These results have important applications not 

only in animal ecology, but also in agriculture and in understanding biogeochemical cycles.  
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