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This technical note was written as a supplementary material to a paper accepted for pub-
lication in Geoderma journal: Hengl T., Heuvelink, G.B.M. and Stein A. 2003. A generic
framework for spatial prediction of soil variables based on regression-kriging. In further
text, theory behind kriging with external drift and regression-kriging and differences be-
tween them are explained in more detail. We focus mainly on practical issues, i.e. how to
derive predictions and prediction uncertainty. We also give a small case study where you
can follow calculation of different elements. Use footnotes to obtain additional explanations.
For an introduction to matrix algebra, read the general introductions in classical statistical
books (Neter et al., 1996, §5). A detailed introduction to matrix algebra for KED can be
found in Wackernagel (1998, appendix).

(©) 2003 INTERNATIONAL INSTITUTE FOR GEO-INFORMATION SCIENCE AND EARTH
OBSERVATION (ITC) ENSCHEDE, THE NETHERLANDS
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1 Introduction

Universal kriging, kriging with external drift and regression-kriging belong to the
group of the so-called ‘hybrid’ (McBratney et al., 2000), i.e. non-stationary geo-
statistical methods (Wackernagel, 1998). Unfortunately, there has been quite some
confusion between different authors with what are the computational differences be-
tween the three: different authors use the same names for different approaches and
different names for the same approach. The most probable cause is that similar ap-
plications have been developed among different professions and with different goals.
The second important cause of this confusion is that some authors, more involved in
the practice of kriging (‘geostatisticians’), consider these techniques a special inter-
polation technique, while the other group (‘statisticians’) consider kriging to be only
a case of regression analysis with spatially correlated data. Both views are correct
in fact. The non-stationary geostatistical techniques, where auxiliary information
(e.g. slope map) is used to improve spatial prediction!, can be in general classified
depending on the properties of input data:

e (A) if number of auxiliary variables is low and they are not available at all grid-
nodes, co-kriging (CK) should be used to improve the prediction (co-kriging
requires estimation of cross-variograms);

e (B) if auxiliary information is available at all grid-nodes and correlated with
the target variable, kriging with unknown mean (Chiles and Delfiner, 1999) or
kriging with a trend model (Deutsch and Journel, 1992), also called “external
drift” (Bourennane et al., 1996; Hudson and Wackernagel, 1994; Bourennane
et al., 2000), should be used. Here, at least three, computationally different
approaches can be recognised:

— (B.1) “Universal kriging” (UK), first introduced by Matheron (1969),
is as a special case of kriging with changing mean where the trend is mod-
elled as a function of coordinates. Other authors (Deutsch and Journel,
1992; Wackernagel, 1998; Papritz and Stein, 1999) also agree that the
term Universal kriging should be reserved for the case where only the
coordinates are used.

— (B.2) If, instead of using monomials of the coordinates in the UK equa-
tions, the drift is defined externally through some auxiliary variables, the
term “Kriging with external drift” (KED) or external trend is used
(Wackernagel, 1998; Chiles and Delfiner, 1999, ,p. 355). This is probably
the most preferred name used for kriging with auxiliary information.

1Spatial prediction is process of estimating the target quantity (z) at a new, unvisited location
(s0), given its coordinates and interpolation data set (2(s1),2(s2),...,2(sn)). In GIS terms, pre-
dictions are made at all raster nodes or pixels in a new map. Hence, spatial prediction is in fact
interpolation, i.e. mapping process.
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— (B.3) The drift and residuals can also be fitted separately and then
summed. Similar procedure was first time suggested by Ahmed and
de Marsily (1987). Odeh et al. (1994, 1995) named it “Regression-
kriging” (RK), while Goovaerts (1999) uses term kriging after detrend-
ing.

The advantage of RK is that it can be easily combined with stratification, GAM,
regression trees etc. (McBratney et al., 2000). In this note, we concentrate on
differences between the KED and RK in order to find out do they give different
predictions and which approach is more optimal?

2 Kriging with external drift

In the case of KED, predictions at new locations are made by:

Zkep(S0) = ZM?ED(SO)'Z(SO (1)
i=1

for

n

> w(s0)-qr(s:) = qi(s0);  k=1,...p 2)
i=1

or in matrix notation:

fKED(SO) = 50T ©Z (3)

where z is the target variable?, g;’s are the predictor variables i.e. values at a new
location (sg), dg is the vector of KED weights (wXEP), p is the number of predictors
and z is the vector of n observations at primary locations. The KED weights are

solved using the extended matrices:

T
)\I(()ED = {wll(ED(So), ceny wﬁED(So), 800(50)7 ceey SOP(SO)}

KED—1 KED (4)
= C . CO

2A typical data-set consists of n observations of the target variable (z(s:); i = 1,...,n; 5, € G)
with zy coordinates of sampling locations (so called ‘primary’ locations), where G denotes the study
area. The auxiliary variables, also called ‘predictors’, (qi(s:),...,qr(si); k = 1,...,p) are measured
at the same locations and are also available at all new locations. Sign ¢ is used instead of more
common z, to avoid confusion with geographical coordinates.
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where A§E is the vector of solved weights, ¢, are the Lagrange multipliers, CKEP
is the extended covariance matrix of residuals and c§™ is the extended vector of
covariances at new location.

In the case of KED, the extended covariance matrix of residuals looks like this

(Webster and Oliver, 2001):

C(s1,81) -+ C(s1,80) 1 qu(s1) -+ gp(s1)
Clsms1) - Clsmsa) 1 ailsn) - gplsn)
e — 1 1 0 0 0 (5)
qi(s1) - q(sn) 0O 0 0
: : 0 : :
ap(s1) - ap(sn) 0 0 U

and CI(()ED like this:

CgED = {0(50751), "'vC(SOa Sn)aCJo(SO),CH(SO)a ""qP(SO)}T; QO(SO) =1 (6)

Note that we use the covariances since a common practice in geostatistics is
to model the variogram using a semivariance function and then, for the reasons of
computational efficiency, use the covariances®. The relation between the covariances
and semivariances is (Isaaks and Srivastava, 1989, p. 289):

C(h) = Co+ C1 —~(h) (7)

where C'(h) is the covariance, and (h) is the semivariance function. So for example,
in the case of exponential model:

. 0 if |h|=0 g

v (h) = CO+01.[1_6—(%)] if |h|>0 ®)
Co+Cy if |h|=0

C(h) = Cl.[e—(%)] if |h| >0 ©)

where |h| is the Euclidian distance* between the point pairs and Cp, C1, R are
the estimated parameters. Note that the covariance at zero distance (C(0)) is by
definition equal to the mean residual error (Cressie, 1993) — C(h11) also written

3In the case of solving the kriging weights or drift model coefficients, both the matrix of semivari-
ances and covariances give the same results. The same works for the calculation of GLS estimate
of drift model coefficients (Eq. 13). In the case of calculating the drift prediction error, however,
the matrix of covariances needs to be used.

4h is a vector of distances in = and y coordinates.
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as C(s1,s1) is equal to C(0) = Cy + C1 = Var{z(s)}. Note that, at zero distances
(diagonal), the covariance (seminvariance) function needs to be replaced with Cy +
C1o.

The variance of the prediction error®, i.e. KED variance is then calculated as
the weighted average of covariances from the new point (sg) to all calibration points
(81, .-y Sn), plus the Lagrange multipliers (Webster and Oliver, 2001, p. 183):

6

UI%ED(SO) = (CO + Cl) _ C1(<)EDT . )\I(()E‘,D
P

= Co+C1 =Y wils0) - Cls0,50) + Y @n(s0) - au(s0) (10)
=1 k=0

3 Regression kriging

In the case of RK, the predictions are made separately for the drift and residuals
and then added back together”:

Zrk(50) = 1(s0) + €(s0) (11)
Zr(50) = Y Br - aw(s0) + Y wils0)-e(s:); Qo(s0) =1; i=1..,n (12)
k=0 =1

where f3; are estimated drift model coefficients, w; are weights determined by the
semivariance function and e are the regression residuals. The (global) drift model
coefficients are optimally estimated® using the generalized least squares (GLS) to
account for the spatial correlation of residuals (Cressie, 1993, p. 166):

~ _ -1 _
Bus=(qT-C'-q) -qT-C' .z (13)

®(Burrough and McDonnell, 1998, p. 140) in their example use the actual nugget at zero distances
(instead of C'(0)). This gives a slightly different, suboptimal result.

SPrediction error is the statistical estimate of the model uncertainty. Note that the ‘true’ pre-
diction power can only be assessed by using the independent (control) data set. The prediction
error is therefore often referred to as the precision of prediction.

"This inexpensive in a GIS: first the drift model coefficients are solved, then residuals interpolated
using kriging and summed back to the drift estimates using a calculation with maps. For example, a
GIS calculation for mapping the topsoil thickness (DEPTH ) predicted from the slope map (SLOPE)
and krigged residuals (RES-OK ) might look like: DEPTH = 21.31 - 0.2628 * SLOPE + RES_OK

8This is equivalent to weighted linear regression, where the covariance matrix is used as the
matrix of weights.
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where C is the covariance matrix of residuals®:

C(s1,81) -+ C(s1,8n)
c=| (14
C(sp,s1) +++ C(Sn,sn)

Thus, RK in matrix notation is:

Z(s0) =dag -f+Ag e (15)

where 2(sg) is the predicted value, qg is vector of p + 1 predictors at new location,
5’ is vector of p + 1 estimated drift model coefficients, Ag is vector of n kriging
weights and e is vector of n residuals. The Eq. (15), in statistical terms, is the best
linear unbiased predictor or BLUP (Christensen, 1990, p. 268) and gives exactly
the same predictions as KED in Eq. (1). Note that the estimation of the residuals is
an iterative process'?: first the drift model is estimated using ordinary least squares
(OLS); then the covariance function of the residuals is used to obtain the GLS
coefficients; these can be used to re-compute residuals and so on.

The additivity relationship from Eq. (12) extends to variances as well. Hence, the
prediction error is sum of error of predicting the drift and kriging error of residuals.
The summary error is then (Chiles and Delfiner, 1999, p. 183):

oix(s) = o {rn(s)} + o? {&(s)} (16)
where o2 {1(s)} is the drift prediction error and o2 {é(s)} is the kriging variance
of residuals. The Eq. (16) can be also referred to as the composite variance. If the
drift model coeflicients are estimated using OLS, the covariance between residuals
and estimated drift is assumed to be zero!!. Hence, the composite variance can be
derived using:

_ _ -1
opx(s0) = (Co+C1) —cg -Ctco+aqy - (@¥-C'q)  -qo (17)
52{é(s0)} 52 {1 (s0)}

9Note that the C is in fact (n + 1) x (n + 1) matrix if it is used to derive kriging weights. One
extra row and column are used to ensure that the sum of weights is equal to one. Elsewhere n x n
part of matrix is used only.

10The major dissatisfaction of using KED or RK is that both the regression model parameters
and semivariance function parameters need to be estimated simultaneously. However, in order to
estimate coefficients we need to know covariance function of residuals, which can only be estimated
after the coeflicients (the “chicken-egg” problem). One solution is the iterative calculation of resid-
uals and their covariances. However, Cressie (1993) thinks that not even the iterative estimation of
both will necessarily lead to the optimal solution. Moreover, Kitanidis (1994) showed that multiple
iterations are not needed. Therefore, in practice a single iteration can be considered satisfactory
solution.

"'This is a reasonable assumption since the OLS regression residuals are by definition orthogonal,
i.e. normal random variables with 0 mean and constant variance (Neter et al., 1996, p. 97).
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where qg is the vector of p 4+ 1 predictors at unvisited location and cg is the vector
of covariances at new location:

co = {C(50,51)s ..., C(50, )} T (18)

This is a sub-optimal solution since the OLS estimation should be replaced with
GLS estimation of the drift to get an unbiased estimate of coefficients. In the case of
GLS estimation, we use the residuals to estimate the drift coefficient and therefore
the covariance between the estimated drift and residuals is different from zero. A
commonly used formula to calculate variance of the prediction error for both the
drift and residuals, and account for covariance between the drift estimation and
residuals is the UK variance (Cressie, 1993, p. 154):

U%(SQ) = (Co + Cl) — Cg . C_l - Co
+(a0—a" C " co) - (aTCa) (a-qT C o) (19)

Moreover, Cressie (1993) shows that the UK variance is equivalent to the KED
variance (Eq. 10). Also note that the Eq. (19) looks very much like (17), except it

will give slightly lower values.
The UK variance is, in fact, derived as the variance of prediction error (Papritz
and Stein, 1999, p. 94):

o2 (s0) = B ({2(s0) = 2(50)}" ) = Var {x(s0)} — 2 Cov {2(s0), 2(s0)} + Var {2(s0)}

02(sg) = C(0) —2- 68 - co+ 03 - C- &g (20)
where g is:
T T -1 -1 T “1 \m\1% -1
bo= [N +a- (@™ Ca) - (a—aT-CTHAT)| -C (21)

Note that the key assumption of the KED or RK is that there is no spatial
dependence between the auxiliary variable and the residual of the linear regression
of target variable on auxiliary variable at same point (Rivoirard, 2002). Further on,
it can be shown that the UK variance is equal to variance of the prediction error
of regression modelling if there is no spatial correlation between the residuals (pure
nugget effect'?). Hence, C can be reduced to identity matrix:

Co+Cy 0
C= Co+ C4 0 :(CO+CI)'I (22)
0 0 Co+ Ch

1201 &~ 0 in variogram modelling.
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and cg is the zero vector!®, so that UK variance reduces to:

1 -1
2 T T
atlon) = (Co+ )~ 0+ af - (a7 (ot va)
-1
oix(s0) = (Co+C1) + (Co+C1)-qq - (a7 -a) - aqo
and since (Cy 4+ C1) = C(0) = MSE, the UK variance reduces to:

0%&80)==ﬂ4513-[14-q33 @ff-q)_l-qo} (23)

which is equal to the prediction error around the regression line (Neter et al., 1996,
p. 210).

The expression o2 {r(s)} in Eq. 17, in linear regression terms, is equivalent to
the weighted curvature of the confidence bands around the regression hyperplane.
In multivariate case, the regression error around the regression hyperplane would
look like this':

(QO - Cka’)Q

M=

k

p
2.
k=1

Il
—

o? {i(s0)} = % + (24)

3

ws (Qi - ka)2
1

7

where G, is the weighted average of the predictor values. Hence, from Eq. (19)
it can be inferred that the prediction uncertainty will increase as the new point
gets further away from observation points geographically and further away from the
centre of the feature space!®.

In practice, if the correlation between the target and predictors is significant, the
KED or RK prediction error (¢2(s)) will be in overall lower'® than the OK error.
At some locations, the composite prediction error is more sensitive to the predictor
values than OK, i.e. how well is the feature space covered. For example, if the
areas of very high slopes were overlooked during the sampling, they will appear in
the prediction error map as high values. In fact, at locations of high extrapolation
in both respective spaces, the KED/RK will result in higher prediction errors than
OK.

13 This is not the case only for predictions at primary locations 2(s;).

14This is just an approximation. The prediction error in multivariate case is derived using matrix
algebra.

Y5Feature space is the physical range of predictor variables (q).

16Papritz and Stein (1999) show that, the formulas, the KED variance will in general be larger
than the OK variance, due to the general parameterisation of the drift. In practice, the RK/KED
will in general account for more variation than OK and improve the prediction. In fact, the same
authors (Papritz and Stein, 1999, p. 113) further on show that the auxiliary information can
considerably improve the precision of the prediction, when compared to OK.
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4 Summary remarks

At the end, it is important to emphasize that all three terms (UK, KED and RK),
practically describe the same generic method that should give the same predictions
and prediction error if the same input parameters are used (Cy, C1, R, Bgls). They
differ, however, in the methodological steps used:

e KED solves kriging weights by extending the covariance matrix with auxiliary
variables so that the universality conditions are integrated into the kriging
system; here, the difficulty is obtaining satisfactory residual variogram in the
presence of drift (Webster and Oliver, 2001);

e RK solves the drift model coefficients, while the residuals are interpolated using
OK and added back to drift model; here, the difficulty is obtaining unbiased
regression coefficients in the presence of spatial auto-correlation of residuals
(Cressie, 1993);

Note that, although KED technique seems to be computationally more straightfor-
ward, it needs variogram parameters of the GLS regression residuals, and therefore
the GLS regression coefficients (Eq. 13) as with RK. However, some authors make
different assumptions and skip some computational step, such as estimation of GLS
coefficients!'” or estimation of variogram of residuals'®. These short-cuts might be
more attractive for practical applications, but are sub-optimal statistically. This
technical note serves specifically to minimise confusion and help understanding the
differences when the short-cuts are made.

It is important to emphasize that, before applying KED or RK, some general
requirements need to be fulfilled (Goovaerts, 1997):

e relation between the target and predictors must be linear (residuals show nor-
mal distribution);

e value of predictors must be known at all primary data locations (s;) and all
new locations (sp) where the predictions are made;

e in the case of KED (weights are solved together), secondary variable should
vary smoothly in space to avoid instability of the KED system!?;

""Hudson and Wackernagel (1994), for example, make an assumption that the variogram of
residuals (e) is equal to the variogram of target variable (z), which is of course often simplification.
In this case, higher importance will be given to the kriging weights and the KED prediction map
will look more similar to the OK map than to the RK map.

80deh et al. (1994, 1995), for example, used only the OLS estimate of the drift and OLS residuals,
which is a sub-optimal but shorter solution. In this case, the drift and residuals are assumably
uncorrelated and Eq. (17) can be used instead of Eq. (19) to derive prediction error.

19f one predictor column/row has the same value at all primary locations, the matrix is unsolv-
able.
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The fact that KED and RK are equal can also be shown mathematically. First,
start from the RK (Eq. 15) and input the formula for GLS estimation of regression
coefficients (Eq. 13):

2RK(SO) :qg'Bgls+Ag"(z_q'Bgls)
_ -1 _ _ -1 _

= [qu~(qT~C’1~q)_1~qT-C*1+A§-(Lq.(qT.Cfl.q)—l,qT,Cfl)r.z

if you take a closer look, you will note that the first part of the equation equals
(Papritz and Stein, 1999):

qg‘.(qT.C_l.q)71.qT.C_1+COT.C_1. (I_q(qT.C_lq)iquC_l)

with some regrouping, you get:

— T
:|:)\0T_|_q(chflq) l(qo_chfl)\g‘)] .(}71

which equals the dg, as explained in the Eq. (21). Hence,

n
Zax(s0) =00 -z =Y wi™(s)-2(si) = Zxen(s0) (25)

i=1
This means that we can use either Eq. (1) or Eq. (12) and should come up to
the same predictions. Similarly, Eq. (10) and Eq. (19) should also give the same
values for the prediction uncertainty (UK variance). The UK (with coordinates) is
implemented in several geostatistical packages where the only input is the type of
drift (zy transforms). The KED equations are implemented in GSTAT linked with
GRASS GIS for example (Pebesma, 1999, see universal kriging). Moreover, in GSTAT,
user can select number of maps for predictors and number of target variables at the

same time.
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5 Example

We applied described theory using a simple example with 20 points from an existing
data set?® in Croatia. The response or target variable is thickness of the topsoil
in cm (DEPTH) and the auxiliary predictor is slope in % (SLOPE). The matrix
calculations are applied in MS Excel (version 2000) using the following commands:

A-B=MMULT(A;B)
AT =TRANSPOSE(A)
A"l = INVERSE(A)

MS Excel is limited to 100x100 cells matrices. Optionally, matrix calculations
are possible in command line of a statistical package such as S-PLUS (MathSoft Inc.,
1999). Here, the following functions are equivalent:

A -B=A%x*%B
AT =T(A)
Al =SOLVE(A)

Note that in S-PLUS, the covariance matrices and vectors of target and predictors
have to be first imported in the memory. There is no limit on the size of matrices,
although the computations with >500x500 matrices and with >5000 points, might
need lots of memory and processing time?!. The advantage of using Excel is that
the values are linked and can be changed manually, which gives a better insight into
the principles of the method.

The data set can be seen in Table 1 and Fig. 1. Use VESPER (Minasny et al., 2002)
or similar software to fit the variograms. Make predictions at a single new point (sp,
X = 2415474, Y = 4972080), where the predictor (SLOPE) value is q1(so) = 12.4%.
From the target variable (z;) and predictors (qo, q1), first derive the OLS regression
coefficients (ﬁols). You get:

DEPTH = 21.35 — 0.2817 - SLOPE (R? = 0.48)

See the respective prediction (z’) and residuals (eys) in Table 1. The OLS
residuals are now inspected for spatial autocorrelation. Due to a fairly small data
set, the variogram modelling is difficult. Instead, use the exponential model with

2%download the Excel spreadsheet from http://www.itc.nl/library/Academic_output/

2'In the case of larger size of datasets, the KED estimation and KED variance calculated with
Eq. (19) might not be feasible in standard statistical software or table calculator. For example,
imagine a case with 200 observations, 10 auxiliary variables and a 1000x 1000 new locations. Pre-
dictions and prediction error needs to be derived at 10° points, which means that the system has
to solve 200x 200 size matrices and multiply them with 10° size vectors. This is almost impossible
in S-PLUS on a standard office PC.
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Figure 1: Observed points (20) and values of target variable (DEPTH); sq indicates the
point for which the predictions are made.

the following parameters Cyp = 0, C7 = 16.2 and R = 1.907 km (Fig. 2). Note that
the residuals should typically show lower sill and shorter range of spatial dependence
than the original variable.

Use the Cy, C7 and R parameters to solve the GLS coefficients (Bgls). First
calculate the covariance matrix (size 20x20) using the exponential function (Eq. 9),
then derive the GLS coefficients using Eq. 13. This gives somewhat different (more
realistic) model (Fig. 3):

DEPTH = 21.31 — 0.2628 - SLOPE (R% = 0.47)

Note that for GLS estimation, residuals are somewhat biased (compare the av-
erage OLS and GLS residuals in Table 1) around the regression line and so is the
goodness of fit lower. In this case, GLS predictions (2”) are always higher than the
OLS predictions (2’).

To make predictions at the new points, first derive a vector of covariances at new
location using the given variogram parameters and distances from the new point to
all primary locations (Table 2). Note that the KED weights (wfEP) are quite different

(2
from the OK weights (w9*). For example, the highest OK weights are at P8, P6,
P5 (closest points), while the highest KED weights are differently distributed and
with smaller difference (Table 2). Now, make predictions at the new point using

Egs. (1) and (12). You get the same result:

2KED(30) = 18.09
2 (s0) = 17.86 4 0.23 = 18.09
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Table 1: Coordinates, target variable, predictors and residuals.

Point ID Coordinates Predictors Target OLS GLS

Easting Northing Intercept SLOPE DEPTH

X Y 9 a z 2 eols 2" egqis
P1 2382641 4965281 1 51.1 4 7.0 -3.0 79 -39
P2 2401577 4978420 1 15.9 133 169 -36 171 -3.8
P3 2384193 4972198 1 17.3 9 165 -75 168 -7.8
P4 2425685 5006765 1 31.7 16.1 124 3.7 13.0 3.1
P5 2423415 4975745 1 2.1 21.1  20.8 0.3 208 0.3
P6 2422427 4968288 1 37 9 109 -19 116 -2.6
pP7 2383457 4971502 1 42 5 9.5 -45 103 -5.3
P8 2410757 4967205 1 19.7 18 158 22 16.1 1.9
P9 2401657 4997833 1 12.3 21.1 179 3.2 18.1 3.0
P10 2424570 4977027 1 3.4 185 204 -19 204 -19
P11 2403448 5006355 1 4.2 26.1 202 59 202 5.9
P12 2390827 5000819 1 0.9 20 21.1 -1.1 211 -1.1
P13 2384422 5006488 1 21.5 21.6 153 6.3 15.7 5.9
P14 2381288 4981203 1 37.5 5 108 -58 11.5 -6.5
P15 2429583 4978421 1 38.1 9 106 -16 11.3 -2.3
P16 2382591 4997168 1 13.3 133 176 -43 178 -45
P17 2390709 4987547 1 3.6 21.6 203 1.3 204 1.2
P18 2422209 4966624 1 27.3 12.1 13.7 -16 141 -2.0
P19 2409895 4994779 1 2.1 21.5  20.8 0.7 20.8 0.7
P20 2413321 4983096 1 47.3 21.1 8.0 13.1 8.9 122
avg. 21.42 15.32 15.32 0.00 15.68 -0.36
std. 16.54 6.70 4.66 4.81 435 4.82

Calculate the prediction error at the new location using both Egs. (10) and (19).
The value differs slightly, which might be due to the rounding of numbers in Excel:

o (s0) = 17.23
oac(s0) = 16.13 +1.05 = 17.18

Note that the estimation error of the drift is much smaller than the kriging
variance of residuals. Optionally, you can change values of predictor (SLOPE) or
coordinates at new location in order to see how will it influence the prediction error.
You can see that, if you increase the SLOPE to say 100%, the estimation error
of the drift will be higher than the kriging variance of residuals. Similarly, if you
change coordinates so that they are fairly close to the primary locations, the kriging
variance of residuals will decrease and become insignificant. Note that we make
predictions at only one point. To calculate predictions and prediction error at all
locations, you will need more processing power.
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Figure 2: Variogram modelling of the target variable (solid line) and the OLS residuals

(dashed line).

Table 2: Distances, covariances and derived weights at the new point.

. Distances OK KED

Point ID Covariances / weights weights
hoi  C(hoi) inK wZI-‘ED
P1 33,530 0.000 0.026 0.002
P2 15,275 0.005 0.048 0.062
P3 31,281 0.000 0.013 0.075
P4 36,157 0.000 0.032 0.036
P5 8,746 0.165 0.125 0.071
P6 7,920 0.255 0.125 0.022
P7 32,022 0.000 0.011 -0.026
P8 6,783 0.462 0.244 0.084
P9 29,225 0.000 0.020 0.066
P10 10,354 0.071 0.013 0.057
P11 36,324 0.000 0.026 0.081
P12 37,860 0.000 0.020 0.086
P13 46,348 0.000 0.025 0.051
P14 35,382 0.000 0.025 0.025
P15 15,468 0.005 0.019 0.019
P16 41,361 0.000 0.023 0.065
P17 29,198 0.000 0.023 0.082
P18 8,668 0.172 0.061 0.043
P19 23,375 0.000 0.023 0.084
P20 11,224 0.045 0.097 0.012
by 1.000 1.000
20 0.937 1.437
1 -0.027
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Figure 3: Correlation analysis between the target (DEPTH) and predictor (SLOPE): or-
dinary least squares estimation (OLS) and generalized least squares (GLS).
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